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ABSTRACT
Fine-tuning on cheap commodity GPU servers makes large-scale
deep learning models benefit more people. However, the low inter-
GPU communication bandwidth and pressing communication con-
tention on the commodity GPU server obstruct training efficiency.

In this paper, we present Mobius, a communication-efficient sys-
tem for fine tuning large-scale models on commodity GPU servers.

The key idea is a novel pipeline parallelism scheme enabling het-
erogeneous memory for large-scale model training, while bringing
fewer communications than existing systems. Mobius partitions
the model into stages and carefully schedules them between GPU
memory and DRAM to overlap communication with computation.
It formulates pipeline execution into a mixed-integer program prob-
lem to find the optimal pipeline partition. It also features a new
stage-to-GPU mapping method termed cross mapping, to minimize
communication contention.

Experiments on various scale models and GPU topologies show
that Mobius significantly reduces the training time by 3.8-5.1×
compared with the prior art.

CCS CONCEPTS
• Computer systems organization→ Pipeline computing; •
Computing methodologies→ Neural networks.
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1 INTRODUCTION
Recent years have witnessed the great success of large-scale deep
learning models. They deliver significant accuracy improvement
in the fields of natural language processing (NLP) [16, 41] and
computer vision (CV) [18, 21]. From Megatron (2018, [40]) to Meta-
OPT (2022, [46]), the size of large-scale models has increased by
over 200×, and this trend will continue [25]. Training such large-
scale models from scratch requires enormous computing power,
which is only feasible on supercomputers or datacenters of top-tier
technology companies.

Fortunately, a pre-trained large-scale model can be reused for
multiple different downstream tasks via fine-tuning. It only requires
a short training (several GPU-days) on an existing pre-trainedmodel
with new data. Considering the costs of training from scratch (up
to 4.5 million dollars for training GPT-3 [13]), for most machine
learning practitioners, fine-tuning is the only practical way to enjoy
the benefits of large-scale models.

In this paper, we consider the problem of fine-tuning large-scale
models on low-cost commodity GPU servers. We focus on commod-
ity GPUs (e.g., 3090-Ti [7]) since they provide similar computing
performance to data center GPUs (e.g., A100 [11]), but at a 7× lower
price. Thus, they are more accessible to most people. Although ex-
isting fine-tuning systems such as Microsoft DeepSpeed [3] support
large-scale model training on a single DGX-2 server [4] by using
heterogeneous memory, they are designed for data center GPUs.We
find the existing system’s communication pattern is mismatched
with the scarce communication resources on commodity GPU
servers, leading to a serious communication bottleneck (about 70%
of training time using DeepSpeed is spent on communication in
our evaluation).

First, the inter-GPU communication bandwidth on commodity
GPU servers is low. Unlike data center GPUs equipped with NVLink,
which delivers a bandwidth of up to 900 GB/s [12], commodity
GPUs can only communicate with other GPUs using PCIe-3.0 with
a bandwidth of 16 GB/s. However, existing works are based on
ZeRO data parallelism [35], which stores model states distributedly
in multiple GPUs to reduce redundancy. It needs frequent collective
communication to transfer model states between GPUs, generating
communication of 7.3× the model size in one training step, accord-
ing to our analysis. Such a high communication traffic at a low
inter-GPU bandwidth brings a lot of overhead.

https://doi.org/10.1145/3575693.3575703
https://doi.org/10.1145/3575693.3575703


ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yangyang Feng, Minhui Xie, Zijie Tian, Shuo Wang, Youyou Lu, and Jiwu Shu

Second, the inter-GPU communication contention is severe on
commodity GPU servers. Since commodity GPUs lack GPUDirect
peer to peer (GPUDirect P2P) [9] support, inter-GPU communica-
tion is first routed through CPU to DRAM and then transferred
to the target GPU. Thus, when multiple GPUs transfer data simul-
taneously, there is serious bandwidth contention at CPU’s root
complexes. Unfortunately, existing works rely on massive all-to-all
collective communications among all GPUs to transfer parameters
and gradients, which aggravate contention and limit the available
bandwidth per GPU further.

To this end, we propose Mobius, a communication-efficient sys-
tem for large-scale model fine-tuning on commodity GPU servers.
Mobius leverages a key observation: traditional pipeline paral-
lelism [24, 31] is more suited for commodity GPUs than the exist-
ing system’s ZeRO data parallelism [35–37], since it only transfers
small activations and activation gradients between adjacent GPUs,
bringing remarkably fewer communications. Different from ex-
isting pipeline parallelism systems that only support models that
fit in GPU memory, Mobius pipeline enables large-scale model
training by introducing heterogeneous memory. However, it, mean-
while, brings extra communication traffic. To reduce that, Mobius
redesigns the pipeline scheme. Specifically, Mobius pipeline di-
vides a model into stages, each of which contains several model
layers. These stages are stored in DRAM. Each GPU is responsible
for multiple stages’ execution and alternates stages by swapping
them between GPU and DRAM. To further reduce communication
overhead, Mobius overlaps communication by prefetching the next
stage.

Enhancing pipeline parallelism with heterogeneous memory
requires Mobius to revisit two classic problems which determine
the performance of pipelining training: 1) how to partition the
model into stages, and 2) how to map each stage to GPUs.

First is how to partition the model into stages. Peaking efficiency
of Mobius pipeline requires a load and communication balanced
partition of the model, as the slowest stage in the pipeline limits the
overall throughput. In Mobius pipeline, too small a stage increases
communication overhead, due to more transfer of activations and
activation gradients, while too large a stage causes not enough GPU
memory for prefetching, losing opportunities to overlap compu-
tation and communication. Existing partition algorithms [24, 45]
do not work since they are formulated in the all-in-GPU-memory
scenario without considering prefetching and multi-stages. Mobius
formulates pipeline execution as a mixed-integer program (MIP)
problem and then finds an optimal partition scheme based on our
model partition algorithm (called MIP partition algorithm). We also
adopt layer similarity to reduce the profiling timewhen determining
the parameters of MIP.

After partitioning, the second problem is how to map each stage
to GPUs. We find that the naive sequential mapping scheme of
existing pipeline systems [24, 31] is not PCIe topology-aware, thus
can cause severe communication contention on the CPU root com-
plexes of commodity GPU servers. To alleviate this contention, our
key idea is to prevent GPUs under the same root complex from
transferring data simultaneously, where possible. With this key
idea, Mobius tries the best to map two adjacent stages to two GPUs
under different CPU root complexes; we call this cross mapping
scheme. Note that there may be multiple cross mapping schemes.

Table 1: Performance and price comparison of a 3090-Ti GPU
and an A100 GPU. GPUDirect P2P enables GPU-to-GPU commu-
nications directly over the memory fabric (PCIe, NVLink). High-
bandwidth connectivity means all GPUs in a node can be fully
connected via NVLink and NVLink Switch.

3090-Ti A100

Price $2,000 $14,000
FP32 Performance 40 TFlops 19 TFlops

Tensor Cores 336 432
GPUDirect P2P not support support

High-bandwidth Connectivity not support support

Mobius automatically searches for the best one by estimating the
communication contention degree based on the PCIe topology of
the GPU server.

We evaluate Mobius with extensive experimental settings: dif-
ferent scales of models, batch sizes, GPU topologies, and GPUs.
Compared with the state-of-the-art system DeepSpeed, Mobius
significantly reduces the training time by 3.8 − 5.1×.

We make the following contributions in this paper:

• We profile existing fine-tuning systems on commodity GPU
servers, and find that the scarcity of communication re-
sources is the key performance bottleneck.

• We introduce a communication-efficient system, Mobius, for
fine-tuning large-scale models on commodity GPU servers.

