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Abstract— The recent advent of the hardware trusted exe-
cution environment (TEE), e.g., Intel SGX, enables encrypted
and integrity-verified in-memory key-value (KV) stores. However,
due to the architectural limitations of the hardware, it is non-
trivial to build a secure in-memory KV store with SGX without
compromising the performance. The reason comes from (i) the
limited memory capacity the SGX TEE provides, and (ii) being
unaware of the access patterns of skewed workloads, which are
commonly seen in the real world.

In this paper, we present Aria, a secure in-memory KV store
based on SGX. Our goal is to utilize the limited resource while
still achieving high performance. Aria places KV pairs and index
structures directly in the untrusted memory and introduces the
security metadata in the TEE to conduct protection. The core
component of Aria is Secure Cache, a software-based cache
layer, which uses the limited memory resource to guarantee the
confidentiality and integrity (including freshness) of Aria. Secure
Cache keeps the frequently accessed security metadata in the TEE
memory at fine-granularity and evicts rarely-used ones to the
untrusted memory. With Secure Cache, we have the opportunities
to explore strategies that are impossible in SGX implementation.
By decoupling the security metadata management from the index
structure, Aria supports various index schemes. We implement
Aria with the indexes of both a hash table and a B-tree.
Experiments show that Aria improves throughput by up to 104%
compared to the state-of-the-art system.

Index Terms—Trusted Execution, Intel SGX, Key-value Store

I. INTRODUCTION

In-memory key-value (KV) stores have become a fundamen-
tal component in data center infrastructures [1], [2]. While KV
stores provide the simple abstraction of interfaces for a variety
of online applications, they pose serious security threats for the
users, especially when they are deployed on the third-party
untrusted cloud infrastructure, whose operating systems and
hardware are exposed to potentially malicious attackers [3]–
[6]. In an untrusted environment, an attacker can compromise
the confidentiality and integrity of the stored data. In addition,
software bugs, configuration errors, and security vulnerabilities
also pose serious threats to cloud systems [7]–[11].

The hardware-based trusted execution environment (TEE),
such as Intel Software Guard Extensions (SGX), provides
shielded execution for applications in an untrusted infras-
tructure. Shielded execution provides strong security prop-
erties, such as confidentiality and integrity (including fresh-
ness), using a hardware-protected secure memory region. With
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such shielded execution environments, SGX is considered a
promising application isolation technology that allows users
to run their applications securely on an untrusted infrastruc-
ture. Given the importance of security threats in the cloud,
public cloud providers, such as Microsoft Azure [12] and
IBM Cloud [13], offer SGX-capable computing platforms to
support confidential computation. And there is a recent surge
in leveraging SGX for shielded execution of applications in
the untrusted infrastructure [7], [14]–[18].

However, building in-memory KV stores with strong secu-
rity guarantees always comes with compromised performance.
SGX constructs a secure hardware container (i.e., enclave)
to protect applications inside it from malicious attacks. The
available space (i.e., enclave page cache, EPC) of the enclave
is about one hundred megabytes. To accommodate larger
data beyond the physical limit, SGX adopts a secure paging
mechanism: SGX divides memory spaces into two regions.
One is the EPC that stores recently accessed pages and a
non-EPC region that stores pages evicted from the EPC. EPC
and non-EPC regions are both protected by SGX. Hardware
encrypts pages before moving them to the non-EPC region.
SGX moves pages from the non-EPC region into the EPC
before accessing them. Unfortunately, an EPC miss incurs
significant paging overhead (about 40K cycles [19]) compared
to an EPC hit (around 200 cycles). Therefore, placing all
data of a KV store in EPC can incur significant performance
degradation due to the hardware secure paging overhead.

To eliminate the paging overhead, recent work tries to
place a KV store directly in untrusted memory, and manually
build security metadata (e.g., message authentication codes
(MACs) and encryption counters) in EPC to protect the
integrity and confidentiality of KV items [15], [16], [18]. For
example, ShieldStore [15], a state-of-the-art in-memory KV
store, builds security metadata utilizing the internal format
of its hash table-based index. It maintains a Merkle Tree
(MT) [20] for each hash bucket to enforce protection and only
stores the root node of each MT in the EPC. Since the number
of buckets determines the space consumption of root nodes,
ShieldStore can always prevent root nodes from exceeding the
EPC space by using a proper bucket size. However, avoiding
secure paging doesn’t always indicate high efficiency under
real-world workloads, which typically exhibit skewed access
patterns [2], [21]–[24]. In ShieldStore, hot and cold KV pairs
are treated equally — a Put/Get operation to a hot key is still
processed by traversing through the corresponding MT first
(i.e., conduct expensive MT verification) since the inner nodes
and leaf nodes are always placed in the untrusted memory.



In this paper, we address this problem by introducing Secure
Cache, a software-based EPC space manager that aims to
provide both security guarantee and high performance for
KV stores. In contrast to the past work that completely
avoids swapping in the EPC, the key idea underlying Secure
Cache lies in that it allows the size of security metadata to
grow beyond the EPC size. Specifically, it caches frequently
accessed MT nodes (including both inner and leaf nodes) in
the EPC, and actively evicts cold ones to untrusted memory
before the EPC space is used up. Note that Secure Cache
doesn’t utilize the paging mechanism provided by the hard-
ware directly to evict data, since a 4-KB page may contain
MT nodes of both cold and hot KVs, leading to sub-optimal
performance. Instead, it adopts a fine-grained approach to track
each individual MT node and decide whether it should be
cached. In this way, a hot KV pair can be verified by simply
checking its MT leaf node, so long as it is already cached
in the EPC. We also incorporate an existing technique [20]
to further mitigate the verification overhead in a Merkle Tree
(e.g., recursive checking and updating), where verification and
updating of a MT node stop immediately once encountering
its ancestor node that has already been cached in the EPC.

With Secure Cache, we further perform an in-depth explo-
ration of optimizations considering hit and miss penalty and
thus optimize the cache policy. First, exposing Secure Cache
management to a software-based way brings us the opportuni-
ties to enable optimizations that cannot be implemented with
SGX hardware paging. We introduce two such optimizations:
swap out without encryption, and prevent writing back clean
security metadata to the untrusted memory. Second, since the
integrity verification of a KV pair is always performed from
the MT leaf node to the first cached MT inner node (or
the MT root), the inner nodes of higher layers in the MT
are typically accessed more frequently. Hence, we directly
pin them to the EPC to prevent them from being evicted.
Third, based on the observation that large scale cache makes
managing cache metadata in memory no longer feasible [25],
and data operations in the EPC incur higher latency than that in
untrusted memory [26], we utilize the first-in-first-out (FIFO)
policy to avoid the tax of hits of other cache replacement
policies. Fourth, the organization of the MT controlled by
Secure Cache is based on the memory address, which benefits
from the hardware prefetching and cache locality.

