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Abstract
We introduce Kuco, a novel direct-access file system architec-

ture whose main goal is scalability. Kuco utilizes three key

techniques – collaborative indexing, two-level locking, and

versioned reads – to offload time-consuming tasks, such as

pathname resolution and concurrency control, from the kernel

to userspace, thus avoiding kernel processing bottlenecks.

Upon Kuco, we present the design and implementation of

KucoFS, and then experimentally show that KucoFS has

excellent performance in a wide range of experiments; impor-

tantly, KucoFS scales better than existing file systems by up

to an order of magnitude for metadata operations, and fully

exploits device bandwidth for data operations.

1 Introduction

Emerging byte-addressable persistent memories (PMs), such

as PCM [22, 34, 51], ReRAM [3], and the recently released

Intel Optane DCPMM [27], provide performance close to

DRAM and data persistence similar to disks. Such high-

performance hardware increases the importance of redesign-

ing efficient file systems. In the past decade, the systems

community has proposed a number of file systems, such

as BPFS [11], PMFS [14], and NOVA [43], to minimize

the software overhead caused by a traditional file system

architecture. However, these PM-aware file systems are part

of the operating system and applications need to trap into the

kernel to access them, where system calls (syscalls) and the

virtual file system (VFS) still incur non-negligible overhead.

In this regard, recent work [13, 21, 28, 39] proposes to deploy

file systems in userspace to access file data directly (i.e., direct

access), thus exploiting the high performance of PM.

Despite these efforts, we find that another important per-

formance metric – scalability – still has not been well ad-

dressed, especially when multicore processors meet fast PMs.

NOVA [43] improves multicore scalability by partitioning

internal data structures and avoiding using global locks.

However, our evaluation shows that it still fails to scale

well due to the existence of the VFS layer. Even worse,

some userspace file system designs further exasperate the

scalability problem by introducing a centralized component.

For example, Aerie [39] ensures the integrity of file system

metadata by sending expensive inter-process communications

(IPCs) to a trusted process (TFS) that has the authority to

update metadata. Strata [21], as another example, avoids the
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involvement of a centralized process in normal operations by

directly recording updates in PM logs, but requires a KernFS

to apply them (including both data and metadata) to the file

system, which causes one more time of data copying. The

trusted process (e.g., TFS or KernFS) in both file systems

is also responsible for concurrency control, which inevitably

becomes the bottleneck under high concurrency.

In this paper, we revisit the file system design by in-

troducing a kernel-userspace collaboration architecture, or

Kuco, to achieve both direct access performance and high

scalability. Kuco follows a classic client/server model with

two components, including a userspace library (named Ulib)

to provide basic file system interfaces, and a trusted thread

(named Kfs) placed in the kernel to process requests sent by

Ulib and perform critical updates (e.g., metadata).

Inspired by distributed file system designs, e.g., AFS [17],

that improve scalability by minimizing server loads and reduc-

ing client/server interactions, Kuco presents a novel task divi-

sion and collaboration between Ulib and Kfs, which offloads

most tasks to Ulib to avoid a possible Kfs bottleneck. For

metadata scalability, we introduce a collaborative indexing

technique to allow Ulib to perform pathname resolution before

sending requests to Kfs. In this way, Kfs can update metadata

items directly with the pre-located addresses provided by

Ulib. For data scalability, we first propose a two-level locking

mechanism to coordinate concurrent writes to shared files.

Specifically, Kfs manages a write lease for each file and

assigns it to the process that intends to open the file. Instead,

threads within this process lock the file with a range-lock

completely in userspace. Second, we introduce a versioned

read protocol to achieve direct reads even without interacting

with Kfs, despite the presence of concurrent writers.

Kuco also includes techniques to enforce data protection

and improve baseline performance. Kuco maps the PM space

into userspace in readonly mode to prevent buggy programs

from corrupting file data. Userspace direct writes are achieved

with a three-phase write protocol. Before Ulib writes a file,

Kfs switches the related PM pages from readonly to writeable

by toggling the permission bits in the page table. A pre-

allocation technique is also used to reduce the number of

interactions between Ulib and Kfs when writing a file.

With the Kuco architecture, we build a PM file system

named KucoFS, which gains userspace direct-access per-

formance and delivers high scalability simultaneously. We

evaluate KucoFS with file system benchmarks and real-world
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applications. The evaluation results show that KucoFS scales

better than existing file systems by an order of magnitude

under high contention workloads (e.g., creating files in the

same directory or writing data in a shared file), and delivers

slightly higher throughput under low contention. It also

hits the bandwidth ceiling of PM devices for normal data

operations. In summary, we make the following contributions:

• We conduct an in-depth analysis of state-of-the-art PM-

aware file systems and summarize their limitations on

solving the software overhead and scalability problems.

• We introduce Kuco, a userspace-kernel collaboration archi-

tecture with three key techniques, including collaborative

indexing, two-level locking, and versioned read to achieve

high scalability.

• We implement a PM file system named KucoFS based

on the Kuco architecture, and experimentally show that

KucoFS achieves up to one order of magnitude higher

scalability for metadata operations, and fully exploits the

PM bandwidth for data operations.

2 Motivation

In the past decade, researchers have developed a number of

PM file systems, such as BPFS [11], SCMFS [41], PMFS [14],

HiNFS [29], NOVA [43], Aerie [39], Strata [21], SplitFS [28],

and ZoFS [13]. They are broadly categorized into three types.

First, kernel-level file systems. Applications access them by

trapping into the kernel for both data and metadata operations.

Second, userspace file systems (e.g., Aerie [39], Strata [21],

and ZoFS [13]). Among them, Aerie [39] relies on a trusted

process (TFS) to manage metadata and ensure the integrity

of it. The TFS also coordinates concurrent reads and writes

to shared files with a distributed lock service. Strata [21],

in contrast, enables applications to append their updates

directly to a per-process log, but requires background threads

(KernFS) to asynchronously digest logged data to storage

devices. ZoFS avoids using a centralized component and

allows userspace applications to update metadata directly

with the help of a new hardware feature named Intel Memory

Protection Key (MPK). Note that Aerie, Strata, and ZoFS still

rely on the kernel to enforce coarse-grained allocation and

protection. Third, hybrid file systems (e.g., SplitFS [28] and

our proposed Kuco). SplitFS [28] presents a coarse-grained

split between a user-space library and an existing kernel file

system. It handles data operations entirely in userspace, and

processes metadata operations through the Ext4 file system.

Table 1 provides a summary of existing PM-aware file systems

and how well they behave in various aspects.

❶ Multicore scalability. NOVA [43], a state-of-the-art kernel

file system for PMs, is carefully designed to improve scal-

ability by introducing the per-core allocator and per-inode

log. Nevertheless, VFS still limits its scalability for certain

operations. We experimentally show this by deploying NOVA

on Intel Optane DCPMMs (detailed experimental setup is

described in § 5.1), and use multiple threads to create, delete,

NOVA Aerie/Strata ZoFS SplitFS KucoFS

Category Kernel Userspace Hybrid

❶
S

ca
la

b
il

it
y Metadata

Medium

(§5.2.1)

Low

(§5.2.1)

Medium

(Fig. 7g in [13])

Low

(§5.2.1)

High

(§5.2.1)

Read
Medium

(§5.2.2)

Low

(§5.2.2)
High Low

(journaling

in Ext4)

High

(§5.2.2)

Write
Medium

(§5.2.3)

Low

(§5.2.3)

Medium

(Fig.7f in [13])

High

(§5.2.3)

❷
Softeware

overhead
High Low

Medium

(sigsetjump)

Medium

(metadata)
Low

❸
O

th
er

is
su

es

Avoid stray

writes
✓ ✗ ✓ ✗ ✓

Read

protection
POSIX Partition Coffer POSIX Partition

Visibility

of updates

Immed-

iately

After batch/

After digest

Immed-

iately

append:

After sync

Immed-

iately

Hardware

required
None None MPK None None

Table 1: Comparison of different NVM-aware file systems.

or rename files in the same directory. As shown in Figure 1a,

their throughput is almost unchanged as we increase the

number of threads, since VFS needs to acquire the lock

of the parent directory. Aerie [14] relies on a centralized

TFS to handle metadata operations and enforce concurrency

control. Although Aerie batches metadata changes to reduce

communication with the TFS, our evaluation in §5 shows

that the TFS still inevitably becomes the bottleneck under

high concurrency. In Strata [21], the KernFS needs to digest

logged data and metadata in the background. If an application

completely uses up its log, it has to wait for an in-progress

digest to complete before it can reclaim log space. As a

result, the number of digestion threads limits Strata’s overall

scalability. Both Aerie and Strata interact with the trusted

process (TFS/KernFS) via expensive IPCs, which introduces

extra syscall overhead. ZoFS does not require a centralized

component, so it achieves much higher scalability. However,

ZoFS still fails to scale well when processing operations that

require allocating new spaces from the kernel (e.g., creat

and append, see Figures 7d, 7f, and 7g in their paper). Our

evaluation shows that SplitFS scales poorly for both data and

metadata operations because it 1) does not support sharing

between different processes, and 2) relies on Ext4 to update

metadata (see Figures 7 and 9).