• We evaluate Mobius and show its efficiency.

2 BACKGROUND AND MOTIVATION
In this section, we identify the importance of fine tuning large-scale
models (§2.1), and describe the opportunities and gaps of commod-
ity GPUs (§2.2). Then we demonstrate existing work’s limitations
on commodity GPUs, by analyzing and profiling DeepSpeed (§2.3).

2.1 Fine Tuning Pre-trained Models
Fine tuning pre-trained models democratizes the benefits of large-
scale models. Training a large model from scratch requires tremen-
dous time (several days on thousands of GPUs [33]) and millions
of money [38]. For example, training GPT-3 of 175B parameters
requires 355 GPU-years, which costs over 4 million dollars [13].
Such a high cost makes it only affordable for a small proportion of
people in the AI community. Fortunately, some organizations make
their pre-trained models publicly available, such as Meta’s Open
Pre-trained Transformer (OPT) [40]. These pre-trained models can
be fine tuned for different downstream tasks, which is proven to
be effective [22]. Fine tuning requires less training time and cost
compared to training a model from scratch. For most users, fine
tuning these publicly available pre-trained large-scale models is
only a practical way to enjoy their benefits.

2.2 Commodity GPU Server
From the perspective of computational power, commodity GPU
server are a cheaper and more affordable choice for most people
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Figure 1: The difference in architecture between commodity
and data center GPU servers. In data center servers, all GPUs
are additionally connected via NVLink. The green arrows indicate
the data transfer between two GPUs.

to fine tune models. However, their communication resources are
limited compared with data center training GPU server.

Opportunities: affordable and sufficient computational power.
Compared with data center GPU servers, commodity GPU servers
are more affordable for most people. For example, a DGX A100
with 8 fully connected A100 GPUs costs up to $200,000 [5]. Renting
an EC2 P4 (with 8 × A100 GPUs) in the cloud needs $20,000 per
month [2]. However, buying a commodity GPU server with 8× 3090-
Ti GPUs only needs $20,000. Although commodity GPU servers are
cheaper, they provide sufficient computational power. For example,
a 3090-Ti GPU offers twice the FP32 computing performance and
similar tensor cores of an A100 GPU (Table 1).

Gaps: scarce communication resources. However, compared to
data center GPU servers, commodity GPU servers’ communication
resources are limited. First, the bandwidth of inter-GPU communi-
cation in commodity GPU servers is low. In data center GPU servers,
GPUs are fully connected via NVLink and NVLink Switch, which
enables up to a 900 GB/s bandwidth between any two GPUs [12].
However, commodity GPU servers do not support fully-connective
NVLink or NVLink Switch. Thus, their inter-GPU communication
only reaches a bandwidth of PCIe bus (16 GB/s).

Second, communication contention is a hurdle to making every
single GPU fully utilize communication resources. GPUDirect Peer
to Peer (GPUDirect P2P), which enables GPU-to-GPU data opera-
tions directly over the memory fabric (PCIe, NVLink), is unavailable
on commodity GPUs. Therefore, inter-GPU communication is first
routed through CPU to DRAM, and then transferred to the target
GPU. However, in most commodity GPU servers, multiple GPUs
are connected to a CPU via a single PCIe Switch (Figure 1a). In this
kind of GPU topology, if multiple GPUs transfer data at the same
time, the communication is bounded by the shared the CPU root
complex (pointed by the red arrow), and each GPU only utilizes a
portion of the CPU root complex’s bandwidth.
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Figure 2: GPU communication bandwidth cumulative distri-
bution function (CDF) of DeepSpeed when fine-tuning a 15B
model. This experiment is performed on a server with 4×3090-Ti
GPUs. Every two GPU share a CPU root complex.

2.3 Analysis of DeepSpeed
The limited GPU memory capacity restricts the trainable model
size both on commodity and data center GPU servers. The state-of-
the-art fine-tuning system, Microsoft DeepSpeed, supports hetero-
geneous memory to train large-scale models on data center GPU
servers (e.g., DGX-2 [4]). However, it is unsuitable for commodity
GPU servers due to the communication problem mentioned in §2.2.
Experimentally, we profile DeepSpeed with a GPT-like model on
a 4×3090-Ti server and find that communication time accounts
for over 70% of total training time; the detailed configuration of
DeepSpeed is in the §4. We conclude that this is because the com-
munication pattern of DeepSpeed is mismatched with the scarce
communication resources on commodity GPU servers. In detail,
there are two reasons as follows.

Massive communications of DeepSpeed, but low communica-
tion bandwidth on commodity GPU servers. DeepSpeed gener-
ates massive communications. Through profiling, we find that the
communication traffic of DeepSpeed is horribly 7.3× of the model
size in a single training step. Two factors contribute to this phe-
nomenon. First, DeepSpeed is based on data parallelism, and thus
needs to all-reduce gradients of every parameter across all GPUs
to ensure parameter consistency. Second, DeepSpeed shards model
parameters among GPUs. During training, it all-gathers parameters
of each layer. Such frequent all-to-all collective communications
incur minor overhead on data center GPU servers with GPUDirect
P2P and NVLink enabled. However, with a commodity GPU server,
the communication overhead will be fully exposed due to a low
inter-GPU bandwidth.

Frequent all-to-all collective communications of DeepSpeed,
but communication resources contention on commodityGPU
servers. Figure 2 shows GPU communication bandwidth cumu-
lative distribution function in one training step when fine-tuning
a 15B model. We observe that most data communication of Deep-
Speed only reaches 50% of the maximum bandwidth of the CPU
root complex. The reason is that all GPU communications must go
through the CPU’s root complex due to the lack of GPUDirect P2P
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F2, 1 F2, 2 F2, 3 B2, 1 B2, 2 B2, 3
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Timeline
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Figure 3: GPipe. Each stage contains multiple layers of a model.
𝑃𝑖 denotes the 𝑖𝑡ℎ GPU. 𝐹𝑖, 𝑗 and 𝐵𝑖, 𝑗 denote the 𝑖𝑡ℎ stage’s for-
ward/backward execution on the 𝑗𝑡ℎ microbatch respectively. Each
square denotes a time unit. The left side shows the order of ac-
tivation transfer between stages during forward. The right side
shows the GPipe execution in one step. The blank squares indicate
computation bubbles.

on commodity GPU servers (as mentioned in §2.2). In DeepSpeed,
there are massive all-to-all GPU collective communications, which
make it frequent that multiple GPUs under the same CPU transfer
data simultaneously. It leads to massive communications to contend
the bandwidth of CPU’s root complex.

In summary, although DeepSpeed enables large-scale model
training on limited GPU memory by leveraging heterogeneous
memory, scarcity of communication resources still hinders efficient
large model fine-tuning on commodity GPU servers.

3 MOBIUS DESIGN
To enable communication-efficient large-scale model training on
commodity GPU servers, we propose Mobius. Mobius is a novel
pipeline parallelism to reduce communications, while enabling het-
erogeneous memory to train large-scale models (§3.1). To take full
advantage of the Mobius pipeline’s opportunities, Mobius proposes
a model partition algorithm based on mixed-integer programs (MIP)
to find the optimal partition scheme (§3.2). After partitioning, Mo-
bius uses cross mapping to map stages to different GPUs and reduces
communication contention (§3.3).

3.1 Mobius Pipeline
Traditional pipeline parallelism (e.g., GPipe in Figure 3) first par-
titions a model into some stages, each of which includes multiple
layers of the model. It maps only one stage to each GPU, and divides
a batch into multiple microbatches executed in the pipeline. How-
ever, traditional pipeline parallelism only utilizes GPU memory,
making trainable model scale bounded by GPU memory capacity.

