
CoinPurse: A Device-Assisted File System with
Dual Interfaces

Zhe Yang, Youyou Lu*, Erci Xu, Jiwu Shu
Department of Computer Science and Technology, Tsinghua University

{yang18@mails., luyouyou@, shujw@}tsinghua.edu.cn, jostep90@gmail.com

Abstract—Block I/O serves as a classic interface for accessing

storage devices with portability. But it can also cause extra

overhead by enforcing transferring data in the unit of blocks.

In this paper, we present CoinPurse, a device-assisted file system

with dual interfaces. By leveraging non-volatile memory (NVM)

in SSD, CoinPurse manages to adaptively persist writes through

both the block I/O and a byte-addressable partial update inter-

face. In addition, we also develop a set of techniques to overcome

hardware limitations and resolve possible consistency conflicts.

Evaluation shows that CoinPurse outperforms F2FS, a popular

flash-optimized file system, by up to 33.2%.

I. INTRODUCTION

File system is a staple in today’s storage stack for providing
a significant abstraction, file. Yet such convenience comes with
a price. The block interface prevents the host from further
probing the device internals and thus limits the possibilities
of leveraging the latest features. Specifically, recent break-
throughs of the Solid-State Drives (SSD), such as the on-
chip Non-Volatile Memory (NVM) and the byte-addressable
interface, are still beyond the reach of traditional file systems.

Unsurprisingly, reconstructing a file system to adopt the
internal NVM and the byte-addressable interface is challeng-
ing. First, due to the already-crowded internal space and
manufacturing cost concerns, the capacity of the on-chip NVM
is usually small (e.g. a few to several hundred MB [1]). As
a result, it becomes infeasible to directly utilize it for data
persistence to achieve high performance. Second, to ensure
backward compatibility, introducing the byte-addressable ac-
cess indicates file system now can communicate with the
underlying devices in two fashions (i.e. block and byte).
Hence, the ordering conflict arises as independent I/Os from
the two interfaces may try to modify the same piece of data si-
multaneously. Third, crash consistency becomes complicated.
In the face of an unexpected shutdown (e.g. power outages),
the in-processing data can be scattered among both the NVM
and the NAND region. Recovering the file system from on-
going writes to an all-or-nothing state requires careful design.

In this paper, we present CoinPurse, a device-assisted file
system with dual interfaces, targeting for high performance
and consistency on SSD. CoinPurse is a log-structured file
system. It additionally extends the traditional block interface,

*Youyou Lu is the corresponding author. This work is supported by
National Key Research& Development Program of China (Grant No.
2018YFB1003301), the National Natural Science Foundation of China
(Grant No. 61772300, 61832011), Huawei Innovation Project (Grant No.
YBN2019125112).

by selectively issuing a subset of write requests via the byte-
addressable interface. Specifically, we design a set of practical
techniques to overcome the above challenges as follows.

First, regarding limited NVM capacity, the CoinPurse filters
write requests to the SSD based on thresholds. A significant
proportion of partial updates use the byte-addressable interface
while others are routed through the traditional block I/O. Our
main insight is that file systems typically rely on synchronous
writes for data durability and consistency. Previous studies
show that such writes play a dominant role in the overall time
consumption [2], [3]. More importantly, a great proportion
of such synchronous writes are merely partial updates, where
only part of a block is updated [4]. Thus, by aggregating small
writes in the on-chip NVM and avoiding expensive synchro-
nized I/O, CoinPurse can greatly boost the I/O performance.

Second, CoinPurse leverages the log-structured feature to
ease the ordering conflicts by the intrinsic out-of-place up-
dates. Yet, when two writes are issued before and after a
garbage collection, it is still possible the two requests may
target the same address. In this case, CoinPurse delays to
invalidate a block if it is used by requests in the NVM. This
omits conflicted write requests via block interface.

