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Abstract
Emerging non-volatile main memories (NVMMs) provide

data persistence at the main memory level. To avoid the

double-copy overheads among the user buffer, the OS page

cache, and the storage layer, state-of-the-art NVMM-aware

file systems bypass the OS page cache which directly copy

data between the user buffer and the NVMM storage. How-

ever, one major drawback of existing NVMM technologies

is the slow writes. As a result, such direct access for all file

operations can lead to suboptimal system performance.

In this paper, we propose HiNFS, a high performance file

system for non-volatile main memory. Specifically, HiNF-

S uses an NVMM-aware Write Buffer policy to buffer the

lazy-persistent file writes in DRAM and persists them to N-

VMM lazily to hide the long write latency of NVMM. How-

ever, HiNFS performs direct access to NVMM for eager-

persistent file writes, and directly reads file data from both

DRAM and NVMM as they have similar read performance,

in order to eliminate the double-copy overheads from the

critical path. To ensure read consistency, HiNFS uses a com-

bination of the DRAM Block Index and Cacheline Bitmap to

track the latest data between DRAM and NVMM. Finally,

HiNFS employs a Buffer Benefit Model to identify the eager-

persistent file writes before issuing the write operations. Us-

ing software NVMM emulators, we evaluate HiNFS’s per-

formance with various workloads. Comparing with state-

of-the-art NVMM-aware file systems - PMFS and EXT4-

DAX, surprisingly, our results show that HiNFS improves

the system throughput by up to 184% for filebench micro-

benchmarks and reduces the execution time by up to 64% for

data-intensive traces and macro-benchmarks, demonstrating

the benefits of hiding the long write latency of NVMM.
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1. Introduction
Emerging fast, byte-addressable non-volatile memories

(NVMs), such as phase change memory (PCM) [8, 17, 29],

resistive RAM (ReRAM), and memristor [51], are promised

to be employed to build fast, cheap, and persistent mem-

ory systems. Attaching NVMs directly to processors pro-

duces non-volatile main memories (NVMMs), exposing the

performance, flexibility, and persistence of these memo-

ries to applications [52, 53]. Moreover, these devices are

expected to become a common component of the memo-

ry/storage hierarchy for laptops, PCs, and servers in the near

future [10, 13, 21, 24, 30, 40, 54].

Given the anticipated high performance characteristics of

emerging NVMMs, recent research [6, 13, 18, 49] shows

that the overheads from the generic block layer and copying

data between the OS page cache and the NVMM storage

significantly degrade the system performance. To avoid these

overheads, state-of-the-art NVMM-aware file systems, such

as BPFS [13], PMFS [18], EXT4-DAX [6, 7], etc., bypass

the OS page cache and the generic block layer. Specifically,

all of them directly copy data between the user buffer and the

NVMM storage without going through the OS page cache,

implying that all requests incur prompt access to NVMM.

Unfortunately, one major drawback of NVMM is the slow

writes [10, 20, 46]. The asymmetric read-write performance

of NVMM indicates that, while DRAM and NVMM have

similar read performance, the write operations of existing N-

VMM technologies, such as PCM and ReRAM, incur longer

latency and lower bandwidth compared to DRAM [44, 52].

Therefore, direct access to NVMM can lead to suboptimal

system performance as it exposes the long write latency of

NVMM to the critical path. Furthermore, our experiments of

running existing NVMM-aware file systems on a simulated

NVMM device show that the overhead from the direct write

access can dominate the system performance degradation.

The relatively large write performance gap between

DRAM and NVMM indicates that buffering writes in

DRAM is important for improving the NVMM system per-

formance, because (1) writes to the same block may be

coalesced since many I/O workloads have access locali-

ty [35, 38, 42, 43], and (2) writes to files that are later delet-

ed do not need to be performed. In addition, writes in file



systems typically involve a trade-off between performance

and persistence, and applications usually have alternative ap-

proaches to persisting their data [19, 37].

However, simply using DRAM as a cache of NVMM is

inefficient due to the double-copy overheads in the critical

path among the user buffer, the DRAM cache, and the NVM-

M storage [6, 18]. On one hand, reading data to a block not

present in the DRAM cache causes the double-copy over-

head in the read path, because the operating system needs

to first copy the data from the storage layer to the DRAM

cache, and then copy it from the DRAM cache to the user

buffer. On the other hand, synchronous writes or synchro-

nization operations, such as fsync, also lead to the double-

copy overheads in the write path. For instance, if an applica-

tion issues a write operation to block A followed by a fsync

operation to persist block A, it incurs double data copies for

block A. (The operating system first copies it to the DRAM

cache at the write operation, and then copies it to the storage

layer at the fsync operation.) The double-copy overheads

can substantially impact the system performance when the

storage device is attached directly to the memory bus and

can be accessed at memory speeds [6, 13, 18, 49].

To address these problems, we propose HiNFS, a high

performance file system for non-volatile main memory. The

goal of HiNFS is to hide the long write latency of NVM-

M whenever possible but without incurring extra overheads,

such as the double-copy or software stack overheads, there-

by improving the system performance. Specifically, HiNFS

buffers the lazy-persistent file writes (i.e., write operations

that are allowed to be persisted lazily by file systems) in

DRAM temporarily to hide the long write latency of NVM-

M. To improve the fetch/writeback performance of a buffer

block, HiNFS manages the DRAM buffer at a fine-grained

granularity by leveraging the byte-addressable property of

NVMM. In addition, HiNFS interacts between the DRAM

buffer and the NVMM storage using a memory interface,

rather than going through the generic block layer, in order

to avoid the high software stack overhead. To eliminate the

double-copy overheads from the critical path, HiNFS per-

forms direct access to NVMM for the eager-persistent file

writes (i.e., write operations that are required to be persisted

immediately), and directly reads file data from both DRAM

and NVMM as they have similar read performance. Howev-

er, writing data to DRAM and NVMM alternatively imposes

a challenge for ensuring read consistency. Meanwhile, it also

requires the file system to identify the eager-persistent writes

before issuing the write operations.

This paper makes four contributions:
• We reveal the problem of the direct access overhead-

s by quantifying the copy overheads of state-of-the-art

NVMM-aware file systems on a simulated NVMM de-

vice. Based on our experimental results, we find that the

overhead from the direct write access dominates the sys-

tem performance degradation in most cases.

• We propose an NVMM-aware Write Buffer policy to hide

the long write latency of NVMM by buffering the lazy-

persistent file writes in DRAM temporarily. To eliminate

the double-copy overheads, we use direct access for file

reads and eager-persistent file writes.
• We ensure read consistency by using a combination of

the DRAM Block Index and Cacheline Bitmap to track the

latest data between DRAM and NVMM. We also design

a Buffer Benefit Model to identify the eager-persistent file

writes before issuing the write operations.
• We implement HiNFS as a kernel module in Linux kernel

3.11.0 and evaluate it on software NVMM emulators us-

ing various workloads. Our evaluations show that, com-

paring with state-of-the-art NVMM-aware file systems -

PMFS and EXT4-DAX, surprisingly, HiNFS significant-

ly improves the performance, demonstrating the benefits

of hiding the long write latency of NVMM. Moreover,

HiNFS outperforms traditional EXT2/EXT4 file systems

on a RAMDISK-like NVMM Block Device (NVMMB-

D) emulator, which use the OS page cache to manage the

DRAM buffer, by up to an order of magnitude, suggest-

ing that it is essential to eliminate the double-copy over-

heads as it can offset the benefits of the DRAM buffer.

