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Abstract—Modern recommendation systems in industry often
use deep learning (DL) models that achieve better model accuracy
with more data and model parameters. However, current open-
source DL frameworks, such as TensorFlow and PyTorch, show
relatively low scalability on training recommendation models with
terabytes of parameters. To efficiently learn large-scale recom-
mendation models from data streams that generate hundreds of
terabytes training data daily, we introduce a continual learning
system called Kraken. Kraken contains a special parameter
server implementation that dynamically adapts to the rapidly
changing set of sparse features for the continual training and
serving of recommendation models. Kraken provides a sparsity-
aware training system that uses different learning optimizers
for dense and sparse parameters to reduce memory overhead.
Extensive experiments using real-world datasets confirm the
effectiveness and scalability of Kraken. Kraken can benefit
the accuracy of recommendation tasks with the same memory
resources, or trisect the memory usage while keeping model
performance.

Index Terms—Systems for Machine Learning, Continual
Learning, Recommendation System

I. INTRODUCTION

Recommendation systems have become a cornerstone of
many popular mobile applications in recent years. They gen-
erate personalized rankings for various contents, including
news articles, short videos and advertisements, and therefore
improve users’ interaction experience with these applications.
As reported by popular business analysts, recommendation
systems drive up a significant portion of revenue for many
large companies such as Amazon and Facebook by increasing
user engagement [1]–[3].

Time sensitivity is crucial for recommendation systems to
achieve reasonable performance. For example, users’ interests
are often highly non-stationary, seasonal, and sensitive to
trends when they interact with mobile applications. This is
known as the concept drift [4]. Another important issue for
recommendation systems is the so-called cold-start problem
[5] that is to infer a new user’s preferences or a new item’s
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potential audience within limited time. A common wisdom to
tackle these problems is to use real-time continual learning (or
online learning) [6], [7], which means continuously training
recommendation models with the incoming new data for better
model freshness. This strategy works for many classic machine
learning models such as logistic regression [8], [9] and matrix
factorization [10]. However, as the rise of deep learning (DL)
in recommendation systems, online learning for DL models
faces challenges in terms of system scalability and model
quality.

Unlike classic machine learning models or DL models used
in computer vision (CV) and natural language processing
(NLP), DL models for recommendation systems use lots of
sparse categorical features that are represented as one- or
multi-hot binary vectors with extremely high dimensions. As
the number of different sparse features reaches the level of
millions and even billions for better accuracy, model sizes
become multi-terabytes and thus unfit into the memory of a
single GPU, or even a single server. Moreover, in contrast to
the limited memory resources, there are numbers of newly
generated contents and user behaviors that need to be repre-
sented into the DL models every minute. Both huge models
and constant streams of data create extremely high memory
pressure for the training systems. To make the case even
worse, under the pressure of training giant models through
massive data, it is even more difficult to efficiently serve
models updated in real-time.

Existing systems are not sufficient to overcome these chal-
lenges. General open-source DL frameworks such as Tensor-
Flow [11] and PyTorch [12] are highly optimized for batch-
training complex DL models in the field of CV and NLP.
Previous studies under production settings [1], [13], [14] have
shown that these general DL frameworks do not scale well
for large recommendation models since they are inadequate
for handling large-scale sparse features. Moreover, insufficient
end-to-end online learning support causes them not to work
under ever-increasing and constant-updating models. Even the
internal version of some open-source framework is thought to
be of high maintenance cost to enable online learning [15].
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In this paper, we introduce Kraken, a production-ready
system that takes the sparse embedding into account for both
optimizing online learning and serving large-scale recommen-
dation models. To our best knowledge, this is the first paper
that includes enough details in both the system and algorithmic
aspects of building a large-scale continual learning system for
industry-level recommendation systems. The core of Kraken
consists of a sparsity-aware training system with a specific
parameter server implementation that combines data paral-
lelism and model parallelism for training recommendation
models. The specialized parameter server supports automatic
feature admission and expiration mechanisms to efficiently
manage the lifecycles of sparse embeddings during online
learning, which exploit the limited memory resources for better
model performance. Moreover, the online serving system of
Kraken decouples the storage of sparse embeddings and the
computation of model prediction, which significantly saves
network and storage costs. We implement the training system
of Kraken on top of TensorFlow 1.14, and therefore Kraken
is compatible with TensorFlow APIs. We examine Kraken
by conducting both offline experiments and online A/B tests
using real-world datasets. The results reveal the effectiveness
and scalability of Kraken compared to the vanilla TensorFlow
system.

II. BACKGROUND AND MOTIVATIONS

A. Deep Learning in Recommendation Systems

Figure 1a illustrates the overview of recommendation sys-
tems. For a given user query u with various user, item
and contextual information, the recommendation system often
performs a two-step procedure to generate a ranked list of most
relevant items {xi} from a database with possibly billions of
items. The first step is called retrieval, which returns hundreds
of items by using a combination of simple machine-learned
models and lightweight human-defined rules for efficiency.
After reducing the candidate pool, the later ranking step ranks
all the items by their ranking scores generated from complex
deep learning models. The ranking score is usually an estimate
of P (y | u, xi), the probability of a subsequent user action
label y (e.g., clicks, likes) after user u views the item xi. To
train these models, the real user feedback data, along with
the user and contextual information, are recorded in logs as
the training data. To get an accurate prediction of ranking
scores, modern recommendation models use lots of sparse
features and complex DL models [16]–[18]. Sparse categorical
features are often used to represent interactions between any
two general entities. For example, the user preference feature
can be a list of the last K video IDs that a user ever clicked.
To efficiently handle sparse features, recommendation models
often use a technique called sparse embedding to transform
them into low-dimensional dense representations. As shown
in Figure 1b, a sparse feature can be seen as a vector of
sparse IDs. Each sparse feature is paired with an embedding
table, and each sparse ID of the feature is used to look-up
a unique column (called embedding vector) in the embedding
table during the transformation. The sought embedding vectors
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(b) Typical DNN model architecture for recommendation system. 
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Fig. 1: Overview of recommendation systems. (a) The two
steps in recommendation systems, retrieval and ranking. (b) A
typical DNN model architecture for recommendation system.
Sparse features (list of ids, e.g., UID (user’s id) and VID
(video’s id)) will first be mapped into dense embedding vectors
in different embedding tables (sparse part of models). The
sought embedding vectors are then combined and become the
input of rest parts of the model to make the final prediction.
(c) shows a hash collision in embedding tables.

are then combined into a single dense vector using element-
wise gather operations (called pooling operations). Then the
newly formed dense vectors become the input of rest parts of
the model to make the final prediction.

These sparse embedding tables are often referred to as the
sparse part of recommendation models. The rest of models,
including multi-layer fully-connected deep neural networks
(DNNs), are referred to as the dense part. There are drastic



Platform Input
Dimension

Output
Dimension

Parameter
Capacity Size

Dense part Both 103 1 106 MB

Sparse part Tensorflow 108 103 108 GB
Kraken 1010 103 1010 TB

TABLE I: Comparison of sparse and dense parts in DNN-
based models for recommendation system. Kraken supports
more parameters than TensorFlow. Space complexity (called
Size) is shown in this table.
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Fig. 2: Typical parallel paradigm of recommendation models
combines model parallelism and data parallelism.

differences between the sparse and dense parts in terms of
data size and access patterns. As shown in Table I, the size of
sparse part can be 1000× or even larger than that of the dense
part. However, only a limited number of embedding vectors in
the sparse part are accessed during each mini-batch of training
or prediction, while the dense part is fully accessed for each
batch. Kraken redesigns the storage for sparse embeddings and
adopts a better hash strategy which allows it to support much
larger embedding tables.