To guarantee crash safety, CoinPurse organizes the corre-
lated writes requests in the format of a record in the NVM.
Upon crash, the CoinPurse restores to consistency by replaying
the record to avoid incomplete data flushing. Note that crash
consistency led by component (e.g. NVM faults) is beyond the
scope of this paper and thus not discussed.

To sum up, our major contributions are listed as follows.
• We present CoinPurse to enable fast and safe writes

via a combination of two interfaces, block and byte-
addressable I/O, with device assistance.

• We design and implement a set of techniques, in-
cluding threshold-based filtering, lazy invalidation and
transaction-style format, to provide high performance
with the consistency guarantee.

• We implement CoinPurse and evaluate it against prevalent
file systems. Evaluation on macro benchmarks shows
that our proposed CornPurse system outperforms F2FS,
a popular flash-optimized file system, by up to 33.2%.

II. BACKGROUND

A. Flash File Systems

SSD builds (e.g. NAND flash memory), runs (e.g. flash
translation layer) and interconnects (e.g. NVMe) differently

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Page Write Size (bytes)

Fileserver
Varmail

Webproxy

Fig. 1: The Cumulative Frequency of Page Write Sizes [4]

from the traditional spinning drives. Researchers reconsider
the file system design for SSD to embrace its uniqueness.

F2FS [5] builds on the normal SSD and adapts designs
atop flash characteristics. It employs the append-only log
structure and a flash-friendly on-disk layout. It eliminates the
update propagation issue through a node address table (NAT).
OFSS [6] reconstructs the flash storage stack and exposes
raw flash to software (i.e. open-channel SSD). It proposes
an object flash translation layer in the host, and mitigates
write amplification with co-designed mechanisms. DevFS [7]
presents an aggressive design to embed the file system within
the SSD. User-space applications directly access on-disk files
via the shared library, bypassing the kernel.

Our proposed CoinPurse aims at adding a small extension
in SSD, so as to assist the file system with partial updates.

B. Byte-Addressable Interface on SSD

The byte-addressable accesses to the SSD rely on col-
laboration between host and device. Memory-mapped I/O
(MMIO) enables the CPU to perform memory-like accesses
to peripheral devices. The device exposes its internal memory
region upon interconnects and protocols. For instance, NVMe
defines Controller Memory Buffer (CMB), a general-purpose
region of controller memory [8]. The CMB is exposed as part
of a PCIe Base Address Register (BAR), with location and
size indicated in registers to allow MMIO operations.

Academia and industry further integrate non-volatile mem-
ory, e.g. capacitor-backed memory, in an SSD [1], [9], [10].
Bae et al. build 2B-SSD [11], a dual, byte- and block-
addressable SSD, which utilizes the inner NVM and the byte-
addressable interface together. FlatFlash [12] moves further to
use a byte-addressable SSD as part of the main memory. The
two works have to load and hold all relevant flash pages in
the NVM for updating, which causes sub-optimal utilization
of precious NVM resources in SSD.

C. Partial Updates in File Systems

File systems organize memory data in 4KB pages, but
not all writes to pages are perfectly aligned with the page
size. Figure 1 shows the cumulative distribution of metadata
page write sizes of three workloads. For example, over 80%
metadata writes in Varmail are smaller than 800 bytes.

On the other side, file systems manage and access the
storage device in blocks (e.g. typically 4KB on SSD). Partial

SSD

Host

Control Flow Data Flow

Namespace & Space Management

Page CachePage Update Tracker

Write Dispatcher

Record Area

Partial Block Updater Flash Translation Layer

Flash Memory

PCIe Interface

Partial Update Requester

NVMe Controller

Generic Block Layer

NVMe Driver
Partial Update

Block I/O

Fig. 2: The CoinPurse Architecture

writes to memory pages thus lead to partial updates to device
blocks during persistence. But the block interface forces an
entire block write even for a small partial update, either the
original block or a new-allocated block. These writes incur
severe performance overhead [2], especially when workloads
trigger intensive synchronous procedures like fsync.

III. DESIGN

This section illustrates the CoinPurse in detail. We start
with an overview, and then describe detailed design of each
component. Afterwards, we further discuss how components
interact to overcome existing challenges.