Based on Secure Cache, we implement a secure KV store
named Aria. Unlike ShiedStore that is closely coupled with
a hash table, Aria doesn’t rely on a specific index structure
since security metadata are managed separately from the index
structure. In this regard, we implement two KV store variants,
Aria-H and Aria-T, which are based on a hash table and a
B-tree, respectively. We use both YCSB [22] and Facebook
ETC workload [2] to demonstrate the efficiency of our design.
With keyspace ranging from 2M (million) to 134M, Aria-H
always performs better than ShieldStore under skewed work-
loads, and Aria-H improves performance by up to 104% with
134M keyspace. With a fixed 10M keyspace, Aria-H improves
throughput by up to 41% compared to ShieldStore [15] under

YCSB workloads. Specifically, Aria-H still improves perfor-
mance by 14% with only 15 MB EPC occupation for Secure
Cache compared to ShieldStore which uses fixed 64 MB EPC
storing the MT roots. Under the Facebook ETC workload [2]
with 10M keyspace, Aria-H improves throughput by 33% on
average compared to ShieldStore. For tree-based KV store,
Aria-T improves throughput by 205% under Facebook ETC
workload on average compared to a naive tree-based KV store
implementation with SGX.

II. BACKGROUND

In this section, we first present the background of Intel SGX
and the threat model in Aria. Then we describe the encryption
and integrity verification method, and how Merkle Tree works.

A. Intel SGX

Intel SGX is a set of x86 ISA extensions for TEE [27]. SGX
allows applications to create a secure execution environment,
called an enclave, to protect the user-level software in the
enclave from being compromised by the environment, which
includes the operating system, the virtual machine manager,
the BIOS, and the hardware surrounding the CPU chip. An
enclave includes Enclave Page Cache (EPC), a dedicated
memory region protected by an on-chip Memory Encryption
Engine (MEE) [28]. EPC can only be accessed by the owner
enclave, as the virtual-to-physical mapping is protected by
the hardware address translation logic [27]. Codes running in
the enclave can access both un-protected memory and EPC.
The data in the un-protected memory region are not protected
by SGX. Every access to the EPC is protected by MEE at
cache-line granularity. The data in the on-chip cache is in
plaintext, and are encrypted and integrity-protected when they
are written back to the EPC. For confidentiality, every evicted
data from the CPU cache to the EPC is encrypted. When the
evicted data is fetched from the EPC to the processor, they
are decrypted. For integrity, SGX keeps a hash value for each
cache-line and verifies an evicted cache-line by comparing it
with the stored hash value of that address. To prevent replay
attacks, SGX maintains a variant of the MT on the hash values,
and the root is always stored in a safe area [27], [29], [30].
Limitations of SGX. There are mainly two performance
considerations for SGX. One is the limited EPC resource.
In the current SGX, approximate 94 MB [16] are available
to the user (the recently released server supports 168 MB
EPC). To allow the creation of enclaves with a size beyond
that of EPC, SGX features a secure paging mechanism. If
the size of memory pages used in an enclave exceeds the
EPC limit, the OS can evict EPC pages from the EPC region
to an un-protected memory region using SGX instructions at
4 KB granularity. The evicted pages are encrypted. When
they are reaccessed, they are decrypted, and their integrity is
checked. Bringing evicted pages back requires a secure page
swap mechanism, incurring significant performance overhead
(2x-2000x) [15], [19]. Besides, Microsoft Windows is yet to
support such paging, limiting the enclave memory only to



the EPC size. This limitation will affect the performance and
feasibility of applications based on SGX.

The other is the SGX Edge Calls. Intel SGX supports a
call-gate mechanism to control entry into and exit from the
TEE. After the secure-enclave is initialized, the only way for
untrusted codes (outside the enclave) to start executing trusted
codes (inside the enclave) is by invoking ECALL. Besides,
the TEE created by SGX has only user-level privileges, it
has no access to hardware or other OS resources. Privileged
instructions, such as system calls, are not allowed to execute
inside the enclaves. Before executing a system call, the enclave
code has to make an OCALL to exit the enclave to the untrusted
code. ECALL and OCALL are considered edge functions,
as they cause execution to cross security boundaries [26].
The parameters of Edge calls are copied between protected
memory and un-protected memory and this procedure needs
security checks. The cost of crossing the enclave boundary is
expensive because of security checks, TLB flushes [19], and
L1 cache flushes [31]. The overhead of an ECALL/OCALL
is about 8000-14000 CPU cycles [26], which is much more
expensive than a regular system call.

B. Threat Model

The Trusted Computing Base (TCB) of Aria consists of
the processor chip, the codes executed inside the enclave,
and data stored in the EPC. Thus Aria is resilient to ma-
licious privileged attacks and certain physical attacks. With
the reduced TCB, Aria does not rely on the security of the
operating system managed by cloud providers. Furthermore,
it is also resilient to direct conventional physical attacks such
as cold boot attacks [32], or bus probing [33]. Aria can
protect cloud user data from such compromised operating
systems and physical attacks by malicious staff. However,
due to the lack of protection for side-channel attacks in the
SGX [34], we do not consider this kind of attack. Separate
software or hardware techniques have been proposed to pro-
vide protection [35]–[37]. Besides, Aria does not consider
availability attacks similar to ShieldStore [15]. Note that since
SGX libraries provide essential implementations to establish
the initial secure connection between the client and server in
the enclave via remote attestation [15], [38], we assume that
network communication between clients and Aria is protected
through this protection.

C. Encryption and Integrity Verification

AES CTR counter mode encryption (CME) and message
authentication code (MAC) are widely used ways to conduct
encryption and ensure integrity respectively [15], [29], [39].
CME introduces counters for encryption and each counter
is associated with one item (e.g., one KV pair) and the
counter is incremented for every encryption cycle. Message
authentication code is a cryptographic checksum on data (e.g.,
KV pair) that uses a session key to detect both accidental and
intentional modifications of the data.

However, the above encryption and integrity verification
method is unable to detect replay attacks that corrupt data
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Fig. 1. Three types of design schemes. (a) shows the state-of-the-art in-
memory KV store with SGX optimized for hash table-based index. Shield-
Store [15] stores the whole KV store in untrusted memory and builds a MT for
each hash bucket. Ctr means counter. (b) shows an intuitive approach. It only
places counters inside the enclave and stores the whole KV store in untrusted
memory. (c) shows the architecture of Aria. It adopts a fine-granularity swap
in a software-based hotness-aware way.

freshness. Attackers can replay encrypted KV pair, its associ-
ated counter, and MAC to their old value. Merkle Tree is a
widely used structure to detect replay attacks [29], [30], [39],
[40]. MACs are hierarchically organized as a tree structure.
The protected data is placed in its leaf nodes. The leaf nodes
can be protected since a parent MAC can check the integrity
of multiple child MACs, and the root node is always placed
in a safe place, which cannot be damaged or replayed by
adversaries. To access a data block, we check its integrity by
verifying the corresponding ancestor nodes, including the root
node in the Merkle Tree. These ancestor nodes are updated
whenever the leaf node is updated.

III. MOTIVATION

In this section, we first present existing design schemes
for secure in-memory KV stores and then compare them to
motivate our design.

