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ABSTRACT
Key-Value stores provide scalable metadata service for distributed
file systems. However, the metadata’s organization itself, which is
organized using a directory tree structure, does not fit the key-value
access pattern, thereby limiting the performance. To address this
issue, we propose a distributed file system with a loosely-coupled
metadata service, LocoFS, to bridge the performance gap between
file system metadata and key-value stores. LocoFS is designed to
decouple the dependencies between different kinds of metadata
with two techniques. First, LocoFS decouples the directory content
and structure, which organizes file and directory index nodes in a
flat space while reversely indexing the directory entries. Second,
it decouples the file metadata to further improve the key-value
access performance. Evaluations show that LocoFS with eight nodes
boosts the metadata throughput by 5 times, which approaches 93%
throughput of a single-node key-value store, compared to 18% in
the state-of-the-art IndexFS.
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1 INTRODUCTION
As clusters or data centers are moving from Petabyte level to Ex-
abyte level, distributed file systems are facing challenges in meta-
data scalability. The recent work IndexFS [38] uses hundreds of
metadata servers to achieve high-performance metadata operations.
However, most of the recent active super computers only deploy
1 to 4 metadata servers to reduce the complexity of management
and guarantee reliability. Besides, previous work [24, 39] has also
revealed that metadata operations consume more than half of all
operations in file systems. The metadata service plays a major role
in distributed file systems. It is important to support parallel pro-
cessing large number of files with a few number of metadata servers.
Unfortunately, inefficient scalable metadata service cannot utilize
the performance of key-value (KV) stores in each metadata server
node, thus degrades throughput.

On the other hand, KV stores have been introduced to build file
systems [20, 37, 38, 43, 53]. They not only export a simple interface
(i. e. , get and put) to users, but also use efficient data organization
(e. g. , Log-Structured Merge Tree [34]) in the storage. Since data
values are independent and are organized in such a simple way, KV
stores enable small objects to be accessed efficiently and provide
excellent scalability, which makes them a promising technique for
file system metadata servers. The advantage of KV stores have been
leveraged in file system metadata (e. g. , inode and dirent) for
small objects [18, 38].

However, we observe that there is a huge performance gap be-
tween KV stores and file system metadata, even for those file sys-
tems that have been optimized using KV stores. For example, in a
single server, the LevelDB KV store [3] can achieve performance at
128K IOPS for random put operations and 190K IOPS for random
get operations [16]. Nevertheless, IndexFS [38], which stores file
system metadata using LevelDB and show much better scalability
than traditional distributed file systems, only achieves 6K IOPS that
is 1. 7% of LevelDB for create operations per node.

We identify that file metadata accesses have strong dependen-
cies due to the semantics of a directory tree. The limitation is
transferred from local KV store to network latency because of
the complicated communication within metadata operation. For
instance, a file create operation needs to write at least three lo-
cations in the metadata: its file inode, its dirent and inode. In a
local file system, these update operations occur in one node, the
cost of the file operation in software layer is mainly in the data
organization itself. However, in distributed file system, the main
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performance bottleneck is caused by the network latency among
different nodes. Recent distributed file systems distribute metadata
either to data servers [13, 26, 40, 47] or to a metadata server cluster
(MDS cluster) [11, 31, 40, 52] to scale the metadata service. In such
distributed metadata services, a metadata operation may need to
access multiple server nodes. Considering these accesses have to
be atomic [9, 26, 48, 51] or performed in correct order [27] to keep
consistency, a file operation needs to traverse different server nodes
or access a single node many times. Under such circumstance, the
network latency can severely impact the inter-node access perfor-
mance of distributed metadata service.

Our goal in this paper is two-fold, (1) to reduce the network
latency within metadata operation; (2) to fully utilize KV-store’s
performance benefits. Our key idea is to reduce the dependencies
among file system metadata (i. e. , the logical organization of file
system metadata), ensuring that important operation only commu-
nicates with one or two metadata servers during its life cycle.

To such an end, we propose LocoFS a loosely-coupled metadata
service in a distributed file system, to reduce network latency and
improve utilization of KV store. LocoFS first cuts the file metadata
(i. e. , file inode) from the directory tree. These file metadata are
organized independently and they form a flat space, where the
dirent-inode relationship for files are kept with the file inode
using the form of reverted index. This flattened directory tree struc-
ture matches the KV access patterns better. LocoFS also divides
the file metadata into two parts: access part and content part. This
partition in the file metadata further improves the utilization of
KV stores for some operations which only use part of metadata.
In such ways, LocoFS reorganizes the file system directory tree
with reduced dependency, enabling higher efficiency in KV based
accesses. Our contributions are summarized as follows:
(1) We propose a flattened directory tree structure to decouple the

file metadata and directory metadata. The flattened directory
tree reduces dependencies among metadata, resulting in lower
latency.

(2) We also further decouple the file metadata into two parts to
make their accesses in a KV friendly way. This separation fur-
ther improves file system metadata performance on KV stores.

(3) We implement and evaluate LocoFS. Evaluations show that Lo-
coFS achieves 100K IOPS for file create and mkdir when using
one metadata server, achieve 38% of KV-store’s performance.
LocoFS also achieves low latency and maintains scalable and
stable performance.
The rest of this paper is organized as follows. Section 2 discusses

the implication of directory structure in distributed file system
and the motivation of this paper. Section 3 describes the design
and implementation of the proposed loosely-coupled metadata ser-
vice, LocoFS. It is evaluated in Section 4. Related work is given in
Section 5, and the conclusion is made in Section 6.

2 MOTIVATION
In this section, we first demonstrate the huge performance gap
between distributed file system (DFS) metadata and key-value (KV)
stores. We then explore the design of current DFS directory tree
to identify the performance bottlenecks caused by the latency and
scalability.
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Figure 1: Performance Gap between File System Metadata
(Lustre, CephFS and IndexFS) and KV Stores (Kyoto Cabinet
(Tree DB)).