A. Overview

Figure 2 shows the overall CoinPurse architecture of Coin-
Purse. Its components are described later in § III-B. CoinPurse
consists of two main parts, a host-side file system and a device-
side extended SSD. The host can use two interfaces, the classic
block I/O and the partial update interface (built on atop the
byte-addressable interface), to SSD.

While the block I/O path remains unchanged, writing in the
partial update interface proceeds as follows. CoinPurse firstly
maintains the update ranges of the page to record dirty parts,
and then writes pages to allocated blocks during persistence.
Based on the proportion and size of dirty data, the host issues
write requests to the corresponding interface. For a request
through the partial update interface, the host generates and
writes it as an update record to the Record Area (NVM region
exposed by the SSD). An update record contains only the
updated parts of a page and a small amount of necessary
metadata. Further, the SSD reads records in the Record Area,
reconstructs data and writes them to destination blocks.

There are several challenges in the design of CoinPurse.
1) Limited Size of NVM indicates that the Record Area

can get full easily with incoming requests (§ III-C).
2) Ordering Consistency, the writes from the two in-

terfaces can target the same location simultaneously
(§ III-D).

3) Crash Safety, a must-have feature for a robust file
system (§ III-E).

B. CoinPurse Architecture

We first present how data are organized in CoinPurse.
CoinPurse is a log-structured file system and inherits basic
structures from F2FS [5]. F2FS divides and manages the
device space in 4KB blocks, in line with the typical page size.
It classifies data to three categories, meta, node and data, and
stores different types of data in separate areas on the SSD.
meta contains metadata of the file system, which are updated
in place, such as the super block and the mapping table. node

and data occupy most of the device space, and are updated
out of place in a log-structured way. data blocks store data
of files (including directory files), while node blocks contain
inodes and indices of data blocks.

Next, we go over each component of the CoinPurse by
describing their functionalities. The Page Update Tracker
maintains modified ranges of each page in the Page Cache.
During persistence procedures, CoinPurse generates write re-
quests to save data of pages to allocated blocks. The Write
Dispatcher dispatches writes to either the partial update in-
terface or the block I/O. Partial Update Requester maps and
manages the Record Area in the host. It also submits an update
request to the SSD. The Partial Block Updater retrieves and
digests records from the Record Area, to destination addresses.
Specifically, we present the detailed procedures as follows.

Page Update Tracker maintains the update ranges for each
page, so that CoinPurse knows update parts of each block
when writing page data to allocated blocks on SSD. Although
CoinPurse writes a data page sequentially, it may also modify
scattered parts in a node page. For example, an inode stores
attributes at the beginning and indices at the end. The Page
Update Tracker thus need to record multiple ranges based
on the update pattern to cover all dirty parts. The tracker
initializes update ranges of a page in allocation, adjusts ranges
during each update, and resets ranges after flushing data.

Write Dispatcher receives all writes requests from the
Page Cache, and dispatches them to either the Partial Update
Requester or the Generic Block Layer. Due to the limited size
of the Record Area, the Write Dispatcher decides the suitable
interface of a write request by considering the dirty size and
dirty ratio (see § III-C for details).

Partial Update Requester manages the Record Area and
issues partial update requests. Figure 3 shows Record Area
management via MMIO. CoinPurse organizes the Record Area
as a circular queue of partial update records with head and tail
pointers. A record delivers sufficient information to conduct a
partial update, and the record format is described in § III-C.
The Partial Update Requester tries to allocate space for a write
from the Write Dispatcher. Afterwards, the requester generates
a update record, appends it to the queue, and finally writes the
tail pointer (Arrow W in Figure 3) to notify the SSD. At this
point, the write request is persisted and returned. On the other
side, the SSD consumes records and increases the head pointer,
which is read by the host (Arrow R in Figure 3), at the end
of a persistence procedure (§ III-E).