Different from traditional pipeline parallelism, Mobius pipeline
leverages heterogeneous memory to train larger models without
enough GPU memory. In Mobius pipeline, the number of stages
can be more than that of GPU, and each GPU is responsible for
multiple stages’ execution. These stages are stored in DRAM. Mo-
bius transfers a stage’s copy from DRAM to GPU memory before
executing it, and frees this copy in GPU after finishing the stages’
execution on all microbatches. Note that we focus on extending
GPU memory with only DRAM, since publicly available pretrained
models can usually fit in DRAM and the limited bandwidth of SSDs
is a performance bottleneck on a single server.

Figure 4a shows an example of Mobius pipeline. We assume that
the model is divided into 𝑆 stages, and these stages are mapped to
𝑁 GPUs (e.g., 𝑆 = 8, 𝑁 = 4 and 𝑃1, 𝑃2, 𝑃3, 𝑃4 are GPUs in Figure 4).
Each stage executes 𝑀 microbatches in a training step, and 𝑀 is
equal to 𝑁 (e.g., 𝑀 = 4 in Figure 4). 𝑆𝑡𝑎𝑔𝑒1,5 are mapped to 𝑃1,
𝑆𝑡𝑎𝑔𝑒2,6 are mapped to 𝑃2, 𝑆𝑡𝑎𝑔𝑒3,7 are mapped to 𝑃3, and 𝑆𝑡𝑎𝑔𝑒4,8
are mapped to 𝑃4. During the forward, microbatch𝑚1 is first com-
puted on 𝑆𝑡𝑎𝑔𝑒1∼4,, and when it reaches 𝑆𝑡𝑎𝑔𝑒4, the forward of the
last microbatch𝑚4 on 𝑆𝑡𝑎𝑔𝑒1 is finished. At the time, 𝑆𝑡𝑎𝑔𝑒5 can be
transferred to GPU memory from DRAM and replaces 𝑆𝑡𝑎𝑔𝑒1 on 𝑃1.
The activation of𝑚1 on 𝑆𝑡𝑎𝑔𝑒4 is transferred to 𝑃1, and 𝑃1 continues
to execute 𝑆𝑡𝑎𝑔𝑒5’s forward function on𝑚1. Other microbatches’
computing and stages’ replacements are similar.

Low communication traffic. Herewe analyze the communication
traffic of Mobius and DeepSpeed theoretically to show that Mobius
pipeline reduces communications traffic. We take the case of mixed
precision training [30] for example.

In one training step of Mobius, only two copies of parameters
need to be transferred to GPU memory in FP16 for forward and
backward execution (𝑃𝑀𝑜𝑏𝑖𝑢𝑠 ). Besides, Mobius pipeline needs to
offload activations from GPU memory to DRAM after forward
and upload them from DRAM to GPU memory before backward
(𝐴𝑀𝑜𝑏𝑖𝑢𝑠 ). At the end of each step, the parameters’ gradients should
be transferred to DRAM for parameter update (𝐺𝑀𝑜𝑏𝑖𝑢𝑠 ). Therefore,
the communication traffic of Mobius is

𝑃𝑀𝑜𝑏𝑖𝑢𝑠 = 2 × 𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑠𝑖𝑧𝑒
2

𝐴𝑀𝑜𝑏𝑖𝑢𝑠 = 2 × 𝑡𝑜𝑡𝑎𝑙_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒
𝐺𝑀𝑜𝑏𝑖𝑢𝑠 = 𝑡𝑜𝑡𝑎𝑙_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑠𝑖𝑧𝑒

CommunicationTraffic𝑀𝑜𝑏𝑖𝑢𝑠

= 𝑃𝑀𝑜𝑏𝑖𝑢𝑠 +𝐶𝑀𝑜𝑏𝑖𝑢𝑠 +𝐺𝑀𝑜𝑏𝑖𝑢𝑠

≈ 1.5 × 𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑠𝑖𝑧𝑒
(1)

In comparison, DeepSpeed transfers two copy of the parameters
in FP16 from DRAM to GPUs, and transfers 2 × (𝑁 − 1) copies
of the parameters between all GPUs (𝑃𝐷𝑒𝑒𝑝𝑆𝑝𝑒𝑒𝑑 ). At the same
time, the activations need to be transferred between DRAM and
GPU memory twice as much as Mobius (𝐴𝐷𝑒𝑒𝑝𝑆𝑝𝑒𝑒𝑑 ). In backward,
each GPU generates a version of gradients (𝐺𝐷𝑒𝑒𝑝𝑆𝑝𝑒𝑒𝑑 ). Therefore,
gradients in each GPU need to be first all-reduced and then swapped
to DRAM for parameter update. In summary, the communication
traffic of DeepSpeed is

𝑃𝐷𝑒𝑒𝑝𝑆𝑝𝑒𝑒𝑑 = 2𝑁 × 𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑠𝑖𝑧𝑒
2

𝐴𝐷𝑒𝑒𝑝𝑆𝑝𝑒𝑒𝑑 = 2 × 𝑡𝑜𝑡𝑎𝑙_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒
𝐺𝐷𝑒𝑒𝑝𝑆𝑝𝑒𝑒𝑑 = 𝑁 × 𝑡𝑜𝑡𝑎𝑙_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑠𝑖𝑧𝑒

CommunicationTraffic𝐷𝑒𝑒𝑝𝑆𝑝𝑒𝑒𝑑

= 𝑃𝐷𝑒𝑒𝑝𝑆𝑝𝑒𝑒𝑑 +𝐶𝐷𝑒𝑒𝑝𝑆𝑝𝑒𝑒𝑑 +𝐺𝐷𝑒𝑒𝑝𝑆𝑝𝑒𝑒𝑑

≈ 1.5𝑁 × 𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑠𝑖𝑧𝑒
(2)

If we use checkpoint and recomputation [17] in fine-tuning,
𝑡𝑜𝑡𝑎𝑙_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒 is negligible. Each parameter’s gradient size
is equal to half of parameter’s size, due to using FP16 training mode.
According to Equation 1 and 2, Mobius can reduce communication
traffic by 𝑁× (𝑁 is the number of GPUs).
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Figure 4: Mobius pipeline. 𝑃𝑖 denotes the 𝑖𝑡ℎ GPU. The two GPUs pointed by the red dashed arrows share the bandwidth of the same
CPU root complex. 𝐹𝑖, 𝑗 and 𝐵𝑖, 𝑗 denote the 𝑖𝑡ℎ stage’s forward/backward execution on the 𝑗𝑡ℎ microbatch respectively. 𝐶𝑖 denotes the data
transfer of the 𝑖𝑡ℎ stage from DRAM to GPU memory. The light green squares indicate no communication contention, while the dark red
squares indicate communication contention during data transfer.

Convergence discussion. Mobius pipeline updates parameters in
the same way as GPipe, which uses synchronous parameter’s gradi-
ent update instead of asynchronous parameter update in PipeDream [31],
so it can ensure the same model convergence and accuracy perfor-
mance as without pipelining.

3.2 Model Partition
Model partition has always been an important problem, which
determines the overall training throughput in pipeline parallelism.
Although there are existing pipeline model partition formulations
or algorithms [24, 31], they do not work for Mobius since they only
consider the case where models are only stored in GPU memory.

Mobius’s pipeline parallelism with heterogeneous memory is
complex. To model it, our partition algorithm must consider these
additional factors not covered in traditional pipeline parallelism:

• Multi stages. In Mobius pipeline, each GPU processes mul-
tiple stages, and stages are swapped between the GPU and
DRAM. Thus, both computation and communication time
contribute to the stage execution time in Mobius pipeline.
More complicated, some communication time can be hidden
by computation.