2.1 Performance Gap Between FS Metadata and
KV Store

There are four major schemes for metadata management in dis-
tributed file system: single metadata server (single-MDS) scheme
(e.g., HDFS), multi-metadata servers schemes (multi-MDS) with
hash-based scheme(e.g., Gluster [13]), directory-based scheme (e.g.,
CephFS [46]), stripe-based scheme (e.g., Lustre DNE, Giga+ [36]).
Comparing with directory-based scheme, hash-based and stripe-
based schemes achieve better scalability but sacrifice the locality
on single node. One reason is that the multi-MDS schemes issue
multiple requests to the MDS even if these requests are located in
the same server. As shown in figure 1 compared with the KV, the file
system with single MDS on both one node (95% IOPS degradation)
and mulitple nodes (65% IOPS degradation on 16 nodes).

From the figure 1 , we can also see that IndexFS, which stores
metadata using LevelDB, achieves an IOPS that is only 1. 6% of
LevelDB [16], when using one single server. To achieve the Kyoto
Cabinet’s performance on a single server, IndexFS needs to scale-out
to 32 servers. Therefore, there is still a large headroom to exploit the
performance benefits of key-value stores in the file systemmetadata
service.

2.2 Problems with File System Directory Tree
We further study the file system directory tree structure to under-
stand the underline reasons of the huge performance gap. We find
that the cross-server operations caused by strong dependencies
among DFS metadata dramatically worsen the metadata perfor-
mance. We identify two major problems as discussed in the follow-
ing.

2.2.1 Long Locating Latency. Distributed file systems spread
metadata to multiple servers to increase the metadata processing
capacity. Ametadata operation needs to communicate withmultiple
metadata servers, and this may lead to high latency of metadata
operations. Figure 2 shows an example of metadata operation in
a distributed file system with distributed metadata service. In this
example, inodes are distributed in server n1 to n4. If there is a
request to access file 6, the file system client has to access n1 first
to read dir 0, and then read dir 1, 5 and 6 sequentially. When these
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servers are connected using ethernet with a 100µs latency, the
file 6 access request consumes at least 400µs . This situation occurs
in IndexFS, Giga+ and CephFS. To mitigate this problem, all the
file systems cache inodes in the clients to reduce the overhead of
locating a file. However, these file systems still suffer from the long
locating latency issue when there are cache misses.

n3

n2n1

1

2 5

3 4 67

0
0 3 1 7

n4
2 6 4 5

Figure 2: Locating a File or Directory: The left half shows
an example of directory tree. In the example to locate a
file/directory 6, it has to access four servers as shown in
the right half. This dependency of directory tree metadata
causes long locating latency.

Considering a file system with 1 millions IOPS (e.g., IndexFS
achieves 0. 85 millions IOPS using 128 metadata servers) and 200-
byte metadata, it only consumes 190MB bandwidth from clients to
servers, which are far from saturating the bandwidth of mainstream
Ethernet (e.g., 10Gbps) nowadays. In other words, the network
bandwidth is not the bottleneck, while the network latency caused
by the data access pattern needs to be carefully designed. For key-
value stores that are recently introduced for metadata storage of file
systems, the latency of a local get operation is 4µs . In Ethernet with
TCP/IP, the latency with an RTT (Round-Trip Time) is 100µs , which
is 25 times of the key-value get latency. More complex network
links lead to higher latency.

In conclusion, the cross-server metadata operations that need to
follow the directory tree dependencies makes the logical metadata
organization inefficient.

2.2.2 High Overhead in KV (De)Serialization. The size of a key-
value record has strong impacts on key-value store’s performance.
Wemeasure both LevelDB and Kyoto Cabinet, and the twoKV stores
show poorer performance with large value sizes. To understand
this result, we also find that the serialization and de-serialization of
writing and reading data values consume more time when the sizes
of values are increased, as reported in [14]. Existing key-value store
based distributed file systems, e.g., IndexFS, store the file metadata
of one file all in a single value. The whole value in the key-value
store has to be reset when only a part of the value is modified, and
this leads to unnecessary (de)serialization overhead and thereby
poorer performance.

To mitigate this problem, IndexFS builds a cache to reduce perfor-
mance loss during (de)serialization. However, there are two cache
layers in those systems. One layer reduces the large value overhead
in file system itself. Another layer is the in-memory LSM-Tree (Log-
Structured Merge Tree) cache to reduce the small write overhead in
LevelDB. An extra cache layer increases the copy time in memory
and causes complex consistency issues. Our takeaway is that file
system metadata needs optimizations in the organization to fully
leverage the performance of KV stores.
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Figure 3: LocoFS’s Architecture

In this paper, our goal is to reduce the dependencies. We pro-
pose a loosely-coupled metadata service, LocoFS, to provide a high-
performance metadata service for distributed systems.

3 DESIGN AND IMPLEMENTATION
LocoFS is designed to scale its metadata performance to better
leverage the performance benefits of key-value (KV) stores. To
achieve this goal, LocoFS exploits three novel approaches to weaken
its metadata dependencies.

• Loosely-Coupled Architecture that separates the directory
and file metadata services to reduce the traversal path and
latency time.

• Flattened Directory Tree that removes the directory inode
(d-inode) dependencies and organizes metadata objects in a
flat space to reduce the consistency between different nodes
and improve throughput.

• Decoupled File Metadata that stores different types of file
metadata differently to improve the KV access performance.

This section also discusses optimizations of the rename operation
in LocoFS.

3.1 Loosely-Coupled Architecture
Figure 3 shows the architecture of LocoFS file system. LocoFS con-
sists of four parts: LocoClient, DMS (Directory Metadata Server),
FMS (File Metadata Server), and Object Store. LocoFS shares simi-
lar designs of Ceph to organize file data into objects using Object
Store, while takes different approaches in the metadata service. For
the metadata service, LocoFS manages directory and file metadata
separately using a single DMS server and multiple FMS servers:

Single DirectoryMetadata Server. In LocoFS, the DMS server
stores the directory metadata. Currently, we use only one single
DMS in our design. The benefits of using one single DMS server rely
on two facts. One reason is that a single server can support accesses
to a large number of directories (e.g., around 108 directories for a
DMS with 32GB memory) with the flattened directory tree design,
which will be discussed in Section 3.2. The other reason is that one
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single DMS can simplify the ACL (Access Control List) checking.
Since file or directory accesses need to check the ACL capacity of
its ancestors, the checking can be performed on a single server
with one single network request from a client, rather than multiple
network requests for distributed directory metadata service.