Record Area acts as a shared persistent memory between

PCIe Interface

Record
Area

Record

Entry

Head’ Tail

…
Entry

[0]
Entry
[1]

Entry
[m]

…
Range

[0]
Range

[1]
Range

[n]

Compact Data
Dest.
Start
Addr.

Head Tail’

Source
Addr.

Record
[1]

SSD
Host WR

MMIO

Record
[1]

Fig. 3: Data Format on the Record Area

the host and the SSD. It is based on the NVM in SSD, and
exposed to the host through the PCIe BAR. The Record Area
is organized as a circular queue as aforementioned. The space
between the device head and tail is accessible exclusively to
the device. The rest of the queue can only be touched by the
host. The host and the device coordinate on the queue state
through the head and tail pointers.

Partial Block Updater digests records in the Record Area
asynchronously. The SSD invokes it when the Partial Updater
Requester writes the tail. When processing a record, the
updater iterates over all entries and handles them in three steps.
1) Allocate buffer for blocks, and initializes them with zero or
data from source addresses. 2) Locate all update ranges and
modifies them with corresponding data. 3) Write new data
of blocks to destination addresses. When the processing of a
record completes, the updater increases the head pointer.

C. Limited Size of the Record Area

The NVM capacity in SSD is relatively small [1] and easily
gets full, so CoinPurse may not push all partial-update writings
to the Partial Updater Interface. To tackle the issue, the Write
Dispatcher chooses critical writes based on the dispatch policy,
and the Record Area stores data in a space-efficient format.

Write Dispatch Policy. A write request contains a series of
pages with continuous destination block addresses. We define
two metrics, dirty size Sdirty and dirty ratio Rdirty, and set
two thresholds respectively for dispatch policy. The dirty size
Sdirty of a write request is the total dirty size of all pages.
The dirty ratio Rdirty is Sdirty divided by the total size of
pages Sall. Suppose that the block I/O consumes tblock time
per byte to submit a write request, and the partial update
interface tpartial. Then we have the Speedup using partial
update interface against the block I/O

Speedup =
Sall · tblock

Sdirty · tpartial
=

1

Rdirty
· tblock
tpartial

(1)

Since tblock and tpartial are determined by underlying software
and hardware, Equation 1 indicates that the dispatcher should
choose a write request with a low dirty ratio to the partial
update interface. So we set a threshold for dirty ratio to filter
out high dirty-ratio writes. We also set a threshold for dirty
size, considering fairness that a single request should not
occupy too many resources.

If both metrics of a write are lower than thresholds, the
Write Dispatcher sends it to the Partial Update Requester. The

Partial
Update
Interface

Block I/O

LFS

time𝑡𝑡� 𝑡𝑡� 𝑡𝑡�

delay

𝑡𝑡�

Garbage Collection

submit

update
(a →b)

update
(b →c)

write
(b)

update
(b →c)

𝑡𝑡�

submit submit

write
(b)

write
(b)

update
(a →b)

update
(b →c)

  



(a) Write Reordering in LFS

Partial
Update
Interface

Block I/O

CoinPurse

time𝑡𝑡�

delay

𝑡𝑡�

Garbage Collection

submit

write
(b)

write
(b)

update
(a →b)

update
(b →c)

𝑡𝑡�



𝑡𝑡� 𝑡𝑡�

write
(b)

update
(b →c)

update
(b →c)

submit submit

update
(a →b)

  

(b) Solution in CoinPurse

Note that t1–t5 in (a) and (b) are not strictly equal nor drawn to scale.

Fig. 4: Out-of-Order Writes between Data Paths
requester tries to allocate space before submission, to avoid
overflowing the Record Area. When the threshold check or
space allocation fails, the write is redirected to the block I/O.
CoinPurse therefore handles all write requests properly, either
by block I/O or partial update interface.