Current open-source DL frameworks such as TensorFlow
and PyTorch use dense mutable matrices (fixed-size arrays)
to represent sparse embeddings. As a common practice for
these frameworks, these sparse IDs need to be hashed into a
predefined, countable set to control the size of each embedding
table, known as hash trick (see Figure 1c). For example,
for a video with an ID j, its embedding is stored at index
(hash(j) mod M) of an array with size M . This method
can be tricky as some sparse IDs are accessed more often
than others (e.g., those videos are more popular, and clicked
by more users). Unfortunately, when popular IDs are hashed to
the same hash bucket, it leads to reduced prediction accuracy
due to value overlapping. A naive approach to avoid hash
collisions is to increase the hash table size, which wastes
memory for unused hash buckets. Kraken redesigns the storage
for sparse embedding and adopts a better strategy which allows
it to support elastic expanding embedding tables.

B. Parallel Paradigm of Recommendation Models

As the machine learning models get more parameters, a
single machine is not sufficient to train and serve large-scale
models due to its limited computing and memory resources.
Many previous studies [11], [19]–[21] have proposed parallel
training systems for large-scale neural networks used in CV

and NLP. Typical parallel mechanisms include data paral-
lelism and model parallelism [20]. Data parallelism divides
training data into multiple datasets for each worker, while
model parallelism partitions the models into multiple parts that
can be trained in parallel.

As a common practice, parallel training of recommendation
models combines model parallelism and data parallelism due
to the characteristics of different types of parameters (Fig-
ure 2). For the sparse part of models, the embedding tables are
model parallel and shared across multiple workers by hashing,
while for the dense part of models, the DNN is data parallel,
which has one unique copy in each worker. The large memory
consumption of the sparse parameters basically determines
how many workers we need at least, to complete training
and serving. Kraken proposes several optimizations to provide
memory-efficient learning and serving at the lowest compute
resource overhead.
C. Necessity and Challenges of Large-Scale Online Learning

Previous research works have shown that increasing the
size of deep learning models in many tasks can greatly boost
their accuracy and prediction power without overfitting [22],
[23]. This observation also works well with recommendation
systems, since larger embedding tables can capture more fine-
grained user behaviors and item properties. Figure 3a demon-
strates that the performance of DNN-based recommendation
models over three industrial datasets increases noticeably
as their model sizes grow [13], [24]. In terms of learning
recommendation models at a massive scale, online learning
has many advantages over batch training. Firstly, industrial
recommendation systems often collect training data up to
hundreds of terabytes per day. Online learning enables efficient
training on very large volume data by streaming instances
where each training instance only needs to be processed
once. Secondly, online learning allows new models to be
updated on-the-fly and deployed much more frequently than
batch-training, which is quite important for solving problems
mentioned in Section I such as the cold-start and concept drift
problem. To show the benefits brought by online learning, we
run an online A/B test to compare two modes of Kraken: one
uses online learning that updates the model every five minutes,
and the other uses a stationary model which is pre-trained but
not updated during the test. Figure 3b plots the average AUC
of the two models with different setups during the A/B test,
where the online-learning model keeps model accuracy stable
but the AUC of the stationary model drops by 4.7% after one
hour. It concludes that online learning is effective in keeping
track of user interests in recommendation systems.

System Scalability Limited by Memory and Long Feed-
back Loop. The foremost challenge for adopting online
training for recommendation DL models and scaling their
sparse embedding tables to multi-terabytes is to make trade-
offs between memory efficiency and model accuracy. As dis-
cussed in Section II-A, the sparse IDs of sparse features cannot
be uniformly mapped into hash buckets without considering
their importance as well as temporal access patterns (e.g.,
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a video ID may represent a trending video that should be
promoted only for a few days). With online training, the
sparse embedding table grows dynamically, and the number
of distinct embedding vectors increases much more quickly.
Both effects lead to a high possibility of hash collisions inside
the embedding table and model degradation. Another problem
with existing open-source training and serving systems [25],
[26] is their inefficiency of deploying large-scale online trained
models and supporting real-time data feedback loop. In the
industrial production environment, multiple versions of models
for the same task need to coexist in order to achieve fast
model recovery and run A/B tests to measure their model
performance. Therefore, Kraken is redesigned to take a leap
beyond previous systems, supporting both online training and
serving recommendation models with more than hundreds of
billions of parameters with stable model accuracy.

III. KRAKEN DESIGN PRINCIPES

In order to build a memory-efficient online-learning system
for large-scale recommendation systems, the following design
principles in Kraken are crucial for achieving not only system
scalability but also high model quality:

1) Reduce hash collisions and share memory space
across features. Kraken proposes a technique that dynamically
admits and evicts sparse embeddings to avoid unnecessary
hash collisions, and stores all sparse embeddings in a globally
shared embedding table to enhance memory utilization. In
such a way, Kraken does not restrict the size of hash bucket
explicitly for each sparse feature but allows the embedding
table to resize elastically and automatically during online
learning.

2) Sparsity-aware training framework. With more than
1011 sparse features, sparse parameters dominate over 99.99%
memory resources in production recommendation systems.
Kraken introduces a sparsity-aware training framework to
reduce memory usage during training. Under this framework,
we also propose a novel optimizer rAdaGrad to further reduce
memory usage related to sparse embeddings during training.

3) Efficient continuous deployment and real-time serv-
ing. During the online-learning process, the model in training
servers is always learned from newly generated user data.
Kraken proposes an efficient method to deploy constantly-
updating models without lagging.
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A. Reduce hash collisions and share memory space across
features

To minimize the accuracy loss resulting from hash col-
lisions, we introduce a collision-free but memory-efficient
embedding structure Global Shared Embedding Table (GSET),
shown in Figure 4.

Increasing the embedding table’s capacity is commonly
used to reduce hash collisions. However, it is difficult to
predict the table size, and thus it is not efficient to set a high
(usually constant) embedding table size before the deployment,
especially for online-learning systems. Instead, we propose
GSET, to 1) decouple key-value fetching operations from the
feature embedding process with a global mapper, which offers
high logical capacity for each embedding table with flexible
physical memory footprint by sharing memory among them,
and 2) execute adaptive entry replacement algorithms, a.k.a.
special feature admission and eviction policies, which ensure
a memory footprint lower than the preset threshold during a
long-term execution.

Global Mapper in GSET. The global mapper in GSET
decouples key-value fetching and embedding. It takes the
name and value of a feature (e.g., ‘UID’ and ‘001’ for
the feature user id) as input, and returns a formatted key
produced by preset mapping manners to a backend in-memory
key-value storage system which is responsible for embedding
management instead of a vanilla array in proposed structures.
The key’s format mainly consists of two domains representing
for feature name and feature value, and is highly config-
urable for special requirements from the model developers.
For instance, the width of the feature value’s domain can
be set respectively to control the logical capacity and meet
the skewed requirement for different features. With the global
mapper, GSET allows the elastic growth and shrinkage of each
sparse feature to share memory resources among them instead
of handcrafting different sizes of embedding tables.