The remainder of this paper is organized as follows. Sec-

tion 2 discusses the problem in state-of-the-art NVMM-

aware file systems and analyzes their direct access overhead-

s. We present the design and implementation of HiNFS in

Section 3 and Section 4, respectively. We then present the

evaluation results of HiNFS in Section 5. Finally, we discuss

related work in Section 6 and conclude in Section 7.

2. Background and Motivation
2.1 Problem in NVMM-aware File Systems

State-of-the-art NVMM-aware file systems, like BPF-

S [13], SCMFS [49], PMFS [18], and EXT4-DAX [7], elim-

inate the OS page cache which access the byte-addressable

NVMM storage device directly. As an example, a write()

syscall copies the written data from the user buffer to the

NVMM device directly without going through the OS page

cache and the generic block layer.

While this approach avoids the double-copy overheads,

direct access to NVMM also exposes its long write laten-

cy to the critical path, leading to suboptimal system perfor-

mance. In addition, to ensure data persistence and consis-

tency, file systems either employ a cache bypass write in-

terface1 or use a combination of the clflush and mfence

instructions behind write operations to explicitly flush data

1 Different from the DRAM buffer cache, the CPU cache is hard-

ware controlled which is cumbersome for the file system to track

the state of the written data. As a result, existing NVMM-aware

file systems, such as PMFS, use a cache bypass interface (e.g.,

copy from user inatomic nocache()) to enforce that the written data

becomes persistent before the associated file system metadata does, because

they wouldn’t be able to control the writeback from the processor caches to

the NVMM storage without using an expensive clflush operation.
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from the CPU caches to the NVMM device to enforce or-

dering [18, 49], because existing cache hierarchies that were

designed for volatile memory may reorder writes to improve

the performance. For this reason, write latency is usually

in the critical path, which cannot be tolerated by the CPU

caches when NVMM is used as a persistent storage device

rather than a volatile memory device [32, 33, 39]. Although

BPFS’s epoch-based caching architecture offers an elegant

solution, it requires complex hardware modifications which

involve non-trivial changes to cache and memory controller-

s [13]. In our work, we would therefore like to design an

NVMM system without any hardware modifications.

In this paper, we mainly investigate how to design a high

performance file system for NVMM by hiding the long write

latency of NVMM but without introducing extra overheads.

Our work is based on several assumptions shown as follows.
• First, we assume that NVMM devices are attached direct-

ly to the memory bus alongside DRAM, and the operat-

ing system is able to distinguish the NVMM devices from

the DRAM ones [14].
• Second, we use the clflush/mfence instructions to

enforce ordering and persistence, and assume that the

clflush instruction guarantees that the flushing da-

ta actually reaches the persistent point (i.e., NVM-

M device). While Intel has proposed new instructions

(CLWB/CLFLUSHOPT/PCOMMIT) to improve the cacheline

flush performance and the CPU cache efficiency [15],

these approaches are still unavailable in existing hard-

ware. This paper, therefore, does not take them into con-

sideration.
• Finally, HiNFS is mainly optimized for file-based I/O

(i.e., read and write system calls) rather than memory-

mapped I/O, as many important applications rely on tra-

ditional file I/O interfaces to access file data. However,

HiNFS still supports direct access for memory-mapped

I/O similar to existing NVMM-aware file systems (e.g.,

PMFS), which means that it does not sacrifice the perfor-

mance of memory-mapped I/O. For the remainder of the

paper, we refer to file write simply as write and file read

simply as read.

2.2 The Direct Access Overheads of NVMM-aware
File Systems

In this section, we will show that the overhead from the di-

rect write access in existing NVMM-aware file systems can

dominate the system performance degradation, and hence it

is essential to reduce such overhead whenever possible.

To quantify the direct access overheads of existing

NVMM-aware file systems, we run the fio [2] microbench-

mark on PMFS [18]2, and use the perf profiling utility to

obtain a breakdown of the time spent on running the bench-

mark. We use DRAM to emulate NVMM by introducing an

extra configurable delay to NVMM writes to emulate NVM-

M’s slower writes relative to DRAM. More technical details

about our experimental setup are given in Section 5.1.

Each test is run for 60 seconds, and the results are shown

in Figure 1. In all tests, we set the read/write ratio to 1:2 by

default. In this figure, the time breakdown is organized into

three categories: (1) Read Access refers to the overhead of

copying data from the NVMM storage to the user buffer for

read requests; (2) Write Access represents the overhead of

copying data from the user buffer to the NVMM storage for

write requests; and (3) Others is the overhead excluding the

Read Access and Write Access overheads, which mainly in-

cludes overheads from user-kernel mode switch, file abstrac-

tion, etc. From this figure, we observe that the direct write

access is a major source of overhead in most cases, and the

proportion increases as the I/O size becomes larger. When

the I/O size is no less than 4 KB, the direct write access

overhead can account for over 80% of the total overheads,

which substantially degrades the system performance. When

the I/O size becomes smaller, such as 64 B, the direct write

access overhead becomes relatively less significant than oth-

ers, but still accounts for at least 16% of the total overheads.

While file systems can optimize the performance of the

write operations that are not required to be persisted immedi-

ately, others, such as write operations enforced by synchro-

nization operations, must enter the stable storage instantly to

guarantee the data persistence required by user application-

s. Thus, their NVMM access overheads cannot be avoided.

To see if there is enough room for optimizing those lazy-

persistent writes, we perform another experiment that col-

lects the fsync bytes across various workloads. Figure 2

shows the results of the percentage of fsync bytes with dif-

ferent workloads. More detailed descriptions of these work-

loads are given in Section 5. In this figure, we observe that

different workloads have different persistence requirements.

For example, TPC-C has over 90% fsync writes whereas

2 We choose PMFS [18] as a case study of the baseline system because

it along with EXT4-DAX [7] are the only available open-source NVMM-

aware file systems at present. We also perform the same tests on EXT4-

DAX, and it shows similar results. While BPFS [13] and SCMFS [49] are

not open-source, we believe our observations also apply to them as they

both perform direct access to NVMM.
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LASR has no fsync writes. To conclude, a large number

of applications have a significant portion of lazy-persistent

writes, which are consistent with prior research results [19].

The above observations have interesting implications for

the design of the file system for fast NVMM. On one hand,

the revealed direct write access overhead strongly suggests

that we need to reduce prompt writes to NVMM in order to

improve the performance. On the other hand, we believe that

an elegant design should be flexible. In other words, it should

not improve the performance in some particular cases, while

sacrificing the performance in other cases. For example,

simply using DRAM as a cache of NVMM may improve

the performance for workloads having many lazy-persistent

writes, but this simple design will significantly degrade the

system performance for workloads containing many eager-

persistent writes due to the double-copy overheads.

3. HiNFS Design
In this section, we first describe the high-level system ar-

chitecture comparison of existing file systems and HiNF-

S. We then present an NVMM-aware Write Buffer policy

to reduce prompt writes to NVMM by buffering the lazy-

persistent writes in DRAM temporarily. Finally, we discuss

how to eliminate the double-copy overheads resulted from

conventional buffer management.