Data Format of the Record Area is presented in Figure 3.
Considering the limited size, we design the data format
to utilize the Record Area efficiently. The Record Area is
organized as a circular queue of update records with head
and tail pointers. An update record corresponds to a write
request of blocks with consecutive destination addresses, so
only stores the start destination address. An entry represents
partial updates to a block and contains metadata to conduct
the update, including the source address and multiple update
ranges (offsets and lengths). Instead of storing the whole 4KB
block content, only dirty parts in blocks are glued and written
at the compact data section.

D. Ordering Consistency

Forked data paths in CoinPurse, namely the block I/O
and partial update, incur possible consistency issues. Each
interface can provide write ordering of itself. More specifically,
a file system imposes write ordering of block I/O by the
flush-and-wait. CoinPurse leverages the single circular
queue structure on the Record Area, to guarantee the ordering
of the partial update interface. But writes between interfaces
may be reordered, because the SSD handles records asyn-
chronously. Moreover, the latest data can be in either the flash
or the Record Area with the forked data paths, so CoinPurse
must determine the location of the latest data.

Suppose an in-place update file system issues a partial up-
date to block b, before writing the same block b via the block
I/O. The former one may be reordered to execute later, so that
the SSD stores old data falsely. CoinPurse eases this out-of-
order issue with its inherent log structure. It always writes data

out of place, before recycling a block by garbage collection.
However, Figure 4a depicts the possible write reordering that
still exists in a general log-structured file system (LFS). LFS
writes () and overwrites (Ã) block b at t1 and t3, which
implies an update from block b to block c (À) at t2. As long
as or À is issued through the partial update interface and
executed after t3, the system ends with inconsistency.

CoinPurse handles the above write reordering by lazy in-

validation. In Figure 4b, block b becomes invalid after its
data are updated to block c (À) in a general LFS. By lazy

invalidation, CoinPurse does not invalidate it immediately, if
block b appears as the source or destination in the Record
Area records. Consequently, a later garbage collection does
not reclaim block b, so it will not overwritten. By reading
the head pointer from the SSD, the Partial Update Requester
knows completed update records and then scans them. For
each update entry update s!d, CoinPurse invalidates the
source block s, and invalidates the destination block d, if block
d has been updated via block I/O. Henceforth, CoinPurse can
reclaim and overwrite invalidated blocks, as they are used by
neither interface (e.g. block b, Ã at t5).

Forked I/O paths can also lead to another consistency prob-
lem. CoinPurse writes data of blocks through both interfaces,
but must determine how to read the latest data of each block.
One straightforward yet costly way is to record which interface
holds the latest data. If the latest data are in the Record
Area, the host or the SSD reads updated parts and generates
full block data. Alternatively, CoinPurse pins pages submitted
to the partial update interface in the Page Cache to serve
subsequent reads. Like lazy invalidation, CoinPurse unpins
these pages when all related update records are digested.

E. Crash Safety

Crash safety is an essential feature for a storage system.
CoinPurse ensures the durability of submitted persistent writes
across a power failure or system crash. Furthermore, the
system can recover to a consistent state after the power
resumes or the system reboots.

Durability. As stated in § III-B, the Partial Updater Re-
quester generates and writes records via MMIO. But writes
are not guaranteed to reach the Record Area, because PCIe
memory write transactions are posted without completions.
At the end of a persistence procedure, e.g. fsync, CoinPurse
reads the latest head value from the SSD. The read completion
denotes that prior writes reach the Record Area [11], [13].

During a crash (e.g. power outage), all unfinished records in
the Record Area, as well as head and tail pointers are flushed
to the backup area on flash memory with the assistance of
capacitors. Upon rebooting, the SSD restores the Record Area
from the backup area, so as to provide persistence.

Recovery. The SSD restores the Record Area at the begin-
ning of recovery, and then the Partial Block Updater digests
records as normal. The Partial Update Requester writes a
record and modifies the tail pointer atomically afterwards, so
that CoinPurse encapsulates update operations in a record as
a transaction and guarantees the atomicity.