❷ Software overhead. Placing a file system in the kernel

faces two types of software overhead, i.e., the syscall and VFS

overhead. We investigate such overhead by still analyzing

NOVA, where we collect the latency breakdown of common

file system operations. Each operation is performed on 1

million files or directories with a single thread. We make

two observations from Figure 1b. First, syscalls take up

to 21% of the total execution time (e.g., stat and open).

Also, after a process traps into the kernel, the OS may

schedule other tasks before returning control to the original

one. Hence, syscalls bring extra uncertainty for latency-

sensitive applications [12, 33]. Second, Linux kernel file

systems are implemented by overriding VFS functions, and

VFS causes non-negligible overhead. Although recent PM file
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Figure 1: Software overhead and scalability of NOVA.

systems [9, 11, 14, 29, 40, 43, 50] use direct access (DAX) to

bypass the page cache in VFS, we find that an average of 34%

of the time is still spent in the VFS layer for NOVA. ZoFS [13]

deploys a file system in userspace to avoid trapping into the

kernel; however, it still incurs extra software overhead. ZoFS

allows userspace applications to update metadata directly,

which may cause a normal program to be terminated when

accessing metadata that is corrupted by malicious attackers.

To achieve graceful error return, ZoFS invokes a sigsetjump

instruction at the beginning of each syscall, which causes

extra delays (∼200 ns). SplitFS requires a kernel file system

to handle metadata operations, so it still introduces kernel

overhead.

❸ Other issues. First, misused pointers can lead to writes to

incorrect locations and corrupt the data, which is known as

stray writes [14]. Strata [21] exposes the per-process opera-

tion log and the DRAM cache (including both metadata and

data) to userspace applications. Aerie [39] and SplitFS [28]

map a subset of the file system image to userspace. Hence,

stray writes can easily corrupt the data in these areas, and

such corruptions are permanent in NVM even after reboots.

Second, Aerie, Strata, and SplitFS improve performance by

delaying the visibility of the newly written data to other

processes until issuing a fsync, forcing applications to make

corresponding adjustments. Third, ZoFS heavily relies on the

MPK mechanism, if an application also needs to use MPK,

they may compete for the limited MPK resources.

To summarize, it is hard to achieve high scalability and low

software overhead with existing file system designs, and this

motivates us to introduce the Kuco architecture.

3 The Kuco Architecture

In this paper, we introduce the Kuco architecture to show

that a client/server model can be adopted to realize the two

goals simultaneously. The central idea underlying Kuco is

a fine-grained task division and collaboration between the

client and server, where most loads are offloaded to the client

part to avoid the server from becoming the bottleneck.

3.1 Overview
Figure 2 shows the Kuco architecture. It follows a client/

server model with two parts, including a userspace library

and a global kernel thread, which are called Ulib and Kfs,

respectively. An application accesses Kuco by linking with

…
open() read() write() unlink()

User

Kernel

Msg	Buf	

Applica(on

Kfs

Poll

Meta	request

map	

Userspace	library	(Ulib)

Update Par77on	tree

Readonly
Writequery

Index

Leases

Range	locks

Page	table
read	

Versioned
1

2

3

4

Figure 2: The Kuco architecture. metadata updates (➀-➃): Ulib

interacts with Kfs via collaborative indexing; read: direct access via

versioned read; write: direct access based on a three-phase write

protocol and two-level locking for concurrency control.

Ulib first, and different Ulib instances (i.e., applications)

interact with Kfs via separate memory message buffers. Like

existing userspace file systems [21, 39], Kuco maps the PM

space to userspace to support direct read and write accesses.

To protect file system metadata from being corrupted, Kuco

does not allow applications to update metadata directly;

instead, such requests are posted to Kfs, and Kfs then updates

metadata on behalf of them.

Kuco delivers high scalability with a fine-grained task

division and collaboration between Ulib and Kfs. For metadata

scalability, Kuco incorporates the collaborative indexing

mechanism to offload the pathname traversal job from Kfs to

userspace (§3.2). Instead of sending metadata operations (e.g.,

creat or unlink) to Kfs directly, Ulib first finds all the related

metadata items in userspace, and then encapsulates such

information in the request before sending it out. Therefore,

Kfs can perform metadata modifications directly with the

given addresses. For data scalability, a two-level locking

mechanism is used to handle concurrent writes to shared

files (§3.3). Specifically, Kfs uses a lease-based distributed

lock to resolve write conflicts between different applications

(or processes). Concurrent writes from the same process

are serialized using a pure userspace range lock, which can

be acquired without the involvement of Kfs. Kuco further

introduces the versioned read technique to perform file

reading in userspace (§3.5). By adding extra version bits in

data block mappings (which map logical file data to physical

PM addresses), Kuco can read a consistent version of data

blocks without interacting with Kfs to acquire the lock, despite

that there are other concurrent writers.

To further prevent buggy programs from corrupting file

data, PM space is mapped to userspace in readonly mode.

Kuco enables userspace direct writes on readonly addresses

by placing Kfs in the kernel with a three-phase write protocol

(§3.4). Before Ulib writes a file, Kfs modifies the permission

bits in the page table first to switch the involved data pages

from readonly to writable. To further reduce the number

of interactions between Ulib and Kfs when writing a file,

Kuco adopts pre-allocation, where Ulib can allocate more free

pages from Kfs than desired. Except for the write protection
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mechanism that prevents stray writes, the PM space in Kuco

is then divided into different partition trees, which act as

the minimum unit for read protection. By applying Kuco

in a file system named KucoFS and putting all techniques

together, KucoFS gains direct-access performance, delivers

high scalability, and ensures the kernel-level data protection.

3.2 Collaborative Indexing

In a typical client-server model, whenever Kfs receives a

metadata request, it needs to find the related metadata (e.g.,

inodes that describe file attributes, or dentries that map file

names to inode numbers) by performing iterative pathname

resolution from the root inode to the directory containing this

file. Such pathname traversal overhead is a heavy burden for

Kfs, especially when a directory contains a large number of

sub-files or with deep directory hierarchies.

To address this issue, we propose to offload the pathname

resolution task from Kfs to Ulib. By mapping partition trees to

userspace, Ulib can find the related metadata items directly in

userspace, and then sends a metadata update request to Kfs by

encapsulating the metadata addresses in the request as well.

In this way, Kfs can update metadata directly with the given

addresses, and the pathname resolution overhead is offloaded

from Kfs to userspace.

Figure 3 shows how Kuco creates a file with a pathname of

“/Bob/a”. Ulib first finds the predecessor dentry of file “a” in

the dentry list of “Bob” (➀). It then sends a creat request to

Kfs, and the address of the predecessor is put in the message

too (➁). Kfs then creates the file after receiving the request

(➂➃), which includes creating an inode of this file, and then

inserting a new dentry in the parent directory’s dentry list with

the given predecessor. To delete a file, both the inode of this

file and dentry in the parent directory should be deleted, so

both of their addresses are kept in the unlink request before

Ulib sends it. Note that atime is disabled by default, enabling

readonly operations (e.g., stat, readdir) to be performed

in userspace without posting extra requests to Kfs.

In Kuco, Ulibs produce pointers and Kfs consumes them.

This “one-way” pointer sharing paradigm simplifies ensuring

the correctness and safety of Kuco. On the one hand, metadata

items are placed in a metadata area with separate address

space and Ulib can only pass the addresses of two types of

metadata items (i.e., dentry and inode). Hence, we add an

identifier field at the beginning of each metadata item, which

helps Kfs to check the metadata type – any addresses not in the

metadata area or not pointing to a dentry/inode is considered

invalid. On the other hand, Kfs also performs consistency

checking based on the file system internal logic:

First, Ulib might read an inconsistent directory tree. For

example, when Kfs is creating new files in a directory,

concurrent Ulibs may read an inconsistent dentry list of this

directory. To address this issue, we organize the dentry list of

each directory with a skip list [32] and each dentry is indexed

by the hash value of the file name. Skip list has multiple

Msg	buf	

Kfs

Poll

Creat(“a”,	pred,	…)	

Userspace	library	(Ulib)

Validate	&	create

“/” “Bob”

Pathname	
resolu;on12

3

4 predecessor
…

/

Bob Tom

Figure 3: Creating a file (➀-➃) with collaborative indexing.

layers of linked list-like data structure. Each higher layer acts

as an “express lane” for the lower list layer. The list-based

structure enables lock-free atomic updates by performing

pointer manipulations. Besides, there are only insert and

delete operations to the dentry list performed by a single Kfs,

including rename operations which are performed by first

inserting a new node and then deleting the old one. Therefore,

a read to a dentry is always performed to a consistent one

even without acquiring the lock.