3.1 System Architecture
Figure 3(a) shows the system architecture of traditional

block-based file systems on a RAMDISK-like NVMM block

device. This is the most straightforward way to use NVMM

as a persistent storage in which legacy file systems, such as

ext2/ext4, can directly work on NVMM without extra modi-

fications by emulating it as a block device. In a block-based

file system, each file I/O usually requires two data copies,

one between the block device and the OS page cache through

the generic block layer, and one between the OS page cache

and the user buffer through the memory interface. Howev-

er, it has been recently reported that the overheads from the

double-copy and the generic block layer can significantly

impact the NVMM system performance [6, 13, 18, 49]. As

a result, state-of-the-art NVMM-aware file systems, such as

BPFS [13], PMFS [18], etc., access the NVMM device di-

rectly as shown in Figure 3(b). In these NVMM-aware file

systems, each file I/O requires only a single data copy, di-

rectly between the NVMM and the user buffer (a.k.a. direct

access). Unfortunately, the major drawback of this approach

is that it does not consider NVMM’s relatively longer write

latency compared to DRAM. Specifically, each write opera-

tion leads to prompt access to NVMM, which always expose

the long write latency of NVMM to the critical path, lead-

ing to suboptimal system performance. Therefore, to get the

best system performance, we propose another system archi-

tecture for the NVMM storage as shown in Figure 3(c). The

design objectives of HiNFS are twofold:

(1) Hiding the long write latency of NVMM behind the crit-
ical path. HiNFS uses an NVMM-aware Write Buffer

policy to buffer the lazy-persistent writes in DRAM tem-

porarily. HiNFS design, including fine-grained buffer

management and using a memory interface to interact

between DRAM and NVMM, is optimized for the N-

VMM storage. (Section 3.2)

(2) Eliminating the double-copy overheads. Although

buffering can help hide the long write latency of NVM-

M, it may introduce the double-copy overheads. For this

reason, HiNFS optimizes read and eager-persistent write

by avoiding unnecessary data copies. Read or eager-

persistent write, in HiNFS, requires only a single data

copy between DRAM/NVMM and the user buffer. (Sec-

tion 3.3)

3.2 NVMM-aware Write Buffer Policy
To hide the relatively long write latency of NVMM be-

hind the critical path, we propose an NVMM-aware Write
Buffer policy to buffer the lazy-persistent writes in DRAM

temporarily. Figure 4 shows an overview of HiNFS. When a

write request is serviced, the Eager-Persistent Write Check-
er module would decide whether the current write operation

is a lazy-persistent or eager-persistent write. We would like

to discuss the approach of identifying the eager-persistent
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writes of HiNFS in Section 3.3.2. If it is a lazy-persistent

write, HiNFS would like to issue this write request to the

fast DRAM buffer, thereby eliminating the overhead of writ-

ing the NVMM. In HiNFS, allocation and replacement for

the DRAM buffer are block-oriented. By default, the DRAM

block size is 4 KB, which equals to the default block size of

the NVMM storage. Currently, we use the LRW (Least Re-

cently Written) policy, a variant of the LRU (Least Recently

Used) algorithm, for the replacement of the DRAM buffer

blocks due to the simplicity and efficiency of the LRU poli-

cy over decades [12, 16]. Specifically, we maintain the LRW

list to keep track of the recency of write references of blocks

in the DRAM buffer. That is, all the DRAM blocks are sorted

by their last written time. When a DRAM block is written, it

would be moved to the MRW (Most Recently Written) posi-

tion. It is worth noting that this does not limit HiNFS of us-

ing other sophisticated buffer replacement policies, such as

LFU (Least Frequently Used) [48], ARC (Adaptive Replace-

ment Cache) [34], 2Q [23], etc. Different buffer replacement

policies have different buffer write hit ratios, which decide

how many writes can be coalesced before a buffer block is

written back to the NVMM. However, these policies also in-

crease the complexity of the buffer design, and the adding

software overhead is non-trivial for the NVMM system. For

this reason, we believe that the LRW-based policy is a good

candidate to help us improve the performance, as a large ma-

jority of file system workloads show strong locality and high

I/O skewness [35, 38, 42, 43]. We leave the research of using

different buffer replacement policies in the future.

To efficiently index the DRAM blocks, HiNFS builds per-

file B-tree in DRAM, one of the best options for indexing

large amounts of possibly sparse data, to quickly perform

search operations. Figure 5 shows the details of the DRAM
Block Index in HiNFS. In the DRAM Block Index, the key

of the index is the logic file offset which is aligned to the

DRAM block size, while the value field (i.e., the Index N-
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ode shown in Figure 5) contains the physical DRAM block

number and the corresponding physical NVMM block num-

ber. The NVMM block number in the value field enables the

background writeback threads to flush the DRAM block to

the corresponding NVMM block address. The root pointer

of the B-tree is stored in the kernel’s VFS inode structure.

Moreover, all the index nodes are allocated from DRAM and

linked to a global LRW list, the head of which is located in

the kernel’s VFS super block structure. Note that the DRAM
Block Index structure is located in DRAM entirely, rather

than in NVMM, in order to enable fast index operations.

We use the B-tree structure for the DRAM Block Index,

because we would like to reuse the B-tree data structure from

the PMFS [18] implementation as HiNFS is implemented

based on it. While other index structures, such as hash table,

can also be employed by HiNFS, the difference between B-

tree and them may be only several bytes of DRAM access

for each 4 KB block access, the overhead of which is far less

than that of the data copy operations. Therefore, we believe

that the data structure selection for the DRAM Block Index is

not a critical issue, and thus there will be little performance

difference between the index implementations of B-tree and

other structures for HiNFS.

To ensure data persistence, HiNFS creates multiple inde-

pendent kernel threads at mount time in order to flush the

dirty DRAM blocks to the NVMM periodically in back-

ground. The flushed DRAM blocks can be released to secure

free DRAM blocks for further buffering. There are two dif-

ferent cases of waking up the background writeback threads:

(1) The first case occurs when there are less than Lowf free

DRAM blocks, where Lowf is a pre-defined threshold.

In HiNFS, Lowf is set to 5% of the total DRAM blocks

by default and is configurable.

(2) The second case is that the background thread wakes up

every 5 seconds and periodically writes the updated data

from the DRAM buffer to the NVMM storage.



When a writeback thread is woken up, it first selects the

victim DRAM blocks from the LRW position of the LRW

list. These victim DRAM blocks are then written back to

the corresponding NVMM block addresses via a memory

interface (e.g., memcpy()), rather than going through the

generic block layer. After that, these DRAM blocks can be

reclaimed for future write operations. The writeback thread

reclaims several DRAM blocks at a time until the number of

free DRAM blocks surpasses the Highf threshold, which is

set to 20% of the total DRAM blocks by default and can be

adjusted. Then, the background writeback thread continues

to scan the rest LRW list to write back any dirty DRAM

blocks that were updated more than 30 seconds ago. In

addition, HiNFS flushes all the DRAM blocks to the NVMM

when unmounting the file system.

3.2.1 Fine-Grained Buffer Block Fetch and Writeback
Conventional buffer management in the OS page cache

maintains the DRAM buffer space at the block granularity

(i.e., 4 KB). This coarse-grained buffer management is inef-

ficient for HiNFS. On one hand, an unaligned lazy-persistent

write to a block not present in the DRAM buffer causes the

operating system to synchronously fetch the block from the

NVMM storage into the DRAM buffer before the write is ap-

plied. Such fetch-before-write requirement impacts the sys-

tem performance, because the fetching process can block the

writing process [9]. On the other hand, a whole buffer block

would be flushed to storage even though only a few bytes

of data are written to this block, causing a significant impact

on the foreground application performance for two main rea-

sons. First, when the DRAM buffer has no free blocks, the

foreground lazy-persistent writes may stall until the back-

ground writeback threads reclaim enough free DRAM buffer

space. Second, the background writeback threads can also

compete the limited NVMM write bandwidth with the fore-

ground eager-persistent writes. As a result, it is essential to

improve the fetch/writeback performance of a buffer block

in order to achieve higher system performance.

