
Improving the Concurrency Performance of
Persistent Memory Transactions on Multicores

Qing Wang†, Youyou Lu†, Zhongjie Wu‡, Fan Yang†, Jiwu Shu†*
†Tsinghua University, ‡Alibaba Group Holding Limited

{q-wang18@mails., luyouyou@, yangf17@mails., shujw@}tsinghua.edu.cn, alanwu.wzj@alibaba-inc.com

Abstract—Persistent memory provides data persistence to in-
memory transaction systems, enabling full ACID properties.
However, high data persistence worsens the concurrency per-
formance due to delayed execution of conflicted transactions
on multicores. In this paper, we propose SP 3 (SPeculative
Parallel Persistence) to improve the concurrency performance
of persistent memory transactions. SP3 keeps the dependencies
between different transactions in a DAG (direct acyclic graph)
by detecting conflicts in the read/write sets, and speculatively
executes conflicted transactions without waiting for the complete-
ness of data persistence. Evaluation shows that SP3 significantly
improves concurrency performance and achieves almost linear
scalability in most evaluated workloads.

I. INTRODUCTION

Emerging persistent memory (e.g., Intel’s 3D XPoint),
which attaches memory directly to the memory bus, enables
byte-addressable access to persistent data. Since persistent
memory brings data durability to in-memory systems, it is
possible to ensure all the ACID (Atomicity, Consistency,
Isolation, and Durability) properties of a transaction in the
memory level [1]–[7].

In persistent memory transactions, both concurrency control
and crash consistency are required to achieve full ACID
properties. Concurrency control isolates the conflicted I/O
operations between transactions, and ensures correctness for
execution of multiple transactions. Crash consistency requires
data versions are persisted in order, to provide consistent state
change in persistent memory [1], [2], [8]. In crash consistency,
strict ordering, which is required between data persistence,
incurs frequent memory flush and ordering operations like
clflush and mfence. When these commands are explic-
itly performed, the CPU is stalled. As persistent memory
has relatively higher memory write latency (i.e., persistence
latency), these flush and ordering operations lead to dramatic
performance degradation [8], [9].

To reduce the transaction overhead due to high persistence
latency, a number of approaches have been proposed [1]–[3],
[8], which can be broadly categorized into two ways. One is
to decouple the program execution from the data persistence,
so as to relax the execution ordering. Epoch [8] is of such

*Jiwu Shu is the corresponding author. This work is supported by
National Key Research & Development Program of China (Grant No.
2018YFB1003301), the National Natural Science Foundation of China (Grant
No. 61772300, 61832011), and Alibaba Group through Alibaba Innovative
Research (AIR) Program.

designs. For an epoch, any write after the epoch should wait
until all writes before the epoch have been persisted. Epoch
is supposed to be supported in the CPU cache hardware, so
that the program tells the hardware about the ordering and
continues execution without stalling. The other is to allow
transactions to be persisted speculatively, so as to relax the
persistence ordering. LOC [1] keeps versions and dependen-
cies of transactions and speculatively persists transaction data.
Transactions can be resolved when a predecessor transaction
(i.e., a transaction happens before the current transaction and
has conflicts with the current transaction) fails. LOC improves
the efficiency of data persistence by write coalescing.

In addition to the above-mentioned techniques to reduce
transaction overhead locally, LB++ [3] also attempts to im-
prove the concurrency performance of transactions on mul-
ticores. It is designed based on the observation that there
is unnecessary ordering between inter-thread transactions.
Therefore, it removes such ordering to improve persistence
efficiency.

However, the worsened concurrency performance comes
from not only the unnecessary ordering between inter-thread
transactions, but also the delayed execution of conflicted
transactions. For conflicted transactions, a transaction has to
wait until the completeness (of both execution and persistence)
of its predecessor transaction. For example, transaction Txn_1
writes data A, and transaction Txn_2 (Txn_1 < Txn_2)
reads A. Txn_2 can not commit until all transaction data in
Txn_1 is committed and persisted. Due to high persistence
latency in persistent memory, the commit and persist phase of
Txn_1 consumes some time. This leads to long waiting time
of Txn_2, either stalling its CPU core or wasting its CPU core
resource with aborts and retries. As such, in addition to the
well-known problem of ordering and persistence overhead in
persistent memory, the concurrency execution overhead is not
negligible for transactions on multicores, which unfortunately
is under-exploited.