Second, with such a lock-free design, userspace applica-

tions may read metadata items that are being deleted by Kfs,

causing the “read-after-delete” anomaly. To safely reclaim

the deleted items, we need to ensure that no threads access

it anymore. We address this issue by using an epoch-based

reclamation mechanism (EBR) [15]. EBR maintains a global

epoch and three reclaim queues, where the execution is

divided into epochs and reclaim queues are maintained for

the last three epochs. Each thread also owns a private epoch.

Items deleted in epoch e are placed into the queue for epoch

e. Each time Ulib starts an operation, it reads the global epoch

and updates its own epoch to be equal to the global one. It

then checks the private epochs of others. If all Ulibs are active

in the current epoch e, then a new epoch begins. At this time,

all threads are active either in e or in e+1, and items in the

queue related to e-1 can be reclaimed safely. We also add a

dirty flag in each inode/dentry. Kfs deletes a metadata item by

setting its dirty flag to an invalid state, preventing applications

from reading the already deleted items.

Third, Kfs needs to handle conflicting metadata operations

properly. For example, when multiple Ulibs are performing

metadata operations concurrently, the pre-located metadata

item of one Ulib might be deleted or renamed by another

concurrent Ulib before Kfs accesses it. Hence, this item

is no longer valid and its address cannot be used by Kfs

anymore. It is also possible that a malicious process attacks

Kfs by providing arbitrary addresses. Luckily, only the Kfs can

update metadata, and it can validate the pre-located metadata

before processing the operation. Specifically, Kfs checks if

the pre-located item still exists or is still the predecessor, and

avoids creating files with the same name. When the validation

fails, Kfs then resolves the pathname itself and returns an

error code to the Ulib if the operation fails anyway.

Discussion. First, Kuco ensures that all metadata operations

are processed atomically. For creat, Kfs atomically inserts

a new dentry in the skip list only after an inode has been

created, to make the created file visible; For unlink, it
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atomically deletes the dentry before deleting other fields.

Rename involves updating two dentries (create a new entry in

the destination path, and then delete the old one), so a program

can see two same files on both places at some point in time.

We leverage the dirty flag in each dentry to prevent such an

inconsistent state. Specifically, the old entry on the source

path is set to dirty before creating the new entry, and is then set

to invalid after the new entry is created. As a whole, we can

observe that metadata operations always change the directory

tree atomically, and Ulib is guaranteed to have a consistent

view of the directory tree even without acquiring the lock.

Second, Kuco’s scalability is further improved by avoiding

using locks — concurrent metadata updates are all delegated

to the global Kfs, so they can be processed without any locking

overhead (only Kfs can update metadata) [16, 35]. Kuco

ensures the crash consistency of metadata via an operation

log, which will be discussed in §4.2.

3.3 Two-Level Locking
Kuco introduces a two-level locking service to coordinate

concurrent writes to shared files, which prevents Kfs from

being frequently involved in concurrency control. First, Kfs

assigns write leases (in the kernel, see Figure 2) on files

to enforce coarse-grained coordination between different

processes, as in Aerie and Strata [21, 39]. Only the process

that holds a valid write lease (not yet expired) can write the

file. We assume that Ulib applies for leases infrequently, and

this is based on the fact that it is not the common case for

multiple processes to frequently and concurrently write the

same file. More fine-grained sharing between processes can

be achieved via shared memory or pipes [21]. Read leases are

not needed in Kuco (see Section 3.5).

Second, we introduce a direct access range-lock to serialize

concurrent writes between threads within the same process.

Once a Ulib acquires the write lease of a file, it creates a range

lock for this file in userspace, which is actually a DRAM

ring buffer (as shown in Figures 4). A thread writes a file

by acquiring the range-lock first, and it is blocked if a lock

conflict occurs. Each slot in the ring buffer has five fields,

which are state, offset, size, ctime, and a checksum. The

checksum is the hash value of the first four fields. We also

place a version at the head of each ring buffer to describe

the order of each write operation. To acquire the lock of

a file, Ulib firstly increments the version with an atomic

fetch_and_add (i.e., ❶). It then inserts a lock item into

a specific slot in the ring buffer (❷ and ❸, the location is

determined by the fetched version modulo the ring buffer

size). The insertion is blocked when this slot overlaps with

the head of the ring buffer. After this, Ulib traverses the ring

buffer backward to find the first conflicting lock item (i.e.,

their written data overlaps). If such a conflict exists, Ulib

verifies its checksum, and then polls on its state until it is

released. Ulib also checks its ctime field repeatedly to avoid

the deadlock if a thread aborts before it releases the lock (❹).

With this design, multiple threads can write different data

pages in the same file concurrently.

3.4 Three-Phase Write
Once the lock has been required, Ulib can actually write

file data. Since PM spaces are mapped to userspace in

readonly mode, Ulib cannot write file data directly. Instead,

we propose a three-phase write protocol to perform direct

writes. To ensure the crash consistency, Kuco follows a copy-

on-write (CoW) approach to write file data, where the newly

written data is always redirected to new PM pages. Similar

to NOVA [43] and PMFS [14], we use 4 KB as the default

data page size. The write protocol in Kuco consists of three

steps. First, Ulib locks the file via two-level locking and sends

a request to Kfs to allocate new PM pages. Note that, by

using a CoW way, space allocation is necessary for both

overwrite and append operations. Kfs also needs to modify

the related page table entries to make these allocated PM

pages writable before sending the response message back.

Second, Ulib copies both the unmodified data from the old

place and new data from the user buffer to the allocated PM

pages, and persists them via flush instructions. Third, Ulib

sends another request to Kfs to update the metadata of this file

(i.e., inode, block mapping), switch the newly written pages

to readonly, and finally releases the lock.

Furthermore, we introduce the pre-allocation mechanism

to avoid allocating new PM pages from Kfs for every write

operations. Specifically, we allow Ulib to allocate more

free pages from Kfs than desired (4 MB at a time in our

implementation). In this way, Ulib can use local free PM

pages without interacting with Kfs for most write operations.

When an application exits, the unused pages are given back to

the Kfs. For an abnormal exit, these free pages are temporarily

non-reusable by other applications, but still can be reclaimed

during the recovery phase (see §4.2). Pre-allocation also

helps with reducing the overhead of updating page table

entries. When the Kfs updates page table entries after each

allocation, it needs to flush the related TLB entries explicitly

to make the modifications visible. Pre-allocation allows

allocating multiple data pages at a time, so the TLB entries

can be flushed in batch.

3.5 Versioned Read

In the write protocol, both old and new versions of data pages

are temporarily kept due to the CoW way, providing us the
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Figure 5: Block mapping format and the versioned read
protocol. Mapping items with the same version correspond to the

same write operation. The above three consistent cases describe how

the start and end bits can be formatted when the version changes.

opportunity to read file data even without blocking writes.

However, block mappings that map a logical file to physical

pages are still updated in place by Kfs. This dirves us to

design the versioned read mechanism to achieve user-level

direct reads without any involvement of the Kfs, regardless of

concurrent writers.

Versioned Read is designed to allow userspace reads

without locking the file, while ensuring that readers never read

data from incomplete writes. To achieve this, Kuco uses an

Ext2-like [6] block mapping to index data pages and embeds

a version field in each pointer of the block mapping. As

shown in Figure 5, each 96-bit block mapping item contains

four fields, which are start, version, end and pointer. For a

write operation, say, writing three data pages, Kfs updates

the related block mapping items with the following format:

1|V1|0|P1 0|V1|0|P2 0|V1|1|P3 . In particular, all three items

share the same version (i.e., V1), which is provided by Ulib

when it acquires the range lock (in Section 3.3). The start bit

of the first item and the end bit of the last item are set to 1.

We only reserve 40-bit for the pointer field since it points to a

4 KB-aligned page and the lower 12 bits can be discarded.

With this format, readers can read a consistent snapshot of

data pages when one of the three cases is met in Figure 5:

a) No overlapping. When two updates to a file are performed

on non-overlapping pages, items with the same version

should be enclosed with both a start bit and an end bit (V1

and V2 in case a).

b) Overlaps the end part. When a thread overwrites the end

part of a former write, a reader should always see a start

bit when the version increases (V1➔V3 in case b).

c) Overlaps the front part. When a thread overwrites the first

half of a former write, a reader should always see an end

bit before the version decreases (V4➔V3 in case c).

If Ulib meets any case other than the above three cases, it

indicates that Kfs is updating the block mapping for some

other incomplete writes. In this case, Ulib needs to validate

again by re-scanning the sequence of the related versions.

After Ulib succeeds in the version checking, it then reads

the associated data pages. As a whole, Kuco utilizes the

embedded versions to detect incomplete writes and retries

until reading a consistent snapshot of data.