Feature Admission and Eviction. To control memory
usage during a long-term execution, GSET executes different
adaptive entry replacement algorithms over all active features
during the whole online-learning process. The adaptive entry
replacement algorithms leverage different traits of the sparse
features to make decisions on how to admit and evict sparse



embeddings, including their frequency, duration, feature im-
portance, and so on. For example, many sparse IDs only occur
once in our production dataset, which should not be added
to GSET. Another example is that some sparse IDs related
to trending videos are no longer needed after these videos
are retired from the databases. Based on this kind of domain
knowledge (a.k.a. feature engineering), machine learning en-
gineers customize the entry replacement algorithms for each
class of sparse features to maximize model performance.

The adaptive feature admission policy used in GSET is to
filter out sparse IDs with low frequency. Since it is expensive
to track statistics for rare features that can never be of any real
use, GSET supports probability-based filters as introduced in
[9]. Probability-based filters admit a sparse ID that is not in
GSET with probability p. The number of times a sparse ID
needs to be seen before added to the model follows a geometric
distribution with expected value 1

p . With these filters, the low-
frequency IDs will get dropped before the training process,
which eliminates redundant computation and memory usage.

The entry replacement algorithms used in traditional in-
memory caches (such as LFU and LRU) are designed to
maximize the cache hit ratio, which only consider how often
each cached entry is referenced. Instead, GSET uses additional
information gained from online learning process to determine
the order of entry eviction after reaching the memory limit,
which is called feature-score method. GSET maintains a
feature score for each sparse ID determined by the number
of training samples containing the sparse ID, and how recent
these samples are. At intervals, GSET updates the feature score
of every sparse ID through the following formula:

S
(t+1)
L = (1− β)S(t)

L + β
(
c+r + c−

)
where β is the time decay rate, r is the importance weight,
and c+, c− are the number of positive and negative examples
containing the sparse ID L in this interval respectively. When
β = 1 and r = 1, the feature score method is equivalent to
LFU. The reason for assigning different weights to positive and
negative examples is that positive examples (e.g., clicks, likes)
are relatively rare, and more valuable in model predictions.
This shares similar ideas with subsampling techniques [9]
when dealing with imbalanced datasets.

There are two additional heuristic methods we find useful
in our production workloads. The first one is called duration
based policy, which sets an expiration timestamp for each
admitted sparse ID after they get updated. Before using the
feature score method to evict sparse IDs, the garbage collector
will first recycle those expired sparse IDs. This is because
many sparse features have clear life cycles such that their
appearances in the training logs disappear quickly after a short
period. Machine learning engineers can run offline analysis
on the past data to estimate their average duration and set an
optimal duration value for each sparse feature. For instance, a
large number of videos on our websites have no video clicks
or views two days after they get published. Some features

associated with video IDs can therefore be safely recycled
after two days.

The second optimization is called priority based policy,
which sets eviction priority classes for sparse features with
limited size. In our production environment, sparse features
are usually classified into two priority classes: high priority
and low priority. When GSET reaches the memory limit,
only sparse features with low priority are evicted by the
feature score method. The priority of sparse features are often
determined by machine learning engineers’ domain knowledge
and feature importance algorithms. Before starting online
training, feature importance can be estimated in the offline
analysis using modern approaches of feature selection as in
[27]–[29]. Then a list of top features can be grouped into
high priority class under the constraint that their total size
should not exceed certain memory limits. For example, in
our production workload, turning off the eviction of user-
related features (e.g., user id, city level) helps improve model
accuracy.

B. Hybrid training framework with sparsity-awareness

Embedding compress techniques like hash trick or composi-
tional trick [30] save memory at the cost of accuracy. This may
affect revenue significantly and is not suitable for production.
In another angle, how can we save precious memory resources
without cutting down embedding parameters? Instead of focus-
ing on embeddings, Kraken sets its sights on the optimizer
state parameters (OSPs) and uses a sparsity-aware training
framework.

The training process of a deep neural network is to
find a near-optimal solution to the optimization problem
minw fD(w), where f is a loss function, w denotes the
parameters of DNN and D is the training dataset. At each
training step, the optimizer updates the parameters wt as,

wt+1 = wt − α ∗
mt√
Vt

where α is the learning rate (a hyperparameter which decides
the step size), mt, Vt respectively denotes the momentum and
variance (two functions of historical gradients g1, g2 . . . gt).

Table II lists some typical optimizers. Different optimizers
have different forms of momentum mt and variance Vt. Some
of them require additional auxiliary memory to maintain
historical information, which is referred to as OSP, while
others only rely on that of the current iteration. In addition,
optimizers that maintain past square gradients g2 are noted as
adaptive optimizers because they can control the step size of
each mini-batch adaptively.

Among multiple optimizers along with their variants, Adam
has been widely used because of its competitive performance
and its ability to work well despite minimal tuning. However,
we find that OSPs introduced by Adam are oversized with too
many parameters in the recommendation scenario compared
to other scenes like computer vision. Typically, optimizers
need to maintain at least as many as or even double the
number of model parameters. The problem of limited memory



mt Vt Sparse Friendly Memory Requirement

SGD gt 12 N 0
AdaGrad [31] gt

∑t
τ=1 g

2
τ Y d

Adam [32] β1mt−1 + (1− β1) gt β2Vt−1 + (1− β2) g2t Y 2d+ 1

rAdaGrad gt
∑t
τ=1 ||gt||22/d ∗ 1 Y 1

TABLE II: This table shows the characteristics of different optimizers, supposing that the dimension of parameter is d. Sparse
Friendly column indicates whether the parameters with low access frequency can converge rapidly. Memory Requirement
column shows how many additional floats the optimizer needs to maintain. β1 and β2 are hyper-parameters.

is intensified when facing a 10TB level of parameters. Note
that in Section II, we show that the sparse parameters dominate
almost all memory resources. By using optimizers with less
memory pressure, we can cut memory costs directly. This
motivates the investigation of a strategy that combines different
optimizers for the dense and sparse part of the recommenda-
tion model.

Kraken proposes a memory-efficient sparsity-aware training
framework. For the sparse parameters, the default optimizer is
an adaptive one like AdaGrad with little footprint. By doing
so, the memory size of auxiliary data for performing optimiza-
tions reduces significantly. While for the dense parameters,
the default optimizer applied is Adam, which can provide
better convergence speed for the dense parameters and does
not require excessive tuning of hyperparameters. Although
Adam’s auxiliary OSPs are two times the original model
parameters in the dense part, the additional storage overhead
is tolerable because the dense parameters only account for a
small proportion compared with sparse parameters.

Adaptive optimizers show better accuracy in the sparse
parameters than nonadaptive optimizers such as SGD. The
reason behind it is that different ids are accessed with different
frequencies. The adaptive optimizers can dynamically deter-
mine the size of each step according to the number of visits,
while nonadaptive optimizers can not. Thus, Kraken does not
leverage SGD as the optimizer of sparse parameters though it
may save more memory. In contrast, a variant of AdaGrad
called reduced AdaGrad (rAdaGrad) is proposed here for
the optimization of sparse parameters. An important property
of rAdaGrad is that it minimizes the memory requirement
while preserving the adaptivity. The main difference between
rAdaGrad and AdaGrad is that we only maintain one float for
the computation of Vt in rAdaGrad for the embedding vector,
while d floats are needed in AdaGrad for an embedding vector
of d dimensions.