The DMS server organizes the directory metadata into key-value
pairs. It uses the full path name as the key, and stores the metadata
in the value. LocoFS integrates an existing key-value store imple-
mentation, Kyoto Cabinet, as the key-value store for the metadata.

Multiple File Metadata Servers. LocoFS uses multiple File
Metadata Servers (FMS) to store file metadata. File metadata are dis-
tributed to different FMS servers using consistent hash in which the
(directory_uuid + file_name) combination is used as the key.
The directory_uuid is a universally unique identifier of the file’s
parent directory. In an FMS server, it also organizes file metadata
as key-value pairs and stores them to the Kyoto Cabinet key-value
store. The key used in the key-value store is the same key in the
consistent hash.

A file system operation starts from the LocoClient. LocoClient
provides either a FUSE interface or a LocoLib interface for appli-
cations. Through FUSE interface provides POSIX interface trans-
parently like local file systems, FUSE’s performance overhead is
not negligible in a high-performance distributed file system [45].
Therefore, LocoLib is the default interface, though it requires ap-
plication recompilation using new file system interface. From the
LocoClient, LocoFS sends directory operations (e.g., mkdir, rmdir
and opendir) to the DMS server, and sends file operations (e.g.,
open, close) to the FMS servers. After getting the file metadata
from the FMS servers, LocoClient directly sends data operations
(e.g., read, write) to the Object Store.

3.2 Flattened Directory Tree
Key-value stores better exploit the performance of storage devices
than file systems do. This is because data are independently stored
and accessed in key-value stores. Although some file systems gain
such benefits by storing metadata in a key-value style, the depen-
dencies between directory tree metadata still prevent file systems
from effectively exploiting the key-value advantages. To tackle the
issue, LocoFS proposes strategies to weaken the dependencies be-
tween directory tree metadata and organize them in a flat space.
We call it Flattened Directory Tree.

3.2.1 Backward Directory Entry Organization. Figure 4 illus-
trates the flattened directory tree structure. This structure removes
the dirent-inode links, which are used to locate the inodes of
its files or subdirectories in a directory. Each directory keeps the
directory entries (dirents), including the fields of the name and
inode number of files or subdirectories in current directory, as di-
rectory data blocks. LocoFS does not keep directory entries in the
directory data blocks, but instead reorganizes the dirent structure
in a backward way. In Figure 4, the top half is a traditional directory
tree structure. The directory metadata consists of two parts: the
d-inode and the dirent. The file metadata only has one part, i.e.,
the file inode (f-inode). Directory and file metadata are connected
using dirent-inode links, which are stored in directory entries in
the directory data blocks. Both sides of a link are required to be
updated atomically. This dependency incurs high metadata access
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Figure 4: Flattened Directory Tree

overhead, especially when metadata objects are distributed to mul-
tiple servers. In the flattened directory tree, the dirent-inode is
broken up, similar to the inverted index in ReconFS [28]. The di-
rectory entry (dirent) structure is reorganized. Rather than stored
with the directory metadata, the dirents are respectively stored
with the inodes of files or subdirectories. Specifically, each subdirec-
tory or file in a directory stores its direntwith its inode. As shown
in the bottom half of Figure 4, the main body of a directory or file
metadata object is its inode. Each inode keeps the corresponding
dirent alongside. As a consequence, these metadata objects are
independently stored in a flat space.

In the flattened directory tree, directory or file metadata objects
are then mapped to different metadata servers. All the directory
inode (d-inode) metadata objects are stored in the DMS. Since these
d-inodes are independent objects without tree links, they are more
friendly to be stored in a key-value way. Each access to a directory
inode can be performed by a key-value get operation by hashing
its full path name. File inode(f-inode) objects are distributed to
different filemetadata servers using consistent hash. These f-inode
objects are independent to not only other f-inode objects but also
d-inode objects. Thus, they can be efficiently mapped to multiple
servers, without incurring high-overhead inter-server requests.

In addition to the inode objects, the dirent objects are stored
differently in LocoFS than in existing file systems. In a directory,
all dirents of subdirectories are mapped to the directory meta-
data server, and the dirent of a file is mapped to the file metadata
server that the file locates. In each metadata server, the dirent
is also stored in a key-value store by using the hash value of
directory_uuid as the key. In the directory metadata server, all
the subdirectories in a directory have their dirents concatenated as
one value, which is indexed by the directory_uuid key. Similarly,
all the files that are mapped to the same file metadata server have
their dirents concatenated and indexed. The directory entries that
used to be data content of a directory are divided and co-located
with its subdirectories or files. This flattened directory tree design
weakens the dependencies of directory tree metadata objects, and
thus improves the performance of the distributed metadata service.

3.2.2 Client Directory Metadata Cache. In LocoFS, each file op-
eration (e.g., create, remove and open) has to check its parent
directory from DMS. Though LocoFS can get 120K IOPS in one
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node for create and mkdir without client cache, the single DMS
design might limit the scalability.

To reduce the access latency and improve scalability, LocoFS
uses client cache to keep directory metadata in clients. When a
client creates a file in a directory, LocoFS caches the directory’s
inode from the DMS to client. When the client creates a file in the
same directory, accesses to its directory metadata can be met locally.
For the path traversal operations, LocoFS caches all the directory
inodes along the directory path. This also offloads the DMS’s traffic.
The client directory metadata cache favors low latency and good
scalability of LocoFS, even with a single DMS. Since it is common
that HPC applications (e.g., earth simulation, weather forecast)
nowadays store files in a specific set of directories, the directory
metadata client cache are effective in most of these applications
that have good directory locality.