Read Semantics. In a multi-thread/process execution, ver-
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Figure 6: Data layout of a partition tree in KucoFS. creat
operation with three steps is also shown.

sioned read is slightly different from legacy locked read in

that it allows concurrent writes. For example, a write starts

and has not yet been completed, but in-between, there is a read,

which reads an old snapshot of data. In this case, the execution

still equals to a serializable order (e.g., “read➛write”, “➛”

indicates happens-before). Versioned read has the same

semantic as locked read within each thread, because a read or

write has to complete before issuing the next one.

4 KucoFS Implementation

In this section, we describe how the Kuco architecture is

applied in a persistent memory file system named KucoFS.

4.1 Data Layout

KucoFS organizes partition trees of Kuco in a hybrid way

using both DRAM and PM (Figure 6). In DRAM, an array

of pointers (inode table) is placed at a predefined location to

point to the actual inodes. The first element in the inode table

points to the root inode of the current partition tree. With this,

Ulib can find any files from the root inode in userspace. As

discussed before, the dentry list of a directory is organized

into a skip list, which is also placed in DRAM.

For efficiency, KucoFS only operates on the DRAM meta-

data for normal requests. To ensure the durability and crash

consistency of metadata, KucoFS places an append-only

persistent operation log in PM for each partition tree. When

the Kfs updates the metadata, it first atomically appends a

log entry, and then actually updates the DRAM metadata

(see §4.2). When system failures occur, the DRAM metadata

can always be recovered by replaying the log entries in the

operation log. In addition to the operation log, the extra PM

space is cut into 4 KB data pages and metadata pages. Free

PM pages are managed with both a bitmap in PM and a free

list in DRAM (for fast allocation), and the bitmap is lazily

persisted by the Kfs during the checkpoint phase.

4.2 Crash Consistency and Recovery

Metadata consistency. KucoFS ensures the metadata con-

sistency by ordering updates to DRAM and PM. Figure 6

shows the steps of how Kfs creates a file when it receives a

creat request from Ulib. In ➊, Kfs reserves an unused inode

number from the inode table and appends a log entry to the
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operation log. This log entry records the inode number, file

name, parent directory inode number, and other attributes. In

➋, it allocates an inode with each field filled, and updates

the inode table to point to this inode. In ➌, it then inserts

a dentry into the dentry list with the given address of the

predecessor, to make the created file visible. A creation fails

if the same dentry already exists (avoid creating the same

files). To delete a file, Kfs appends a log entry first, deletes

the dentry in the parent directory with the given addresses,

and finally frees the related spaces (e.g., inode, data pages and

block mapping). If a crash happens before the operation is

finished, the DRAM metadata updates will be lost, but Kfs can

reconstruct them to the newest state by replaying the log after

recovery. For rename oprations, except for system failures,

the kernel thread may crash and cause the dirty flag to be

in an inconsistent state. However, we consider the whole file

system crashes if the kernel thread crashes, which requires the

file system to be rebooted, and the above logging technique

ensures that rename operation is also crash-consistent.

Data consistency. KucoFS handles file write operations by

first updating data pages in a CoW way, and then appending

a log entry in the operation log to record the metadata

modifications. At this point, the write is considered durable.

Then, KucoFS can safely update DRAM metadata to make

this operation visible. when a system failure occurs before

the log entry is persisted, KucoFS can roll back to its last

consistent state since old data and metadata are untouched.

Otherwise, this write operation is made visible by replaying

the operation log after recovery.

Log cleaning and recovery. We introduce a checkpoint mech-

anism to avoid the operation log from growing arbitrarily.

When the Kfs is not busy, or the size of the log exceeds a

threshold (1MB on our implementation), we use a background

kernel thread to trigger a checkpoint, which applies metadata

modifications in the operation log to PM metadata pages.

The bitmap that is used to manage the PM free pages is

updated and persisted as well. After that, the operation log

is truncated. Background digestion never blocks front-end

operations, and the only impact is that log cleaning consumes

extra PM bandwidth. However, metadata are typically small-

sized and bandwidth consumption is not high.

Each time KucoFS is rebooted from a crash, Kfs first

replays the un-checkpointed log entries in the operation log,

so as to make PM metadata pages up-to-date. It then copies

PM metadata pages to DRAM. The free list of PM data pages

is also reconstructed according to the bitmap stored in PM.

Crashing again during the recovery is not a concern since

the log has not yet been truncated and can be replayed again.

Keeping redundant copies of metadata between DRAM and

PM introduces higher consumption of PM/DRAM space, but

we believe it is worth the efforts. With structured metadata

in DRAM, we can perform fast indexing directly in DRAM;

appending log entries in the log saves the number of updates

to PMs, which reduces the persistence overhead. In the future,

we plan to reduce the DRAM footprint by only keeping active

metadata in DRAM.

4.3 Write Protection

KucoFS strictly controls updates to the file system image.

Both in-memory metadata and the persistent operation log

are critical, so the Kfs in the kernel is the only one that is

allowed to update them. File pages are mapped to userspace

in readonly mode. Applications can only write data to

newly allocated PM pages and existing data pages cannot

be modified. KucoFS also provides process-level isolation

for userspace data structures. The message buffer and range

locks are privately owned by each process, so an attacker

cannot access them in other processes, except that it performs

a privilege escalation attack. Such security issues are out of

the scope of this work. As such, we conclude that KucoFS

achieves the same write protection as kernel file systems.

Preventing stray writes. Unlike many existing userspace

file systems that are vulnerable to stray writes [21, 28, 39],

KucoFS prevents this issue by mapping the PM space in

readonly mode. Note that there is still a temporary, writable

window (less than 1 µs) for the newly-written pages after a

write operation is finished but before the permission bits are

changed. This is unavoidable, as same as in existing kernel file

systems like PMFS. Fortunately, this rarely happens. Besides,

range locks and message buffers in userspace might also be

corrupted by stray writes. For this threat, we add checksum

and lease fields at each slot, which can be used to check

whether the inserted element has been corrupted or not.

4.4 Read Protection

KucoFS organizes its directory tree with partition trees, which

act as the minimal unit for access control. Each partition tree

is self-contained, consisting of metadata and data in PM, and

the related metadata copy in DRAM. KucoFS does not allow

file/directory structures to span across different partitions.

When a program accesses KucoFS, only the partition trees

it has access to are mapped to its address space, but other

partition trees are invisible to it.

In KucoFS, read access control is strengthened with the

following compromises. First, similar to existing userspace

file system [13, 39], KucoFS cannot support “write-only” or

complex permission semantics such as POSIX access control

lists (ACLs), since existing page table only has a single bit

to indicate a page is readonly or read-write. Second, KucoFS

does not support flexible data sharing between users, because

it is hard to change the permission of a specific file (e.g., via

chmod) with the partition tree design [13,21,31]. Yet there are

several practical approaches: ❶ creating a standalone partition

that applications with different permissions have access to it;

❷ posting user-level RPCs between different applications to

acquire the data. We believe such a tradeoff is not likely to be

an obstacle, since KucoFS still supports efficient data sharing

between applications within the same user, which is the more
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common case in real-world scenarios [13].

4.5 Memory-Mapped I/O
Supporting DAX feature in a copy-on-write file system needs

extra efforts, since files are out-of-place updated in normal

write operations [43]. Besides, DAX leaves great challenges

for programmers to correctly use PM space with atomicity

and crash consistency. Taking these factors into consideration,

we borrow the idea from NOVA to provide atomic-mmap,

which has higher consistency guarantees. When an application

maps a file into userspace, Ulib copies file data to its privately

managed data pages, and then sends a request to Kfs to

map these pages into contiguous address space. When the

application issues a msync system call, Ulib then handles it

as a write operation, so as to atomically make the updates in

these data pages visible to other applications.

4.6 KucoFS’s APIs
KucoFS provides a POSIX-like interface, so existing appli-

cations are able to access it without any modifications to the

source code. We achieves this by setting the LD_PRELOAD

environment variable. Ulib intercepts all APIs in standard C

library that are related to file system operations. Ulib processes

syscalls directly if the prefix of an accessed file matches

with a predefined string (e.g., /kuco/usr1). Otherwise, the

syscalls is processed in legacy mode. Note that read or write

operations only pass file descriptors in the parameter list.

Ulib distinguishes them from legacy syscalls via a mapping

table [23], which tracks files of KucoFS.

4.7 Examples: Putting It All Together

Finally, we summarize the design of the Kuco architecture

and KucoFS by walking through an example of writing 4 KB

of data to a new file and then reading it out.

Open. Before sending an open request, Ulib pre-locates the

related metadata first. Since this is a new file, Ulib cannot

find it directly. Instead, it finds the predecessor in its parent

directory’s dentry list for latter creation. The address, as well

as other information (e.g., file name, O_CREAT flags, etc.),

are encapsulated in the open request. When the Kfs receives

the request, it creates this file based on the given address. It

also needs to assign a write lease to this process. Then, the

Kfs sends a response message. After this, Ulib creates a file

descriptor and a range lock for this opened file, and returns to

the application.