Specifically, we no longer store a historical sum of g2t for
each dimension of embedding, but compute the average of g2t
of all dimensions, i.e., ||gt||22/d, and maintain its historical sum
as a replacement. Here we give an intuitive explanation why
setting the same Vt in each direction of embedding does not
affect its convergence. Considering the naive version of SGD,
it has the same learning rate as the step size for each parameter
and converges normally. rAdaGrad can also be viewed as an
adaptive SGD which identifies different learning rates for each
embedding vector, thus ensuring convergence. Furthermore, it
is also easy to understand why rAdaGrad works better than

SGD with similar memory consumption. All the parameters
of an embedding are updated simultaneously in the network.
Therefore, to guarantee adaptive updates for each feature,
we just need to maintain a Vt scalar for each feature. For
high-frequency features, its Vt gets larger with accumulation
and the updating step size smaller. While for low-frequency
features, the step size is relatively larger. We will verify its
excellent performance for memory-constrained learning in the
evaluation section.

Kraken’s sparsity-aware algorithm provides a chord strategy
that balances both memory cost and convergency speed. By
fine-tuning the learning rate of two optimizers, we can achieve
equivalent or even better model performance while trisecting
the memory cost.

C. Efficient continuous deployment and real-time serving

In this section, we mainly present the system components in
Kraken that are built for serving large-scale recommendation
models in a real-time fashion.

The design of previous serving systems [25], [26] that keep
multiple versions of models within one prediction machine
cannot support large scale recommendation models which need
to be shared across nodes. A naive approach is Co-Located
Deployment (Figure 5a), which handles sharded models in
inference servers directly. Specifically, each inference server
maintains a whole dense part and one sparse part shard. When
predicting, it fetches the required parameters from other peers
and makes prediction locally. However, this straightforward
fashion introduces a relatively high financial cost when facing
a constantly updating model. On the one hand, every inference
server requires high capability DRAM to store a part of
sparse parameters. On the other hand, the constant model
updates affect inference servers and waste their computing
resources and NIC bandwidth. To enhance the scalability while
providing necessary features for the production environment,
we redesign the prediction system that handles storage service
and inference service separately on different servers, referred
to as Non-Colocated Deployment.

Non-Colocated Deployment. As shown in Figure 5b, the
prediction system of Kraken is built into two services: Predic-
tion Parameter Server (PPS for short) and Inference Server.
Similar to the parameter server architecture used in training,
prediction parameter servers store the sharded models and em-
bedding tables. To further reduce request latency and save NIC
bandwidth, inference servers cache certain parts of models,
including the entire dense part and the frequently accessed
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Fig. 5: Two architectures of predicting system. Baseline partitions all parameters to different inference servers directly, while
Kraken decouples the storage of sparse embeddings and the computation of model prediction.

embedding vectors. When receiving a request containing lists
of sparse feature IDs, inference servers fetch needed sparse
embedding vectors from prediction parameter servers, and
then perform the model inference. The main benefit of us-
ing Non-Colocated Deployment is to allow the two services
to scale up separately using different hardware resources.
Prediction parameter servers need large memory and high
network bandwidth, while inference servers are mostly bound
by computation resources. Thus, prediction parameter servers
can use high-memory instance, and inference servers can
utilize machines with high computation power.

With Non-Colocated Deployment, we can have two addi-
tional opportunities to further optimize the serving system.
On the one hand, to enhance both locality and load balance,
Kraken supports per-feature placement policy to distribute
different types of parameters based on their access patterns.
This policy can group parameters accessed together, and place
them into the same shard to get better access locality. For
example, some user-side bigram sparse features, such as follow
list, favorite list, are often in the form of combining user
IDs with other item IDs. Thus sharding these sparse features
based on the user ID can enhance locality since they are often
accessed together for the same user. And for extremely popular
parameters, they can be even replicated in every shard of
PPSs to reduce hotspots and achieve better load-balance. On
the other hand, while our distributed online training system
enables more frequent updates to machine learning models, it
is also desirable to deploy newly trained models for online
serving with minute-level delay. To simultaneously reduce the
load and achieve real-time model updates, Kraken’s training
subsystem adopts different updating policies to perform incre-
mental model updates. For the sparse part of models, instead
of transferring the entire copy of multi-terabyte embedding
tables each time, each update on a single embedding vector
will trigger an update message with the new value, which will
then be sent to all the downstream prediction servers to make
an update. For the dense part of models, the entire copy of
dense parameters will be updated in a batch every few seconds,
as their parameters are less volatile than the sparse parameters.

IV. IMPLEMENTATION

Kraken is implemented using C++11 and Python. The initial
version of Kraken’s training system implements both its own
worker engine and parameter server. However, to leverage the
benefits brought by the ecosystem of TensorFlow, the newer
version of Kraken is built as a plugin of TensorFlow which
is fully compatible with TensorFlow’s APIs. The plugin is
implemented as customized operators through TensorFlow’s
C++ low-level APIs, which interact with Kraken’s parameter
servers to perform different operations for sparse embedding
vectors and dense variables. For pre-fetching and batch pro-
cessing embedding vectors, we also implement embedding
caching to store embedding vectors accessed within a mini-
batch. Similar to Horovod [33], the TensorFlow plugin adds
hooks and variable proxies at Python API level to schedule
the timing and communication patterns of worker sending
gradients and parameter server sending model parameters.

The implementations of parameter server for training and
serving share the same code base. The core of parameter
server is a high-performance reader-friendly key-value store,
which can perform gradient aggregation algorithms as well as
adaptive feature management algorithms. For GSET, instead of
building a shared memory pool like [34], we maintain a virtual
table by directly partitioning all parameters to different servers
due to the simple semantic of key-values. For the admission
algorithm, there is no need to maintain any states, and for
the eviction algorithm, all policies can be supported with only
by 4 bytes per feature (for storing the 16 bits timestamp and
16 bits feature score). Considering the 128 or 256 bytes of
common embedding size and the space saved by the sparsity
aware training framework, the 4-byte overhead is negligible.
In addition to the core runtime, the implementation of infer-
ence servers is highly optimized for recommendation tasks in
production use and can support heterogeneous computation
devices including CPU, GPU, and FPGA. Kraken’s message
system is built as a general infrastructure which supports not
only model deployment but also data distribution to other
storage systems that require a scalable solution (e.g., index



service and user profile service which store features for items
and users).

Kraken supports both asynchronous and synchronous modes
for online training algorithms. In production, as our models
scale and require many more workers, we find that the asyn-
chronous mode has higher training speed and is more robust to
machine failures. Thus, asynchronous online training becomes
the default option for training our recommendation models.

V. EVALUATION

We first evaluate the benefits of our proposed techniques
and then report the performance of Kraken for real-world
applications in production.

A. Experimental Setup

Evaluation Platform. We evaluate Kraken over a cluster
with 64 servers, except for the production performance evalua-
tion that collects metrics directly from the production system.
All servers in the cluster are equipped with 512GB DRAM
and two 2.5GHz Intel(R) Xeon(R) Gold 6248 CPUs, each of
which has 20 cores. The servers are connected using 10 Gbps
Ethernet. If not specified, each server is equipped with four
training worker processes and one parameter server process.