The client directory metadata cache in LocoFS only caches di-
rectory inode (d-inode) metadata. Different from existing client
cache designs, the LocoFS client cache does not cache file inode
(f-inode) or directory entry (dirent) metadata. Similar to exist-
ing designs like NFS v4, LocoFS uses the leases mechanism for
client cache, which grants a period (30s by default in LocoFS) to
cached metadata for the valid status. LocoFS allocates 256 bytes for
a d-inode. A client server accesses a limit number of directories.
Since only d-inodes are cached in the client directory metadata
cache, it consumes limited memory of a client server.

3.3 Decoupled File Metadata
While the flattened directory tree is friendly to key-value stores
for weakening the metadata dependencies in the tree structure,
LocoFS further decouples the file metadata to make it more friendly
to key-value accesses. There are two major overheads that prevent
file metadata from efficiently accessing key-value stores:
Large-Value Access Overhead. In key-value stores, we observe
that performance drops drastically when the value size is large,
which is alongwith the observation inWiscKey [25]. A filemetadata
object consumes hundreds of bytes, which is a relatively large
size for key-value stores. Usually, an update to the file metadata
only involves a few fields which only consumes several bytes [28],
while this update requires the whole value to be read and updated.
Therefore, storing file metadata in large values incurs unnecessary
overhead in key-value stores.
(De)Serialization Overhead. When reading or writing file meta-
data, the values have to be deserialized and serialized between the
memory and disk. The serialization and deserialization can also
hurt key-value access efficiency even with protobuf [10] which in
addition introduces extra metadata to manage the cached values.

To reduce the above-mentioned overheads, we design Decoupled
File Metadata for LocoFS. It reduces the value size of file metadata
using both fine-grained file metadata and indexing metadata removal
techniques. It also removes the serialization and de-serialization by
using fixed-length fields.

3.3.1 Fine-grained FileMetadata. Wedesign the fine-grained file
metadata scheme that relies on the fact of the small-size value can
be accessed more efficiently in the key-value stores. Specifically,
LocoFS splits the file metadata into different parts. Each part is
stored as one value, and different file operations access different

Table 1: Metadata Access in Different File Operations

Dir File Dirent
Key full path uuid+filename uuid

Value

Access Content
ctime ctime mtime entry
mode mode atime
uid uid size
gid gid bsize
uuid suuid

sid

O
p e

ra
ti
on

s

mkdir ● ●

rmdir ● ●

readdir ● ●

getattr ● ● ●

remove ● ● ●

chmod ● ●

chown ● ●

create ● ●

open ● ❍

read ●

write ●

truncate ●

● stands for field updating in an operation.
❍ stands for optional field updating in an operation (different file system
have different implementations).

parts of the file inode metadata. LocoFS splits file metadata into two
parts: the access metadata part and the content metadata part. The
access metadata part contains the fields atime, mode, uid and gid.
These fields are used to describe the files access right. The content
metadata part contains the fields mtime, atime, block size and
file size. These fields are descriptions of the file content update.

Table 1 lists all operations in LocoFS and their accessed parts of
the file metadata. We can see that most operations (e.g., create,
chmod, read, write and truncate) access only one part, except
for few operations like getattr, remove, rename. For instance,
the chmod operation only reads the mode, uid and gid fields to
check the access control list (ACL), and then updates the mode and
ctime fields, accessing only the access part; The write operation
only updates the size and mtime fields, both of which fall in the
content part. By managing these fields in a manner of fine-grained,
the value sizes in the FMS could be effectively reduced, which
further improves the key-value access performance.

3.3.2 Indexing Metadata Removal. To further reduce the file
metadata size, LocoFS indexes data blocks using uuid + blk_num,
and thus removing the data indexing metadata. The uuid is a uni-
versally unique identifier for a file. It is composed of sid and fid,
which respectively represents server ID and file ID in the server it
first locates. A file can be identified in the distributed file system
based on uuid. In addition, the uuid + blk_num can be used to
identify a data block. When accessing a data block, LocoFS calcu-
lates the blk_num by dividing the file offset using block size, and
locates the data block using both the uuid and blk_num. By index-
ing data blocks this way, the indexing metadata is removed from file
metadata. This reduces the value size of file metadata, and further
improves key-value access performance.
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3.3.3 (De)Serialization Removal. LocoFS removes the serializa-
tion and deserialization steps to further improve key-value access
performance. File metadata of a file contains multiple fields, though
they are stored in a single value. File systems always access differ-
ent fields. Therefore, these fields are deserialized from the value
strings to the memory hierarchy (i.e., the struct in the program).
Updates are performed on different fields in the memory structure.
When they are required to be written to secondary storage, they
are serialized to a value string. One reason of (de)serialization is
that there are varied-length fields, which requires parsing using
(de)serialization. Since LocoFS removes the varied-length part, i.e.,
the indexing metadata, the left parts of the file metadata contain
only fixed-length fields. With all fields fixed-length, LocoFS can
directly locate a field through a simple calculation. As such, LocoFS
directly accesses fields in the value string without serialization or
deserialization. With the removal of this layer, key-value access
performance is improved for file metadata accesses.

3.4 Rename Discussion
LocoFS distributes metadata objects based on hash algorithms both
within or across metadata servers. The hash-based metadata distri-
bution effectively exploits the key-value access performance. How-
ever, the rename operation raises performance concern to such
hash-based design. In this part, we first statistically analyze the per-
centage of rename operations in real applications, and then propose
two optimization techniques to further mitigate this overhead.

3.4.1 Low Percentage of Rename Operations in Real Applications.
To estimate the rename cost, we first analyze the percentage of
rename operations out of the total file system operations. In file
systems, there are two types of rename operations: file rename
(f-rename) and directory rename (d-rename). We analyze the file
system trace [50] on Sunway TaihuLight Supercomputer [1], and
find there is no d-rename and f-rename operations. Our observa-
tion is also consistent with previous research from GPFS file system
of Barcelona Supercomputing Center [23], where the d-rename
consumes only 10−7 percentage of the total operations. Even a file
system has extremely low percentage of rename operations, LocoFS
provides two optimizations to accelerate rename performance as
follows.