Write. The application then uses a write call via Ulib to

write 4 KB of data to this newly created file. First, Ulib tries

to lock the file via the two-stage locking service. Since the

write lease is still valid, it acquires the lock directly through

the range-lock. Ulib blocks the program when there are write

conflicts and wait until other concurrent threads have released

the lock. After that, Ulib can acquire the lock successfully. It

then allocates a 4 KB-page from the pre-allocated pages,

copies the data into it, and flushes them out of the CPU

cache. Ulib also needs to post an extra request to the Kfs

to allocate more free data pages once the pre-allocated space

is used up. Finally, Ulib sends the write request to the Kfs to

finish the rest steps, including changing the permission bits

of the written data pages to readonly, appending a log entry

to describe this write operation, and updating the DRAM

metadata. Ulib finally unlocks the file in the range lock.

Read. KucoFS enables reading file data without interacting

with the Kfs. To read the first 4 KB from this file, Ulib finds

the inode in userspace and reads the first block mapping item.

The version checking is performed to ensure its state satisfies

one of the three conditions described in Section 3.5. After

this, Ulib can safely read the data page pointed by the pointer

in the mapping item.

Close. Ulib also needs to send a close request to the Kfs

upon closing this file. Kfs then reclaims the write lease since

it will not access this file anymore.

5 Evaluation

In our evaluation, we try to answer the following questions:

• Does KucoFS achieve the goal of delivering direct access

performance and high scalability?

• How does each individual technique in KucoFS help with

achieving the above goals?

• How does KucoFS perform under macro-benchmark and

real-world applications?

5.1 Experimental Setup

Testbed. Our experimental testbed is equipped with 2× Intel

Xeon Gold 6240M CPUs (36 physical cores), 384 GB DDR4

DRAM, and 12 Optane DCPMMs (256GB per module, 3 TB

in total). We perform all experiments on the Optane DCPMMs

residing on NUMA 0 (1.5 TB), whose read bandwidth peaks

at 37.6 GB/s and the write bandwidth is 13.2 GB/s. The server

is installed with Ubuntu 19.04 and Linux 5.1, the newest

kernel version supported by NOVA.

Compared systems. We evaluate KucoFS against NVM-

aware file systems including PMFS [14], NOVA [43],

SplitFS [28], Aerie [39], and Strata [21], as well as traditional

file systems with DAX support including Ext4-DAX [2] and

XFS-DAX [38]. Strata only supports a few applications and

has trouble running multi-threaded workloads. Similar to

previous papers [13,49], we only show part of its performance

results in § 5.3 and § 5.4. We only evaluate SplitFS in §5.2

and § 5.4 since it only supports a subset of APIs. For a

fair comparison, we deploy SplitFS with strict mode, which

ensures both durability and atomicity. ZoFS is not open-

sourced so we did not evaluate it. Aerie is based on Linux

3.2.2, which cannot support Optane DCPMMs. Hence, we

compare with Aerie [39] by emulating persistent memory

with DRAM, which injects extra delays. Due to limited space,

we only describe Aerie’s experimental data verbally without

adding extra figures.
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Figure 7: creat performance with FxMark. Low: in different

folders; medium: in the same folder; more files: each thread creates

one million files.

5.2 Effects of Individual Techniques

We use FxMark [25] to analyze the effects of individual

techniques, which explores the scalability of basic file system

operations. FxMark provides 19 micro-benchmarks, which

is categorized based on four criteria: data types (i.e., data or

metadata), modes (i.e., read or write), operations, and sharing

levels. We only evaluate the commonly used operations (e.g.,

read, write, mknod, etc.) due to the limited space.

5.2.1 Effects of Collaborative Indexing

Basic performance. In KucoFS, creat operation requires

posting requests to Kfs, so we choose this operation to show

the effects of collaborative indexing. FxMark evaluates creat

operations by letting each client thread create 10 K files in

private directories (i.e., low sharing level) or a shared directory

(i.e., medium). As shown in Figures 7a and 7b, KucoFS

exhibits the highest performance among the compared file

systems and its throughput never collapses, regardless of

the sharing level. XFS-DAX, Ext4-DAX and PMFS use

a global lock to perform metadata journaling in a shared

log, which leads to their poor scalability. NOVA shows

excellent scalability under low sharing level by avoiding

global locks (e.g., it uses per-inode log and partitions its

free spaces). However, all kernel file systems fail to scale

under the medium sharing level since VFS needs to lock

the parent directory before creating files. SplitFS relies on

Ext4 to create files, which accounts for its low scalability.

From the ZoFS paper we also find that ZoFS even shows

lower throughput than NOVA under low sharing level, since

it needs to trap into the kernel frequently to allocate new
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Figure 8: Benefits of collaborative indexing and versioned
read. w/o CI: KucoFS without collaborative indexing.

spaces. Aerie supports synchronizing metadata updates of

the created files to TFS with batching (by compromising the

visibility), so it achieves comparable performance to that of

KucoFS. Aerie fails to work properly when the number of

threads increases. The throughput of KucoFS, however, is

only decreased slightly with the medium sharing level, which

is one order of magnitude higher than other file systems, and

3× higher than that of ZoFS. We explain the high scalability

of KucoFS from the following aspects. First, in KucoFS, all

metadata updates are delegated to Kfs, so it can update them

without any locking overhead. Second, by offloading indexing

tasks to userspace, Kfs only needs to do lightweight work.

Larger workload. Furthermore, we measure the scalability of

KucoFS in terms of data capacity by extending the workload

size. Specifically, we let each thread create 1 million files,

100× larger than the default size in FxMark, and the results

are shown in Figure 7c. Compared to the results with a smaller

workload size, the throughput of KucoFS drops by 28.5%.

This is mainly because a file system needs more time to find

a proper slot for insertion in the parent directory when the

number of files increases. Even so, KucoFS still outperforms

other file systems by an order of magnitude.

Conflict handling. KucoFS requires Kfs to fall back and

retry when a conflict occurs, which may impact overall

performance. In this regard, we also test how KucoFS be-

haves when handling operations that conflict with each other.

Specifically, we use multiple threads to create the same file

concurrently if it does not exist, or delete it instead when

it has already been created. We collect the throughput of

these successful creations and deletions and the results are

shown in Figure 8b. As a comparison, the results of NOVA
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Figure 9: Read and Write throughput with FxMark. Low: threads read(write) data from(to) separate files; medium: in the same file but

different data blocks; default I/O size: 4 KB; gray area: Optane DCPMMs do not scale on NUMA platform.

is also shown in the figure. We can observe that KucoFS

achieves 2.4× higher throughput than NOVA. In NOVA, a

thread needs to acquire the lock before creating or deleting

files. Worse, if this creation or deletion fails, other concurrent

threads will be blocked unnecessarily since the lock does

not protect a valid operation. Instead, in KucoFS, threads can

send creation or deletion requests to Kfs without been blocked

and Kfs is responsible for determining whether this operation

can be processed successfully. Furthermore, since Ulib has

already provided related addresses in the request, Kfs can use

these addresses to validate metadata items directly, which

introduces insignificant overhead.

Breakdown. We also measure the benefit of collaborative

indexing by comparing with a variant of KucoFS that disables

this optimization (i.e., move the metadata indexing tasks

back to Kfs, denoted as “w/o CI”). Figure 8a shows the

results by measuring the throughput of creat with a varying

number of clients. We make the following observations. First,

in the single thread evaluation, collaborative indexing does

not contribute to improving performance, since moving the

metadata indexing task from Ulib back to the Kfs does not

reduce the overall latency of each operation. Second, when the

number of client threads increases, we find that collaborative

indexing improves throughput by up to 55%. Since KucoFS

only allows the Kfs to update metadata on behalf of multiple

Ulib instances, the theoretical throughput limit is Tmax = 1/L

(Ops/s, where L is the latency for Kfs to process one request).

Therefore, the offloading mechanism improves performance

by shortening the execution time of each request (i.e., L).