Our goal in this paper is to improve concurrency exe-
cution and allow parallel persistence even for transactions
with conflicts on multicores. To achieve this, we propose
the SP 3 (SPeculative Parallel Persistence) design. The key
idea is to speculatively execute the transaction in each core,
without waiting for the completeness of the persistence of
its predecessor transactions. In case of persistence failures or
transaction aborts, dependencies between transactions among
different cores are kept to abort the dependent transactions.

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

In order to make dependencies scalable, SP 3 assigns transac-
tional ID locally, instead of using a global ID distributor, and
keeps the dependencies in a direct acyclic graph (DAG). With
such design, SP 3 improves CPU core utilization of persistent
memory transactions, and thereby improves the concurrency
performance. Major contributions of this paper are as follows:

• We observe that transaction execution encounters dra-
matic performance degradation on multicores in persistent
memory, and identify the cause that the high persistence
latency delays the execution of conflicted transactions on
multicores and wastes multicore resources.

• We propose the SP 3 (SPeculative Parallel Persistence)
technique to speculatively execute transactions on dif-
ferent cores, by introducing the dependency DAG for
dependency tracking in case of speculative failures.

• Evaluations with different workloads show that SP 3

achieves 17.2⇥ and 6.1⇥ higher throughput than two
well-known existing persistent memory systems, PMDK
and Mnemosyne, and achieves better scalability.

II. BACKGROUND AND MOTIVATION

A. Persistent Memory Transactions

With persistent memory, the persistence feature can add
the D (Durability) property to transactional memory, to
make the full ACID possible in memory. Meanwhile, adding
the durability property incurs high overhead in persistent
memory transactions. It is because not only the strict ordering
stalls CPU, but also the high persistence latency slows down
transaction execution. There are a few categories of techniques
that attempt to reduce this overhead.

Lazy Persistence (i.e., LB++) [3] is based on Epoch Per-
sistence [8]. For a persistent memory transaction, the program
issues the epoch barrier command to the CPU cache, so that
the hardware ensures the ordering of data that is persisted.
With the hardware epoch, the software program continues
execution without explicit waiting. As shown in Figure 1(a),
the execution is exempted from the ordering for persistence.
It keeps the intra- and inter-thread dependencies between
transactions. If there is no dependency, transactions can be
executed concurrently.

Speculative Persistence further relaxes the persistence or-
dering [1]. It allows data from different transactions to be
coalesced and persisted in parallel, by keeping their versions
and dependencies. As shown in Figure 1(b), data blocks
from different transactions can be reordered, coalesced and
persisted. However, speculative persistence is not able to keep
dependencies between different cores.

DudeTM [5] uses shadow DRAM to avoid the inefficiencies
of traditional undo logging and redo logging based techniques.
However, the persist threads in DudeTM over-restrict the
persistence ordering of transactions (i.e., a transaction is
considered to have been persisted only when all previous
transactions in all cores have been persisted). What’s more,
there is only one reproduce thread in DudeTM to replay and
clean logs, harming the system scalability [7].

- store(a) -ordering - persist(a)- critical pathWa a

Persistence

(a) Lazy Persistence

Core0
TX00

Wa Wb

a

Wb

Core1

b

Wc We

c

Wf

e f

Wf
TX01 TX02

TX10

fb

(b) Speculative Persistence

Persistence

Core0
TX00

Wa Wb

a

Wb

Core1 Wc We

c

Wf

e f

Wf
TX01 TX02

TX10

fb

(c) Speculative Parallel Persistence

Persistence

Core0
TX00

Wa Wb

a

Wb

Core1

b

Wc We

c

Wf

e f

Wf
TX01 TX02

TX10

fb

Fig. 1. Different Optimizations in Persistent Memory Transactions.

Pisces [7] optimizes read operations in persistent memory
transactions via a dual-version concurrency control protocol.
However, it lowers the isolation level (i.e., snapshot isolation).