Datasets. We measure the performance of Kraken both in
the public and our production datasets so that our experiments
could be easily reproduced while showing the performance in
real industrial scenarios. The used public datasets include
the Criteo Ad dataset, Avazu CTR dataset and MovieLens-
25M. The Criteo Ad dataset [35] is popular for evaluating
recommendation models and it will be included as a standard
benchmark in MLPerf benchmark [36] soon. Avazu CTR
dataset [37] contains 11 days of click-through data with
features on sites, apps and devices of a leading advertising
platform. MovieLens-25M [38] usually works as a stable
benchmark dataset which consists of 25 million movie ratings
ranging from 1 to 5 with 0.5 increments. Here we label the
samples with rating above 3 to be positive and the rest to be
negative, and train it as a binary classification model. The two
production datasets are collected from two separate real-world
recommendation services: Explore Feed and Follow Feed.
Both services make video-related content recommendations
to users. Table III summarizes the characteristics of different
datasets. Note that the Explore Feed dataset requires 500
million parameters for a reasonable recommendation model,
while the Follow Feed dataset requires 50 billion parameters
(100× more). We apply the common metrics, AUC and
Group AUC [39] (GAUC), to evaluate the model accuracy.
GAUC is a weighted average of all users’ AUC, regarding the
number of samples for each user as weight. Thus GAUC is
more indicative of model performance than AUC in the real-
world recommendation system. All datasets are learned in an
online-learning manner, i.e., each sample is trained only once.
Experiments compare the results of four industrial models,
DNN, Wide & Deep [16], DeepFM [17], DCN [40] with both
Kraken and TensorFlow in different datasets. If not specified,
the default model of micro benchmarks is DeepFM. Other

Datasets # Sparse
IDs # Samples # Parameters

Public
Datasets

Criteo Ad 33M 45M 0.5B
MovieLens 0.3M 25M 2M
Avazu CTR 49M 40M 0.8B

Production
Datasets

Explore Feed 45M 50M 0.5B
Follow Feed 1.3B 10B 50B

TABLE III: Datasets for evaluation.
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Fig. 6: Model performance improvement brought by Kraken
with different industrial models on different datasets. Improve-
ments greater than 0.5% are significant in production.

models share similar conclusions thus we omit them to save
space. More detailed settings like models’ hyper-parameters
are available in our Artifact Description for reproduction.

B. End-to-End System Performance

We evaluate the benefits from Kraken, including both the
system-aspect and model-aspect performance. We respectively
apply Adam and the hybrid optimizer in TensorFlow and
Kraken. Specifically, in Kraken the optimizer for dense part
is Adam while for sparse part is rAdaGrad. The reason for
selecting Adam is that it is the most popular optimizer and
has been used in many research papers [17], [41] for its great
convergence speed and little-tuning. More optimizer-related
evaluations, such as AdaGrad or SGD, will be covered in later
sections. For a fair comparison, the embedding table size of
TensorFlow is set to make memory consumption approximate
to that of Kraken (which can hold 60% of all origin features).

Model Accuracy. We compare Kraken with TensorFlow to
evaluate the model accuracy. Due to the limited computing
resource, we do not evaluate Follow Feed since it requires 64
servers to train from scratch and lasts for one month to validate
one possible configuration with a 50B-parameter model. For
TensorFlow, we try five different combinations of embedding
table sizes, and show the best result only. The point to be
stressed is that under the circumstance of limited memory, it is
laborious and time-consuming to tune the sizes of embedding
tables with TensorFlow to get a good model.

Figure 6 shows the model accuracy improvement brought by
Kraken compared with TensorFlow for different models. For
the evaluated four workloads, Kraken outperforms TensorFlow
by 0.46% to 6.01% in terms of AUC in public datasets and
1.64% to 2.01% in terms of GAUC in Explore Feed, which
is a big improvement (improvements greater than 0.5% are
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significant in production). The improvement of Kraken mainly
comes from the no hash collision design of GSET and the
adaptability of sparsity-aware training framework. Moreover,
it significantly reduces time and computing resources to allow
the elastic growth of each embedding table, eliminating the
extensive tuning of embedding table sizes. Figure 6 shows
that GSET can achieve better model performance than the best
artificial-tuned embedding tables.

System Overhead. We then evaluate the overhead GSET
imposes on the underlying TensorFlow, which may affect the
end-to-end training speed. Figure 7a compares the training
throughput (i.e., samples per second) of Kraken and native
TensorFlow by varying the number of training servers with
four models on Explore Feed. As shown, the throughput of
Kraken is always close to or better than that of TensorFlow,
thus giving an insight into Kraken’s very little additional over-
head. Moreover, Kraken keeps linear growth as the number of
workers increases while TensorFlow has a decreased growth
rate when the number of workers grows to around 75.

Scalability. Figure 7b shows that Kraken scales linearly
on the Follow Feed dataset. Unfortunately, TensorFlow does
not support the training of such large models due to memory
outage when such large numbers of feature columns are
needed to be fit into the native TensorFlow embedding table.
Kraken shows better adaptability to the large-scale models.

C. Evaluation of GSET

In this section, we evaluate the design of GSET. To
eliminate the influence of sparsity-aware optimizer, we apply
the same Adam optimizer in Kraken and TensorFlow. If not
specified, both Kraken and TensorFlow use the same memory
(enough to store 60% of all features).

Memory Efficiency of GSET. To analyze the memory
efficiency of GSET in online learning, we compare the AUC
of different models using both Kraken and TensorFlow on
the Criteo dataset under different memory footprints (i.e.,
holding at most several proportions of all original IDs). For
Kraken, the feature admission probability is set to 1 and
the eviction mechanism is enabled. As shown in Figure 8,
Kraken outperforms TensorFlow consistently by more than
0.61% or even up to 3.72% under different memory footprints.
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Fig. 9: With different probabilities of feature admission p, (a)
shows the relative GAUC of Kraken and (b) shows the number
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hour. Level i counts the number of features whose frequency
is between 2i to 2i+1.

Generally, the less memory is, the more GSET improves. This
is because more intense hash collisions in vanilla TensorFlow
make it harder for the models to learn good embedding entries
representing the input features. GSET’s design reduces the
hash collisions of embeddings and learns a working set of
features well during the online learning process. Figure 8 also
illustrates that the elastic growing design of GSET may be a
perfect solution for tuning the sizes of embedding tables.

Effect of Feature Admission. Figure 9 presents the effect
of different probabilities of feature admission P in the Explore
Feed dataset. From Figure 9a, the model performance appears
to be unaffected by the admission probabilities. It is reasonable
because those low-frequency features rarely contribute to the
whole model. Kraken simply drops these features to avoid
frequent expirations. Figure 9b shows the number of different
frequency levels of features appearing in the last training-hour.
Interestingly, there is almost no difference in the numbers of
low-frequency features with different admission probabilities,
which may be counterintuitive at first encounter, but in retro-
spect, although some low-frequency features are filtered out,
some relatively high-frequency features also enter the system
less often, thus becoming new low-frequency features.

Effect of Feature Eviction. We also do a factor analysis to
understand how much each feature eviction policy contributes
to the model performance while maintaining memory usage.
In this experiment, we omit the Criteo Ad dataset since its



IM
P 

(G
)A

U
C

 (%
)

0.
22 0.
26 0.
29 0.

38

0.
12 0.

21

0.
35 0.

47

0.
25

0.
48

0.
37

0.
72 Avazu (AUC)

Explore Feed (GAUC)
MovieLens (AUC)

F: Feature Score Policy
D: Duration Based Policy
P: Priority Based Policy

F F+D F+P F+D+P
0

1

Fig. 10: Contribution of different eviction policies to the model
performance. The improved AUC over the raw LFU are shown.

training samples are feature anonymous and do not contain
timestamp information, which would blind the feature eviction.
We break down the model performance gap between the
baseline GSET with only LFU expire policy and the optimal
one combining all three kinds of eviction policies through
measuring three settings as follows:

• Feature Score Policy (F) further takes the different
priorities of positive and negative samples into account.
The importance weight r is selected by a search from [1,
3, 5] on the validation dataset. Feature score decays by
10% every day.