To address the above issue, we propose Cacheline Lev-
el Fetch/Writeback (CLFW), which tracks the writes to the

DRAM blocks on the basis of processor’s cache lines. In

CLFW, data is fetched from or flushed to NVMM in a fine-

grained way rather than the block level. To do so, we use a

Cacheline Bitmap (as shown in Figure 4) to track the state of

each cacheline within a DRAM block. In this scheme, when

a dirty DRAM block is selected for eviction, the writeback

thread will check the Cacheline Bitmap of this block. Only

if the P bit is 1 (i.e., the Pth cacheline is dirty), the cache-

line should be written back to the NVMM. For an unaligned

lazy-persistent write to a block not present in the DRAM

buffer, we only need to fetch the corresponding cachelines

instead of the whole block into the DRAM buffer. For ex-

ample, for the baseline system with 4 KB DRAM block size

and 64 B cacheline size, if a user writes to the 0∼112 B re-

gion of a block, traditional system needs to fetch the whole

block (0∼4096 B) into the DRAM buffer, while CLFW only

needs to fetch the second cacheline of this block (64∼128

B) into the DRAM buffer. In summary, CLFW significant-

ly reduces the wasteful data-fetch and data-flush for work-

loads containing many small block-unaligned lazy-persistent

writes, thereby improving the performance in these cases.

3.3 Elimination of the Double-Copy Overheads
As fast NVMM is attached directly to the processor’s

memory bus and can be accessed at memory speeds, extra

data copies would be inefficient for NVMM systems which

can substantially degrade their performance [6, 13, 18, 49].

As a result, it is essential to avoid such overheads whenever

possible. To this end, we find two key reasons to cause

the double-copy overheads resulted from conventional buffer

management. This section describes them and discusses how

we overcome them separately. It is worth noting that all the

double-copy overheads, we pay attention to in this paper,

mainly refer to those that occur in the critical I/O path, as

they are the key factors of affecting the system performance.

3.3.1 Direct Read
In conventional buffer management, reading data to a

block not present in the DRAM buffer causes the operat-

ing system to fetch the block into the DRAM buffer first,

and then copy the data from the DRAM buffer to the user

buffer, thereby leading to the double-copy overhead in the

read path. To address this issue, HiNFS directly read data

from both DRAM and NVMM to the user buffer, as they

have similar read performance. Such direct copy policy is

more efficient than conventional two-step copy policy as it

eliminates unnecessary data copies.

However, writing data to DRAM and NVMM alternative-

ly brings a new challenge to HiNFS to ensure read consisten-

cy. To find the up-to-date data for a read operation, HiNFS

first checks the DRAM Block Index to see if the correspond-

ing block is in DRAM. If not, it uses the file system block in-

dex to get the corresponding NVMM block address, and then

performs this read operation to NVMM directly. Otherwise,

it further checks the Cacheline Bitmap of the corresponding

DRAM block to see which parts of data are in the DRAM

block and which parts of data are in the NVMM block, and

then copies the corresponding parts of data to the user buffer

from both the DRAM and NVMM blocks on the basis of

the Cacheline Bitmap. To minimize the number of memory

copy (i.e., memcpy) operations, a single memcpy operation is

used to copy the data in the consecutive cachelines, the cor-

responding bits of which in the Cacheline Bitmap have the

same value, to the user buffer.

3.3.2 Direct Eager-Persistent Write
To further avoid the double-copy overhead in the write

path, we issue the eager-persistent writes to NVMM directly

rather than copying them to DRAM first. This is because

writing them to DRAM not only causes unnecessary copy



overheads, but also pollutes the buffer space which may evict

other valuable buffer blocks. In HiNFS, the eager-persistent
writes are defined as the following two cases:

(1) Synchronous writes. This happens when the file system

is mounted with the sync option or the written file is

opened with the O SYNC flag.

(2) Asynchronous writes followed by explicit synchroniza-
tion operations. We divide this scenario into two cases. If

enough asynchronous writes can be coalesced before the

arrival of the next explicit synchronization operation, in

which case buffering is more efficient than direct access,

we still regard them as the lazy-persistent writes. Other-

wise, they are considered as the eager-persistent writes.

As HiNFS needs to choose either direct or buffer write

mode for a write request, it is important to identify the eager-

persistent writes before issuing the write operations. It is

straightforward to identify case (1), because we can check

the file system state by reading the file system super block

and the file opening state by reading the file inode. However,

identifying case (2) is particularly challenging, as we cannot

know if the users would issue an explicit synchronization

operation or how many writes can be coalesced before the

arrival of the next synchronization operation in advance.

To overcome this challenge, we design a Buffer Benefit
Model to decide if enough asynchronous writes can be coa-

lesced before the arrival of the next synchronization opera-

tion. In this model, we identify case (2) using the most re-

cent synchronization information, as it remains nearly the

same within a short time period in most cases based on

our observation from various workloads, which will be dis-

cussed later. Moreover, we identify case (2) on the basis

of a data block. To this end, we add a new state, namely

Eager-Persistent, to each data block. In HiNFS, each 4

KB data block needs only one bit to indicate its current s-

tate, implying that this overhead is very small and can be

acceptable. Moreover, we store the block states in DRAM

rather than in slow NVMM. If a data block is decided to be

in the Eager-Persistent state, all the subsequent asyn-

chronous writes to this data block are considered as the

eager-persistent writes. Otherwise, they are considered as

the lazy-persistent writes which are issued to the DRAM

buffer first.

In the Buffer Benefit Model, the DRAM write latency

is denoted as Ldram, and the NVMM write latency is ex-

pressed as Lnvmm. Ncw indicates the total number of cache-

line writes between the previous and current synchronization

operation of a data block, while Ncf is the total number of

cacheline flushes from DRAM to NVMM of a data block

which are performed by the current synchronization process

rather than the background writeback threads. Then, buffer-

ing is more efficient than non-buffering for this block only if

it satisfies the following inequality:

Ncw ∗ Ldram +Ncf ∗ Lnvmm < Ncw ∗ Lnvmm (1)

Usr0 Usr1 Facebook TPC-C Varmail
0%

20%

40%

60%

80%

100% 95%96%94%91%

Bu
ffe

r B
en

ef
it 

M
od

el
 A

cc
ur

ac
y 

R
at

e

89%

Figure 6. The Accuracy Rate of the Buffer Benefit Mod-

el Using the Most Recent Synchronization Information for

Different Workloads.

This inequality means that the total execution time if writ-

ing to DRAM first is less than that if writing to NVMM di-

rectly for a data block. If a block satisfies this inequality,

it will be set to the Lazy-Persistent state. Otherwise, it

would be set to the Eager-Persistent state.

When the file system is mounted, all the existing or newly

created data blocks are initialized to the Lazy-Persistent

state before the arrival of their first synchronization oper-

ations. After that, we dynamically decide the data block

states at each file operation. At each synchronization op-

eration3, we calculate to see if the related data blocks,

which are required to be persisted to NVMM in the cur-

rent synchronization operation, satisfy the above inequali-

ty. If a data block cannot satisfy this inequality, the state

of this block is set to Eager-Persistent, which means

that any subsequent asynchronous writes to this data block

go directly to NVMM. Otherwise, we set the block state to

Lazy-Persistent. Moreover, the state of a data block is

switched from Eager-Persistent to Lazy-Persistent

if it has not met a synchronization operation for a certain pe-

riod of time, which is set to 5 seconds by default and can be

adjusted. It is worth noting that we achieve this by deciding

the data block state at the time of writing this block using

the last synchronization time of its dependent file4, rather

than scanning all the data blocks at each fixed time, as it is

lightweight to record the file synchronization time.