B. Motivation

In persistent memory transactions, the causes of perfor-
mance degradation on multicores come from two aspects:
higher memory write latency and concurrency conflicts. To es-
timate each of the two parts in persistent memory transactions,
we evaluate three systems: DRAM-TX, NVM-TX, and NVM-
Ideal. DRAM-TX is an in-memory transaction system running
on DRAM. For NVM-TX, we run the same transaction system,
but add the memory write latency to 500ns as in [9]. NVM-
Ideal removes the concurrency control from NVM-TX, without
considering the correctness. In the experiment, we run red-
black tree update and search operations to evaluate them.

Figure 2 compares the transaction throughput of the three
systems. Intuitively, the performance degrades when the mem-
ory write latency is increased, as comparing the DRAM-TX
and NVM-TX. But, worth to be noticed, the gap between
NVM-TX and NVM-Ideal becomes wider when the number of
cores increases. This indicates that the concurrency is a major
force in degrading the transaction performance on multicores.
To ensure ACID properties, all data blocks in a transaction are
visible to others only after they are committed and persisted.
A transaction in one core that has conflicts with another
transaction in another core has to wait until the completeness
of conflicted transaction.

In this paper, we aim to mitigate the concurrency problem
caused by high persistence latency and improve multicore effi-

DRAM-TX NVM-Ideal NVM-TX

Number of Threads

Th
ro

ug
hp

ut
 (K

TP
S)

0

2k

4k

0 4 8 12 16 20 24

Fig. 2. Estimation of Concurrency and Persistence Overhead Breakdown.

ciency. Our proposed SP3 is to speculatively allow transaction
execution on multicores, even when they have conflicts, and
achieves parallel persistence in different cores, as illustrated
in Figure 1(c).

III. DESIGN

A. Overview of SP3

Due to persistence latency, transaction execution time is
stretched, which delays the execution of conflicted transac-
tions. Take the example shown in Figure 3(a), transaction TXa

and TXb are executed on different CPU cores. TXa starts to
commit, after checking the versions of its read set. If there
is no version change in the read set, i.e., there is no conflict,
TXa persists its data items then releases locks. At the same
time, TXb tries to access object item0 which is locked by
TXa and has to wait for TXa to finish its persistence.

a. Normal Transaction

write item0

TXa TXb

write item0

b. SPeculative Parallel Persistence

write item0

TXa TXb

write item0

WaitPersistExecute Lock Unlock Commit

Fig. 3. Conflicts Between Transactions.

In contrast, SP 3 wants to speculatively execute transactions
without waiting for conflicted transactions’ persistence (Fig-
ure 3(b)). Before TXa starts to persist log, it unlocks item0.
Thus TXb can access item0 without being blocked or aborted
by TXa’s time-consuming persistence, which enables parallel
persistence between conflicted transactions.

The challenge is to guarantee crash consistency and serializ-
ability in SP 3. In above example, TXa is ordered before TXb

in the serial order. Therefore, TXb can not return to upper
applications until the persistence completeness of its own
and predecessor transaction (TXa). Otherwise, its durability
guarantee will be violated, when the system crashes. Moreover,
TXb has to read the changes which TXa makes to item0,
that is, TXa should make modified item0 visible to TXb.
To overcome the challenge, we design a commit protocol
(§III-B) and a recovery protocol (§III-D) to track and replay
dependencies between conflicted transactions.

read set
vAddr version data entryPtr
0xccaa 1 “abc” 0xaaaa
… … … …

write set
vAddr newDataPtr entryPtr
0xccbb 0xffec 0xaaba
… … …

index entries
ver ptr lastTid

version: 48 threadID: 15 lock:1
1 0 0xaaff TX1
… … … … …
2 3 0xaaee TX2

“abc”

“123”

keys
0xaaaa

0xaaba
index

Redo Logg

per thread metadata
threadID 3

curTid TX4
isPersistent false

Fig. 4. Internal State In Transaction Execution

B. Commit Protocol

SP 3 uses optimistic concurrency control (OCC), which pro-
vides scalable performance in in-memory transaction systems
on multicores [10]. Like other transaction systems that use
OCC, SP 3 has an underlying index (shown in Figure 4),
which maps keys (i.e., virtual addresses of objects) to index
entries. Each index entry consists of a pointer (i.e., ptr)
to the actual data location of the object. There is a 64-bit
ver word in each entry, which encodes version, threadID,
and lock. The version increases when the object is modified.
The lock protects the object from concurrent updates. The
threadID records which thread locks and writes the object at
the moment. To track dependencies between transactions, we
add a lastT id word to each index entry, which records the ID
of the transaction that last modified this object.