• Prefetching. Mobius reserves a portion of GPU memory for
prefetching the next stage’s data to overlap communica-
tion with computation. In a dilemma, too much reserved
GPUmemory causes small stages, incurringmore activations

communication among GPUs, while too little reserved GPU
memory limits the prefetch of the next stage, under-utilizing
computation to overlap communication. Therefore, the al-
gorithm should consider memory allocation of prefetching
carefully.

Model partition algorithm. The model partition problem is
equivalent to how to assign each model layer to different stages.
To formulate this problem, we use boolean variables 𝐵𝑖, 𝑗 to denote
whether the 𝑖𝑡ℎ model layer is placed in the 𝑗𝑡ℎ stage, where 1 ≤ 𝑖 ≤
𝐿, 1 ≤ 𝑗 ≤ 𝐿 (𝐿 is the number of model layers). Note that we do not
know the stage count beforehand, but the maximum stage count is
𝐿. Thus, we allocate 𝐿 logical stages for convenience; for a given 𝑗 ,
if all 𝐵 ·, 𝑗 equals 0, it means the 𝑗𝑡ℎ stage does not exist physically.
Our goal is to find a group of 𝐵𝑖, 𝑗 to minimize the training time of
one step, considering memory limitation and pipeline order.

We employ a mixed-integer program (MIP) to find the best group
of 𝐵𝑖, 𝑗 . Table 2 summarizes all used variables. The objective is to
minimize the training time of a step (i.e., the start time of executing
the first stage’s backward function on the last microbatch, 𝑡𝑏0,𝑀 ,
plus with its backward duration 𝑇𝑏

0 ), which can be formulated as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡𝑏0,𝑀 +𝑇𝑏
0

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 𝑀𝑒𝑚𝑜𝑟𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

(3)
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Table 2: Variables used in MIP partition algorithm. Optimiza-
tion variables 𝐵𝑖, 𝑗 are the searching space. Intermediate variables
can be computed if we know values of 𝐵𝑖, 𝑗 . In intermediate vari-
ables, 𝑒 ∈ {𝑓 , 𝑏}, 𝑓 means forward function, and 𝑏 means backward
function.

Constant variables:
𝐿 Number of the model’s layers
𝑁 Number of GPUs
𝑀 Number of microbatches
𝐺 Per-GPU memory capacity
𝐵 Average GPU communication bandwidth
Optimization variables:

𝐵𝑖, 𝑗
Boolean variables. If 𝐵𝑖, 𝑗 is true, it means 𝑖𝑡ℎ
model layer is in 𝑗𝑡ℎ stage.

Intermediate variables:
𝑚𝑖 𝑖𝑡ℎ microbatch
𝑠𝑖 𝑖𝑡ℎ stage
𝑎𝑖 Activation size of 𝑠𝑖
𝑔𝑖 Activation gradient size of 𝑠𝑖
𝑡𝑒
𝑖, 𝑗

Start time of 𝑠𝑖 ’s function 𝑒 on𝑚 𝑗

𝑇 𝑒
𝑖

Duration of 𝑠𝑖 ’s function 𝑒 on a microbatch
𝐷𝑒
𝑖

Duration of 𝑠𝑖 finishes 𝑒 on𝑀 microbatches
𝑆𝑒
𝑖

GPU memory required by 𝑠𝑖 ’s function 𝑒

𝑅𝑒
𝑖

Reserved GPU memory in 𝑠𝑖 ’s function 𝑒

𝑃𝑒
𝑖

Prefetch data size of 𝑠𝑖 in function 𝑒

During model’s training, two types of constraints need to be sat-
isfied, namely memory constraints and pipeline order constraints.

Memory constraints: the data stored in the GPU should not exceed
the GPU’s memory. First, the GPU memory should hold current
computing stage’s parameters and the intermediate data during
training. This constraint is formulated as follows:

𝑆𝑒𝑗 ≤ 𝐺, 𝑗 ∈ [1, 𝐿], 𝑒 ∈ {𝑓 , 𝑏} (4)

Second, except for the first stage in the forward and the last stage
in the backward, the data of the next stage need to be prefetched.
The amount of data prefetched for the next stage cannot exceed the
reserved GPU memory. The constraints are formulated as follows:

𝑃
𝑓

𝑗
≤ 𝐺 − 𝑆

𝑓

𝑗−𝑁 , 𝑗 ∈ (𝑁, 𝐿]

𝑃𝑏𝑗 ≤ 𝐺 − 𝑆𝑏𝑗+𝑁 , 𝑗 ∈ [1, 𝐿 − 𝑁 ]
(5)

Third, prefetch should finish before the current computing stage
finishes forward or backward on all microbatches, and the size of
the prefetched data should not exceed the size of the next stage
(Constraint 6).

𝑃
𝑓

𝑗
≤ 𝐵 × 𝐷

𝑓

𝑗−𝑁 , 𝑗 ∈ (𝑁, 𝐿]

𝑃𝑏𝑗 ≤ 𝐵 × 𝐷𝑏
𝑗+𝑁 , 𝑗 ∈ [1, 𝐿 − 𝑁 ]

𝑃𝑒𝑗 ≤ 𝑆𝑒𝑗 , 𝑗 ∈ [1, 𝐿], 𝑒 ∈ {𝑓 , 𝑏}

(6)

𝐷𝑒
𝑖
is the total time that 𝑠𝑖 finishes 𝑒 function on all M micro-

batches. It can be presented by the start time of the first and last

microbatch execution (Equation 7).

𝐷𝑒
𝑗 = 𝑇 𝑒

𝑗 + 𝑡𝑒𝑗,𝑀 − 𝑡𝑒𝑗,1, 𝑗 ∈ [1, 𝐿], 𝑒 ∈ {𝑓 , 𝑏} (7)

Pipeline order constraints: the execution of each stage in the
pipeline is dependent. First, Constraint 8 formulates that each stage
needs to receive the computation results of the adjacent stages be-
fore it starts execution. In forward, each stage (except the first one)
needs to receive the activation of the previous stage. In backward,
each stage (except the last one) needs to receive the activation gra-
dient of the latter stage. After a stage finishes forward or backward
on a microbatch, the activation or the activation gradient of this
microbatch should be transferred to the GPU which stores the next
stage.

𝑡
𝑓

𝑗,𝑚
≥ (𝑡 𝑓

𝑗−1,𝑚 +𝑇 𝑓

𝑗−1) +
𝑎 𝑗−1
𝐵

, 𝑗 ∈ (1, 𝐿],𝑚 ∈ [1, 𝑀]

𝑡𝑏𝑗,𝑚 ≥ (𝑡𝑏𝑗+1,𝑚 +𝑇𝑏
𝑗+1) +

𝑔 𝑗+1
𝐵

, 𝑗 ∈ [1, 𝐿),𝑚 ∈ [1, 𝑀]
(8)

Second, Constraint 9 formulates that a stage can start computa-
tion only after the data of this stage is in GPU memory. If Mobius
fails to prefetch all data of this stage, the computation will be
blocked until data is all uploaded to GPU memory.

𝑡
𝑓

𝑗,1 ≥ (𝑡 𝑓
𝑗−𝑁,𝑀

+𝑇 𝑓

𝑗−𝑁 ) +
𝑆
𝑓

𝑗
− 𝑃

𝑓

𝑗

𝐵
, 𝑗 ∈ (𝑁, 𝐿]

𝑡𝑏𝑗,1 ≥ (𝑡𝑏𝑗+𝑁,𝑀 +𝑇𝑏
𝑗+𝑁 ) +

𝑆𝑏
𝑗
− 𝑃𝑏

𝑗

𝐵
, 𝑗 [1, 𝐿 − 𝑁 ]

(9)

Third, Mobius executes the microbatches on the same stage
sequentially. Each GPU can only execute one stage’s forward or
backward function on a microbatch at a time (Constraint 10).