Then we explain the idempotence of records. Suppose we
have three partial update operations, 1) update a ! b, 2)
update b ! c and 3) update c ! d, where a to d are
block addresses. It indicates that data are orginally in block a,
and finally in block d, through a series of updates. Due to out-
of-place update and lazy invalidation mechanisms described in
§ III-D, no update entries have the same source or destination
block address simultaneously. Update relationships of blocks
form singly linked lists, without a ring (e.g. no update

d!a, update c!a, . . . , in this case). So executing records
any number of times produces consistent results. In this way,
even if the power fails when the SSD processes part of a
record, it is correct to execute the record from scratch again.

When the SSD completes digesting the Record Area, the
host can read the latest data from the block interface. The
SSD then starts to serve the host requests. Apart from recovery
mechanisms of the SSD, CoinPurse keeps roll back and roll
forward procedures in F2FS, so as to guarantee the file system
crash consistency, on top of the Page Cache.

IV. EVALUATION

A. Experimental Setup

We implement host-side components as a kernel module
based on F2FS. We categorize blocks into four categories, in-
ode, dentry, index node, and file data, by their update patterns.
Through inspecting codes and tests, we employ three scattered
ranges for the former two types, and one range for the rest.
Update ranges information is recorded in the private field
of struct page. The Partial Update Requester maintains
the tail by the compare-and-swap instruction to allow
concurrent multi-thread writes to the Record Area.

For lack of a programmable SSD platform, we simulate
SSD components with a commercial SSD (named Data SSD)
and a PU (Partial Updater) kernel module. All block I/Os are
sent to the Data SSD directly. The PU module allocates a
range of host memory to simulate the Record Area. Records
are written to that area and a CMB region on an experimental
SSD simultaneously, for real bandwidth and latency. The PU
module also simulates the Partial Block Updater to consume
records with estimated digesting latency, without persisting
data to the Data SSD. Processing a record triggers random
4KB reads and a sequential write, so we estimate digesting
latency with summed latency of these read and write requests.

In evaluation, we use a server configured with an Intel Xeon
E5 CPU, 346GB DRAM and an Intel 750 SSD. It runs Ubuntu
18.04 Operating System with Linux kernel 4.18. The Intel
SSD is equipped with capacitance to protect data in power
failure [10]. We run FIO on the SSD, in order to assess the
average latency of 4KB random read and sequential write of
various sizes, as in Table I. The latency of write over 32KB
is approximately proportional to the size. We set the digesting
latency on the basis of these statistics. The simulated Record
Area size is 64MB, the threshold of dirty size is 12KB and
the dirty ratio threshold is 50%.

We compare CoinPurse against prevalent file systems, in-
cluding F2FS, Ext4, and XFS. F2FS is a flash-optimized log-

TABLE I: Intel 750 SSD Latency
Operation Random Read Sequential Write
Granularity 4KB 4KB 8KB 16KB 32KB 64KB
Latency/us 18.20 11.76 14.12 18.55 36.33 66.50

structured file system. Ext4 is a representative in-place-update
file system, which is also the default choice of many Linux
distributions. XFS employs an operation journal to ensure
crash consistency. The three file systems run directly on the
same SSD. We make and mount these file systems with default
options, while mount F2FS without adaptive logging, so that
it issues no in-place writes.

B. Micro Benchmarks

We begin the evaluation with a set of common file system
operations. We run seqread, randread, seqwrite and randwrite
in FIO, and the handcrafted append benchmark. Each opera-
tion of these benchmarks accesses 512B data. The create and
delete benchmarks randomly create and remove 100,000 files
over 100 directories. Each operation in micro benchmarks is
followed by fsync.

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t CoinPurse

F2FS
Ext4
XFS

0

2

4

6

seqread
randread

seqwriterandwrite append create delete

Fig. 5: Microbenchmark Throughput
Figure 5 shows the throughput normalized to Ext4. Coin-

Purse achieves comparable or better performance in most
benchmarks. It outperforms F2FS, Ext4, and XFS up to
1.89⇥, 5.93⇥ and 32.51⇥ respectively, on seqwrite, rand-
write, append, create benchmarks. These benchmarks trigger
immense partial updates to both metadata and data blocks. The
performance gain shows the effectiveness of dual interfaces.