3.4.2 Relocation Reduction using UUID. The first optimization is
to use UUID to reduce the relocations caused by rename operations.
Different from traditional hash-based distribution, LocoFS assigns
each directory or file with a UUID. LocoFS uses UUID as part of
indices to index the subdirectories, files or data blocks. Since the
UUID does not change the name, the successors that are indexed
using UUID mostly do not need to be relocated.

Rename operations contains both the f-rename and the d-rename.
For f-rename, only the file metadata object needs to be relocated,
due to its changed index directory_uuid + file_name. Because
all data blocks are indexed using uuid + blk_num, in which the file’s
uuid does not change, the data blocks do not need to be relocated.
For d-rename, the directory itself and its succeed directories need to
have their metadata objects relocated. The succeed files do not need
to be relocated because they are indexed using directory_uuid +
file_name. In conclusion, only succeed directories have to relocate

their metadata objects. Since they are stored in a single DMS server,
all these operations do not involve cross-server operations, thus
limiting the performance degradation.
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Figure 5: Rename Acceleration using B+ Tree

3.4.3 Rename Acceleration using B+ Tree. The second optimiza-
tion is to leverage B+ tree structure to accelerate the relocations
of sub-directories in a directory rename operation, which is the
only major cost as discussed above. LocoFS leverages the B+ tree
structure in the Kyoto Cabinet key-value store to manage the di-
rectory metadata in the DMS server. In the B+ tree structure, the
keys are organized in alphabetical order. In the directory metadata
store, the full path name is used as the key. As a consequence, all
sub-directories of a directory are placed together in the B+ tree, as
shown in Figure 5. With this property, these sub-directories can
be moved to a new place following the new name of the directory
with low cost.

4 EVALUATION
In this section, we compare LocoFS with three widely used dis-
tributed file systems - Lustre, CephFS and Gluster. We first evalu-
ate the metadata performance (Section 4.2), including the latency,
scalability, performance gap to raw key-value stores, and effects
respectively from flattened directory tree and decoupled file meta-
data techniques. We then evaluate the full system performance by
performing read and write operations (Section 4.3). In addition,
we evaluate the d-rename overhead (Section 4.4.2) in LocoFS and
its sensitivity to the directory depth (Section 4.4.1).

4.1 Experimental Setup
4.1.1 Cluster Hardware Configuration. We perform the evalua-

tions on two clusters, the Dell PowerEdge cluster and the SuperMi-
cro cluster, as shown in Table 2. The Dell PowerEdge cluster consists
of 16 nodes. Each node is equipped with 16GB DDR2 memory and 8
CPU cores. The SuperMicro cluster consists of 6 nodes. Each node
is equipped with 384GB DDR4 memory and 24 CPU cores. Servers
in both of the two clusters are connected with 1Gbps Ethernet. We
use the wimpy Dell PowerEdge cluster for the metadata service de-
ployment, and the beefy SuperMicro cluster for clients, to generate
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Table 2: The Experimental Environment

Cluster Name Metadata Cluster Client Cluster

Server Name DELL PowerEdge SuperMicro

#Machines 16 6

OS CentOS 7 CentOS 7

CPU AMD Opteron Intel Xeon
8 core 2.5GHz 24 core 2.5GHz

Memory DDR2 16G DDR4 384G

Storage SAS 128G SATA 1TB

Network 1GE 1GE

Evaluated FS CephFS 0.94, Gluster 3.43
Lustre 2.9, LocoFS

enough client requests to stress the metadata service. For the Su-
perMicro cluster, each core runs two clients using hyper-threading,
with a total of 288 clients in the whole cluster.

4.1.2 Software Configuration. Weuse Lustre at version 2.9, Ceph
at version 0.94 and Gluster at version 3.7.8. The Lustre binary is
obtained from the Lustre-release [6] source, and the CephFS and
Gluster binaries are obtained from the Epel-Release [2] source. We
deploy these file systems on CentOS 7. All the servers use btrfs as
local file systems except that Lustre runs on a loop device. Lustre
is configured with DNE1, which divides the MDS manually, and
DNE2, which stripes the directories automatically.1

We use mdtest [7] benchmark to evaluate the metadata perfor-
mance of above-mentioned file systems. The clients have OpenMPI
configured at version 1.10. In the evaluations, we abandon the FUSE
interface to avoid the performance bottleneck in the clients. Instead,
we modify the mdtest benchmark which uses the client libraries
to directly communicate with metadata servers, e.g., libgfapi [5]
in Gluster, libcephfs [4] in CephFS, and locolib in LocoFS.

4.2 Metadata Performance
4.2.1 Latency. We first evaluate the latency benefits obtained

through our design of flattened-directory tree. In this evaluation,
we use a single client to perform touch, mkdir, rmdir, stat and
rm operations. The mdtest benchmark is used for those workloads.
It generates 1 million files and directories in every test. Since all
these operations are synchronous operations, we collect the latency
for each operation in the client. In addition, we also use a single
client to perform readdir operations. This workload is performed
by reading a directory with 10k files and sub-directories.

Figure 6 shows the normalized latencies of touch and mkdir in
each file system. The normalized latency is the metadata operation
latency that is normalized to the latency of one round trip. For
brevity, we show the normalized latencies of other operations only
with 16 metadata servers in Figure 7. From the two figures, we
make three observations.

(1) LocoFS achieves the lowest latencies for touch and mkdir.
Compared with LocoFS-C, the average latency of Lustre D1, Lustre
1In our graph legend, LocoFS-C stands for LocoFS with cache in client, LocoFS-NC
stands for LocoFS without cache in client, Lustre D1 stands for DNE1, and Lustre D2
stands for DNE2 [19].
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Figure 6: Latency Comparison for touch and mkdir opera-
tions. Y-axis is the latency normalized to the single RTT (Round-
Trip Time, 0.174ms).
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Figure 7: Latency Comparison for readdir, rmdir, rm,
dir-stat and file-stat operations with 16 Metadata
Servers. Y-axis is the latency normalized to the LocoFS-C.