The execution of a transaction is divided into two phases:
read phase and commit phase. During the read phase, a trans-
action reads objects into its read set without acquiring locks,
and buffers its modifications into its write set and acquires
corresponding locks. A redo log entry is also generated during
read phase, but is not persisted at this time. Each entry in
the write set stores the new address of the modified object in
newDataPtr. There is an entryP tr stored in each entry of
write/read set, which points to the corresponding index entry,
to avoid looking up the index in the commit phase.

When finishing the read phase, the thread executes commit
protocol. SP3 introduces speculative persistence to cross-core
transaction parallelism. To achieve this, SP3 allows data to be
visible to other transactions before they are persisted. With
such relaxing, transactions in the other core can read the
latest data to continue execution. As such, the execution order
between transactions on multicores is serialized, if there are
dependencies, but without waiting for the persistence of the
predecessor transaction. The persistent order can be relaxed,
i.e., transactions persist their data to the log in parallel.

For the speculative failure, i.e., a predecessor transaction
fails in data persistence, the transaction aborts and retries. The
transaction can not return the commit success to users until its
predecessor transactions complete persistence. Note that, this
order is only the visibility order to the user, but not hurts the
execution or persistence of transactions.

Algorithm 1: Commit Protocol
Input: read set RS, write set WS, log Log

1 for e in RS do /* Step 1: Validation */
2 changed = e.version 6= e.entryP tr.ver.version;
3 locked = e.entryP tr.lock == 0x1
4 ^e.entryP tr.ver.threadID 6= threadID;
5 if changed _ locked then
6 return false;

7 depSet = {};
8 for e in RS [WS do /* Step 2: Dep Track */
9 depSet = depSet [{e.entryP tr.lastT id};

10 for e in WS do /* Step 3: Unlock */
11 e.entryP tr.ptr = e.newDataPtr;
12 e.entryP tr.lastT id = tid;
13 increase version(e.entryP tr.ver);
14 unlock(e.entryP tr);

15 Log.append(depSet);
16 Log.flush() /* Step 4: Persist */
17 for depT id in depSet do /* Step 5: Pending */
18 Wait TXdepTid is persisted

19 return true;

Algorithm 1 gives the detailed commit protocol in SP3. In
Step 1, the thread validates the read set. If some objects either
have different versions from those stored in the read set, or are
locked by other transactions, the current transaction is aborted
and the thread releases locks.

On passing validation, the thread tracks dependencies (Step
2). For each entry in the read/write set, lastT id stored in
its corresponding index entry is added to the depSet. The
depSet is the IDs of all predecessor transactions that current
transaction depends on. In Figure 4, it is easy to find that
TX4 depends on TX1 and TX2 by scanning lastT id in
index entries.

In Step 3, the thread makes the transaction updates visible
to other transactions. It updates the ptr in the index entries
to point to the latest version and stores the current transaction
ID in the lastT id field. After that, it releases locks and other
conflicted transactions can be executed forward.

Step 4 is to persist log. The thread appends the depSet to
the log tail, and flushes the log to persistent memory. After
that, the transaction is considered to have been successfully
persisted. However, the transaction can not be returned to
upper applications at this point, because it is not clear whether
the transactions in its depSet have been persisted.

Finally, in Step 5, the thread waits for all transactions in
its depSet finishing persistence (i.e., Step 4). To detect the
transaction persistence state of transactions in the depSet, we
record hcurT id, isPersistenti pair for each thread. curT id
is the ID of transaction currently running in this thread. The
persistence of transactions inside each thread is in strict order.
If the transaction ID in the depSet is smaller, it is persistent. If
the transaction ID equals curT id, the isPersistent indicates
the state. The isPersistent is set to true after Step 5 in
the commit phase. The transaction is considered to have been
committed successfully at this point, and ACID properties are

provided to the upper applications.