• Duration Based Policy (D) sets a different expire du-
ration for each feature class. We pre-sample 10% of the
data, analyze the interval time distribution of adjacent
samples with the same ID, and take the 99.9 percentile
as the expiration time of this feature class.

• Priority Based Policy (P) prohibits the elimination of
user-related features that take up less than 10% of the
total memory in the Avazu and Explore Feed dataset
based on our practice. However, we only disable the
eviction of item ids which consume less memory and get
visited more frequently in the MovieLens dataset. This
is because user-related features account for up to 50%,
and the prohibition of evicting them will occupy other
features’ memory, leading to an unsatisfied accuracy.

Figure 10 indicates that our feature score policy outperforms
LFU policy on different datasets consistently, and the cumula-
tion of three different policies can combine their advantages.
It can be concluded that the domain knowledge of ML
algorithms and the awareness of data distribution can make
eviction smarter, and that is why we need a configurable
feature eviction component for ML engineers to customize
flexiblely. Note that the hyperparameters of policies are both
model and dataset related. We set empirically here for the
sake of simplicity, and a more refined tuning can be done
with optimizing systems [42].

D. Effect of Sparsity-Aware Training Framework

Next, we show that Kraken’s sparsity-aware training frame-
work can correctly converge models as vanilla optimizers, and
provide better accuracy with fewer memory resources. In this
experiment, we only focus on the optimizer, so we provide
enough memory for GSET and turn off feature admission and
eviction.

Table IV shows the model performance and memory
consumption of different vanilla optimizers and sparsity-
aware optimizers on three public datasets. With the same
memory consumption, our proposed hybrid optimizer always
achieves better performances, except for some similar perfor-
mances on the two negatives. Our proposed combination of
Dense(Adam)&Sparse(rAdaGrad) outperforms all the
other baseline optimizers and hybrid optimizers on both Test
AUC and the memory consumption at the most cases.

It can provide model performance as high as Adam (the best
among normal optimizers) while reducing 3× memory usage.
Although there are a little fewer OSPs in the combination of
Dense(Adam)&Sparse(SGD), it ends with worse model
performance due to the lack of adaptability. It fails to learn
well from the sparse data in real-time recommendation sce-
narios. Kraken’s rAdaGrad provides adaptability of learning
with the minimal storage overhead.

The enhancement of performance and memory efficiency
of the sparsity-aware training framework is in agreement with
Section III-B. The result indicates that Kraken’s algorithm
is not model-sensitive or dataset-sensitive. Furthermore, the
memory resources saved by sparsity-aware training framework
can be used to replace more sparse parameters and boost model
performance.

E. Evaluation of Large-Scale Online Prediction

In this section, we build a cost model to evaluate two
deployment strategies for the prediction system of Kraken. We
consider the cost of two cluster components: Prediction Param-
eter Server and Inference Server, and calculate the prediction
throughput per dollar in cloud. The baseline is a prediction
system running the Co-Located Deployment strategy. Kraken’s
Non-Colocated Deployment makes it flexible to configure
different servers for Prediction Parameter Server and Inference
Server. This is important because Prediction Parameter Server
is memory-bounded and requires large memory, while Infer-
ence Server is computation-bounded and does not require large
memory. However, for the baseline Co-Located Deployment,
all the Inference Servers need to be compute-intensive servers
with large memory.

We take a 16-shard Follow Feed model as an example
of further cost modeling. Based on the calculation of the
utilization of CPU and NIC bandwidth, the maximum number
of Inference Servers that one group of 16 Prediction Parameter
Servers can carry is estimated to be 384. Table V concludes
the hardware cost using the two different deploy polices. Non-
Colocated Deployment outperforms Co-Located Deployment
by 1.3× (using AWS price data [43] ) or 2.1× (using Alibaba
Cloud price data [44]) in performance-to-price ratio. From
data and analysis above, we conclude that Non-Colocated
Deployment is more efficient in large-scale inference clus-
ter, and achieves lower hardware cost. It is apparent that
by decoupling Inference Servers from coping with constant
updating parameters, Kraken achieves both low cost and great
performance of inference.



Criteo MovieLens Avazu
Dense Opt Sparse Opt Memory

Usage DNN W&D DeepFM DCN DNN W&D DeepFM DCN DNN W&D DeepFM DCN

SGD 1x 0.7979 0.7896 0.7986 0.7908 0.7760 0.7760 0.7979 0.8019 0.7434 0.7436 0.7502 0.7573
AdaGrad 2x 0.8001 0.7899 0.8016 0.7992 0.8062 0.8062 0.8061 0.8062 0.7727 0.7795 0.7815 0.7799Vanilla

Optimizer Adam 3x 0.8066 0.7893 0.7956 0.7955 0.8102 0.8112 0.8153 0.8147 0.7559 0.7623 0.7638 0.7631

Adam AdaGrad 2̃x 0.8048 0.8005 0.8057 0.8044 0.8177 0.8184 0.8198 0.8191 0.7734 0.7786 0.7803 0.7807

Adam SGD 1̃x 0.7974 0.7988 0.8038 0.8026 0.7974 0.8018 0.8045 0.8140 0.7487 0.7646 0.7665 0.7638Hybrid
Optimizer Adam rAdaGrad 1̃x 0.8010 0.7907 0.8048 0.8048 0.8132 0.8132 0.8178 0.8153 0.7653 0.7779 0.7800 0.7772

1x 0.38 1.17 0.78 1.77 4.79 4.79 2.49 1.67 2.95 4.61 3.97 2.63AUC IMP % with the same memory
w.r.t vanilla optimizer 2x 0.59 1.34 0.51 0.65 1.43 1.51 1.70 1.60 0.09 -0.12 -0.15 0.10

TABLE IV: Comparisons of Vanilla and Hybrid Optimizer performances on different datasets and models. The last two rows
listed here are to clarify the improved AUC of Hybrid Optimizer respect to Vanilla Optimizer with the same memory usage.

# of servers
with / without
large memory

Throughput
(QPS)

Total Rent
($ per month) Ratio

AWS Alibaba AWS Alibaba

Baseline 400 / 0 30,325 1,041,408 666,750 29.12 45.48
Kraken 16 / 384 35,726 802,529 372,512 37.79 95.91

TABLE V: Kraken (Non-Colocated Deployment) shows better cost-
effectiveness (around 1.3× to 2.1×) than baseline (Co-Located
Deployment). Ratio=1000*Throughput/Total Rent.

Applications Performance

Key Metric Enhancement

Video Sharing Average Video Plays +51%
Social Networking New Social Connections per Person +1.35%

Game Platform Time Spent on Feed +24.41%

TABLE VI: Performance improvement of three applica-
tions in production.
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Fig. 11: Performance monitoring of Kraken on the Follow
Feed: (a) Predicted CTR (CTR-P) from Kraken and CTR of
ground truth (CTR-GT); (b) The throughput and latency of
user queries received by Kraken.

F. Production Evaluation

Since Kraken has been deployed in production for two
years, we report the performance metrics of using Kraken in
several real-world applications to demonstrate its success.