A KV store typically consists of an index structure, with
which we can find a KV pair by passing the key, and a storage
manager that keeps actual KV pairs. There are two commonly
used index schemes, which are the hash-based (e.g., chained
hashing, cuckoo hashing, etc.) and tree-based index (B-tree,
etc.). The hash table-based index provides a simple and fast
point query, while the tree-based index supports range query
by keeping its items ordered. Using a hardware-based way to
protect an in-memory KV store requires careful refactoring of
data into trusted and untrusted components. In the following
part, we describe and analyze existing approaches that build
secure in-memory KV stores.

KV stores are naturally executed in the enclave because
most of their codes are dedicated to manipulating private
data in response to client requests. However, since KV stores
are typically larger than the EPC size, the performance is
significantly impacted. As shown in Figure 2, the performance
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Fig. 2. Performance of different design schemes. We use fixed 16-byte keys.
Keyspace means the total different keys in the KV store and keyspace size
means the total size of all keys (e.g., 16 MB keyspace size means 1048576
keys). PS means the number of secure paging compared to that of Baseline
at 128 MB keyspace size. (1) ShieldStore: a state-of-the-art in-memory hash
table-based KV store with SGX. (2) Aria w/o Cache: only putting the counters
in the enclave. (3) Baseline: putting the whole KV store in the enclave.

of Baseline sharply decreases at 24 MB keyspace size when
secure paging starts to occur (line Baseline-PS).

Instead, some researches maintain security metadata (i.e.,
encryption counters and MACs) in the EPC to conduct
protection among KV pairs [15], [16], [18]. SGX protects
security metadata in the EPC from attacks, indirectly guarding
KV pairs. Since security metadata takes up less space, the
secure paging overhead can be largely reduced. As shown
in Figure 1(a), ShieldStore [15], a state-of-the-art secure in-
memory KV store with SGX, puts security metadata, KV pairs,
and hash table in untrusted memory. Security metadata and KV
pairs are stored inside the hash table. It builds a MT for each
(or more than one) hash table bucket and only stores the MT
roots in the EPC. Since the number of MT roots is controllable,
ShieldStore only places 4M roots (64 MB) in the EPC for
avoiding secure paging, achieving the best performance.

Following the above design scheme, we present an intuitive
design called Aria w/o Cache in the paper. Figure 1(b) shows
the data layout of Aria w/o Cache. We use one encryption
counter to encrypt one KV pair. The KV pair and its corre-
sponding counter are combined to generate one MAC which
protects the integrity of that KV pair. The MACs are stored in
untrusted memory to reduce EPC usage. Since all encryption
counters are stored in the EPC, we can always trust the
counter value. Any attacks to the KV pairs or MACs in
untrusted memory will cause a mismatch between the
MAC computed from its corresponding counter and KV
pair with the MAC stored in untrusted memory. Figure 2
presents the throughput of Aria w/o Cache. The throughput of
Aria w/o Cache is steady until keyspace size reaches 119 MB,
the performance drops because the counter size is beyond the
EPC capacity, and the secure paging degrades the performance.
However, it still shows better performance than ShieldStore
since the hardware secure paging is hotness-aware.

Table I compares the aforementioned design schemes in four
aspects. The first two aspects impact the system performance.
First, Aria w/o Cache relies on the SGX secure paging to
protect security metadata that is swapped out to the non-EPC
region. Since secure paging conducts lots of actions including
OS context switch, data copy, encryption, and SGX integrity
tree update, it is heavy for security metadata protection. For
security metadata, since it can be stored in plaintext [39], it

Protection
Granularity

KV Hotness-
aware

Index
Schemes

EPC
Occupation

ShieldStore Hash Bucket Unaware Hash Low
Aria w/o Cache Page (4 KB) Aware Hash/Tree Medium

Aria KV pair Aware Hash/Tree Low
TABLE I

COMPARISON BETWEEN DIFFERENT DESIGN.

is only necessary to ensure the integrity of them. Besides,
4 KB granularity is too coarse for security metadata which is
usually a few bytes. ShieldStore conducts a bucket-granularity
verification which incurs read and verification amplification.
For every KV operation (Put/Get), it needs to read the whole
bucket’s MAC values, and then compute and verify the MAC
value with the corresponding root stored in the EPC. Besides,
it has to update the root for Put requests. Since applications
access a KV store by putting/getting individual KV pair, the
protection granularity of both Aria w/o Cache and ShieldStore
mismatch with the semantic of the KV store. Second, Real-
world workloads commonly exhibit highly skewed access
patterns [1], [2], [21], [22]. Here, a small fraction of hot items
receive disproportionately more requests than the remaining
items. Many such workloads can be modeled using Zipfian ac-
cess distributions [2], [24], [41], [42]; recent work has shown
that some real workloads exhibit unprecedented skew levels
(e.g., Zipf distributions with α > 1) [23], [24]. Though the
secure paging of SGX can maintain frequently accessed pages
in the EPC, SGX can swap some pages (4 KB) out, in which
there are security metadata of both hot and cold KV pairs,
incurring secure paging overhead when hot keys are accessed
again. ShieldStore is unaware of such hotness and hot KV pair
may reside in a bucket with a long list, exacerbating the side
effect of the bucket-granularity verification.

The other two factors present the usability of the KV
store. ShieldStore is designed to be closely coupled to chained
hashing, which prevents them from being widely adopted.
While Aria w/o Cache and Aria can support various index
schemes. Finally, since the EPC is a limited resource and is
usually shared by multiple tenants in the cloud environment, it
is better to use it as little as possible. Aria w/o Cache consumes
medium EPC space since it puts all counters inside EPC. When
the number of KV pairs increases, the EPC occupation grows
proportionally. ShieldStore consumes low EPC occupation
since it only stores a fixed number of MT roots in the
EPC. However, with growing keyspace, ShieldStore suffers
significant verification overhead due to the long bucket.

To this end, we propose Aria (in Figure 1(c)) to address
the above problems simultaneously. Compared to them, Aria
achieves KV semantic-aware protection with fine-granularity
swap for security metadata and supports both hash table-based
index and tree-based indexes. The EPC occupation of Aria is
low and even, it achieves higher performance than ShieldStore
with fewer EPC occupation, which is beneficial to tenants who
purse the price-performance ratio in the cloud environment.

IV. DESIGN OF Secure Cache

A. Overall Architecture

Figure 3 shows the overall architecture of Secure Cache.
Since we place encrypted KV pairs in untrusted memory, we
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place counters in the EPC to indirectly protect KV pairs from
replay attacks. To avoid the hardware-based secure paging, we
build a MT among encryption counters and introduce Secure
Cache (IV-B) to manually manage the swap of MT nodes be-
tween the EPC and untrusted memory in a software-controlled
way. Specifically, Secure Cache caches the frequently accessed
MT nodes in it. The advantage of such caching is that once
we find the counters in Secure Cache, we can eliminate the
MT verification overhead for Put/Get requests, achieving the
integrity protection granularity at KV pair.