However, CoinPurse and F2FS do not perform well com-
pared to Ext4 in the delete benchmark due to a delete operation
with fsync always triggers the costly checkpoint. XFS’s
performance is subpar as it logs every update to the file system
without batching multiple transactions into a single log write
[14]. Hence, XFS submits intensive log writes in the case of
continuous small operations.

C. Macro Benchmarks

This section presents evaluation results of macro bench-
marks. We choose Varmail, OLTP-insert, DBbench and Mo-
bibench for evaluation. Varmail in Filebench [15] is a
metadata-intensive workload to simulate a mail server. OLTP-
insert is a workload in Sysbench [16]. It adopts MySQL, a
famous relational DBMS, as the back end. DBbench runs
on RocksDB, a popular key-value store system. We use the
fillsync attached with DBbench. Mobile applications rely on
SQLite database heavily to store data [17], so we also evaluate
CoinPurse with Mobibench [18], which is based on SQLite.

0
2
4
6
8

CoinPurse F2FS Ext4 XFS

0

0.5

1.0

1.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

1 4 8 1 4 8

(a)

Number of Threads Number of Threads

Value Size Transaction Type

(b)

(c) (d)

0

2

4

6

0
2
4
6
8

100B 1KB 2KB insert update delete

Fig. 6: Macrobenchmark Throughput
Throughput. Figure 6 a–d show throughput of Varmail,

OLTP-insert, DBbench and Mobibench repectively. Results are
normalized to Ext4, and 1 thread in Figure 6a–b specifically.

Varmail does a series of operations to files, including create,
delete, append and fsync. Figure 6a shows that file systems
perform discretely on Varmail. They scale well as the number
of threads increases except XFS, due to intensive metadata
operations. CoinPurse outperforms F2FS, Ext4 and XFS by
up to 1.16⇥, 2.18⇥ and 7.23⇥ respectively.

Figure 6b presents results on OLTP-insert. Ext4 and XFS
achieve similar performance in all cases. The throughput of
CoinPurse is 1.18⇥ F2FS, 2.09⇥ Ext4 and 2.71⇥ XFS aver-
agely. MySQL writes redo log files in multiple 512B sectors,
where consecutive writes may overwrite the same 4KB unit
in a file. CoinPurse leverages the Partial Update Interface to
absorb small updates, so as to bring improvement. MySQL fills
files before writes, which mitigates space allocation overhead
of in-place-update Ext4 and XFS. But overwriting the same
4KB block frequently incurs severe overhead on SSD.

Figure 6c compares the normalized performance of
DBbench on RocksDB. The key is 16B, and the value size
ranges from 100B (default) to 2KB. CoinPurse surpasses F2FS
by 28.1%–33.2%, and achieves up to 5.21⇥ throughput of
Ext4, 27.1⇥ XFS. Throughput values differ widely between
file systems, because RocksDB creates and appends new log
files continuously. Therefore, performance of file systems on
DBbench resembles that on the append benchmark in § IV-B.

Figure 6d presents results on Mobibench. We use the WAL
journal mode and the FULL synchronous mode to test 100,000
insert, update and delete transactions. Ext4 and XFS perform
closely, but CoinPurse is around 30% faster than them, and
17.2% better than F2FS in average. SQLite accesses storage
including journaling at the granularity of 4KB by default.
Consequently, gaps between F2FS, Ext4 and XFS are not
dramatic as former benchmarks.