𝑡𝑒𝑗,𝑚 ≥ 𝑡𝑒𝑗,𝑚−1 +𝑇
𝑒
𝑗 ,

𝑤ℎ𝑒𝑟𝑒 𝑗 ∈ [1, 𝐿],𝑚 ∈ (1, 𝑀], 𝑒 ∈ {𝑓 , 𝑏}
(10)

Forth, the backward of a step begins after the forward finishes
(Constraint 11).

𝑡𝑏𝐿,1 ≥ 𝑡
𝑓

𝐿,𝑀
+𝑇 𝑓

𝐿
(11)

Profiling. MIP partition algorithm requires the pre-knowledge of
the memory footprint and computing time of each layer. A basic
way to get this information is to profile the whole model and collect
each layer’s statistics, which is slow since prefetching is disabled for
more accurate statistics. Mobius leverages themodel layer similarity
to reduce the profiling time. There are a large number of identical
layers in large-scale models (e.g., Transformer blocks in GPT-3).
These layers share similar GPU memory footprint and computing
time. Mobius merges a group of equal layers into one based on the
model layer similarity. This compresses a model to a smaller one,
enabling profiling to be completed in less time.

Solving MIP.We solve this MIP by using Gurobi Optimizer [10]
to obtain a balanced partition. The solving time only costs up to
several seconds in our evaluation, which is negligible compared to
the overall fine-tuning duration (hours to days).

3.3 Cross Mapping
After the model partition, Mobius needs to map each stage to a
GPU. The stage mapping needs to consider communication con-
tention. We observe that when mapping adjacent stages to the
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GPUs under the same CPU root complex, the Mobius pipeline’s
performance suffers from communication contention. For example,
in Figure 4a, 𝑆𝑡𝑎𝑔𝑒5 and 𝑆𝑡𝑎𝑔𝑒6 are mapped to 𝑃1 and 𝑃2, which
share the bandwidth of the same CPU root complex. There is terri-
ble communication contention when prefetching them (red squares
of 𝐶5 and 𝐶6 in Figure 4a). As a consequence, it increases the time
of data transfer and introduces more computation bubbles, which
slows down the overall throughput of Mobius pipeline.

Based on the observation, Mobius maps adjacent stages to GPUs
not under the same CPU root complex as much as possible, called
cross mapping. Cross mapping brings larger time difference to up-
load stage data, which significantly reduces communication con-
tention.

However, there are a lot of different cross mapping schemes.
To find the best one, Mobius uses Equation 12 to estimate the
contention degree between two stages, where 𝑠ℎ𝑎𝑟𝑒𝑑 (𝑖, 𝑗) is the
number of GPUs under the same CPU root complex where 𝑆𝑡𝑎𝑔𝑒𝑖
and 𝑆𝑡𝑎𝑔𝑒 𝑗 are located. If the GPUs storing 𝑆𝑡𝑎𝑔𝑒𝑖 and 𝑆𝑡𝑎𝑔𝑒 𝑗 are
under different CPU root complex, 𝑠ℎ𝑎𝑟𝑒𝑑 (𝑖, 𝑗) is zero. The more
GPUs in the same root complex (a larger 𝑠ℎ𝑎𝑟𝑒𝑑 (𝑖, 𝑗)), or the smaller
the difference between j and i (a smaller |𝑖 − 𝑗 |), the more likely it
is to conflict.

𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑆𝑡𝑎𝑔𝑒𝑖 , 𝑆𝑡𝑎𝑔𝑒 𝑗 ) =
𝑠ℎ𝑎𝑟𝑒𝑑 (𝑖, 𝑗)

|𝑖 − 𝑗 | (12)

Mobius searches all mapping schemes and finds the one with
the minimal contention degree (Equation 13) as the best solution.

min
∑︁
𝑖< 𝑗

𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑆𝑡𝑎𝑔𝑒𝑖 , 𝑆𝑡𝑎𝑔𝑒 𝑗 ) (13)

Although cross mapping tries to avoid communication con-
tention, there still may be multiple prefetches under the same
root complex simultaneously. Mobius assigns higher priority to
the prefetch of the stage that starts earlier, which further reduces
communication contention. In implementation, Mobius uses cud-
aStreamCreateWithPriority API to assign priorities.

Figure 4b shows a concrete illustration of cross mapping. 𝑃1 and
𝑃2 share the bandwidth of the same CPU root complex, 𝑃3 and
𝑃4 share another one. We take 𝑆𝑡𝑎𝑔𝑒5 and 𝑆𝑡𝑎𝑔𝑒6 as an example.
Instead of mapping 𝑆𝑡𝑎𝑔𝑒5 and 𝑆𝑡𝑎𝑔𝑒6 to 𝑃1 and 𝑃2, they are cross
mapped to 𝑃1 and 𝑃3. Therefore, the data transfer of 𝑆𝑡𝑎𝑔𝑒5 and
𝑆𝑡𝑎𝑔𝑒6 can fully utilize the maximum bandwidth of the CPU com-
plex without any communication contention. As an illustration of
the prefetch priority, If the prefetching operations of 𝑆𝑡𝑎𝑔𝑒5 and
𝑆𝑡𝑎𝑔𝑒7 execute simultaneously, 𝑆𝑡𝑎𝑔𝑒5 has a higher priority, be-
cause 𝑆𝑡𝑎𝑔𝑒5 executes earlier. By using cross mapping, Mobius fully
utilizes the bandwidth of different CPU root complexes. Compared
with the Mobius with sequential mapping, it reduces 2 time units
one training step in this example.

4 EVALUATION
In this section, we first demonstrate the end-to-end performance
of Mobius, and then show the effectiveness of each design. We
finally benchmark Mobius’s scalability and its performance on a
data center GPU server.
Setup.Weuse two setups. The first setup contains a server equipped
with 1.5TB DRAM, two Intel Xeon Gold 6130 CPUs and 8×3090-Ti

Table 3: Model configuration.

Number of
parameters
(billion)

Attention
heads

Hidden
dimension

size

Number
of layers

Microbatch
size

3 32 2048 64 2
8 32 4096 40 2
15 64 5120 40 1
51 80 9216 50 1

GPUs (each GPU has 24 GB memory). Every 4 GPUs are connected
to a CPU root complex via PCIe 3.0x8 and a PCIe Switch. The
second setup, referred to as data center GPU server, is an Amazon
EC2 P3.8xlarge instance [1], which provides 4×V100 GPUs (16 GB
memory) and enables GPUDirect P2P via NVLink with bandwidth
of 300 GB/s. Unless specified, experiments use the first setup.
GPU topologies. We evaluate Mobius on three GPU topologies,
namely Topo 4, Topo 2+2, and Topo 1+3, to simulate different GPU
allocations in a shared server. Topo 4 denotes four GPUs share a
CPU root complex, Topo 2+2 denotes every two GPUs share one,
and Topo 1+3 denotes three of four GPUs share one. Among them,
Topo 2+2 has the least communication contention, while Topo 4’s
communication contention is the most severe.
Baselines. Our baselines are GPipe [26] and DeepSpeed [3]. GPipe
is a kind of pipeline parallelism which trains models only using
GPU memory. DeepSpeed is, to our knowledge, the state-of-art to
train large-scale models using heterogeneous memory. DeepSpeed
also supports pipeline parallelism only using GPU memory. We
configure DeepSpeed in these two configurations. In the first one, it
is configured in ZeRO-3 mode with heterogeneous memory (GPU
memory and DRAM) enabled. In the second one, it is configured in
pipeline parallelism. DeepSpeed with pipeline parallelism runs out
of memory when training large-scale models, which do not fit in
GPU memory. Therefore, DeepSpeed uses the first configuration
unless specified.
Workloads. For the performance evaluation, we use GPT-like
Transformer based models with different hidden dimensions and
number of layers in Table 3. The sequence length is fixed to 512. The
3B model with batch size of 2 is the largest model that GPipe and
DeepSpeed with pipeline parallelism can train. The Transformer
block with a 9216 hidden dimension is the largest block a single
GPU can hold during training. For convergence analysis, we use
the GPT-2 model from [6], and fine tune this model on the Wiki-
Text2 [29]. We use the mixed precision training in all evaluations.