To get the value of Ncf of a buffer block, we maintain

a ghost buffer to measure the total number of cacheline

flushes from DRAM to NVMM of a buffer block during each

synchronization operation. Ghost buffer assumes that every

write goes to the DRAM buffer first but maintains only the

buffer index metadata rather than the actual data. This leads

3 In the current implementation, HiNFS only regards the fsync system

call as the synchronization operation. While the msync operation is also

a synchronization point in HiNFS, it is related to mmap I/O rather than file

I/O.
4 As the synchronization operation, such as fsync, is based on the file

granularity, HiNFS adds a new field to the file metadata structure to record

the last synchronization time of its related data blocks.



to low memory overhead which requires less than 1% of the

total DRAM buffer space.

To see whether using the most recent synchronization in-

formation of a block to predict the state of its next synchro-

nization operation is accurate, we measure the accuracy rate

of our model using various workloads. The results are shown

in Figure 6. We select five workloads that contain the syn-

chronization operations and the descriptions of these work-

loads are shown in Section 5. Moreover, we measure it dur-

ing the synchronization operations for each block. That is, if

both the current and previous synchronization operation for

a block satisfy or violate Inequality (1), it is accurate; Other-

wise, it is inaccurate. In this figure, we can see that the accu-

racy ratio is close to 90% even in the worst case (i.e., Usr0).

These results demonstrate that the synchronization informa-

tion of a block remains nearly the same within a short time

period, and thus our Buffer Benefit Model is effective in most

cases.

To ensure consistency of the data blocks between DRAM

and NVMM, when a write operation is identified as the

eager-persistent write, if it is in case (1), we further check

if the written block is present in the DRAM buffer before

directly accessing the NVMM. If so, we still write the data to

the corresponding DRAM block, and explicitly evict it from

the DRAM buffer before returning to users. Fortunately, this

case rarely happens, unless the file opening or file system

state is altered frequently. If it is in case (2), we can always

perform direct access to NVMM as long as the written block

is in the Eager-Persistent state, because the latest data

of this block is guaranteed to be persisted to NVMM since

the last synchronization operation of this block.

4. Implementation
HiNFS is implemented based on the PMFS [18] file sys-

tem in Linux kernel 3.11.0. HiNFS shares the file system

data structures of PMFS but adds a new DRAM buffer layer

and modifies the file I/O execution paths. In this section, we

mainly discuss some details related to the implementation.

4.1 System Consistency
To maintain file system consistency, traditional journaling

file systems provide multiple levels of consistency using

different journaling modes (e.g., writeback, ordered data, or

journal data mode). However, the current implementation of

HiNFS only provides ordered data mode, which means that

it only guarantees the data updates become persistent before

the related metadata updates. To achieve this, HiNFS reuses

the PMFS’s journaling mechanism which only journals the

file system metadata at the cacheline granularity [18]. Note

that HiNFS does not buffer any file system metadata (e.g.,

inode or directory entry).

Different from the journaling mechanism in PMFS, HiN-

FS needs to keep the persistence ordering of the lazy-

persistent writes. To do this, each lazy-persistent write op-

eration will create a new transaction. The file system data

blocks in the lazy-persistent write operation are buffered to

DRAM first without being journaled to NVMM. These da-

ta blocks in DRAM are tracked using a transaction handler.

In contrast, the file system metadata and its undo log en-

tries are written to NVMM directly using the PMFS’s log-

ging scheme. To guarantee the ordered mode journaling in-

variant, HiNFS does not write the commit log entry to the

NVMM log space until the related DRAM data blocks are

persisted to NVMM. Additionally, HiNFS ensures ordering

and persistence using the clflush and mfence instructions.

Each writeback operation of a data block is followed by the

clflush/mfence instructions so that the subsequent com-

mit log entry will not be persisted to NVMM before this data

block.

To be able to identify the partially written log entries dur-

ing recovery, HiNFS includes a valid flag in each cache-

line size log entry, and leverages the architectural guarantee

in the processor caching hierarchy that writes to the same

cacheline are never reordered, to indicate the integrity of a

log entry, the approach of which is similar to that of PMF-

S [18]. To achieve this, the valid flag is written last when

writing a log entry so that it will not become persistent be-

fore the data of this log entry.

4.2 Direct Memory-mapped I/O (mmap) Support
One of the key features of state-of-the-art NVMM-aware

file systems (e.g., PMFS) is that they can support direc-

t memory-mapped I/O, thus removing unnecessary data

copies. HiNFS also supports this feature. When mmap a file,

HiNFS first flushes all the dirty DRAM blocks of this file to

NVMM, and then set the states of all its related data blocks

to Eager-Persistent, which remain unchanged until this

file is munmapped. Then, it directly maps the file data into

the application’s virtual address space so that users can ac-

cess NVMM directly. However, the mmap write operations

are not guaranteed to be persistent until the arrival of the nex-

t msync operation, as they are performed to the CPU caches

first before being persisted to the NVMM storage.

5. Evaluation
In this section, we evaluate HiNFS to address the follow-

ing questions:

(1) How does HiNFS perform against existing file systems ?

(2) What are the benefits of eliminating the double-copy

overheads ?

(3) How is the scalability of HiNFS compared to other file

systems ?

(4) How is HiNFS sensitive to the variation of the I/O size

of the workload, the DRAM buffer size, and the NVMM

write latency ?

We use the Filebench microbenchmark [3] to address (1),

(2), (3), and (4). We use a variety of data-intensive traces

and macrobenchmarks to further analyze question (1) and



Type Workload Description

Micro

Fileserver Emulates a simple file server which consists of creates, deletes, appends, reads and writes.

Webserver Emulates a web server which performs file reads and log appends.

Webproxy Emulates a simple web proxy server with a mix of create-write-close, open-read-close, and delete operations,

as well as log appends.

Varmail Emulates a mail server comprised of create-append-sync, read-append-sync, read and delete operations.

Macro

Postmark [26] Measures the performance of a file system used for e-mail and web-based services.

TPC-C Emulates the activity of a wholesale supplier where a population of users execute transactions against a database,

we execute DBT2 workload [1] on PostgreSQL 8.4.10 database system with 3 warehouses.

Kernel-Grep Searching for an absent pattern under the Linux 3.11.0 kernel source directory.

Kernel-Make Running make inside the Linux 3.11.0 kernel source tree.

Traces

Usr0 System call trace collected from research desktop by FIU [5].

Usr1 System call trace collected from research desktop by FIU [5] at different time from Usr0.

LASR [4] System call trace collected from computers used for software development by CS researchers.

Facebook MobiBench [28] facebook system call trace.

Table 1. Workloads and Descriptions.

(2). Table 1 provides a description of all the workloads we

evaluate.

5.1 Experimental Setup
NVMM Emulator
As real NVMM devices are not available for us yet, we

develop a simple performance emulator based on the NVM-

M emulator used in the Mnemosyne [46] project to evaluate

HiNFS’s performance. Similar to prior projects [20, 46, 47],

our NVMM emulator introduces an extra latency for each

NVMM store operation to emulate the slower writes of N-

VMM relative to DRAM, while introducing no extra latency

on the NVMM load operations. We have two considerations

in assuming that NVMM and DRAM have the same read la-

tency. First, we focus on the asymmetry of the read and write

operations of NVMMs in HiNFS, and our evaluations focus

on showing the benefits of the write performance rather than

the read performance of HiNFS compared to state-of-the-art

NVMM-aware file systems. Second, emulating the NVM-

M read latency is complicated due to CPU features such

as speculative execution, memory parallelism, prefetching,

etc., which is hard to make it accurate [18].

NVMM Latency Emulation: Our emulator emulates N-

VMM using DRAM. To account for NVMM’s slower writes

relative to DRAM, we introduce an extra configurable de-

lay when writing to NVMM. We create delays using a soft-

ware spin loop that uses the x86 RDTSCP instruction to read

the processor timestamp counter and spins until the counter

reaches the intended delay. Moreover, we add these delays

after executing the clflush instruction. By default, we set the

NVMM write latency to 200 ns [46].