C. Logical Transaction ID

For scalability, SP3 uses per-thread log and global logical
ID without a centralized global ID distributor. The global
logical ID is designed based on the dependency tracking in
SP3. Each thread in SP3 holds a local logic clock, which
is encoded by the pair hthreadID, logicIDi. When a new
thread is registered into SP 3 system, it is allocated with a
unique threadID. In each thread, the logicID is used for
the local transaction ID and is incremented right before a new
transaction starts. As such, hthreadID, logicIDi is used as a
global logical transaction ID to identify the transaction itself.

The ordering between different transactions can be repre-
sented by a dependency DAG (direct acyclic graph). In the
dependency DAG, each node represents a transaction and each
edge directed from nodei to nodej represents TXi is ordered
before TXj . TXi is ordered before TXj (i.e., TXi < TXj)
if and only if one of the following three conditions is met:
(1). threadIDi == threadIDj ^ logicIDi < logicIDj

(2). threadIDi 6= threadIDj ^ hthreadIDi, logicIDii 2
depSetj

(3). 9TXk, TXi < TXk ^ TXk < TXj

D. Recovery

When the system crashes, SP 3 needs to first analyze the
dependencies across different cores, and then replay the logs
in a logical order globally. For the dependency, the recovery
protocol exploits the dependency DAG described in §III-C.
With this dependency, the recovery process can replay logs
accordingly.

First, SP 3 constructs the DAG dependency graph. The
recovery thread gathers all valid logs generated by different
threads, then parses them. It inserts a new node into depen-
dency DAG when reading a complete log entry, and adds
the edges representing corresponding dependencies. Then, the
recovery thread deletes uncommitted transactions from the
DAG. A transaction is uncommitted if a dependent transaction
is not in the DAG or is uncommitted. When the DAG is
constructed, the recovery thread performs a topological sort
for all DAG nodes, as all nodes in the DAG are in a partial
order. After the sorting, the recovery thread is able to recover
data and index by executing log entries in the result order.

The recovery can be performed in parallel using multi-
threads. For example, the results of toposort can be partitioned,
and tasks can be dispatched to different threads, to make all
threads running in parallel. SP 3 also performs checkpoint
periodically, to truncate logs and reduce recovery overhead.

IV. EVALUATION

A. Experimental Setup

We evaluate SP 3 on a SuperMicro server. The server is
installed with CentOS 7.6 at kernel 3.10.0. It is equipped Intel
Xeon 2.2GHz CPU (2 sockets ⇥ 12 cores) and 128GB DDR4
memory. For explicit persistence operations after clflush
commands, we add an extra write latency to emulate the

persistent latency. This latency is emulated using the CPU
timestamp counter (TSC) as in previous studies [9], [11].

Evaluated Systems. We compare SP 3 to two well-known
existing persistent memory systems, Mnemosyne [9] and
PMDK [12]. In addition to SP 3, we also evaluate NVM-
TX and NVM-Ideal for comparison. NVM-TX is the baseline
system without optimizations in SP 3. NVM-Ideal is a con-
figuration that removes the concurrency control from NVM-
TX, without correctness guarantee, so as to estimate the ideal
performance for concurrency optimization.

Workloads. In the evaluation, we use different workloads
as shown in Table I, similar to the evaluation in previous
studies [1], [3], [9], [13]. For these workloads, the entry size
is set to 128-byte. For ordering and persistence operations, we
issue clflush and mfence commands. The default extra
latency is set to 500 ns. To evaluate the contention, the default
zipfian parameter is set to 0.99 for workload skews, which is
used in existing benchmarks like the YCSB workload [14].
The ratio of insert operations is 50% by default.

Workload Description
SPS Random swaps of array entries
Queue Insert/delete entries in a queue
HashTable Insert/search entries in a hash table
RBTree Insert/search nodes in a red-black tree
B+ Tree Insert/search nodes in a B+ tree

TABLE I
WORKLOADS.