4.1 Overall Evaluation
We compare the per-step training time of GPipe, DeepSpeed and
Mobius in Figure 5. In this experiment, we train all four models in
Table 3 with a batch size of one on three GPU topologies. We have
the following observations. 1) Both Mobius and DeepSpeed with
heterogeneous memory are able to train larger models with larger
batches compared with GPipe and DeepSpeed with pipeline paral-
lelism. When increasing the model size, GPipe and DeepSpeed with
pipeline parallelism run out of memory (OOM). 2) Mobius decreases
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Figure 5: Per-step time of GPipe, DeepSpeed and Mobius, with different models and GPU topologies.
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Figure 6: Communication traffic of DeepSpeed and Mobius.
The red line denotes the size of model parameters.

per-step training time by 3.8-5.1× compared with DeepSpeed with
heterogeneous memory. This validates the effectiveness of Mobius’s
designs. 3) Mobius brings more significant performance improve-
ment compared to DeepSpeed with heterogeneous memory when
the GPU topology has more severe communication contention. This
is because DeepSpeed with heterogeneous memory suffers more
from communication contention on commodity GPU servers, while
Mobius alleviates it with a careful partition and mapping algorithm.
4) Mobius keeps almost stable performance under different GPU
topologies, thanks to the cross mapping mechanism.

4.2 Communication Analysis
To verify that Mobius solves the communication problems on com-
modity GPU servers, we collect communication traffic, bandwidth
statistics, and non-overlapped communication cost during training.
Communication traffic. Figure 6 illustrates that DeepSpeed needs
to transfer 7.3× the data of a model, while Mobius only transfers
about 1.8× the data of a model. The reason is that DeepSpeed
requires frequent GPU all-to-all collective communications to all-
gather parameters and all-reduce gradients, while Mobius pipeline
only transfers small activations and activation gradients. The result
is consistent with the analysis in §3.1.
Bandwidth statistics. Figure 7 shows the cumulative distribu-
tion function of GPU communication bandwidth statistics in one
training step. In Mobius more than half of the data is transferred
at a bandwidth of more than 12 GB/s (the maximum bandwidth
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Figure 7: GPU communication bandwidth cumulative dis-
tribution function. DeepSpeed and Mobius trains these models
using 4 GPUs with three different GPU topologies.

measured is 13.1 GB/s). However, DeepSpeed transfers most data
at a bandwidth of less than 6 GB/s, which is half of the maximum
bandwidth of the CPU root complex due to serious communica-
tion contention. Thus, Mobius effectively mitigates communication
congestion on commodity GPU servers.
Non-overlapped communication time. Figure 8 exhibits the pro-
portion of communication time non-overlapped by calculation in
per-step training time. We have the following observations. 1) Com-
pared with DeepSpeed, Mobius reduces the proportion of non-
overlapped communication time by up to 46%. This verifies that
the designs of Mobius can make full use of computation to overlap
communication overhead. Smaller proportion of non-overlapped
communication in Mobius time also implies less computation stall
time due to communication. 2) Mobius overlaps communication
overhead better under Topo 2+2. This is because cross mapping tech-
nology helps Mobius make better use of the topology information
to reduce communication overhead.
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Figure 9: Per-step training time with different model parti-
tion algorithms. Mobius trains three kinds of models with differ-
ent hidden dimension sizes and using different batch sizes. These
experiments are done using 4 GPUs, and every two GPUs share a
CPU root complex on a single GPU server.

From Figure 6, 7 and 8, we can conclude that Mobius’s perfor-
mance improvement over DeepSpeed comes from the reducing of
communication traffic, alleviating communication contention and
overlapping communication overhead by computation.

4.3 Effect of MIP Partition Algorithm
To evaluate the effectiveness of MIP partition algorithm, we com-
pare the following three different model partition mechanisms. In
this experiment, Mobius trains three kinds of models with different
hidden dimension sizes and using different microbatch sizes. We
train these models using the GPU topology Topo 2+2.

• MIP partition algorithm. This is our proposed algorithm
(described in §3.2).

• Maximum-stage partition algorithm. Each stage contains as
many Transformer blocks as possible without running out
of memory.

• Minimum-stage partition algorithm. Each stage contains
only one Transformer block.

(a) 8B model (b) 15B model

Mobius (with cross mapping)
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Figure 10: Per-step training time comparison between dif-
ferent stage mapping mechanisms of Mobius. The time is
normalized to Mobius (with sequential mapping).

Figure 9 shows the training time with different partition algo-
rithms (normalized to MIP partition algorithm). MIP partition al-
gorithm can reduce training time by up to 51% compared to other
algorithms, which illustrates that a more balanced partition scheme
generated by MIP partition algorithm could significantly improve
the training performance. Specifically, we have the following three
observations. 1) In most cases, maximum-stage partition algorithm
has the worst performance. It fills GPU memory with the current
computing stage’s data, which prevents prefetching the next stage’s
data and eliminates the opportunity of overlapping communication
by computation. 2) When Transformer blocks and microbatches
are large, MIP partition algorithm and minimum-stage partition
algorithm draw a similar performance. This is because that, in
this case, a single GPU’s memory can store only one layer’s pa-
rameters and computing data, which makes the partition scheme
generated by MIP partition algorithm is exactly the same as that of
minimize-stage partition algorithm. 3) When Transformer blocks
and microbatches are small, computation overhead is slight, and
the overhead of frequent activation and activation gradient trans-
fer between GPUs becomes significant. In this case, the solution
generated by MIP partition algorithm is more efficient.

4.4 Effect of Cross Mapping
We evaluate cross mapping’s performance improvement by using
sequential mapping as the baseline and keeping all other compo-
nents of Mobius the same. Sequential mapping mechanism maps
stages to GPUs according to the number of GPUs without consider-
ing the PCIe topology of GPUs. In this experiment, Mobius trains
two models with different batch sizes. We train these models using
8 GPUs with the topology where every four GPUs share a CPU root
complex.

Figure 10 shows the training time per step of two mapping
mechanisms (normalized to sequential mapping). 1) Cross map-
ping reduces per-step training time by 11.3%-18.1% compared with
sequential mapping, validating its design. 2) The performance im-
provement brought by cross mapping is less significant when the
size of Transformer blocks and microbatch becomes large. This is
because that extremely large microbatches and Transformer blocks
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Figure 11: GPU communication bandwidth cumulative dis-
tribution function per step during training using different
stage mapping mechanisms.Mobius trains these models with
different microbatch sizes (mbs).

result in more computing time, which outweighs the communi-
cation time and makes the reduced communication time of cross
mapping insignificant.

To verify the effectiveness of cross mapping on communication
contention, similar to the setting of Figure 7, we collect GPU com-
munication bandwidth statistics in one training step; see Figure 11.
Compared to using sequential mapping, more data is transferred in
a higher bandwidth when using cross mapping, which shows cross
mapping’s superiority for mitigating communication contention.