1) Results from Online A/B Testing: We select three rep-
resentative applications supported by Kraken: Video Sharing,
Social Networking, and Game Platform. Table VI shows the
gains of their key business metrics after using Kraken through
the online A/B testing, which are explained as the following:

• Video Sharing is a related video recommendation appli-
cation that makes more video suggestions after the user
watched the shared videos. Its key business metric is the
average number of plays per video (Average Video Plays).
Kraken achieves a 51% increase in the video plays and
significantly improves its user engagement.

• Social Networking is the service that makes recommen-
dations on potential social connections to the users on our
platform. The average number of new social connections

is the key metric to evaluate this service. Kraken improves
the core metric by 1.35% such that more users are
connected to other users. (1.35% is notable, comparing
to normally 0.1% improvement in legacy systems.)

• Game Platform is an online platform that hosts different
digital games, where Kraken is used to generate person-
alized game video recommendations in its feed. Its key
metric is the total time of user spending on reading the
feed (Total Time Spending on Feed). Kraken boosts a
24.41% increase on the key metric, showing effectiveness
in improving user stickiness.

2) Results from Daily Monitoring: We also report the
performance of the Follow Feed application in production by
monitoring the accuracy of the recommendation model served
by Kraken and its serving throughput and latency for a whole
day. (The Follow Feed application is the same as the one used
in offline evaluation in Section V-B.)

• Model Accuracy: Figure 11a shows the average pre-
dicted click-through-rate (CTR-P) generated by Kraken
and the average click-through-rate ground truth (CTR-
GT) of items in the Follow Feed. High click-through-rate
often means high user engagement, and more accurate
CTR prediction helps with the item recommendation. As
shown in the figure, the CTR-P curve is quite close to the
CTR-GT curve, indicating the high accuracy of Kraken’s
model prediction.

• System Performance: Figure 11b demonstrates Kraken’s
system throughput (i.e., the number of inference requests)
and the mean and tail latency (P99) over time, respec-
tively. There are two distinct peaks during this day, 12:00
to 14:00 and 20:00 to 23:00. During the latter period
(shadow area in Figure 11b), referred to as rush hour,
the throughput reaches up to over 40k QPS (queries per



second), twice of the average throughput. Meanwhile, the
mean latency and tail latency (P99) are well controlled
by Kraken, even though the throughput rises sharply.

VI. RELATED WORK

While the system and architecture community has devoted
significant efforts to performance analysis and optimizations
for deep learning used in CV or NLP, relatively little focus
has been devoted to online learning and serving large scale
deep learning models in real-time recommendation systems.

The most related work is Facebook DLRM [1], [13], which
states the unique challenges of training DNNs for recommen-
dation systems in the modern production scale. It provides
detailed performance analysis showing that recommendation
DL models require much larger storage capacity and produce
irregular memory accesses. They use a butterfly shuffle oper-
ator to implement model parallelism on the embedding tables
to mitigate memory constraints. Both XDL [14] and Parallax
[45] explicitly distinguish the dense part and the sparse part
in DL models and try to improve training models with many
sparse variables. Parallax employs a hybrid architecture for
the synchronous training in NLP by using the AllReduce
architecture handling dense variables and the PS architecture
handling sparse variables. However, the above systems mostly
focus on batch training models with a few hundred gigabytes,
and their embedding table sizes are fixed without dynamic
growth and global space sharing. These systems missed the
opportunities of real-time training and cost-effectively serving
10-terabyte DL models.

Traditional deep learning frameworks such as [11], [12],
[46], [47], are used by machine learning scientists and en-
gineers worldwide. However, all of them fail to scale when
facing the large scale real-time recommendation challenge in
the recommendation systems. HugeCTR [48] is NVIDIA’s
high-efficiency GPU framework designed for recommendation
systems. HugeCTR distributes the whole embedding table
into multiple GPUs’ High Bandwidth Memory (HBM) to
accelerate the training of CTR models. However, HugeCTR is
restricted by the HBM size since all sparse parameters must
be maintained within HBM. In this scenario, the memory-
efficient learning provided by Kraken can be perfectly applied
and plays a key role in saving computating resource overhead.
Parameter Server (PS) [21], as one of the representative
architectures in the field of data-parallel distributed training, is
used in Kraken as the underlying communication model. Over
the years, there are considerable previous works that optimize
parallel training in many aspects, including leveraging GPUs
in clusters [24], [49], networks [50], and scheduling [51]–
[53]. Techniques proposed by these works are orthogonal to
our work and can be used to improve the training in Kraken
further. With the emergence of persistent memory (PM) such
as the Intel Optane DC persistent memory, it will be interesting
to adapt traditional PM based key-value stores [54] to Kraken
and relieve memory shortage on the strength of the high
capability brought by new hardwares.

Continual learning has been shown as an efficient solution
to catch up with the rapid changes in users’ interests in
the recommendation system [6], [7], [9]. Continuum [55] is
a general-purpose system for continual learning by encap-
sulating different learning frameworks to retrain the model
over new datasets using batch mode. Compared to Kraken,
Continuum updates the model less frequently and is not
scalable for large scale recommendation models.

VII. CONCLUSION

By leveraging the co-design of the system and training
algorithms, Kraken provides an end-to-end solution to train
and serve large-scale recommendation models in real-time.
Kraken’s training system implements a parameter server that
allows sparse embedding tables to grow dynamically and
run automatic feature selections that maintain reasonable
memory size during continuous training. We also propose
a sparsity-aware framework that leverages the properties of
recommendation models to reduce data transfer and memory
footprint during training. Furthermore, Kraken’s prediction
system supports deploying large-scale models in a timely and
efficient fashion. Kraken has been deployed successfully in
production for a wide range of recommendation tasks and
proved to be highly effective for iterating and serving large
scale DL models in these tasks.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We evaluate TensorFlow and Kraken both in the public and our
production datasets. The used public datasets include the Criteo
dataset, Avazu CTR dataset and MovieLens-25M. All datasets are
learned in an online learning manner.

(1) The Criteo dataset (https://www.kaggle.com/c/criteo-
display-ad-challenge) is popular for evaluating recommenda-
tion models and it will be included as a standard benchmark
in MLPerf benchmark (https://arxiv.org/abs/1911.02549)
soon.

(2) Avazu CTR dataset (https://www.kaggle.com/c/avazu-ctr-
prediction) contains 11 days of click-through data with fea-
tures on sites, apps and devices.

(3) MovieLens-25M (https://grouplens.org/) usually works as a
stable benchmark dataset which consists of 25 million movie
ratings ranging from 1 to 5 with 0.5 increments. Here we
label the samples with rating above 3 to be positive and the
rest to be negative, and train it as a binary classification
model.

The two production datasets are collected from two separate
real-world recommendation services: Explore Feed and Follow Feed.
Both services make video-related content recommendations to
users.

In addition to different datasets, we use four industrial models
(DNN, DeepFM, Deep Cross Network, and Wide & Deep) to verify
Kraken’s sensitivity.

All the experiments use the common hypermeters as follows:

• Batch Size: 128.
• Embedding Size: 4 for public datasets and 32 for production
datasets.

• l2_reg_embedding: 1𝑒−5. It represents the L2 regularizer
strength applied to embedding vector.

• l2_reg_linear: 1𝑒−5. It represents the L2 regularizer strength
applied to linear part.

• Hidden Units:
– In public datasets, [256, 128] for the DNN part of all mod-
els.