D2, CephFS, Gluster respectively are 4×, 6×, 8× and 8× of LocoFS
for the touch operation, and 4×, 4×, 6× and 26× of LocoFS for the
mkdir operation. In particular, LocoFS-C and LocoFS-NC achieves
an average latency of 1.1× RTT time for creating a directory using
the mkdir operations. This latency is very close to the round-trip
latency of Ethernet. This demonstrates that the single Directory
Metadata Server (DMS) design can provide low-latency directory
access operations. LocoFS-C and LocoFS-NC also achieve much
lower latencies than Lustre, CephFS and Gluster for creating files
using the touch operations. This is because that flattened directory
tree provides direct file locating service, which enables low-latency
file locating. Gluster gets the highest latency in mkdir due to its
directory synchronization operation in every node.

(2) Compared with Gluster, LocoFS shows relatively stable la-
tency with the increase of metadata servers. Latencies in Gluster
is dramatically increased when the number of metadata servers
increased. In contrast, latencies in LocoFS show the much lower
increase, which indicates better stable performance. This perfor-
mance stability in LocoFS is contributed mostly by the flattened
directory tree structure, which reduces the cross-server operations
in the metadata server cluster. An interesting observation occurs
to touch operations in LocoFS. The average latency is increased
from 1.3× to 3.2× of the RTT time in LocoFS-C and from 3.1× to
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6.2× of the RTT time in LocoFS-NC. However, this is not a design
flaw of LocoFS. It is because the client has to set up more network
connections to different metadata servers. More network connec-
tions slow down the client performance. CephFS and Lustre also
show the similar pattern with LocoFS for the touch operations.

(3) LocoFS achieves comparable latencies with the other evalu-
ated file systems for other operations, as shown in figure 7. LocoFS
provides similar readdir and rmdir performance to Lustre and
Gluster. This is because LocoFS cannot identify whether the direc-
tory has files in FASs (File Metadata Servers). Thus, LocoFS needs to
check every node to confirm that files have already been deleted for
the rmdir operation, and pull the d-entry metadata to the client
for the readdir operation. The overhead of readdir also occurs in
other distributed file systems that distribute files of one directory
to different metadata servers, such as in Gluster and Lustre. LocoFS
gets the lower latencies in rm, dir-stat and file-stat operations
compared with Lustre and Gluster. It is because LocoFS avoids the
path traverse operation among different metadata servers. CephFS
gets the lowest latency for dir-stat and file-stat due to the
metadata cache in the client.

4.2.2 Throughput. Since the reduced dependencies in file sys-
tem metadata of LocoFS contribute to scalability, we measure the
throughputs of LocoFS, Lustre, CephFS and Gluster for comparison.
In this evaluation, we deploy OpenMPI to run the mdtest bench-
mark. We scale the metadata servers from 1 to 16 to evaluate the
throughput of metadata service.

To saturate the metadata service capacity, we try to generate
enough pressure from the clients. In the experiments, we find that
the performance of metadata service drops when the number of
clients exceeds a certain value, due to client contentions. Therefore,
we use the optimal number of clients that achieve the best metadata
performance for each experiment. To identify the optimal numbers,
we start from 10 clients while adding 10 clients every round until
the performance reaches the highest point. Each client creates 0.1
million directories and files. Table 3 shows the optimal number of
clients for different settings.

Table 3: The Number of Clients in Each Test

1 2 4 8 16

LocoFS with no cache 30 50 70 120 144

LocoFS with cache 30 50 70 130 144

CephFS 20 30 50 70 110

Gluster 20 30 50 70 110
Lustre with DNE 1 40 60 90 120 192
Lustre with DNE 2 40 60 90 120 192

Figure 8 shows the throughput (IOPS) of evaluated file systems
by varying the number of metadata servers from 1 to 16. It gives
the results of touch, mkdir, stat, rmdir and rm operations. From
the figure, we make following observations:

(1) The IOPS of LocoFS for file or directory create (i.e., mkdir) op-
erations with one metadata server is 100K, which is 67×2012leveldb
higher than CephFS, 23× than Gluster and 8× than Lustre DNE1
and Lustre DNE2. The IOPS of LocoFS gets close to the random
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Figure 8: Throughput Comparison of touch, mkdir, rm,
rmdir, file-stat and dir-stat. Y-axis is the throughput normal-
ized to that of LocoFS-C. Results of Lustre D2 and LocoFS-NC are
omitted in rm, rmdir, file-stat and dir-stat evaluations, because Lus-
tre D2 and LocoFS-NC respectively share similar performance with
Lustre-D1 and LocoFS-C.

write performance of key-value (KV) stores, e.g., LevelDB at 164K
IOPS [16]. It demonstrates that the loosely-coupled structure is
suitable for the key-value stores and is effective in bridging the gap
between key-value stores and file system metadata performance.

(2) LocoFS-C shows file create (i.e., touch) performance that
is much higher than Lustre, CephFS and Gluster. LocoFS-C also
shows good scalability when the number of metadata servers is
increased from 1 to 16. While flattened directory tree structure
enables good scalability of file accesses, the directory cache in the
client further removes the directory metadata access bottlenecks.
The touch figure shows that LocoFS-C achieves 2.8× compared
with LocoFS-NC with sixteen servers. It means that with the client
cache of directory metadata, LocoFS achieves good scalability.

(3) LocoFS outperforms the other file systems for file create and
remove (i.e., touch and rm) operations, and outperforms CephFS
and GlusterFS for directory create and remove (i.e., mkdir and
rmdir) operations in all evaluated cases. One exception is that
LocoFS has poorer scalability than Lustre for mkdir and rmdir
operations. The scalability of mkdir in Lustre comes from the par-
allelism of operations to the increased number of metadata servers,
while LocoFS has only one DMS (Directory Metadata Server). The
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Figure 9: Bridging the Performance Gap Between File Sys-
tem Metadata and Raw Key-value Store.

poorer scalability of rmdir in LocoFS is because LocoFS have to
get the directory entries from all metadata servers.