Write Statistics. We collect statistics of node and data

writes in the Write Dispatcher of CoinPurse, and present
them in Table II. We select Varmail and OLTP-insert in
1 thread, DBbench with 1KB value size, and Mobibench’s
update workload. The left three columns cover all writes the
Write Dispatcher receives. The right three columns indicate

TABLE II: Write Statistics of Macro Benchmarks

Benchmark All Writes
Writes to

Partial Update Interface

Size/MB Dirty Ratio
Avg. Write

Size/KB Size/MB
Size

Proportion Dirty Ratio

Varmail 14,647 54.22% 7.51 4,993 34.09% 9.34%
OLTP-insert 6,126 23.18% 4.81 4,905 80.07% 9.56%
DBbench 12,522 8.75% 6.40 6,449 51.50% 3.43%
Mobibench 3,515 61.31% 17.87 1,365 38.83% 25.93%

statistics of writes dispatched to the Partial Update Interface.
We have several observations from Table II. First, the dirty

ratio of all writes is low, which is only 8.75% in DBbench.
The average size per write ranges from 4.81KB to 17.87KB.
These demonstrate that file systems issue immense small
partial updates through block I/O. Second, the dirty ratio of
writes to the Partial Update Interface is lower than that of all
writes. Because the threshold in the Write Dispatcher filters
out writes with high dirty ratio. Third, the Partial Update
Interface handles at least 34.09% writes and reduces block
I/O traffic significantly. Note that CoinPurse outperforms F2FS
by 21.08% on OLTP-insert, although it dispatches 80.07%
data to the Partial Update Interface. This implies that logic
apart from synchronous writes in OLTP-insert causes more
overhead, compared to other benchmarks.

V. CONCLUSION

In this paper, we present CoinPurse, a device-assisted file
system with dual interfaces, the conventional block I/O and
the proposed partial update interface on top of NVM on SSD.
CoinPurse dispatches writes to dual interfaces dynamically,
without loss of durability and consistency. Evaluation shows
that CoinPurse outperforms F2FS, Ext4 and XFS in macro
benchmarks, by up to 1.33⇥, 5.21⇥ and 27.1⇥ respectively.

REFERENCES

[1] W.-H. K. et al., “Durable write cache in flash memory ssd for relational
and nosql databases,” in SIGMOD. ACM, 2014.

[2] D. Park et al., “iJournaling: Fine-grained journaling for improving the
latency of fsync system call,” in USENIX ATC, 2017.

[3] G. Lee et al., “Asynchronous i/o stack: a low-latency kernel i/o stack
for ultra-low latency ssds,” in USENIX ATC, 2019.

[4] Y. Lu et al., “Supporting system consistency with differential transac-
tions in flash-based ssds,” IEEE Trans. Comput., Feb. 2016.

[5] C. Lee et al., “F2FS: A new file system for flash storage,” in FAST.
USENIX Association, 2015.

[6] Y. Lu et al., “Extending the lifetime of flash-based storage through
reducing write amplification from file systems,” in FAST, 2013.

[7] S. Kannan et al., “Designing a true direct-access file system with devfs,”
in FAST. USENIX Association, 2018.

[8] NVMe specifications. https://nvmexpress.org/resources/specifications/
[9] Y. Jin et al., “Improving ssd lifetime with byte-addressable metadata,”

in MEMSYS. ACM, 2017.
[10] Intel ssd 750 series datasheet. https://www.intel.com/content/dam/www/

public/us/en/documents/product-specifications/ssd-750-spec.pdf
[11] D.-H. Bae et al., “2B-SSD: the case for dual, byte-and block-addressable

solid-state drives,” in ISCA. IEEE, 2018.
[12] A. Abulila et al., “FlatFlash: Exploiting the byte-accessibility of ssds

within a unified memory-storage hierarchy,” in ASPLOS. ACM, 2019.
[13] Pcie base specification revision 3.0. https://pcisig.com/specifications
[14] C. Hellwig. XFS: the big storage file system for linux. https:

//www.usenix.org/system/files/login/articles/140-hellwig.pdf
[15] A. Wilson, “The new and improved filebench,” in FAST, 2008.
[16] Sysbench. https://github.com/akopytov/sysbench
[17] M. Son et al., “A small non-volatile write buffer to reduce storage writes

in smartphones,” in DATE. EDA Consortium, 2015.
[18] Mobibench. https://github.com/ESOS-Lab/Mobibench

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