5.2.2 Effects of Versioned Read

Figures 9a and 9b show the file read performance of each

file system with a varying number of threads under different

sharing levels (i.e., low/medium). We make the following

observations. First, KucoFS exhibits the highest throughput

among the compared file systems, which peaks at 9.4 Mops/s

(hardware bandwidth has been fully utilized). The perfor-

mance improvement stems primarily from the design of ver-

sioned read, which empowers userspace direct access without

the involvement of Kfs. These kernel file systems (e.g., XFS,

Ext4, NOVA and PMFS) have to perform context switches

and walk through the VFS layer, which impact the read

performance. SplitFS only achieves comparable performance

to that of NOVA despite its direct-access feature. We find that

SplitFS needs to map more PM space to userspace whenever

it reads a page that has not been mapped yet, which causes

extra overhead. The performance improvement of KucoFS

is more obvious for medium sharing level because all the

compared systems need to lock the file before actually reading

file data. The locking overhead impacts their performance

significantly, despite they use shared locks [23]. Second,

the read performance of all evaluated file systems drops

dramatically when the number of threads keeps increasing

(gray area). To get stable results, we first bind threads to

NUMA 0 (local access), and the cores at NUMA 1 are used

only if the total number of threads is greater than 18. Both

we and past work [47] observe that cross-socket accessing

to Optane impacts performance greatly. To confirm that our

software design is scalable, we deploy NOVA and KucoFS

in DRAM, and both of them show scalable read throughput

again. Therefore, many recent papers [13, 19] only use the

cores from the local NUMA node in their evaluation. With our

emulated persistent memory, Aerie shows almost the same

performance as that of KucoFS with the low sharing level,

but its throughput falls far behind others at a medium sharing

level because Aerie needs to interact with the TFS frequently.

We further demonstrate the efficacy of versioned read by

concurrently reading/writing data from/to the same file. In

our evaluation, one read thread is selected to sequentially

read a file with an I/O size of 16 KB, and an increasing

number of threads are launched to overwrite the same file

concurrently (4 KB writes to a random offset). We let the

read thread issue read operations for 1 million times and

measure its execution time with a varying number of writers.

For comparison, we also implement KucoFS r/w lock that

reads file data by acquiring read-write locks in the range-lock

ring buffer, and KucoFS w/o lock that reads file data directly

without a correctness guarantee. We make the following

observations from Figure 8b. First, the proposed versioned

read achieves almost the same performance as that of KucoFS

w/o lock. This proves that the overhead of version checking is

extremely low. We also observe that KucoFS r/w lock needs

much more time to finish reading (7% to 3.2× more time than

KucoFS for different I/O sizes). This is because it needs to use

atomic operations to acquire the range lock, which severely

impact read performance when conflicts become frequent.
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Second, the execution time of NOVA is orders of magnitudes

higher than that of KucoFS. NOVA directly uses mutexes

to synchronize the reader and concurrent writers. As a result,

the reader is always blocked by writers.

5.2.3 Effects of Three-Phase Writes

We evaluate both append and overwrite operations to

analyze the write protocol (see Figures 9 c-d). For overwrite

operations with low sharing level, some of them exhibit a

performance curve that increases first and then decreases.

In the rising part, KucoFS shows the highest throughput

among the compared systems because it is enabled to write

data in userspace directly. XFS and NOVA also show good

scalability. Among them, NOVA partitions free spaces to

avoid the locking overhead when allocating new data pages,

while XFS directly writes data in-place without allocating new

pages. Both PMFS and Ext4 fail to scale since they rely on a

centralized transaction manager to write data, introducing ex-

tra locking overhead. In the decreasing part, their throughput

is mainly affected by two factors: the cross-NUMA overhead,

which has been explained before, and the poor scalability of

Optane’s write performance [19]. SplitFS fails to run properly

under this setting. For append operations, XFS-DAX, Ext4-

DAX and PMFS exhibit bad scalability as the number of

threads increases. This is because they use a global lock to

manage the free data pages and metadata journal, so the lock

contention contributes to the major overhead. Both NOVA

and KucoFS show better scalability, and KucoFS outperforms

NOVA by from 10% to 2× with an increasing number of

threads. The throughput of SplitFS lies between NOVA and

Ext4-DAX. This is because, SplitFS first appends data in a

staging file, and then re-links it to the original file by trapping

into the kernel. On our emulated persistent memory, Aerie

shows the worst performance because the trusted service is

the bottleneck, where clients need to frequently interact with

the TFS to acquire the lock and allocate spaces.

Two-level locking. To analyze the effects of the lock design,

we also evaluate overwrite operations with the medium

sharing level, where threads write data to the same file at

different offsets. As shown in Figure 9e, the throughput of

KucoFS is one order of magnitude higher than the other four

file systems when the number of threads is small (SplitFS

fails to run properly in this setting). The range-lock design in

KucoFS enables parallel updates to different data blocks in

the same file. The performance of KucoFS drops again when

the number of threads grows to more than 8, which is mainly

restricted by the ring buffer size in the range-lock (we reserve

8 lock slots in the ring buffer). We also find that ZoFS shows

2× - 3× higher throughput than that of NOVA (Fig.7f in their

paper), but it still underperforms KucoFS.

Memory-mapped I/O. Memory-mapped I/O is the most effi-

cient way to access the file system. Kfs in KucoFS constructs

all page tables in advance when processing mmap requests.

For a fair comparison, we add the MAP_POPULATE flag

Workload Fileserver Webserver Webproxy Varmail

R/W Size 16 KB/16 KB 1 MB/8 KB 1 MB/16 KB 1 MB/16 KB

R/W Ratio 1:2 10:1 5:1 1:1

Total number of files in each workload is 100K.

Threads 1 16 1 16 1 16 1 16

XFS-DAX 39K 127K 121K 1.35M 192K 863K 99K 319K

Ext4-DAX 52K 362K 123K 1.33M 316K 2.50M 57K 135K

PMFS 72K 317K 110K 1.25M 218K 1.54M 169K 1.06M

NOVA 71K 537K 133K 1.43M 337K 3.02M 220K 2.04M

Strata 75K - 105K - 420K - 283K -

KucoFS 99K 683K 141K 1.48M 463K 3.22M 320K 2.55M

➶ 32% 27% 6% 3% 10% 7% 13% 24%

“➶” indicates the performance improvement over the 2nd-best system.

Table 2: Filebench throughput with 1 and 16 threads (Ops/s).

when using mmap to access kernel file systems, which builds

the page table during the syscall. The experimental results are

as expected (not shown in the figure): when we concurrently

issue 4KB read/write requests, all the evaluated file systems

saturate the hardware bandwidth.

5.3 Filebench: Macro-Benchmarks

We then use Filebench [1] as a macro-benchmark to evaluate

the performance of KucoFS. Table 2 shows both workload

settings (similar to that in the NOVA paper) and experimental

results with 1 and 16 threads (adding more threads does not

contribute to higher throughput with Filebench [13]). We can

observe that, first, KucoFS shows the highest performance

among all the evaluated workloads. In single-threaded evalu-

ation with Fileserver workload, its throughput is 2.5×, 1.9×,

1.38×, 1.39× and 1.32× as much as that of XFS, Ext4, PMFS,

NOVA, and Strata respectively, and is 3.2×, 5.6×, 1.9×, 1.45×

and 1.13× higher with Varmail workload. For read-dominated

workloads (e.g., webserver/webproxy), KucoFS also shows

slightly higher throughput. The performance improvement

mainly comes from the direct access feature of KucoFS. Strata

also benefits from direct access and performs the second-

best in most workloads. We also observe that the design

of KucoFS is a good fit for the Varmail workload. This is

expected: Varmail frequently creates and deletes files, so it

generates more metadata operations and issues system calls

more frequently. As described before, KucoFS eliminates

the OS-part overhead and is better at handling metadata

operations. Besides, Strata shows much higher throughput

than NOVA since the file I/Os in Varmail is small-sized.

Strata only needs to append these small-sized updates to the

operation log, reducing the write amplification dramatically.

Second, KucoFS is better at handling concurrent workloads.

With 16 client threads under the Fileserver workload, KucoFS

outperforms XFS-DAX by 4.4×, PMFS by 1.2×, and NOVA

by 27%. The performance improvement is more obvious

for Varmail workload: it achieves 10× higher performance

than XFS-DAX and Ext4-DAX on average. Two reasons

contribute to its good performance: first, KucoFS incorporates

techniques like collaborative indexing to enable Kfs to

provide scalable metadata accessing performance; second,
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Figure 10: Redis performance with different file systems.

KucoFS avoids using a global lock by letting each client

manage private free data pages. NOVA also exhibits good

scalability since it uses per-inode log-structure and partitions

the free spaces to avoid global locks.

5.4 Redis: Real-World Application

Redis exports a set of APIs allowing applications to process

and query structured data, and uses the file system for persis-

tent data storage. Redis has two approaches to persistently

record its data: one is to log operations to an append-only-

file (AOF), and the other is to use an asynchronous snapshot

mechanism. We only evaluate Redis with AOF mode in this

paper. Figure 10 shows the throughput of SET operations

using 12-byte keys with various value sizes. For small values,

the throughput of Redis is 53% higher on average on KucoFS,

compared to PMFS, NOVA, and Strata, and 76% higher

compared to XFS-DAX and Ext4-DAX. This is consistent

with the results of append in Section 5.2. With larger object

sizes, KucoFS achieves slightly higher throughput than other

file systems since most of the time is spent on writing data.