4.5 Mobius Overhead
To analyze the extra overhead introduced by Mobius, we profile
model partition and cross mapping overhead during training in
Topo 1+3. The model partition overhead is contributed by profiling
and MIP solving. From Figure 12, we have the following obser-
vations. 1) These extra overheads are negligible compared to the
overall fine-tuning overhead (hours to days). 2) Although the 15B
model is larger than the 8B model, they have close profiling time.
This is because only the different layers need to be profiled after
leveraging model layer similarity, which makes profiling time only
relate to the computation time of different layers, These two models
have similar hidden dimension sizes, leading to similar computation
time of different layers, thus having close profiling time. 3) When
the hidden dimension size of a model is small, the MIP solving
brings high overhead. The reason is the maximum number of layers
that can be stored in GPU is large, increasing the search space.
More layers in models also bring higher overhead, because there
are more variables corresponding to these layers in the MIP.
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Figure 12: MIP algorithm and
cross mapping overhead.
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Figure 13: Training loss of
Mobius and GPipe.

4.6 Convergence Evaluation
Figure 13 shows the comparison of training loss curves between
GPipe and Mobius when fine tuing GPT-2 model onWikiText-2. We
use 8 × 3090-Ti GPU when using GPipe and 4 × 3090-Ti GPU when
using Mobius. We observe the training loss curves of the GPipe and
Mobius are almost overlapped. The result validates that Mobius
does not hurt convergence like GPipe[24] ,which is consistent with
the analysis in §3.1. The slight difference between the curves of
Mobius and GPipe is due to the variation of randomness caused by
different numbers of GPUs.

4.7 Scalability Evaluation
To analyze the scalability of Mobius, we train the 15B model by
sweeping the number of GPUs from 2 to 8. For all configurations,
each half of the GPUs shares a separate CPU root complex. We con-
stantly set the microbatch size to 1 and increase the batch size with
increasing number of GPUs. Figure 14 shows that Mobius exceeds
perfect linear scaling. When the GPUs cannot be divided equally
into two groups, Mobius has a slight performance degradation, due
to the uneven communication contention under the two CPU root
complexes.

4.8 Evaluation on Data Center GPU Server
Although Mobius is designed for commodity GPU servers, we also
evaluate its performance on the data center GPU server to test
Mobius’s sensitivity to different server configurations. In this ex-
periment, we train the 8Bmodel and the 15Bmodel with microbatch
size of 2 using DeepSpeed and Mobius. Note that data center GPU
servers are equipped with NVLink and GPUDirect P2P, and thus
the inter-GPU communication bandwidth is sufficient.

Figure 15a illustrates the performance and per-step price of Mo-
bius and DeepSpeed on the data center GPU server and the 3090-Ti
GPU server. We observe that: 1) DeepSpeed and Mobius both have
performance improvement on the data center GPU server. This is
because the NVLink on the data center GPU server reduces the
communication overhead between GPUs. 2) DeepSpeed needs fre-
quent collective communication between GPUs as we analyze in
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§2.3, but there is only a small number of activations and activation
gradients transferred between GPUs in Mobius. Therefore, Deep-
Speed has more significant performance improvement on the data
center GPU server. 3) Mobius performs worse than DeepSpeed on
the data center GPU server. This is because the aggregate com-
munication bandwidth of Mobius is less. Mobius only utilizes the
NVLinks of GPUs storing adjacent stages, while DeepSpeed fully
utilizes fully-connected NVLinks for all-to-all communications.

We collect GPU-to-CPU and CPU-to-GPU communication band-
width statistics in one training step, shown in Figure 16. Compared
with the commodity GPU server case, the communication con-
tention gap between DeepSpeed and Mobius is reduced, due to
the reduction of collective communication overhead in DeepSpeed.
However, the communication contention in Mobius is still lower.
This is because there is fewer stage data transfer at the same time
in Mobius pipeline.

We calculate the per-step training price according to [1] and
[8]. From Figure 15b, compared with using DeepSpeed on the data
center GPU server, the per-step training time increases by 42%
when using Mobius on 3090-Ti GPU server, but the price per step
decreases by 43%. Mobius trades small training performance de-
creasing for a much lower training price.

5 RELATEDWORK
In recent years, there have been a wealth of works on large model
training systems. We classify these works into two categories: scale-
up, and scale-out methods.

Scale-outmethods. To satisfy the memory requirement of large
model training, several works use multiple GPUs to increase the
aggregated memory of GPUs. Pipeline parallelism and model paral-
lelism are the most widely used scale-out training methods. Pipeline
parallelism [14, 19, 20, 24, 27, 31, 32, 45] partitions a model in the
unit of layers (vertical partition). Model parallelism [39, 40, 43] splits
each layer into multiple GPUs (horizontal partition). Pipeline par-
allelism has less communication overhead than model parallelism.
However, pipeline parallelism is difficult to guarantee high GPU
utilization and model convergence at the same time [33]. ZeRO [35]
is a recent work for scale-out training. ZeRO splits a model into

multiple GPUs’ memory and uses collective communications to
gather each model layer [28, 44], trading communication for the
reduction of GPU memory consumption. Collectively, the trainable
model scale of these systems is bounded by the aggregated GPU
memory capacity.

Scale-up methods. Scale-up methods break the GPU memory
limit to train larger models by leveraging external storage resources
such as DRAM and SSD. These works [15, 23, 34, 42] swap model
data between GPU and external storage based on computation
graph. They focus on extending the memory capacity of a sin-
gle GPU, but ignoring communication issues in the multi-GPU
scenario, which is more common for training large-scale models.
ZeRO-Offload [37] stores optimizer states and gradients in DRAM
while maintaining model parameters in each GPU’s memory. Due
to the redundant copies of model parameters, the model scale is lim-
ited by a single GPU’s memory capacity when using ZeRO-Offload.
To enhance the trainable model scale, ZeRO-Infinity [36] distributed
stores model states in multiple GPUs to reduce redundancy. Besides,
ZeRO-Infinity extends the offloading storage to NVMe devices and
offloads all model states and activations to the external storage. The
works of the ZeRO family trade frequent communication collectives
for less redundant copies of model parameters in GPU memory,
and also require frequent communication collectives to keep model
states’ consistency. They assume the communication bandwidth is
sufficient and GPUDirect P2P is enabled. However, it is a common
situation that communication resources are scarce on commodities
GPU servers. In this situation, the training performance of ZeRO
family suffers. ZeRO family is integrated in DeepSpeed [3].

Different from existing works [14, 19] on commodity GPUs based
on pipeline parallelism, Mobius enables heterogeneous memory,
which increases trainable model scale. Besides, compared with
prior scale-up methods, Mobius focuses on the communication
problem when enabling heterogeneous memory in the multi-GPU
scenario. Mobius brings less communication cost than ZeRO family,
and is PCIe topology-aware to make full use of communication
resources on GPU servers. It also leverages carefully scheduling
to overlap communication overhead by computation. Therefore,
Mobius is more communication-friendly, thus more suitable when
communication resources are scarce.



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yangyang Feng, Minhui Xie, Zijie Tian, Shuo Wang, Youyou Lu, and Jiwu Shu

6 CONCLUSION
We present Mobius, a system for efficient large-scale model fine tun-
ing on commodity GPU servers. Mobius introduces a novel pipeline
parallelism, which enables heterogeneous memory to train larger
model using limited GPU memory while brings fewer communica-
tions. To take full advantage of Mobius pipeline, Mobius proposes
a mixed-integer-programs based partition algorithm to find an op-
timal model partition solution, which balances computation and
communication. Mobius employs the cross mapping technique to
map stages to GPUs with minimum communication contention.
We demonstrate the efficiency and effectiveness of Mobius’s de-
signs with experiments on a variety scale of deep learning models
and GPU servers with different topologies. The results show that
Mobius fares better than the state-of-the art.