(4) LocoFS outperforms Lustre and Gluster, but has poorer per-
formance than Ceph for dir-stat and file-stat operations. This
is because LocoFS only caches d-inode, but Ceph caches both d-
inode and f-inode. Also, LocoFS uses a strict lease mechanism (as
in Section 3.2.2) that leads to high miss ratios in d-inode cache.

4.2.3 The Bridging Performance Gap. Figure 9 compares file
systems’ metadata performance with raw key-value store’s perfor-
mance. From the figure, we can see that LocoFS can achieve 38%
the performance of Kyoto Cabinet (Tree DB) using one metadata
server. It has significantly higher performance than the other file
systems.

In addition, LocoFS using 16 metadata servers can achieve the
single-node Kyoto Cabinet performance. LocoFS has a peak per-
formance of 280k IOPS when using 16 metadata servers, which
is 2.5× higher than IndexFS with the same number of metadata
servers which is reported in [38]. This also tells that LocoFS is more
effective in exploiting the benefits of key-value stores than existing
distributed file systems. While data sources are the same with those
in Figure 1, we conclude the loosely-coupled metadata service in
LocoFS is effectively bridging the gap between file system metadata
service and key-value stores.

4.2.4 Effects of Flattened Directory Tree. We also measure the
throughputs of LocoFS, as well as Lustre, CephFS, Gluster and
IndexFS, by co-locating the client with its metadata server, which
does not involve network latencies. By mitigating the network
impact, we focus on the effects of the flattened directory tree (that
has been described in section 3.2) on the metadata performance.
IndexFS code is fetched from the Github2. Evaluation methods are
as same as configured in section 4.2.1. In this evaluation, we use
one client to run the mdtest benchmark.

Figure 10 shows the latency results of evaluated file systems by
co-locating clients with its metadata servers. From Figure 10, we can
see that LocoFS achieves the lowest latency among the evaluated
distributed file systems for mkdir, rmdir, touch and rm operations.
Compared to CephFS and Gluster, IndexFS achieves lower latency.

2https://github.com/zhengqmark/indexfs_old
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Storing file system metadata using key-value stores contributes
to the performance benefits. LocoFS has even lower latency than
IndexFS, because LocoFS further optimizes its logical organization
in a key-value friendly way.

By comparing Figure 6 and Figure 10, we observe that LocoFS
can achieve better performance with faster network. In Figure 6,
which shows the latencywith network round-trips, LocoFS achieves
latency that is 1/6 of that in CephFS or Gluster. But in Figure 10,
LocoFS’s latency is only 1/27 of CephFS and 1/25 of Gluster. The
latency attributes to two factors: network latency and software
overhead. From the two figures, we also find that faster network
devices do little help in improving the metadata service of CephFS
and Gluster, whose bottleneck still lies in the metadata processing
and storage parts (i.e., the software part). In contrast, since LocoFS
has lower software overhead, faster network devices can further
improve its performance. It means that loosely-coupled metadata
design also reduces the software latency, which may also contribute
to better performance when using a high-speed network.

4.2.5 Effects of Decoupled File Metadata. In this section, we
evaluate the performance improvement led by the decoupled file
metadata technique that has been described in section 3.3. We
perform the experiments with 16 metadata servers using a modi-
fied mdtest benchmark, which adds chmod, truncate, chown and
access operations. Those operations change either the access region
or content region that are defined in Table 1.
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Figure 11 shows the IOPS of the above-mentioned metadata
operations for evaluated file systems. LocoFS is configured with
the decoupled file metadata technique disabled and enabled, which
are respectively annotated with LocoFS-CF and LocoFS-DF. While
LocoFS-CF has already improved these file metadata performance,
LocoFS-DF further improves performance over LocoFS-CF. With
the key-value friendly organization, LocoFS achieves relatively
good performance even without the file metadata cache layer. This
improvement is also contributed by the reduced serialization and
de-serialization of key-value stores when performing write and
read operations.

4.3 Full System Performance
In this section, we measure the full system performance to evaluate
the performance impact from themetadata service in LocoFS. In this
experiment, we use a combination of create, read/write and close
operations as the workload. Lustre, CephFS, Gluster and LocoFS
are configured with 16 metadata servers. All these file systems do
not use data replicas in the experiments. In each file system, 1000
files in one directory are created and read/written using fixed-size
I/Os.

Figure 12 shows both write and read latencies for the three
evaluated file systems using different I/O sizes. For the 512B I/O
evaluation, LocoFS’s write latency is only 1/2 of Lustre, 1/4 of
Gluster and 1/5 of CephFS. LocoFS’s read latency is 1/3 of Gluster
and Lustre and 1/50 of CephFS. This is because, with small I/O
sizes, the metadata performance is important to the whole system
performance. This benefit in LocoFS lasts before the write size
exceeds 1MB or the read size exceeds 256KB. With large size I/Os,
data performance is more dominated by the data I/O performance
than the metadata performance. As such, LocoFS is more effective
in improve I/O performance with small access sizes, due to its
significant improvement in the metadata performance.

4.4 Overhead Evaluation
4.4.1 Impact from Directory Depth. In this section, we evaluate

the impact on performance from the directory depth. We vary
the depth of directories from 1 to 32 in the mdtest benchmark. In
the evaluation, we configure LocoFS with both cache enabled and
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Figure 14: Rename Overhead.

disable, and respectively evaluate them using two and fourmetadata
servers, resulting four configurations in total.

Figure 13 shows the IOPS of file create operations of four dif-
ferent configurations with varied depths of directories. From the
figure, we can see that the performance of LocoFS-NC (with cache
disabled) drops dramatically, e.g., from 120K to 50K when using four
metadata servers. This is because directory tree has to check the
access control list in each level. Deeper directories lead to higher
latency in path traversal. In contrast, LocoFS-C (with cache enabled)
has less performance loss with increased depth (e.g., from 220K to
125K) when using four metadata servers. The client cache mitigates
this problem.