NVMM Bandwidth Emulation: NVMM has significantly

lower write bandwidth than DRAM [44, 52]. Assume that

BNVMM indicates NVMM’s write bandwidth and LNVMM

is NVMM’s write latency. Then, we emulate the NVMM

write bandwidth by limiting the maximum number of the

concurrent NVMM writing threads (denoted as Nw), where

Nw equals to (BNVMM/(1/LNVMM )). An NVMM writ-

ing thread would be queued if the number of the current N-

VMM writing threads reaches Nw, and the waiting queue

will be woken up when one of the current NVMM writing

threads completes. By default, the maximum sustained write

bandwidth of NVMM is set to 1 GB/s, about 1/8 of the avail-

able DRAM bandwidth on the unmodified system [18].

CPU Intel Xeon E5-2620, 2.1 GHz

CPU cores 12

Processor cache 384 KB 8-way L1, 1.5 MB 8-way L2,

15 MB 20-way L3

DRAM 16 GB

NVMM Emulated with slowdown, the write latency

is 200 ns, the write bandwidth is 1 GB/s

Operating system RHEL 6.3, kernel version 3.11.0

Table 2. Server Configurations.

PMFS [18] an NVMM-aware file system with direct

access to NVMM

EXT4+DAX [7] DAX is a kernel patch which supports

EXT4 for bypassing the OS page cache

EXT2+NVMMBD a traditional file system without journaling

EXT4+NVMMBD a traditional journaling file system

Table 3. Existing File Systems for Comparison.

NVMMBD Emulator
To compare HiNFS against traditional block-based file

systems, we construct another emulator, NVMMBD, to em-

ulate the NVMM-based block device. We modify Linux’s

RAM disk module (brd device driver) and use the above

NVMM performance model to emulate the NVMM latency

and bandwidth.

We evaluate the performance of HiNFS against four exist-

ing file systems listed in Table 3. PMFS and EXT4+DAX are

the two available open-source NVMM-aware file systems

which access NVMM directly. EXT2/EXT4+NVMMBD are

traditional block-based file systems, which are built on the

NVMMBD block device emulator. Both of them are mount-

ed with default settings. All the experiments are conducted

on a x86 server with NVMM and NVMMBD emulators. The

configurations of the server are listed in Table 2. For all the
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Figure 7. Overall Performance.

experiments, each data-point is calculated using the average

of at least 5 executions.

5.2 Microbenchmarks
In this section, we run four types of workloads from the

Filebench benchmark. Each workload is run for 60 seconds

using 5 GB pre-allocated files after clearing the contents of

the OS page cache. Unless otherwise specified, all the exper-

iments are run with multiple threads and the mean I/O size is

set to 1 MB by default5. Moreover, HiNFS is mounted with 2

GB DRAM buffer size, while EXT2/EXT4+NVMMBD are

run with the available memory size being set to 8 GB (5 GB

for storing the dataset on the NVMMBD and 3 GB for the

system memory). We use the number of operations per sec-

ond, which is reported by the Filebench benchmark, as the

performance metric.

5.2.1 Overall Performance
We first evaluate the overall performance. Figure 7 shows

the throughput normalized to that of PMFS. As shown in

the figure, HiNFS achieves the best performance among the

five file systems for all the evaluated workloads. Comparing

HiNFS with PMFS and EXT4+DAX, HiNFS gains perfor-

mance improvement by up to 184% (i.e., Fileserver), this is

because almost all the writes in the Fileserver workload are

lazy-persistent, and HiNFS asynchronously persists them to

NVMM, thereby hiding the long write latency of NVMM

behind the critical path. However, while EXT2+NVMMBD

and EXT4+NVMMBD use the OS page cache to buffer the

writes, we can see that only in one case (i.e., Webproxy)

where they outperform PMFS and EXT4+DAX, due to the

strong access locality exhibited in this workload. In contrast,

they significantly underperform PMFS and EXT4+DAX in

the rest cases, as the benefits of the DRAM buffer are offset

5 We choose 1 MB as the mean I/O size for two reasons. First, this is the

default configuration of the Filebench benchmark. Second, we adopt this

configuration from the Aerie paper [47]. Sensitivity to different I/O sizes is

also evaluated in Section 5.2.3 and Figure 9.

by the overheads from the double-copy and the generic block

layer. For the read-intensive workload, such as Webserver,

EXT2 and EXT4 with NVMMBD show 3× lower perfor-

mance than PMFS due to the unnecessary read copies be-

tween the DRAM buffer and the NVMM storage. Compara-

tively, we can see that HiNFS and PMFS achieve almost the

same performance for the Webserver workload, demonstrat-

ing the benefits of eliminating the double-copy overheads.

The eager-persistent writes also causes the double-copy

overheads. For the Varmail workload, we find that it con-

tains a large part of synchronization operations. Moreover,

all the writes in this workload are append operations, which

cannot be coalesced in the DRAM buffer before the arrival

of a synchronization operation. Therefore, we can see that

HiNFS performs at par with PMFS due to that HiNFS by-

passes the buffer for these eager-persistent writes. Howev-

er, EXT4+DAX shows much lower performance than PMFS

in this case. This is because the Varmail workload contain-

s many metadata operations, and EXT4+DAX still follows

the cache-oriented methods for them, while PMFS follows

direct access for both data and metadata.

5.2.2 System Scalability
We also evaluate the system scalability of HiNFS and

other file systems. Figure 8 shows the throughput for the

four filebench workloads as we vary the number of thread-

s in a single client process. Surprisingly, HiNFS achieves

the best scalability for all the evaluated workloads. For the

Fileserver workload, the performance of PMFS and EX-

T4+DAX are gradually limited by the NVMM write band-

width when going from 1 to 10 threads, while the perfor-

mance of EXT2/EXT4+NVMMBD is constrained by the

overheads from the double-copy and the generic block layer.

Therefore, HiNFS scales better than the other four file sys-

tems as it buffers and coalesces the writes before writing to

NVMM. However, we find that HiNFS’s throughput drop-

s when the thread count goes from 2 to 8, this is because

the buffer write hit ratio decreases as the number of threads

increases. Fortunately, the performance becomes stable be-

yond 8 threads, and HiNFS still achieves nearly 1.5× higher

performance than PMFS when going to 10 threads. In fac-

t, the performance of HiNFS basically depends on the write

locality of the workloads. With better write locality, such as

Webproxy, we can see that HiNFS always scales well and its

performance never decreases as the thread count increases.

For read-intensive workloads and workloads containing

many eager-persistent writes, such as the Webserver and

Varmail workloads, HiNFS achieves almost the same scal-

ability with PMFS, both of which are much better than EX-

T2/EXT4+NVMMBD.

5.2.3 Sensitivity Analysis
As the I/O size of the workload, the DRAM buffer size,

and the NVMM write latency can affect the system perfor-
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Figure 8. Throughput (Operations per Second) for 1-10 Threads.
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Figure 9. Throughput (Operations per Second) and NVMM

Write Size with Different I/O Sizes for Fileserver Workload.

mance, we measure their impacts on HiNFS’s performance

in this section.

Sensitivity to the I/O Size
The I/O size of the workload can affect the performance.

Figure 9(a) presents the throughput performance with dif-

ferent I/O sizes for the Fileserver workload. For brevity,

we omit the other three workloads. Webserver is a read-

intensive workload while Varmail includes a large portion

of eager-persistent writes, both of which cannot benefit from

the DRAM buffer, thus HiNFS always yields performance

similar to PMFS with different I/O sizes. We omit the

Webproxy workload because it shows similar results with

the Fileserver workload. To investigate the benefits of the

CLFW scheme, we compare the performance and NVMM

write sizes (i.e., total bytes that are written to NVMM) of

HiNFS and HiNFS-NCLFW. HiNFS-NCLFW is a version

of HiNFS that does not implement the CLFW scheme.