Secure Cache management in software provides several
benefits beyond the hardware secure paging. In particular, it
enables the semantic-aware optimizations we discuss in IV-C.
To reduce the software-based swap overhead, we propose a
flat MT structure (IV-D) to balance the verification overhead
against the cache hit ratio. We further optimize Aria by
reducing the hit and miss penalty of Secure Cache (IV-E).
We propose a pinning mechanism to pin top-K levels of the
MT in Secure Cache to mitigate the MT verification overhead
when misses occur. And we revisit the cache eviction policy of
Secure Cache and adopt FIFO policy to reduce the hit penalty.

B. Secure Cache Mechanism

Secure Cache stores the frequently accessed MT nodes
inside the EPC, and swap out cold ones to untrusted memory.
It processes a read/write access by first checking whether the
requested data is cached. The item is read or written directly
if it is already cached (e.g., À in Figure 4). Since the cached
items are protected by SGX, we can always trust its value.

Then, we describe two actions that help with achieving KV
pair granularity protection while still preventing replay attacks:
1) swap a MT node from untrusted memory into EPC (i.e.,
Caching); and 2) evict the cold ones to the untrusted memory
area (i.e., Eviction). Figure 4 shows a cache state at some point
in time. For simplicity, we describe a 2-ary MT (every parent
tree node contains two MACs of its child nodes) with 4 layers.
Lvl m-n means the n-th node in the m-th level (lvl-0 stores the
counters). Currently, Secure Cache caches three tree nodes.
Caching. Secure Cache needs to check the integrity of the
uncached item before placing it in the EPC. The corresponding
MT nodes are verified during the verification. The following
shows the steps of caching a new item (say, Lvl 0-1) in detail.

Since Lvl 0-1 (i.e., (Á) in Figure 4) is not cached in the
enclave, Aria first reads it from the untrusted memory and
computes a MAC, and then reads its parent node (i.e., Lvl 1-
0) to compare with the computed MAC. Since Lvl 1-0 is not

Lvl 0-0 Lvl 0-1 Lvl 0-2 Lvl 0-3
Lvl 1-0 Lvl 1-1

Lvl 0-4
Lvl 1-2

Lvl 0-5

Lvl 2-0 Lvl 2-1
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Fig. 4. Caching and eviction of Secure Cache. The MT verification stops at
the first cached nodes. If the counter (leaf node) is cached in Secure Cache,
we can directly use it to decrypt the KV pair without MT verification from
the leaf to the root, achieving the KV pair granularity protection.

cached in enclave, a MAC of Lvl 1-0 is computed to compare
with Lvl 2-0. The ancestor nodes are verified recursively till
the root which always resides in the EPC. After verifying the
Lvl 0-1, we put it in the EPC, and any following verification
procedure can stop at the cached MT nodes. This is valid
because the node is now protected by SGX hardware, and
thus no longer needs to be protected by its parent node, which
reduces the cost of subsequent access to it.
Eviction. If the Secure Cache is full, we need to evict one item
(e.g., Lvl 0-4) to accommodate the newly inserted cache item.
Before evicting, we need to update the MAC of its parent so
as to ensure the correct verification for following requests.

Aria first computes the MAC of the to-be-evicted cache
item, say, Lvl 0-4 in Â, then writes the computed MAC to
their parent node (Lvl 1-2). Since Lvl 1-2 is not cached, Secure
Cache first needs to swap in this node. After verifying the
integrity of the node Lvl 1-2, it is placed in Secure Cache.
Then, the computed value from Lvl 0-4 is written to the cached
node (Lvl 1-2). Finally, the evicted cache item (Lvl 0-4) is
directed written to their original places in untrusted memory.

A secure initialization of the MT determines the correctness
of the runtime integrity verification. At the initialization phase,
we assign a random value to each counter first. Then, we
compute MAC values of leaf nodes and store the computed
MAC in their parent nodes. We recursively conduct this
procedure from the leaf till the root. Finally, a consistent MT
is generated. The initialization is executed inside the enclave.
Proof Sketch of Secure Cache. The MT can detect replay
attacks on leaves because ¬ the root is secure and ­ con-
tains the newest information of all leaves (i.e., a change to
a leaf requires that all the nodes between it and the root be
updated) [20]. Caching process guarantees the integrity of the
node fetched from untrusted memory, and then SGX guaran-
tees its security. Hence we can use the fetched node as the root
of a new smaller MT. To maintain ­, Secure Cache propagates
changes on a leaf from the leaf to the first cached node (e.g.,
if the leaf is cached, we can directly update it and stop prop-
agating). If an updated cached node is evicted, Secure Cache
propagates its update to its parent nodes, ensuring that the
newest information of a leaf node always resides in at least one
node in the EPC. This Eviction process will finally propagate
updates of leaves to the root. Thus Secure Cache prevents
replay attacks on counters. Since we compute a MAC for each
KV pair and its counter, and the integrity of all counters is
guaranteed, we prevent replay attacks on KV pairs [39]. The
confidentiality and integrity of KV pairs are guaranteed using
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the CME and MAC discussed in SectionII-C.

C. Semantic-aware optimizations

Secure Cache enables optimizations that are not yet avail-
able in SGX. We show two of such optimizations: swap out
without encryption and avoiding write-back for clean items.
Eliminating Encryption. Considering the semantic of security
metadata (i.e., as auxiliaries to protect KV pairs), its plaintext
is meaningless, and it is only necessary to ensure the integrity
of them, which is enough for the protection of KV pairs.
Therefore we avoid the encryption overhead which must be
included in SGX secure paging when conducting swapping.
Avoiding Write-back for Clean Cache Items. Eviction is a
heavy operation on the critical path in large memory footprint
workloads. However, if the item to be evicted is already
present in untrusted memory and has not been modified since
the previous eviction, the write-back is unnecessary and the
item can be discarded. This optimization is not implemented
in SGX and it is unclear whether such implementation is at
all possible. This is because the only SGX memory eviction
instruction (EWB) forces the page being evicted to be written
to the backing store regardless of whether it has been modi-
fied [14]. In Secure Cache, we maintain a one-bit tag for each
cache item in Secure Cache to mark the dirty or clean state.
Clean cache items in Secure Cache can be directly discarded.

D. Flat Merkle Tree

Integrity verification of the leaf nodes needs to go through
all levels of the MT till the first cached nodes. Since a counter
(in the leaf node) is associated with one unique key (of the KV
store), the height of the MT increases drastically for a large
number of KV pairs, resulting in lots of MAC computation
overhead during MT verification. Besides, the verification
procedure is conducted sequentially instead of in parallel,
which further exacerbates the cost. Hence, we must focus on
limiting the number of verification (i.e., MAC computation
and comparison) times.