Note that Redis is a single-threaded application, so it is

reasonable for KucoFS to achieve a throughput of 100 Kops/s

with 8KB objects (around 800MB/s). SplitFS is good at

handling append operations since it processes data-plane

operations in userspace. However, it still underperforms

KucoFS, because Redis posts fsync to flush the AOF file

each time it appends new data. Hence, SplitFS needs to trap

into the kernel to update metadata, which again causes VFS

and syscall overhead.

6 Related Work

Kernel-userspace collaboration. The idea of moving I/O

operations from the kernel to userspace has been well studied.

Belay et al. [4] abstract the Dune process leveraging the

virtualization hardware in modern processors. It enables direct

access to the privileged CPU instructions in userspace and

executes syscalls with reduced overhead. Based on Dune,

IX [5] steps further to improve the performance of data-center

applications by separating management and scheduling func-

tions of the kernel (control-plane) from network processing

(data plane). Arrakis [31] is a new network server operating

system, where applications have direct access to I/O de-

vices and the kernel only enforces coarse-grained protection.

FLEX [42] avoids kernel overhead by replacing conventional

file operations with similar DAX-based operations, which

shares some similarities to SplitFS. While these systems

share the same idea of splitting tasks between the kernel and

userspace, KucoFS is different in that it exhibits a fine-grained

split of responsibilities while enforcing close collaboration.

Persistent memory storage systems. Except for persistent

memory file systems mentioned before, we summarize more

PM systems here. First, general PM optimizations. Yang et

al. [46] explore the performance properties and characteristics

of Optane DCPMM at the micro and macro levels, and

provide a number of guidelines to maximize the performance.

Libnvmmio [10] extends userspace memory-mapped I/O with

failure atomicity. Many recent papers also designed various

data structures that work correctly and efficiently on persistent

memory [7,18,26,30,48,52]. Second, PM-aware file systems.

BPFS [11] adopts short-circuit shadow paging to guarantee

the metadata and data consistency. SCMFS [41] simplifies

the file management by mapping files to contiguous virtual

address regions with the virtual memory management (VMM)

in existing OS. NOVA-Fortis [44] steps further to be fault-

tolerant by providing a snapshot mechanism. Ziggurat [49]

is a tiered file system which estimates the temperature of file

data and migrates cold data from PM to disks. DevFS [20]

pushes the file system implementation into the storage device

that has compute capability and device-level RAM. Third,

distributed PM systems. Hotpot [36] manages PM devices

of different nodes in the cluster with a distributed shared

persistent memory architecture. Octopus [24, 37] leverages

PM and RDMA to build an efficient distributed file system by

reducing the software overhead. Similarly, Orion [45] is also

distributed persistent memory file system but is built in the

kernel. FlatStore [8] is a log-structured key-value storage

engine based on RDMA network; it minimizes the flush

overhead by batching small-sized requests.

7 Conclusion

In this paper, we introduce a kernel and user-level collabora-

tive architecture named Kuco, which exhibits a fine-grained

task division between userspace and the kernel. Based on

Kuco, we further design and implement a PM file system

named KucoFS and experiments show that KucoFS provides

both efficient and highly scalable performance.

Acknowledgements

We sincerely thank our shepherd Donald E. Porter and the

anonymous reviewers for their insightful feedback. We also

thank Qing Wang and Ramnatthan Alagappan for their excel-

lent suggestions. This material is supported by the National

Key Research & Development Program of China (Grant No.

2018YFB1003301), the National Natural Science Founda-

tion of China (Grant No. 62022051, 61832011, 61772300,

61877035), and Huawei (Grant No. YBN2019125112).

92    19th USENIX Conference on File and Storage Technologies USENIX Association



References

[1] Filebench file system benchmark. "http:

//www.nfsv4bat.org/Documents/nasconf/

2004/filebench.pdf", 2004.

[2] Support ext4 on NV-DIMMs. "https://lwn.net/

Articles/588218", 2014.

[3] IG Baek, MS Lee, S Seo, MJ Lee, DH Seo, D-S Suh,

JC Park, SO Park, HS Kim, IK Yoo, et al. Highly

scalable nonvolatile resistive memory using simple

binary oxide driven by asymmetric unipolar voltage

pulses. In Electron Devices Meeting, 2004. IEDM

Technical Digest. IEEE International, pages 587–590.

IEEE, 2004.

[4] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David

Terei, David Mazières, and Christos Kozyrakis. Dune:

Safe user-level access to privileged cpu features. In

Proceedings of the 10th USENIX Conference on Oper-

ating Systems Design and Implementation, OSDI’12,

pages 335–348, Berkeley, CA, USA, 2012. USENIX

Association.

[5] Adam Belay, George Prekas, Ana Klimovic, Samuel

Grossman, Christos Kozyrakis, and Edouard Bugnion.

Ix: A protected dataplane operating system for high

throughput and low latency. In Proceedings of the 11th

USENIX Conference on Operating Systems Design and

Implementation, OSDI’14, pages 49–65, Berkeley, CA,

USA, 2014. USENIX Association.

[6] Remy Card, Theodore Ts’o, and Stephen Tweedie.

Design and implementation of the second extended

filesystem. In Proceedings of the 1st Dutch International

Symposium on Linux, pages 1–6, 1994.

[7] Shimin Chen and Qin Jin. Persistent b+-trees in non-

volatile main memory. Proc. VLDB Endow., 8(7):786–

797, February 2015.

[8] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang

Wang, and Jiwu Shu. Flatstore: An efficient log-

structured key-value storage engine for persistent mem-

ory. In Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’20, page

1077–1091, New York, NY, USA, 2020. Association for

Computing Machinery.

[9] Youmin Chen, Jiwu Shu, Jiaxin Ou, and Youyou Lu.

Hinfs: A persistent memory file system with both buffer-

ing and direct-access. ACM Trans. Storage, 14(1):4:1–

4:30, April 2018.

[10] Jungsik Choi, Jaewan Hong, Youngjin Kwon, and Hwan-

soo Han. Libnvmmio: Reconstructing software IO path

with failure-atomic memory-mapped interface. In 2020

USENIX Annual Technical Conference (USENIX ATC

20), pages 1–16. USENIX Association, July 2020.

[11] Jeremy Condit, Edmund B. Nightingale, Christopher

Frost, Engin Ipek, Benjamin Lee, Doug Burger, and

Derrick Coetzee. Better i/o through byte-addressable,

persistent memory. In Proceedings of the ACM SIGOPS

22Nd Symposium on Operating Systems Principles,

SOSP ’09, pages 133–146, New York, NY, USA, 2009.

ACM.

[12] Jeffrey Dean and Luiz André Barroso. The tail at scale.

Commun. ACM, 56(2):74–80, February 2013.

[13] Mingkai Dong, Heng Bu, Jiefei Yi, Benchao Dong,

and Haibo Chen. Performance and protection in the

zofs user-space nvm file system. In The 27th ACM

Symposium on Operating Systems Principles, SOSP ’19,

2019.

[14] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-

murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,

and Jeff Jackson. System software for persistent memory.

In Proceedings of the Ninth European Conference on

Computer Systems, EuroSys ’14, pages 15:1–15:15, New

York, NY, USA, 2014. ACM.

[15] Keir Fraser. Practical lock-freedom. Technical report,

University of Cambridge, Computer Laboratory, 2004.

[16] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir.

Flat combining and the synchronization-parallelism

tradeoff. In Proceedings of the Twenty-Second Annual

ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA ’10, page 355–364, New York, NY,

USA, 2010. Association for Computing Machinery.

[17] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-

narayanan, Robert N. Sidebotham, and M. West. Scale

and performance in a distributed file system. In Pro-

ceedings of the Eleventh ACM Symposium on Operating

Systems Principles, SOSP ’87, page 1–2, New York, NY,

USA, 1987. Association for Computing Machinery.

[18] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and

Beomseok Nam. Endurable transient inconsistency in

byte-addressable persistent b+-tree. In Proceedings

of the 16th USENIX Conference on File and Storage

Technologies, FAST’18, page 187, 2018.

[19] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao

Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan

Wang, Yi Xu, Subramanya R Dulloor, et al. Basic per-

formance measurements of the intel optane dc persistent

USENIX Association 19th USENIX Conference on File and Storage Technologies    93



memory module. arXiv preprint arXiv:1903.05714,

2019.

[20] Sudarsun Kannan, Andrea C Arpaci-Dusseau, Remzi H

Arpaci-Dusseau, Yuangang Wang, Jun Xu, and Gopinath

Palani. Designing a true direct-access file system with

devfs. In 16th USENIX Conference on File and Storage

Technologies, page 241, 2018.

[21] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon

Peter, Emmett Witchel, and Thomas Anderson. Strata:

A cross media file system. In Proceedings of the 26th

Symposium on Operating Systems Principles, SOSP ’17,

pages 460–477, New York, NY, USA, 2017. ACM.

[22] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug

Burger. Architecting phase change memory as a scalable

dram alternative. In Proceedings of the 36th annual

International Symposium on Computer Architecture

(ISCA), pages 2–13, New York, NY, USA, 2009. ACM.