4.4.2 Directory Rename Overhead. In this section, we evalu-
ate the impact on directory rename (d-rename) operations. Since
(d-rename) is a major concern in hash-based metadata designs, we
measure the rename overhead by varying the number of renamed
directories from 1000 to 10 millions in LocoFS. To simulate the
real environment, in this experiments, we first create 10 millions
directories in DMS. We also compare the hash DB and Btree DB
modes in Tokyo Cabinet, in which we leverage the tree DB mode
for rename optimization (as in Section 3.4.3). The experiments are
also performed respectively in SSDs and HDDs.

Figure 14 shows time that is used in the d-rename operations for
different number of renamed directories with four modes. From the
figure, we can see that the Btree mode, which is used with rename
optimizations, can significantly reduce the rename time, compared
to the hash mode. Compared with the hash-based key-value store
that needs to traverse all the records, Btree-based ones can perform
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fast rename operations, and is suitable for directory management
(i.e., the directory metadata server) in LocoFS. In the B-tree mode, it
can perform rename operations within a few seconds for renaming
1 million directories. There is no big difference between HDDs and
SSDs for the rename operations. Even with the hash mode and
extremely large number of rename operations (e.g., 10 million), the
rename operation can also be completed in around 100 seconds,
which is acceptable. In conclusion, even though directory rename
operations are common in some cases, LocoFS can efficiently limit
its overhead.

5 RELATEDWORK
Efficiency of the file system software has recently been a hot topic,
especiallywhen used on the high-performance flash SSDs [21, 22, 28,
29, 55] or persistent memory [12, 15, 26, 35, 49, 54]. Different from
the above-mentioned works that aim to reduce software overhead
leveraging emerging storage hardware features, LocoFS improves
software efficiency by decoupling the metadata dependencies to
exploit the key-value store potentials. In this section, we focus on
the metadata organization in both local and distributed file systems.

Namespace Structure in Local File Systems: The directory
tree data structure has been the dominate namespace structure in
file systems for decades. It is argued that the directory tree could
be a limitation in file systems, due to either the increasing data
volume [37, 41] or the deployment of fast non-volatile memory [28].

With the increased data volume, a file system needs to manage
trillions of files, in which finding a specific file is much difficult. For
this reason, the hFAD (hierarchical File Systems Are Dead) project
argues that semantic file systems, which accelerate file searching
by extending the attributes, could be the future file systems [41].

A less aggressive approach to improve the namespace perfor-
mance is to introduce the table-based organization to the directory
tree. In the early years, Inversion File System [33] has chosen to
organize file system metadata using Postgre database. Recently, re-
searchers propose to organize metadata using key-value (KV) stores,
which provides high performance due to simple organization. For
instance, XtreemFS [8] uses BabuDB [44]; TableFS [37] and its dis-
tributed version IndexFS [38] use LevelDB [3]. Researchers even
propose to built the whole file system on KV stores. HopsFS [32]
uses NewSQL to store the metadata of HDFS and remove the meta-
data bottleneck by distribute the in-memory metadata of HDFS.
KVFS [43] is built on the VT-Tree, a variance of LSM-Tree (Log-
Structured Merge Tree) [34]. BetrFS [20, 53] is built on fractal tree,
which is also an optimization version of LSM-Tree. LocoFS takes
this approach by using the Kyoto Cabinet KV store [17].

Recent flash file systems have proposed to indexing data objects
in a backward way to reduce write amplification and improve flash
endurance [28, 29]. OFSS [29] proposes the backpointer-assisted
lazy indexing to keeping the index pointers along with data objects,
which enables lazy updating to the normal indexing. ReconFS [28]
redesigns the namespace management of a local file system, and
makes it reconstructable. Leveraging the unbalanced read and write
performance of flash memory, it does not strictly maintain the direc-
tory tree connections in the persistent storage. Instead, it stores the
inverted indices with each file or directory to reduce the write over-
head while enables fast recovery leveraging the comparatively fast

read performance of flash memory. The backward indexing designs
reduces the metadata writes to flash memory and thereby extends
flash lifetime. Inspired by the backward indexing designs in OFSS
and ReconFS, LocoFS introduces the flatten directory tree design
to distributed file systems to weaken the metadata dependencies.

MetadataDistribution inDistributed File Systems:The scal-
ability of metadata service is the key design point in the scalability
of distributed file systems. Most existing distributed file systems
either distributed metadata to data servers [13, 26, 30, 47] or use
metadata server cluster [11, 52]. Metadata distribution of these dis-
tributed file systems falls into two major categories: hash-based and
directory-based.

The directory-based metadata distribution favors locality more
than load balance. CephFS [47] distributes metadata in the units
of sub-directories and balances the access dynamically. All files
and sub-directories in one directory have their metadata located in
the same server, which maintains data locality and reduces cross-
server operations. Its successor, Mantle [42], further proposes a
programmable interface for flexible metadata patterns.

The hash-based method favors load balance while sacrificing
locality. Giga+ [36], as well as IndexFS [38] which is the successor
of Giga+, uses hash and dynamic directory namespace to distribute
metadata in different servers. Gluster [13] has no metadata server
but layout the metadata in each data server, and uses extended at-
tribute in local file system and DHT based on directory to distribute
the metadata. LocoFS also takes the full-path hashing in metadata
distribution, but reduces the dependency of metadata to further
match the performance of key-value stores.

6 CONCLUSION
Key-value stores provide an efficient way for file system metadata
storage. However, there is still a huge performance gap between
file system metadata and key-values stores. It is the strong de-
pendencies between metadata accesses that prevent file system
metadata service from fully exploiting the potentials of key-value
stores. In this paper, we propose a loosely-coupled metadata ser-
vice, LocoFS, for distributed file systems. LocoFS decouples the
dirent-inode dependencies to form flattened directory tree struc-
ture, and further decouples the file metadata into access and
content regions, so as to organize file system metadata in a key-
value friendly way. Evaluations show that LocoFS achieves 1/4
latency (when using one metadata server) and 8.5× IOPS (when
using four metadata server) of IndexFS, a recent file system with
metadata service optimizations using key-value stores, while pro-
viding scalable performance.
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