ACKNOWLEDGMENTS
We sincerely thank our shepherd and the anonymous reviewers
for their valuable feedback. This work is funded by the National
Natural Science Foundation of China (Grant No. 61832011) and
Open Research Program of Zhejiang Lab (No. 2020KC0AB03).

REFERENCES
[1] [n. d.]. Amazon EC2 P3 Instances. https://aws.amazon.com/ec2/instance-types/

p3/.
[2] [n. d.]. Amazon EC2 P4 Instances. https://aws.amazon.com/ec2/instance-types/

p4/.
[3] [n. d.]. DeepSpeed. https://github.com/microsoft/DeepSpeed.
[4] [n. d.]. DGX-2. https://www.nvidia.com/en-us/data-center/dgx-2/.
[5] [n. d.]. DGX A100. https://www.nvidia.com/en-us/data-center/dgx-a100/.
[6] [n. d.]. EleutherAI/gpt-j-6B. https://huggingface.co/EleutherAI/gpt-j-6B.
[7] [n. d.]. GEFORCE RTX 3090 Family. https://www.nvidia.com/en-us/geforce/

graphics-cards/30-series/rtx-3090-3090ti/.
[8] [n. d.]. GPU cloud servers. https://en.immers.cloud/gpu/.
[9] [n. d.]. GPUDirect. https://developer.nvidia.com/gpudirect.
[10] [n. d.]. Gurobi. https://www.gurobi.com.
[11] [n. d.]. NVIDIA A100 TENSOR CORE GPU. https://www.nvidia.com/en-us/data-

center/a100/.
[12] [n. d.]. NVLink and NVSwitch. https://www.nvidia.com/en-us/data-center/

nvlink/.
[13] [n. d.]. OpenAI’s GPT-3 Language Model: A Technical Overview. https:

//lambdalabs.com/blog/demystifying-gpt-3/.
[14] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ramjee, and

Nipun Kwatra. 2022. Varuna: scalable, low-cost training of massive deep learn-
ing models. In Proceedings of the Seventeenth European Conference on Computer
Systems. 472–487.

[15] Jonghyun Bae, Jongsung Lee, Yunho Jin, Sam Son, Shine Kim, Hakbeom Jang,
Tae Jun Ham, and Jae W Lee. 2021. FlashNeuron:SSD-Enabled Large-Batch
Training of Very Deep Neural Networks. In 19th USENIX Conference on File and
Storage Technologies (FAST 21). 387–401.

[16] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[17] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep
nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[19] Saar Eliad, Ido Hakimi, Alon De Jagger, Mark Silberstein, and Assaf Schuster.
2021. Fine-tuning giant neural networks on commodity hardware with automatic
pipeline model parallelism. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21). USENIX Association, 381–396. https://www.usenix.org/conference/
atc21/presentation/eliad

[20] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, SiyuWang, Zhen Zheng, Chuan
Wu, Guoping Long, Jun Yang, Lixue Xia, et al. 2021. DAPPLE: A pipelined
data parallel approach for training large models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 431–445.

[21] William Fedus, Barret Zoph, and Noam Shazeer. 2021. Switch Transformers:
Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. https:
//doi.org/10.48550/ARXIV.2101.03961

[22] Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-
tuning for Text Classification. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Melbourne, Australia, 328–339. https://doi.org/
10.18653/v1/P18-1031

[23] Chien-Chin Huang, Gu Jin, and Jinyang Li. 2020. Swapadvisor: Pushing deep
learning beyond the gpu memory limit via smart swapping. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 1341–1355.

[24] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019. Gpipe:
Efficient training of giant neural networks using pipeline parallelism. Advances
in neural information processing systems 32 (2019).

[25] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[26] Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek, Boogeon
Yoon, Ildoo Kim, Sungbin Lim, and Sungwoong Kim. 2020. torchgpipe: On-the-fly
Pipeline Parallelism for Training Giant Models. (2020). arXiv:2004.09910

[27] Shigang Li and Torsten Hoefler. 2021. Chimera: efficiently training large-scale
neural networks with bidirectional pipelines. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–14.

[28] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. Pytorch
distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704 (2020).

[29] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016.
Pointer sentinel mixture models. arXiv preprint arXiv:1609.07843 (2016).

[30] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, et al. 2017. Mixed precision training. arXiv preprint arXiv:1710.03740
(2017).

[31] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: generalized pipeline parallelism for DNN training. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. 1–15.

[32] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia.
2021. Memory-efficient pipeline-parallel dnn training. In International Conference
on Machine Learning. PMLR, 7937–7947.

[33] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model
training on gpu clusters using megatron-lm. 1–15.

[34] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong, Fan
Yang, and Xuehai Qian. 2020. Capuchin: Tensor-based gpu memory management
for deep learning. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems. 891–
905.

[35] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO:
Memory Optimizations Toward Training Trillion Parameter Models. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). IEEE Computer Society, 262–277.

[36] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong
He. 2021. Zero-infinity: Breaking the gpu memory wall for extreme scale deep
learning. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–14.

[37] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. ZeRO-Offload:
Democratizing Billion-Scale Model Training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 551–564.

[38] Or Sharir, Barak Peleg, and Yoav Shoham. 2020. The cost of training nlp models:
A concise overview. arXiv preprint arXiv:2004.08900 (2020).

[39] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Pen-
porn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, et al. 2018. Mesh-tensorflow: Deep learning for supercomputers. Advances
in neural information processing systems 31 (2018).

[40] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/p4/
https://github.com/microsoft/DeepSpeed
https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.nvidia.com/en-us/data-center/dgx-a100/
https://huggingface.co/EleutherAI/gpt-j-6B
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://en.immers.cloud/gpu/
https://developer.nvidia.com/gpudirect
https://www.gurobi.com
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://lambdalabs.com/blog/demystifying-gpt-3/
https://lambdalabs.com/blog/demystifying-gpt-3/
https://www.usenix.org/conference/atc21/presentation/eliad
https://www.usenix.org/conference/atc21/presentation/eliad
https://doi.org/10.48550/ARXIV.2101.03961
https://doi.org/10.48550/ARXIV.2101.03961
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://arxiv.org/abs/2004.09910


Mobius: Fine Tuning Large-Scale Models on Commodity GPU Servers ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[42] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song,
Zenglin Xu, and Tim Kraska. 2018. Superneurons: Dynamic GPU memory man-
agement for training deep neural networks. In Proceedings of the 23rd ACM
SIGPLAN symposium on principles and practice of parallel programming. 41–53.

[43] Minjie Wang, Chien-chin Huang, and Jinyang Li. 2019. Supporting very large
models using automatic dataflow graph partitioning. In Proceedings of the Four-
teenth EuroSys Conference 2019. 1–17.

[44] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun
Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. 2015. Petuum: A new
platform for distributed machine learning on big data. IEEE transactions on Big

Data 1, 2 (2015), 49–67.
[45] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher Aberger, and

Christopher De Sa. 2021. Pipemare: Asynchronous pipeline parallel dnn training.
Proceedings of Machine Learning and Systems 3 (2021), 269–296.

[46] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. Opt:
Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068
(2022).

Received 2022-07-07; accepted 2022-09-22


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Fine Tuning Pre-trained Models
	2.2 Commodity GPU Server
	2.3 Analysis of DeepSpeed

	3 Mobius Design
	3.1 Mobius Pipeline
	3.2 Model Partition
	3.3 Cross Mapping

	4 Evaluation
	4.1 Overall Evaluation
	4.2 Communication Analysis
	4.3 Effect of MIP Partition Algorithm
	4.4 Effect of Cross Mapping
	4.5 Mobius Overhead
	4.6 Convergence Evaluation
	4.7 Scalability Evaluation
	4.8 Evaluation on Data Center GPU Server

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