B. Comparison with Existing Systems
We first compare our proposed SP3 system with

Mnemosyne [9] and PMDK [12], respectively, with a single
core or multiple cores (16 cores). Figure 5 shows the transac-
tion throughput of each system for different workloads. From
the figure, we have two observations:

(1) All the three systems show comparable performance in
the single-core evaluation, while they show significant differ-
ences in the 16-core evaluation. In the single-core evaluation,
the throughput in SP3 is 34.27% to 301.65% of that in PMDK,
and 87.52% to 320.26% of that in Mnemosyne. The average
performance of SP3 outperforms PMDK and Mnemosyne by
127.40% to 195.94%, respectively. In the 16-core evaluation,
the throughput in SP3 is 78.83% to 5149.64% of that in
PMDK, and 187.63% to 1647.53% of that in Mnemosyne.
The average performance of SP3 outperforms PMDK and
Mnemosyne by 1723.30% and 613.99%, respectively.

(2) SP3 gains higher performance improvement than the
other two systems on multicores. The throughput of SP3 with
16 cores is 0.61⇥ to 13.23⇥ of that with a single core for
different workloads, with an average improvement of 10.11⇥.
PMDK has 0.35⇥ to 3.61⇥ throughput improvement from
a single core to 16 cores, with an average improvement
of 1.13⇥. Mnemosyne has 0.70⇥ to 15.68⇥ throughput
improvement from a single core to 16 cores, with an average
improvement of 5.59⇥.

C. Concurrency Performance
We then evaluate the scalability of SP3 by varying the

number of cores from 1 to 24. To better understand SP3’s

0

2k

4k

Th
ro

ug
hp

ut
 (K

TP
S)

PMDK Mnemosyne SP3

core = 16core = 1

500

1000

HashTable

Queue
SPS B+Tree

RBTree
HashTable

Queue
SPS B+Tree

RBTree

Fig. 5. Comparison with Existing Systems in Single/Multi Core.

scalability, we also give the scalability of Mnemosyne, NVM-
TX, and NVM-Ideal. In NVM-Ideal, because concurrency
control is removed, there is a correctness issue in memory
access when inserts occur. Therefore, only update operations
are performed in NVM-Ideal.

Transaction Throughput. Figure 6 shows the concurrency
performance of Mnemosyne, NVM-TX, SP3 , and NVM-
Ideal. For all evaluated workloads, SP3 shows relatively better
scalability than the other two persistent memory transaction
systems Mnemosyne and NVM-TX. SP3 achieves almost
linearly growing performance when the number of cores
increases for the evaluated workloads, except for the SPS and
Queue workloads. In comparison, Mnemosyne does not scale
well when the number of cores increases. NVM-TX, which
uses optimistic concurrency control, still has performance
degradation when the number of cores is large. Comparing
NVM-TX and SP3, SP3 allows transactions in different cores
to continue persistence, even when they have conflicts. This
design reduces the wasted CPU stalling in different CPU cores,
and thereby improves the multicore efficiency. As such, the
SP3 design is effective in improving concurrency performance
in persistent memory transactions.

In the evaluated workloads, the SPS and Queue workloads
show performance degradation in SP3. This is because of high
contention in the two workloads. The array and queue data
structures are simple, and all elements are linearly organized,
so the skewed workload setting (with a zipfian parameter of
0.99) leads to contention to a few data elements.

Abort Ratio. Figure 7 shows the corresponding abort ratio
respectively for NVM-TX and SP3. From the figure, we can
see that SP3 has a significantly lower abort ratio than NVM-
TX. This also explains the reason why SP3 gains performance
improvement on multicores shown in Figure 6. In the evaluated
workloads, the SPS and Queue have high abort ratio, which is
discussed above. In the other workloads, SP3 achieves a much
lower abort ratio than NVM-TX. This is because transactions
are speculatively executed by recording the dependencies
across cores, and this speculative technique reduces transaction
aborts and retries.

D. Recovery Performance

We also evaluate the recovery performance of SP3. Two
parameters have high impact on recovery performance. One is
the number of threads that execute concurrent transactions.