To reduce the verification overhead, we need to flatten the
MT structure. We achieve this by increasing the input length
of the MAC computation function, making the fixed-size MAC
hash value cover more bytes at its child level. As shown in
Figure 5, the dashed box represents one MT node and the
input length equals the node size. Longer input length forms
a shorter tree, so the number of verification times is reduced.
However, longer input length causes higher MAC computation
overhead. In addition, Aria conducts MAC computation inside
the enclave, so we need to copy the MT nodes from untrusted

memory to the EPC before proceeding the MAC computation.
Longer input length causes higher MT nodes copy overhead.
In Section VI-D3 we analyze the trade-off between the input
length and integrity verification overhead.

E. Optimizing Secure Cache Hits and Misses

Level-pinning. Retrieving a counter from the Secure Cache
requires multiple integrity verification if the branch of the MT
containing this counter doesn’t exist in the EPC. In the worst
case, O(h-1) (h is the height of the MT) MAC computation
and comparison is required to verify the counter. In order to
mitigate the worst-case overhead, Aria adopts level pinning.
The idea of the level pinning is straightforward. If the MT
has h levels, Aria keeps MT nodes for top-k levels (k ≤ h-1)
in the EPC. With level-pinning, the number of the worst-case
MT verification is reduced to O(h-k-1), and Secure Cache only
manages the swap of nodes in levels that are not pinned.

Level-pinning requires small amounts of EPC capacity. In
the MT, an upper level (Li) is T times smaller than a lower
level (Li+1). Assuming a keyspace of ten million (which re-
quires at least ten million counters), we construct a 5-level MT
and the amount of the EPC required to pin for L1, L2, L3, and
L4 is 0.75 KB, 1.5 KB, 68.25 KB, and 3.18 MB, respectively.
Thus, the total size of the top-4 levels only consumes about
3.25 MB EPC. Note that after the MT initialization, it is
enough to only pin the L4 in the EPC. However, we still pin the
top-3 level for low-overhead dynamically resizing. When we
unpin the L4, we directly compute MACs of L4 and update L3
in the EPC without copying overhead from untrusted memory
to the EPC.
Revisiting the Hit Penalty. During the cache hit process in
Secure Cache, Aria needs to update the metadata of Secure
Cache for picking out the suitable item in the next eviction
process. However, this update requires many memory opera-
tions when the cache size is large, which incurs high overhead.
Worse, memory operations in the EPC lead to longer latency
than that for untrusted memory [26], which further increases
the penalty of such an update. Therefore, we adopt a simple
yet efficient replace policy, FIFO in Secure Cache to reduce
the metadata update overhead. We present the performance
advantage of such a policy over LRU in Figure 12.
Stopping Swap. Considering the high miss penalty, we stop
the swap when the hit ratio of Secure Cache is below a cer-
tain threshold (e.g., 70% in Aria). However, we still use the
level-pinning mechanism to reduce the integrity verification
overhead. Secure Cache chooses to pin the upper layers of the
MT according to its current size, eliminating secure paging
(e.g., for 10M keyspace, Aria pins MT nodes except L0). The
stopping swap process is as follows: 1) during caching, we
verify all nodes and only move nodes chosen to be pinned to
the EPC; 2) during eviction, we only evict nodes that don’t
reside in the pinning layer (e.g., L0).

V. IMPLEMENTATION OF ARIA

In this section, we present the implementation detail of
Aria. Aria uses the sgx_aes_ctr_encrypt counter mode



encryption and sgx_rijndael128_cmac to guarantee the
confidentiality and integrity of each KV pair respectively. Both
of them are in the current Intel SGX SDK [34]. Counters
used for sgx_aes_ctr_encrypt and MACs generated by
sgx_rijndael128_cmac are both 16-byte in Aria. All
encryption, decryption, and MAC computation are conducted
inside the enclave, while the encrypted KV pairs and security
metadata are stored in untrusted memory. Aria builds a MT in
continuous memory space to increase the cache locality (V-A)
and utilizes a heap allocator (V-B) which eliminates OCALLs
on every untrusted memory allocation for KV pairs. To support
both hash table-based and tree-based index schemes, we
decouple the MT organization from the index structure and
introduce a redirection layer to index the counters (V-C).
Finally, we summarize Aria by walking through an example
of Put and Get operations (V-D).

A. Continuous Merkle Tree

Figure 5 shows the overall memory layout of the MT in
Aria. MT nodes are stored in untrusted memory in continuous
memory space which benefits from CPU perfecting and cache
locality. The address of a MT node can be calculated directly
using the offset of its child node. We use a fixed input length
(m-byte in Figure 5) when calling the MAC computation
function, and the output of the MAC hash function is a 16-
byte MAC value. The size of one MT node equals to the
input length of the MAC computation function. As shown in
Figure 5, the dashed box represents one node that contains
multiple MAC values of the corresponding child nodes (ctr
(counter) in the figure). The root MAC must be stored inside
the EPC, to ensure the safety of the whole tree [20], [39]. For
MT expansion, we construct a new MT structure if there is no
free counter for the newly inserted KV pair. Aria reserves a
new MT using a background thread when the number of used
counters reaches the threshold.

B. User-space Heap Allocator

If we want to allocate untrusted memory by malloc/free
in the enclave, OCALLs are needed to go out of the enclave.
To eliminate OCALLs on every untrusted memory allocation,
we implement a user-space heap allocator in Aria which can
be directly used inside the enclave.

Aria maintains an untrusted memory pool and cuts the
untrusted memory space into 4 MB chunks. Further, the 4 MB
chunks are cut into different sizes of data blocks, and the data
blocks in the same chunk are of the same size. The size of data
blocks in a chunk is recorded for that chunk when it is ready
for allocation. A bitmap is also maintained for that chunk to
track the used and unused data blocks. This metadata is stored
in the EPC to prevent corruption on the allocator metadata.
For fast allocating, we also maintain a free list. However, we
put it in untrusted memory to eliminate EPC usage. Upon
receiving an allocating request, the allocator first chooses a
proper memory chunk where the data block size best fits the
allocating request size, allocates a free data block from the free
list, and checks the allocated address with the corresponding
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Fig. 6. Decoupled structure. Aria decouples the index from the security
metadata management so as to support various index schemes.

offset in the bitmap. Finally, we modify the bitmap. Since the
initial address of each chunk is 4 MB-aligned, the offset of
an allocated memory block in the chunk can be calculated
directly using its address and its initial address. Hence the
bitmap update would add minimum overhead to Aria. For an
allocation with a size larger than 4 MB (which is less likely
to happen in a KV store), we directly assign it with one or
multiple contiguous chunks.