From Figure 9(a), we observe that HiNFS and HiNFS-

NCLFW show a great difference in throughput when the

I/O size is less than the DRAM block size (i.e., 4 KB), and

HiNFS shows up to nearly 30% performance improvemen-

t over HiNFS-NCLFW. From Figure 9(b), we can see that

HiNFS shows a remarkable drop in NVMM write size com-

pared to HiNFS-NCLFW when the I/O size is less than the

DRAM block size. The reason is that the background N-

VMM write traffic can also impact the system performance,

because when the DRAM buffer is full, the normal writ-

ing threads may need to wait for the background writeback

threads to clean out free buffer blocks. HiNFS significantly

reduces the NVMM write traffic when the I/O size is un-

aligned to the DRAM block size, thereby improving the sys-

(a) Buffer Size Ratio - Fileserver (b) Buffer Size Ratio - Webproxy

Figure 10. Throughput (Operations per second) as a Func-

tion of the DRAM Buffer Size.

tem performance. In contrast, the performance gap between

them is bridged when the I/O size is larger than and aligned

to the DRAM block size.

We also make another observation from Figure 9(a) that

the performance gap between HiNFS and PMFS grows as

the I/O size increases. For example, HiNFS outperforms

PMFS by 58% when the I/O size is 4 KB, while improves

the performance by 136% over PMFS when the I/O size is 16

KB. This is mainly due to that the copy overheads gradually

become relatively more significant than other parts as the

I/O size increases. When the I/O size is small (e.g., 64 B),

the overheads from other parts, such as system call, user-

kernel mode switch, etc., become dominant, thus hiding the

benefits of reducing the copy overheads.

Sensitivity to the DRAM Buffer Size
The DRAM buffer size also has a strong impact on HiN-

FS’s performance. Figure 10 shows the throughput perfor-

mance as we vary the buffer size from 0.1 (10%) to 1.0

(100%) relative to the workload size. In Figure 10, we ob-

serve that the performance of HiNFS exhibits great improve-

ment as the buffer size increases for the Fileserver work-

load, because more write operations will hit in the buffer

when the buffer size increases. However, HiNFS’s through-

put remains nearly unchanged for the Webproxy workload

when the buffer size ratio goes from 0.1 to 1.0 due to

that the Webproxy workload has strong locality. Moreover,

we find that the Webproxy workload exhibits many short-

lived files, which would be deleted before the written data

is flushed to NVMM. Therefore, the Webproxy workload

is insensitive to the buffer size, and this is the only case

where EXT2/EXT4+NVMMBD and HiNFS show nearly
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ent NVMM Write Latencies.

the same performance. For the Fileserver workload, EX-

T2/EXT4+NVMMBD have much lower performance than

PMFS even when the buffer size ratio is 1.0, this is due

to that the read copy overhead degrades the overall perfor-

mance. Before the running the benchmark, we clear the con-

tents of the OS page cache, so the read operations should

first fetch the data from the NVMM storage into the DRAM

buffer through the generic block layer. The overheads from

the double-copy and the generic block layer significantly de-

grade their performance.

Sensitivity to the NVMM Write Latency
Another aspect that can affect the system performance

is the NVMM write latency. Figure 11 shows the through-

put performance when we vary the NVMM write latency

from 50 ns to 800 ns using a single thread. In this figure,

we can observe that the performance benefits of HiNFS be-

come more obvious with longer NVMM write latency. For

instance, HiNFS outperforms PMFS by only 53% when the

NVMM write latency is 100 ns, but improves the perfor-

mance by nearly 6× over PMFS when the NVMM write la-

tency is 800 ns for the Webproxy workload. This is attributed

to the fact that the system can get more performance benefit-

s from the DRAM buffer as the speed gap between DRAM

and NVMM increases. Even when the write latency of N-

VMM is close to that of DRAM (e.g., 50 ns), HiNFS still

performs no worse than PMFS. This is because most of the

write operations, in this case, will bypass the DRAM buffer

with the Buffer Benefit Model, thereby eliminating the high

double-copy overheads.

5.3 Data-Intensive Traces and Macrobenchmarks
To further investigate the performance of HiNFS and other

file systems on real workloads, we replay a series of traces

and run a set of macrobenchmarks on these file systems. In

these experiments, the DRAM buffer size is set to 1/10 of

the workload size by default. To demonstrate the benefits of

bypassing the buffer for the eager-persistent writes, we also
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Figure 12. Breakdown of the Time Spent on Replaying

Traces. Normalized to PMFS’s execution time.

compare HiNFS with HiNFS-WB. HiNFS-WB refers to a

system that simply uses DRAM as a write buffer of NVMM

which is implemented by closing the function of the Eager-
Persistent Write Checker in HiNFS. In HiNFS-WB, all the

writes are buffered in DRAM first before being persisted to

NVMM. For the traces replay, all the traces are system call

level I/O traces, and we extract the read, write, unlink, and

fsync operations from the traces, and replay them on the five

different file systems. Moreover, we collect the time spent on

these four different types of I/O operations respectively, and

report a breakdown of the execution time in Figure 12. For

the macrobenchmarks, we report the normalized runtime of

all the benchmarks and show the results in Figure 13.

In Figure 12, we observe that HiNFS exhibits a reduc-

tion in execution time when comparing with PMFS by 37%,

35%, and 38% for the Usr0, Usr1, and LASR traces, re-

spectively. As we can see in the figure, this is mainly at-

tributed to the reduction of the write time of HiNFS com-

pared to PMFS. HiNFS significantly outperforms PMFS ex-

cept the Facebook trace, in which they yield similar perfor-

mance. When we analyze this trace, we find that it contains

a significant amount of sync operations. Moreover, we ob-

serve that HiNFS sets most of the related data blocks to the

Eager-Persistent state with the Buffer Benefit Model in

this case. Thus, it bypasses the DRAM buffer for most writes

which are directly performed to NVMM, because the sync

operations in this workload appear too frequent to coalesce

enough writes in the DRAM buffer.

In Figure 13, HiNFS reduces the execution time of run-

ning the Postmark and Kernel-Make benchmarks by 60%

and 64%, respectively, when comparing with PMFS. We

find that the Postmark workload contains many short-lived

files, where many lazy-persistent writes in this workload

can benefit from the DRAM buffer for HiNFS, as writes to

these files that are later deleted do not need to be performed

to NVMM. In the rest two cases (i.e., TPC-C and Kernel-

Grep), we can see that HiNFS and PMFS/(EXT4+DAX)
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marks. Normalized to PMFS’s execution time.

show nearly the same performance, all of which exhib-

it a remarkable drop in execution time when comparing

with EXT2/EXT4+NVMMBD. We find that Kernel-Grep

is a read-intensive workload while TPC-C contains many

sync operations. In these cases, HiNFS bypasses the DRAM

buffer for most I/O operations. This set of experiments also

demonstrate the notable benefits of eliminating the double-

copy overheads. In this figure, we also observe that EX-

T2+NVMMBD is much faster than EXT4+NVMMBD due

to the absence of the journaling-related overheads.