Mnemosyne NVM-TX SP3 NVM-Ideal

#. of Threads

Th
ro

ug
hp

ut
 (K

TP
S)

#. of Threads #. of Threads #. of Threads #. of Threads

(a) SPS (b) Queue (c) HashTable (d) RBTree (e) B+-Tree

0

2k

4k

6k

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

Fig. 6. Throughput.
NVM-TX SP3

#. of Threads

Ab
or

t R
at

e

#. of Threads #. of Threads #. of Threads #. of Threads

(a) SPS (b) Queue (c) HashTable (d) RBTree (e) B+-Tree

0

0.5

1.0

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

Fig. 7. Abort Ratio.

1s 2s 5s 10s

Number of Threads

R
ec

ov
er

y
Ti

m
e

(s
)

0

20

40

60

0 4 8 12 16 20 24

Fig. 8. Recovery Performance.

During recovery, DAG construction requires dependencies
over different threads’ logs, which increases recovery latency.
The other is the checkpoint interval. When the interval is large,
the persistent frequency of indexing metadata is reduced, but
the amount of data that needs to be scanned to construct DAG
is increased. Therefore, in this experiment, we vary the values
of both them. The number of threads is varied from 1 to 24.
The checkpoint interval is set to 1s, 2s, 5s, and 10s. We first
run the SP3 transaction system until they generate 10GB logs,
and then perform the recovery test. Note that, the scanned data
amount is less than 10GB during recovery, because the only
transactions from the last checkpoint need to be processed.

Figure 8 shows the recovery time for different number of
threads and different checkpoint interval. For each checkpoint
interval, the recovery time increases when the number of
threads is increased. This is because dependencies have to be
scanned from different logs to construct the DAG dependency
graph, as stated before. For different checkpoint intervals, the
recovery time increases when the checkpoint time is increased.
This is because that more logs have been persisted but not
checkpointed when the checkpoint interval is large. These
logs have to be scanned to check the dependency. In all, the
recovery can complete within tens of seconds. For a typical
5s checkpoint interval, the recovery takes around 30 seconds
even for 24 cores, which is acceptable.

V. CONCLUSION

In persistent memory transactions, high persistence latency
leads to a high property of conflicts to transactions in mul-
ticores. To address this issue, we propose SP3 (SPeculative
Parallel Persistence), a persistent memory transaction system
to improve concurrency performance on multicores. SP3 spec-
ulatively executes transactions in different cores, to improve
the core efficiency. It also keeps the logical dependencies of
transactions across cores, without using a global ID distributor.
Evaluation shows that SP3 achieves almost linear performance
scalability in persistent memory transactions.

REFERENCES

[1] Y. Lu et al, “Loose-ordering consistency for persistent memory,” in
ICCD, 2014.

[2] S. Pelley et al, “Memory persistency,” in ISCA, 2014.
[3] A. Joshi et al, “Efficient persist barriers for multicores,” in MICRO,

2015.
[4] A. Kolli et al, “High-performance transactions for persistent memories,”

in ASPLOS, 2016.
[5] M. Liu et al, “DudeTM: Building durable transactions with decoupling

for persistent memory,” in ASPLOS, 2017.
[6] A. Joshi et al, “DHTM: Durable hardware transactional memory,” in

ISCA, 2018.
[7] J. Gu et al, “Pisces: A scalable and efficient persistent transactional

memory,” in USENIX ATC, 2019.
[8] J. Condit et al, “Better I/O through byte-addressable, persistent memory,”

in SOSP, 2009.
[9] H. Volos et al, “Mnemosyne: Lightweight persistent memory,” in ASP-

LOS, 2011.
[10] S. Tu et al, “Speedy transactions in multicore in-memory databases,” in

SOSP, 2013.
[11] Y. Lu et al, “Blurred persistence in transactional persistent memory,” in

MSST, 2015.
[12] “Intel corporation. persistent memory programming,” ”http://pmem.io/”,

2019.
[13] J. Zhao et al, “Kiln: closing the performance gap between systems with

and without persistence support,” in MICRO, 2013.
[14] B. F. Cooper et al, “Benchmarking cloud serving systems with YCSB,”

in SoCC, 2010.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