C. Decoupled Structure and Index Protection

Decoupled Structure. Aria adopts a decoupled design to
support various index schemes such as hash table and B-
tree. To enable Aria to support multiple index schemes, we
decouple the index from the security metadata management
and build security metadata only on KV pairs. Then we
introduce a redirection layer to map each KV pair to its
associated security metadata and to manage the space storing
security metadata. Figure 6 shows the relationship among
index, redirection layer, and user-space heap allocator. The
redirection layer consists of lots of redirection pointers (i.e.,
RedPtr) each of which points to a unique encryption counter.
Each RedPtr is associated with only one KV pair. When a
new item is inserted into the KV store (¬), Aria fetches a free
counter from the redirection layer and assigns it to the RedPtr
(­). Aria places RedPtr (black area in the figure) along with
each KV pair, and the KV pair is managed by a user-space
heap allocator (®).
Counter Area Management. We maintain a circular buffer in
untrusted memory to record the offset of the freed counters and
a bitmap in the EPC to record the occupation of corresponding
counters. The head pointer and tail pointer of the circular
buffer are placed in the EPC. When serving a counter fetch
operation, a free counter is returned which is pointed by the
head pointer, and the counter’s occupation is checked using
the bitmap. If it is used, we assert that an attack happens.
The bitmap is updated when fetching/freeing a counter. This
updating is fast since we already know the offset of the
counter. If the counter area is used out, Aria will apply for
memory allocation from the user-space heap allocator and
build a new MT over the newly allocated counter area.

We present two different index design (a hash table and a B-
tree) based on Aria. The index entrance such as the hash table
pointer and the B-tree root pointer is stored in EPC, ensuring
that we can always find the correct place storing the index.
Aria-H is a hash table-based index structure (Aria-H) with
a chaining linked-list to resolve collisions similar to Shield-
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Store [15]. It implements a key hint in the data entry to reduce
the cost of searching encrypted keys. The key hint is a hash
value of the plaintext key and is stored in each data entry. The
hint is used to find candidates in the hash bucket for the key
(of Put/Get) without decrypting the encrypted KV pair [15].
Aria-T is a B-tree-based index structure. For every KV
request, Aria-T needs to decrypt the encrypted KV pair and
than compare the targeted key with the decrypted key to find
the correct tree branch.
Index Protection. A KV store includes KV pairs and an index
structure that connects KV pairs. Since the security metadata
is built above KV pairs, the index is not protected by the
MT. Attacks to the connections of the index structure and
unauthorized deletion cause missing the targeted key in KV
store though it exists. Figure 7 shows the attack that exchanges
two slot pointers in the hash table without being detected (B-
tree is similar). Note that the availability attacks (e.g., corrupt
the pointer value causes the crash of the system) is beyond
the scope of this paper and we discuss this in Section VII.

We observe that both linked-list hash table and B-tree are
connected by a series of pointers. If we guarantee the security
of the index entrance (which is stored in the EPC) and protect
the connection between the adjacent element, we are able to
detect such attacks. We add an additional field to the input for
the generation of KV pair’s MAC. For Aria-H, the additional
field includes the address of the forward node. For example,
for KV pair pointed by Pkv4, the address of Pslot3 is included
when generating the MAC. For Aria-T, the additional field
includes the address of the pointer that points to this node.

For unauthorized deletion, attackers can deliberately clear
the content in slots. Thus, we need to record some metadata
inside the enclave. For Aria-H, we record the number of data
entries in each bucket in the enclave. For Aria-T, we record
the number of tree nodes from the root node to each leaf node
in the enclave. We use these metadata to detect unauthorized
deletion once we can’t find the key in the KV store.

D. Putting It All Together

We summarize the design of Aria by walking through an
example of putting a new KV pair into a KV store and then
getting it. Note that we focus on operations at the server-side
since they are responsible for the confidentiality and integrity
of KV pairs. The protection between the clients and the server
is beyond the scope of this paper and can be applied using the
existing remote attestation technique SGX provides [15], [38].
Put(Key, Value) request is processed with the following steps:

1) Aria first retrieves the index with the given key to find
the actual place that serves the Put operations.
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Fig. 8. Description of a Put operation in Aria. CTR means counter.

2) Then Aria creates a RedPtr for the newly inserted key and
assigns a free counter fetched from the redirection layer to it
(in Figure 8 À). Before the counter can be used for encryption,
the integrity of the counter value is verified by Secure Cache.
If there exists the same key in the KV store, we reuse the
original counter for encryption.

3) After verifying the counter, Aria conducts encryption
and integrity protection over the inserted KV pair shown in
Figure 8. The key and value are concatenated and encrypted
by counter mode encryption with a 128-bit global secret key
and the corresponding counter (in Á). Before the encryption,
the counter corresponded to that RedPtr is incremented. After
obtaining the encrypted KV pair, we combine the RedPtr, the
encrypted KV, the counter value, and the AdField (additional
field is discussed in Section V-C) in a continuous area (in Â).
Then Aria computes a keyed hash value for integrity (MAC)
(in Ã). The computed MAC is attached to the encrypted KV
pair. Finally, the combined item is delivered to the user-space
heap allocator for management (in Ä).

4) Aria allocates a data block from the user-space heap
allocator and copies the record, computed MAC and RedPtr
with the format of (RedPtr, k len, key, v len, value, MAC)
into the allocated space.

5) Finally Aria updates the corresponding entry in the index
to point to this allocated space.
Get(Key) request is served with the following steps:

1) Aria first locates a KV item by referring to the index
with the given key to find the actual encrypted KV item. This
procedure is dependent on the index scheme. For hash table-
based index, Aria will decrypt every ciphertext that meets
the requirement of the hash function and then compare the
decrypted key with the targeted key (of Get) until they match.
For tree-based index, it needs to decrypt every encountered
tree nodes and choose the correct branch until it meets the
targeted key.

2) For every decryption process, Aria uses the RedPtr to
fetch the corresponding counter. Then Secure Cache verifies
the integrity of the counter. After that, we compute the MAC
value using the stored RedPtr, encrypted KV pair, counter
value and AdField. Then we compare the computed MAC with
the stored MAC value. If they mismatch, we assert an attack
happens. After verifying the integrity of the encrypted KV
pair, we use the verified counter to conduct decryption.

3) Finally, we compare the decrypted key with the targeted
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Fig. 9. Overall performance with hash table-based index.

key. If they mismatch, we continue index retrieving, verifica-
tion, and decryption procedure.

VI. EVALUATION

We evaluate Aria on a machine with an Intel Core i7-
7700 processor. The processor has 32KB instruction and data
caches, 256KB L2 cache, and 8192KB shared L3 cache. The
machine has two memory channels with two 16 GB DIMM
modules and runs Ubuntu 18.04.1 LTS 64bit with linux kernel
5.4.0-48. We run the SGX driver and SGX at version 2.6 [34].
Since the machine we use only supports 91 MB EPC, we
set the HeapMaxSize in Enclave.config.xml as 91 MB. This
setting avoids the occurrence of hardware secure page swap.
The content of Secure Cache is set as large as possible.

In the experiment, we focus on the performance of the KV
store with SGX, and KV requests are generated by the server
without network components. This setup (same as ShieldStore)
enables us to explore the CPU-memory performance impact
with shielded execution under different design schemes. Un-
less specified, all experiments use a single thread.
Compared Schemes. Here are the different design schemes
we mainly use in the evaluation:
1) Baseline puts the whole KV store in the EPC without any
modification to the KV store.
2) Aria w/o Cache only places all counters in the EPC.
Swapped out counters are protected by SGX hardware.
3) ShieldStore [15] is a state-of-the-art hash table-based secure
KV store. Since it is built at SGX and driver version 1.8, we
transplant it to version 2.6 for consistency.
4) Aria is our proposed design and adopts a fine-granularity
swap with KV hotness-aware.