Comparing HiNFS with HiNFS-WB in the two figures,

we can see that HiNFS-WB increases the execution time

over HiNFS by 28%, 32%, 14%, and 22% for the Usr0, Usr1,

Facebook, and TPC-C workloads, respectively. As buffer-

ing the eager-persistent writes not only increases the sys-

tem copy overheads, but also may evict other valuable buffer

blocks which in turn decreases the ratio of write coalescing

and increases the buffer writeback traffic, this performance

improvement with HiNFS is due to that it effectively identi-

fies the eager-persistent write operations, and then performs

them to NVMM directly, demonstrating the benefits of the

direct eager-persistent write policy of HiNFS. In other work-

loads, these two systems yield similar performance due to

the absence of the synchronization operations in these work-

loads. However, because of the small mean I/O size (less

than 1 KB) exhibited in the Facebook workload, we observe

that it shows less difference between HiNFS and HiNFS-WB

than that in the Usr0, Usr1, and TPC-C workloads.

6. Related Work
In this section, we discuss and draw connections to classes

of previous work we feel most closely related.

Buffer Caching Algorithms. Most existing storage sys-

tems have been optimized under the assumption that the per-

formance of the storage devices is several orders of magni-

tude lower than that of the main memory. For this reason,

most existing works on buffer caching mainly concentrate

on improving the cache hit ratio by keeping the blocks with

most likely to be referenced again in the cache.

The LRU (Least Recently Used) [12, 16] algorithm

achieves this by exploiting the recency of the last reference

time, while LFU (Least Frequently Used) [48] considers the

frequency of references. However, either of them consider-

s only one factor while ignores others. As an improvement,

ARC (Adaptive Replacement Cache) [34] adaptively consid-

ers both the recency and frequency of references. However,

all of them focus on improving the cache hit ratio. HiNFS,

in contrast, takes another unique perspective which aims to

prevent the benefits of the buffer cache from being hidden by

other extra overheads, such as the double-copy and software

stack overheads, since these overheads can substantially im-

pact the NVMM system performance. While HiNFS uses the

LRW-based buffer replacement policy by default, other so-

phisticated buffer caching algorithms can also be seamlessly

integrated into HiNFS to improve its performance.

Considering the relatively poor write performance of the

flash memory, some cache studies [22, 25, 27] have inves-

tigated how to increase its write performance using a RAM

write buffer. Flash-Aware Buffer (FAB) management [22]

groups pages in the same flash block and evicts the group

that has the largest number of pages when the buffer is full.

However, FAB only considers the group size while overlook-

ing the recency. To accommodate both the temporal locality

and group size, the Cold and Largest Cluster (CLC) poli-

cy [25] combines the FAB and LRU algorithms. Both the

FAB and CLC schemes aim to reduce the number of write

and erase operations of the flash memory. In contrast, the

Block Padding Least Recently Used (BPLRU) strategy [27]

focuses on optimizing the random write performance of the

flash memory by establishing a desirable write pattern with

RAM buffering.

However, these flash-aware write buffer policies are not

suitable for the NVMM storage due to the following reason-

s: First, they manage the buffer space at the page granularity

rather than the cacheline level, which will generate a large

amount of wasteful fetching and flushing data. Second, their

designs are based on the unique characteristics of the flash

storage, such as reducing the random write or erase opera-

tions, most of which are not applicable to the NVMM stor-

age, as the random and sequential access of existing NVM-

M technologies are nearly identical and they have no erase

operations. In contrast, the relatively high performance of

existing NVMM technologies indicates that the system de-

signers should carefully deal with the copy overheads among

the user buffer, the file system buffer, and the NVMM stor-

age [6, 18]. Therefore, HiNFS’s write buffer policy is highly

optimized for the NVMM storage, which focuses on reduc-

ing unnecessary data-fetch and data-flush by leveraging the

unique characteristics of NVMM’s byte addressability, and

eliminating the double-copy overheads resulted from con-



ventional buffer management from the critical path, thereby

improving the NVMM system performance.

With high-speed storage medias, like PCM, have emerged

recently, the performance gap between the main memory and

the storage device drops dramatically. To figure out whether

the buffer cache is still effective for them, Lee et al. [31]

propose a new buffer cache management scheme appropri-

ately designed for the system where the speed gap between

cache and storage is narrow. To our knowledge, this is the

only work that analyzes the effectiveness of the buffer cache

under the fast NVM storage. Our work differs from them in

the following aspects: First, their work is based on the as-

sumption that NVM sits behind the I/O bus, while our work

assumes that NVM is attached directly to the memory bus.

Second, they aim to optimize the OS page cache and focus

on improving the hit ratio of the buffer cache. HiNFS, in

contrast, completely replaces the OS page cache with a new

DRAM write buffer using a novel NVMM-aware buffer pol-

icy, which is cacheline-oriented and eliminates the software

stack overhead of the block device layer altogether. Finally,

their algorithm copies data to the buffer cache first for all

file operations, which will incur the double-copy overhead-

s. Based on our observation, these overheads are non-trivial

for NVM storage system. HiNFS, therefore, buffers only the

lazy-persistent writes, while uses direct access for reads and

eager-persistent writes in order to eliminate the double-copy

overheads from the critical path.

NVMM-aware File Systems. A number of file systems

have been proposed to optimize for NVMM. BPFS [13] us-

es shadow paging techniques and 8-byte atomic updates to

provide fast and consistent updates. However, BPFS doesn’t

support mmap and relies on a hardware approach (epochs) to

support data persistence and ordering. While HiNFS is not

optimized for mmap I/O, it still supports direct mmap access.

PMFS [18] is a light-weight file system that is optimized for

persistent memory, it avoids the block layer and eliminates

the copy overheads by enabling applications to access persis-

tent memory directly. Similar to PMFS’s direct access poli-

cy, DAX [6, 7] is a kernel patch that can support traditional

ext4 file system for bypassing the OS page cache and direct

access to memory-like storage. However, all above three file

systems do not take into account NVMM’s slow write op-

erations, and direct access to NVMM for all file operations

leads to suboptimal system performance. In contrast, HiNFS

buffers the lazy-persistent writes in the DRAM buffer, which

can hide the long NVMM write latency, thereby improving

the performance.

SCMFS [49] leverages the OS VMM to reduce the com-

plexity of the file system. Aerie [47] provides flexible file

system interfaces to reduce the hierarchical file system ab-

straction. Both SCMFS and Aerie focus on reducing the

software overheads. However, based on our analysis, only

in cases of metadata-intensive workloads or workloads with

a small mean I/O size can the software overheads become

relatively more significant than the storage access overhead-

s. HiNFS, in contrast, focuses on reducing the storage access

overheads (i.e., copy overheads) for data-intensive work-

loads.

Other NVMM Research. Since DRAM has faced with

the scalability problem. Some research has proposed hybrid

PCM/DRAM memory systems [40, 41]. Qureshi et al. [40]

use a DRAM device as a cache of PCM in the hierarchy,

while Ramos et al. [41] present a page placement policy

on memory controller to implement PCM-DRAM hybrid

memory systems. Our work is different from them in that

we focus on the storage layer rather than the memory layer.

In addition, some research has proposed interesting pro-

gramming models [11, 33, 36, 46], persistent data struc-

tures [45, 50], or new storage interfaces [53] for NVMM.

However, legacy applications upon them require significant

modifications. In contrast, we focus on the file system design

for NVMM, and believe that the file system abstraction of-

fers a good trade-off between supporting legacy applications

and enabling optimized access to NVMM.

7. Conclusion
One major drawback of existing NVMM technologies is

the slow writes. In this paper, we have presented HiNFS, a

high performance file system for non-volatile main memo-

ry. HiNFS buffers the lazy-persistent writes in DRAM tem-

porarily to hide the long write latency of NVMM, while e-

liminating the double-copy overheads resulted from conven-

tional buffer management by using direct access for reads

and eager-persistent writes. Extensive evaluations on soft-

ware NVMM emulators demonstrate that HiNFS significant-

ly outperforms both traditional block-based file systems and

state-of-the-art NVMM-aware file systems.
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