– In production datasets, [256, 256, 256] for all models’ DNN.
• No Batch Normalization or dropout.

Our experiments can be summarized as follows and they are
organized according to the structure in the paper.

(1) Sec B. End-to-End System Performance.
• Model Performance (Fig 6). We run both Kraken and Ten-
sorFlow on different models and datasets under the same
memory resources, and the improved AUC or GAUC is re-
ported in Fig 6. Kraken uses the Adam optimizer with the
default learning rate, lr for short (lr=0.001) for the dense
part and our proposed rAdaGrad optimizer (lr=0.01) for
the sparse part, while TensorFlow uses the vanilla Adam
optimizer (lr=0.001). The memory is limited to store 60%

of all original IDs’ embeddings. Kraken consistently bene-
fits different recommendation models compared to Ten-
sorFlow in both public and our production datasets. The
improvement of AUC or GAUC is notable in production.

• System Throughput (Fig 7a). We use the same configu-
ration as above, but on the Explore Feed dataset. Kraken
outperforms the vanilla TensorFlow in training through-
put (around 2× in extreme cases).

• Scalability (Fig 7b). We profile the DeepFM model on the
Follow Feed dataset with different numbers of servers.
Kraken shows linear scalability even with a terabyte-level
model.

(2) Sec C. Effect of Proposed GSET (Fig 8, 9, 10).
We evaluate the effect of GSET component in the online
learning process. In order to eliminate the influence of
sparsity-aware optimizer, we apply the same Adam opti-
mizer (lr=0.001) here for both and with the same memory
enough to hold 60% of all features.
• For the evaluation of GSET (Fig 8):
– We benchmark Kraken’s GSET and the vanilla Ten-
sorFlow embedding table with 4 models on the Criteo
dataset under the same memory resource, and then re-
port the improved AUC or GAUC.

– Different memory footprints are tested for robustness
(i.e. the proportion of all original features that memory
can hold at most varies from [10%, 30%, 60%, 90%].

• For the feature admission (Fig 9), we investigate the ef-
fects of different admission probabilities on the model
performance:
– For the sake of statistical accuracy, we turn down the
feature eviction.

– Fig 9a shows the training curve with different admission
probabilities.

– We count the numbers of features with different
frequency-levels in the last training-hour and show in
Fig 9b.

• For the feature eviction (Fig 10), we give a comparison of
model performances under Kraken’s GSET with different
eviction policies over the LFU policy as the baseline:
– Training setting is consistent with that used in admis-
sion.

– The memory is limited to store 60% of all the different
IDs’ embeddings.

– Here we omit the Criteo dataset since its training sam-
ples are feature anonymous and do not contain times-
tamp information.

– Three eviction policies respectively set different param-
eters. In the Feature Score Policy, the importance weight
r is searched optimally from [1, 3, 5] and the decay rate
for feature score is 10% every day. In the Duration Based
Policy, we pre-sample 10% of the data and take the 99.9
percentile as the expiration time of each feature class.
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In the Priority Based Policy, we prohibit the elimina-
tion of certain user-related features in the Avazu and
Explore Feed dataset and item ids in the MovieLens
dataset based on our practice. The reason behind can
be found in our paper.

(3) Sec D. Proposed Sparsity-Aware Training Framework (Tb 4).
We investigate our proposed sparsity-aware training frame-
work with vanilla optimizers on different datasets and mod-
els.
• Memory resources are adequate. We turn off the feature
admission and eviction of GSET to eliminate the effect of
embeddings.

• All learning rates of optimizers are tuned from [0.1, 0.01,
0.001, 0.0001]. The best result of each combination is
shown in the table.

Results show that our sparsity-aware training framework
saves 3× memory usage than all the other vanilla optimizers
while providing the same accuracy.

(4) Sec E. Evaluation of Large-Scale Online Prediction.
We build a cost model to evaluate two different deployment
strategies for the prediction system of Kraken.
• We deploy two strategies with our Follow Feed model on
a 16-shard cluster and estimate how many requests the
cluster can serve under the similar requirement of latency
by calculating the utilization of CPU and NIC bandwidth.

• The servers are connected using 10 Gbps Ethernet.
Kraken’s proposedNon-colocated Deployment can achieve up
to over 2× cost-effectiveness than the baseline in large-scale
online prediction.

(5) Sec F. Production Evaluation.
Kraken has been deployed for two years in various applica-
tions. We show some results of online A/B tests from three
real-world applications.

Due to commercial confidentiality and secrecy agreement, we
regret that we can not opensource our production datasets and
the Kraken system to the public since they contain part of the
warehouse code. However, we reimplement the sparsity-aware
training framework and the rAdaGrad optimizer on the exist-
ing public systems and provide an open-source repository here
(https://github.com/adamadagradsgd/Kraken) to help reproduce
our results in this paper. Our codes and scripts for testing the base-
line system (TensorFlow) on the public datasets are also available
in this repository. In this way, we believe that researchers and engi-
neers can benefit from our proposed Kraken system and algorithms
in the industry recommendation scenario.

ARTIFACT AVAILABILITY
Software Artifact Availability: Some author-created software ar-

tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: There are associated proprietary artifacts
that are not created by the authors. Some author-created artifacts
are proprietary.

Author-Created or Modified Artifacts:

Persistent ID:

https://github.com/adamadagradsgd/Kraken↩→

Artifact name: Kraken

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: CPU: Intel(R) Xeon(R) Gold 5218 CPU
@ 2.30GH

Operating systems and versions: CentOS Linux release 7.4.1708
running Linux version 3.10.0-1.0.1.el7.x86_64

Compilers and versions: GCC v8.3.0

Applications and versions: TensorFlow v1.14

Libraries and versions: None

Key algorithms: Parameter Server

Input datasets and versions: We use 3 public datasets (CriteoLab,
MovieLens-25M and Avazu) and 2 our production datasets (Explore
Feed and Follow Feed).

URL to output from scripts that gathers execution environment
information.

https://raw.githubusercontent.com/adamadagradsgd/Kra ⌋

ken/master/environment.log↩→

ARTIFACT EVALUATION
Verification and validation studies: We use various datasets (both

public and production datasets, 5 in all) and models (4 industrial
models) to verify the performance and sensitivity of Kraken. For
all datasets, we use 80% of the dataset as the training data, 10%
as the test data, and 10% as the validation data. In this way, we
are confident that our results are solid and do not come from a
coincidence or overfitting.

Accuracy and precision of timings: For the experiments involving
the throughput and latency, we run three times and use the average
as results.

Used manufactured solutions or spectral properties: N/A

Quantified the sensitivity of results to initial conditions and/or pa-
rameters of the computational environment: To avoid dataset-related
or model-related coincidences, we use 5 datasets and 4 models to
benchmark Kraken. Kraken outperforms TensorFlow under var-
ious settings consistently in our evaluation. All the parameters
are presented in our paper or AD and some key contributions are
open-sourced. We believe it should be easy to reproduce.

https://github.com/adamadagradsgd/Kraken


Kraken: Memory-Efficient Continual Learning for Large-Scale Real-Time Recommendation

Controls, statistics, or other steps taken to make the measure-
ments and analyses robust to variability and unknowns in the system.
Kraken has been deployed in the production environment, and
supports a variety of recommendation applications for two years.
With our system, all applications have achieved improvements in
terms of business metrics. Practice has proved that our system is
robust and efficient.
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