A. YCSB Microbenchmark

Workloads. We first evaluate the performance of Aria by
varying the value size, read ratio and skewness with YCSB
workloads [22]. All of them have the key range (a.k.a,
keyspace) of 10 million and the key size of 16 bytes. The
skewed workload uses a zipfan distribution of key popularity
(skewness of 0.99, the default setting in YCSB), and the uni-
form workload generates keys with a uniform distribution. We
evaluate three different read ratio, RD 50 (50% Get), RD 95
(95% Get), and RD 100 (100% Get), and three different value
sizes, small (16-byte), medium (128-byte), and large (512-
byte). We initially set 10 million KV pairs for each test similar
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Fig. 10. Overall performance with B-tree-based index.

to ShieldStore [15]. All of the working sets in our experiments
are beyond the capacity of EPC size (91 MB).
Aria-H. The experimental results of hash table-based KV store
are shown in Figure 9 and we make the following observations:
First, Aria-H improves performance on average by 40%,
38%, and 28% for the small, medium, and large data sets
respectively over ShieldStore under skewed workloads. The
performance gain comes from the Secure Cache. It absorbs lots
of security metadata access under skew distribution, avoiding
most MT verification overhead. Since we can directly use
the cached counter for decryption and MAC comparison, we
achieve KV-granularity protection in Aria. Second, Aria w/o
Cache scheme shows comparable performance with Shield-
Store because under skewed workloads, the hardware secure
paging mechanism is still KV pair hotness-aware. However,
since the granularity of the swap is 4 KB, it is possible that
the swapped out pages contain both hot and cold data, and
the following access to the hot data incurs secure paging,
degrading the performance. Thus Aria-H performs better than
Aria w/o Cache under skew workloads. Third, ShieldStore
performs slightly better than Aria-H under uniform workloads.
Since uniform workloads present random access character-
istics, Aria stops the swap mechanism and only uses level-
pinning. Thus Aria needs to conduct one MT verification for
every Put/Get requests which hurt the performance. However,
when the keyspace is large, Aria still shows better performance
than ShieldStore under uniform workloads shown in Figure 13.
Aria-T. Since ShieldStore can’t support tree-based index, we
only test Aria, Aria w/o Cache and Baseline. Figure 10
shows results of B-tree-based KV stores. The throughput
of all schemes is much lower than hash table-based KV
store. B-tree-based index reduces throughput by about 10x.
Since for every query operations, it needs to decrypt every
node encountered during indexing, significantly degrading the
performance. Instead, we use a key hint in hash table-based
KV store to eliminate decrypting every item encountered.

B. Facebook ETC Workload

We emulate the ETC pool at Facebook [2] as the production
workload to evaluate the behavior of different design schemes.
We use fixed 16-byte keys and make the value size variable. It
has three kinds of KV pair distribution. The value size can be
tiny (1-13 bytes), small (14-300 bytes), or large (larger than
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300 bytes). Out of the keyspace (10 million), 40% KV pairs
correspond to tiny pairs, 55% KV pairs correspond to small
pairs, and the remaining 5% to large ones. We use zipfian
distribution (skewness of 0.99) on the tiny and small KV pairs.
Large items are chosen uniformly at random. We consider four
read ratios (0%Get, 50%Get, 95%Get, and 100%Get). The
evaluation results are shown in Figure 11 and we have the
following observations:

First, Aria performs better than all other schemes with both
hash table-based and B-tree-based index under all read ratios.
Specifically, Aria improves performance by 32% compared to
ShieldStore on average. Secure Cache provides performance
advantages under production workloads since lots of counter
access hit in it. Second, Aria w/o Cache performs better
than ShieldStore under 0% read ratio. For every put request,
ShieldStore not only needs to compute and compare MACs
from the bucket (leaves of the MT) to the root, it also needs
to update the root from the bucket, incurring extra overhead.
While for Aria w/o Cache, the hotness-aware of the hardware
secure paging brings performance advantage. As read ratio
increases, the MT root updating overhead is reduced and
ShieldStore shows better performance than Aria w/o Cache.

C. Effects of Optimizations and The Overhead of SGX

This section presents the effectiveness of different opti-
mizations with Secure Cache in Aria using ETC workloads.
LRU is the default cache replacement policy for Secure Cache.
We test the following schemes: AriaBase is the proposed KV
store without any optimizations. +HeapAlloc uses user-space
heap allocation. +PIN utilizes level-pinning. +FIFO removes
the level-pinning optimization but adopts FIFO. Aria adopts all
optimizations. Except for AriaBase, all other schemes adopt
user-space heap allocation. Figure 12 shows the comparison
and we make the following observations:

First, OCalls significantly decrease the performance. Since
it may incur one OCall for a write request to allocate un-

Th
ro

ug
hp

ut
 (O

ps
/s

)

Keyspace Size (MB)

Aria ShieldStore Aria w/o Cache

(a) Hashtable, Uniform
RD_95, 16B value

(b) Hashtable, Skew
RD_95, 16B value

(c) Hashtable, ETC
RD_95200k

400k
600k
800k

500k

1M
0

500k

119 128 256 512 1024 1536 2048

Fig. 13. Performance on various keyspace size. The number of keys ranges
from 7766016 (119MB) to 134217728 (2GB). Each key is 16-byte.

trusted memory for the newly inserted KV item, AriaBase de-
crease the performance by 62.7% compared with +HeapAlloc
with 0% read ratio. Since AriaBase won’t generate allocation
operations for 100% read ratio workload, it shows the same
performance as +HeapAlloc. Second, level-pinning and FIFO
work under various read ratio. Thus Aria improves the perfor-
mance by 5%, 7%, 11%, and 13% under 0%, 50%, 95%, and
100% read ratios compared with +HeapAlloc. Third, LRU
is not suitable for Secure Cache since Aria with FIFO shows
higher performance than that with LRU (i.e., +HeapAlloc).
This is because LRU includes lots of memory operations when
updating the LRU information, which incurs high overhead
when Secure Cache is large. Fourth, Aria reduces the perfor-
mance by 25.7% compared to Aria w/o SGX on average. Since
Aria eliminates secure paging and OCalls, the performance
drop mainly comes from the protection overhead of SGX when
data are transferred between the EPC and the LLC.