[23] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao

Zhang. Socksdirect: Datacenter sockets can be fast and

compatible. In Proceedings of the ACM Special Interest

Group on Data Communication, SIGCOMM ’19, pages

90–103, New York, NY, USA, 2019. ACM.

[24] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-

pus: An rdma-enabled distributed persistent memory file

system. In Proceedings of the 2017 USENIX Conference

on Usenix Annual Technical Conference, USENIX ATC

’17, page 773–785, USA, 2017. USENIX Association.

[25] Changwoo Min, Sanidhya Kashyap, Steffen Maass,

Woonhak Kang, and Taesoo Kim. Understanding

manycore scalability of file systems. In Proceedings

of the 2016 USENIX Conference on Usenix Annual

Technical Conference, USENIX ATC ’16, pages 71–85,

Berkeley, CA, USA, 2016. USENIX Association.

[26] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H.

Noh, and Beomseok Nam. Write-optimized dynamic

hashing for persistent memory. In 17th USENIX Con-

ference on File and Storage Technologies (FAST 19),

pages 31–44, Boston, MA, February 2019. USENIX

Association.

[27] Intel Newsroom. Intel@ optaneT M dc persistent

memory. https://www.intel.com/content/

www/us/en/products/memory-storage/

optane-dc-persistent-memory.html, April

2019.

[28] Kadekodi ohan, Kwon Lee Se, Kashyap Sanidhya,

Kim Taesoo, Kolli Aasheesh, and Chidambaram Vijay.

Splitfs: A file system that minimizes software overhead

in file systems for persistent memory. In The 27th ACM

Symposium on Operating Systems Principles, SOSP ’19,

2019.

[29] Jiaxin Ou, Jiwu Shu, and Youyou Lu. A high perfor-

mance file system for non-volatile main memory. In

Proceedings of the Eleventh European Conference on

Computer Systems, EuroSys ’16, pages 12:1–12:16, New

York, NY, USA, 2016. ACM.

[30] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas

Willhalm, and Wolfgang Lehner. Fptree: A hybrid scm-

dram persistent and concurrent b-tree for storage class

memory. In Proceedings of the 2016 International

Conference on Management of Data, SIGMOD ’16,

pages 371–386, New York, NY, USA, 2016. ACM.

[31] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,

Doug Woos, Arvind Krishnamurthy, Thomas Anderson,

and Timothy Roscoe. Arrakis: The operating system

is the control plane. In Proceedings of the 11th

USENIX Conference on Operating Systems Design and

Implementation, OSDI’14, pages 1–16, Berkeley, CA,

USA, 2014. USENIX Association.

[32] William Pugh. Skip lists: A probabilistic alternative to

balanced trees. Commun. ACM, 33(6):668–676, June

1990.

[33] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft,

and John Ousterhout. Arachne: Core-aware thread

management. In Proceedings of the 12th USENIX Con-

ference on Operating Systems Design and Implemen-

tation, OSDI’18, page 145–160, USA, 2018. USENIX

Association.

[34] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and

Jude A. Rivers. Scalable high performance main

memory system using phase-change memory technol-

ogy. In Proceedings of the 36th annual International

Symposium on Computer Architecture (ISCA), pages

24–33, New York, NY, USA, 2009. ACM.

[35] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu.

Ffwd: Delegation is (much) faster than you think.

In Proceedings of the 26th Symposium on Operating

Systems Principles, SOSP ’17, pages 342–358, New

York, NY, USA, 2017. ACM.

[36] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-

tributed shared persistent memory. In Proceedings of

the 2017 Symposium on Cloud Computing, SoCC ’17,

page 323–337, New York, NY, USA, 2017. Association

for Computing Machinery.

[37] Jiwu Shu, Youmin Chen, Qing Wang, Bohong Zhu,

Junru Li, and Youyou Lu. Th-dpms: Design and im-

plementation of an rdma-enabled distributed persistent

94    19th USENIX Conference on File and Storage Technologies USENIX Association



memory storage system. ACM Trans. Storage, 16(4),

October 2020.

[38] Adam Sweeney, Doug Doucette, Wei Hu, Curtis An-

derson, Mike Nishimoto, and Geoff Peck. Scalability

in the xfs file system. In USENIX Annual Technical

Conference, volume 15, 1996.

[39] Haris Volos, Sanketh Nalli, Sankarlingam Panneersel-

vam, Venkatanathan Varadarajan, Prashant Saxena, and

Michael M. Swift. Aerie: Flexible file-system interfaces

to storage-class memory. In Proceedings of the Ninth Eu-

ropean Conference on Computer Systems, EuroSys ’14,

pages 14:1–14:14, New York, NY, USA, 2014. ACM.

[40] Ying Wang, Dejun Jiang, and Jin Xiong. Caching or

not: Rethinking virtual file system for non-volatile main

memory. In 10th USENIX Workshop on Hot Topics in

Storage and File Systems (HotStorage 18). USENIX

Association, 2018.

[41] Xiaojian Wu and A. L. Narasimha Reddy. Scmfs: A

file system for storage class memory. In Proceedings of

2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’11,

pages 39:1–39:11, New York, NY, USA, 2011. ACM.

[42] Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven

Swanson. Finding and fixing performance pathologies

in persistent memory software stacks. In Proceed-

ings of the Twenty-Fourth International Conference

on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’19, page 427–439,

New York, NY, USA, 2019. Association for Computing

Machinery.

[43] Jian Xu and Steven Swanson. Nova: A log-structured

file system for hybrid volatile/non-volatile main mem-

ories. In Proceedings of the 14th Usenix Conference

on File and Storage Technologies, FAST’16, pages 323–

338, Berkeley, CA, USA, 2016. USENIX Association.

[44] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha

Gangadharaiah, Amit Borase, Tamires Brito Da Silva,

Steven Swanson, and Andy Rudoff. Nova-fortis: A

fault-tolerant non-volatile main memory file system.

In Proceedings of the 26th Symposium on Operating

Systems Principles, SOSP ’17, pages 478–496, New

York, NY, USA, 2017. ACM.

[45] Jian Yang, Joseph Izraelevitz, and Steven Swanson.

Orion: A distributed file system for non-volatile main

memories and rdma-capable networks. In Proceedings

of the 17th USENIX Conference on File and Stor-

age Technologies, FAST’19, page 221–234, USA, 2019.

USENIX Association.
[46] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph

Izraelevitz, and Steve Swanson. An empirical guide

to the behavior and use of scalable persistent memory.

In 18th USENIX Conference on File and Storage Tech-

nologies (FAST 20), pages 169–182, Santa Clara, CA,

February 2020. USENIX Association.

[47] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph

Izraelevitz, and Steven Swanson. An empirical guide

to the behavior and use of scalable persistent memory.

arXiv preprint arXiv:1908.03583, 2019.

[48] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,

Khai Leong Yong, and Bingsheng He. Nv-tree: Reduc-

ing consistency cost for nvm-based single level systems.

In Proceedings of the 13th USENIX Conference on File

and Storage Technologies, FAST’15, pages 167–181,

Berkeley, CA, USA, 2015. USENIX Association.

[49] Shengan Zheng, Morteza Hoseinzadeh, and Steven

Swanson. Ziggurat: A tiered file system for non-volatile

main memories and disks. In 17th USENIX Conference

on File and Storage Technologies (FAST 19), pages 207–

219, 2019.

[50] Deng Zhou, Wen Pan, Tao Xie, and Wei Wang. A file

system bypassing volatile main memory: Towards a

single-level persistent store. In Proceedings of the 15th

ACM International Conference on Computing Frontiers,

CF ’18, pages 97–104, New York, NY, USA, 2018.

ACM.

[51] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A

durable and energy efficient main memory using phase

change memory technology. In Proceedings of the

36th annual International Symposium on Computer

Architecture (ISCA), pages 14–23, New York, NY, USA,

2009. ACM.

[52] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and

high-performance hashing index scheme for persistent

memory. In Proceedings of the 13th USENIX Confer-

ence on Operating Systems Design and Implementation,

OSDI’18, page 461–476, USA, 2018. USENIX Associ-

ation.

USENIX Association 19th USENIX Conference on File and Storage Technologies    95


	Introduction
	Motivation
	The Kuco Architecture
	Overview
	Collaborative Indexing
	Two-Level Locking
	Three-Phase Write
	Versioned Read

	KucoFS Implementation
	Data Layout
	Crash Consistency and Recovery
	Write Protection
	Read Protection
	Memory-Mapped I/O
	KucoFS's APIs
	Examples: Putting It All Together

	Evaluation
	Experimental Setup
	Effects of Individual Techniques
	Effects of Collaborative Indexing
	Effects of Versioned Read
	Effects of Three-Phase Writes

	Filebench: Macro-Benchmarks
	Redis: Real-World Application

	Related Work
	Conclusion