D. Sensitivity Test

1) Working Set Size: Figure 13 presents the throughput
comparison of Aria, ShieldStore, and Aria w/o Cache with
various keyspace size from 119 MB to 2 GB and we make
the following observations:

First, with increasing keyspace, the throughput of all design
schemes decreases. However, Aria is less affected by the
large keyspace compared to the other two design schemes.
For skewed and ETC workloads, Aria benefits from Secure
Cache since it absorbs lots of MT verification. That is, if a
counter of a requested KV item exists in Secure Cache, we
directly use it for encryption/decryption and eliminate MT ver-
ification process. ShieldStore has to conduct MT verification
for every KV request. Worse, the length of the hash bucket
increases as the keyspace increases, which amplifies the read
and verification cost for each KV operation in ShieldStore.
Therefore, Aria improves performance by 104% under the
skewed workload and 67% under the ETC workload at 2 GB
keyspace size compared to ShieldStore. For uniform workload,
though Aria stops swap, it still shows better performance
than ShieldStore when the key space size is larger than 256
MB. This is because the overhead for one verification is
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fixed in Aria due to its fixed MT nodes in continuous MT
layout and level-pinning mechanism. While for ShieldStore,
since the number of buckets is fixed, larger keyspace leads
to a longer bucket list, thus increasing the MT verification
overhead. Hence, Aria improves performance by 44% at 2 GB
keyspace over ShieldStore. Second, Aria w/o Cache shows
higher performance than ShieldStore when the keyspace size
is smaller than 128 MB and shows worse performance at
larger keyspace size. Because with larger keyspace, the side
effect of secure paging overwhelms the benefit of hotness-
aware hardware secure paging.

2) Secure Cache Size: Figure 14 shows the performance
of Aria-H with various Secure Cache size using skewed
workloads under 10 million and 30 million keyspace. 100%
means using as much EPC for Secure Cache as possible. We
make the following observations:

The throughput of Aria-H drops when the Secure Cache
size decreases. Because smaller size can contain fewer security
metadata and reduce the hit ratio. However, the downward
trend of the throughput is gradually flattening, and the through-
put only reduces about 9% and 18% when the Secure Cache
size reduces to 50% (45 MB EPC) and 16% (15 MB EPC)
respectively with 10 million keyspace. Specifically, Aria with
only 15 MB EPC occupation for Secure Cache shows higher
performance than ShieldStore which occupies fixed 64 MB
for storing the MT roots. This means that though with limited
EPC resources, Aria is still effective.

3) N-ary MT: In this experiment, we use both uniform
(Aria-U) and skewed (Aria-S) workloads (95% read, 16-byte
value size, and one MT). Figure 15 shows the throughput
comparison of Aria-H for different branch number of tree and
we make following observations:

First, with increasing branch number, the performance of
Aria rises under skew workloads. A MT tree node gets
bigger with a larger branch number. Since the capacity of
the Secure Cache is limited to 91 MB, we need to re-
duce the size of metadata of the Secure Cache as much as
possible. Bigger tree nodes make the space utilization rate
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Fig. 16. (a) Multi-tenant results (2 tenants and 4 tenants) with different
keyspace and (b) performance on different skewness.

(cached data size/cache metadata size) of the Secure
Cache higher. Thus it can cache more MT nodes, increasing
the cache hit ratio. Second, when the branch number of
the MT gets too large, the performance decreases because a
larger branch number means longer input length for the MAC
computation function, and the overhead of computing MAC
increases. Besides, bigger tree nodes will incur more memory
copy overhead in Aria because when a node is not cached,
it has to be moved from the untrusted memory to the EPC
first before verifying it. Third, under uniform workloads, since
Aria stops swap, the verification overhead increases with the
increasing size of one MT node. Thus Aria-U’s performance
decreases with the increasing degree of the MT.

4) Memory Consumption Analysis: We analyze the mem-
ory usage by giving the size of additional memory needed for
each newly inserted KV item. Considering the security meta-
data, we maintain a 16-byte counter, a 16-byte MAC, and an
8-byte RedPtr for each KV item. Ten million keyspace means
there are 10M different keys in the KVS, leading to about
152 MB counters. The size of each tree layer is presented
in Section IV-E (Level-pinning). The whole memory usage of
the MT built above the counters is about 385 MB for 10M
keyspace. Considering the index metadata, Aria-H uses a 4-
byte hash value for the key, 2-byte value length and a pointer
for each KV item and one tree node of Aria-T consists of a
2-byte length and a pointer pointing to the child. Considering
the allocator metadata, one bit in the bitmap and a 16-byte
free list entry are required for each KV item.

5) Multi-tenant Test: Considering the data protection in
the cloud scenario where multiple tenants share the platform
resources, we present the effects caused by the parallel use of
SGX resources. In the cloud environment, multiple requests
may belong to different users. From the security perspective,
it can offer better isolation with separated memory address
space. Therefore, we use multiple separated enclaves based
on the multi-process design. We reduce the EPC occupation
by reducing the Secure Cache size for Aria and the number of
MT roots for ShieldStore as the number of tenants increases,
eliminating secure paging. Figure 16 (a) shows the average
throughput with the different number of KVS instances each
of which runs an individual Aria/ShieldStore. We make the
following observation: Aria is less sensitive to the number of
tenants compared to ShieldStore. The experiments show that
the performance gap between Aria and ShieldStore becomes
larger as the number of tenants and keyspace increase. Aria



outperforms ShieldStore by 24% and 26% with 2 and 4 tenants
respectively under 10M keyspace and 44% and 67% under
50M keyspace.

6) Skewness: Figure 16 (b) shows the effect of different
skewness in the YCSB skewed distribution. Since recent
work has shown that some real workloads exhibit unprece-
dented skew levels (e.g., Zipf distributions with skewness ≥
1) [23], [24]. We also test the skewness of 1.2. Since a more
skewed distribution increases the hit ratio of Secure Cache, the
performance improvement of Aria over ShieldStore increases
as the skewness increases and reaches 96% at 1.2 skewness.

VII. DISCUSSION

Security Vulnerabilities. Aria ensures confidentiality via
cryptography operations and integrity through MT verification
for KV pairs. Yet, with the encrypted data stored outside the
enclaves, malicious adversaries can get the operation types,
key access frequencies, hashed-key distributions for Aria-H,
and the size relationship between two encrypted keys for Aria-
T. We consider these security flaws side-effects of trading-
off between security and performance. How to resolve these
security vulnerabilities while remaining high performance is
our future work. Besides, Aria store pointers used for index
connection in untrusted memory. Although untrusted pointers
may permit corruption and thus compromise the availability
of Aria, we still ensure the integrity and confidentiality of the
data. The above vulnerabilities also exist in ShieldStore.
Supporting for B+-tree-based Index. We only implement
B-tree index in Aria. However, Aria can also support B+-tree-
based index by encrypting key and value respectively. We leave
it our future work to incorporate B+-tree into Aria.

VIII. CONCLUSION

In this paper, we present Aria, a secure in-memory KV
store for untrusted hosts. Aria targets 1) guaranteeing the
confidentiality and integrity of KV pairs, 2) supporting various
index schemes as well as providing efficient query operations.
We base the design of Aria on hardware-assisted shielded
execution leveraging Intel SGX. To achieve these properties
while overcoming the architectural limitations of SGX, we
propose a software-based semantic-aware swap mechanism in-
side the enclave, which is called Secure Cache. We implement
Aria based on hash table and B-tree indexes and evaluate it
using YCSB and ETC workloads. Our experimental evaluation
shows that the design of Aria is effective under real-world
workloads and tolerates large keyspace and limited EPC size.
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