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ABSTRACT

We present pessimistic locking and optimistic reading (Plor), a hy-
brid concurrency control protocol for in-memory transaction sys-
tems that delivers high throughput and low tail latency. Plor is espe-
cially designed for high-contention workloads: for high throughput,
transactions are allowed to access records without being blocked
by lock conflicts in the read phase; for low tail latency, conflict
detection is delayed to the commit phase, where old transactions
are always committed first using the timestamps in the lock. We
demonstrate the efficacy of this approach under a variety of setups
(e.g., stored-procedures, interactive mode, and persistent logging,
etc.). Experiments show that Plor delivers close or comparable
throughput to that of Silo and TicToc in stored-procedures, while re-
ducing 99.9th percentile latency by 8.8× to 14.5×. In the interactive
processing mode, Plor even achieves up to 2× higher throughput.
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1 INTRODUCTION

With the increasing popularity of multi-core servers and large-
capacity main memories, database research has seen a renaissance
over the past decade [12, 22, 23, 44, 49, 55, 56]. By distributing the
whole data in DRAM and incorporating light-weight concurrency
control protocols, these main memory databases achieve impressive
performance. Recently, latency-critical applications further require
data services to deliver low and predictable latency [11, 30, 46]. For
large-scale systems serving web search, email and many other types
of interactive services, data queries are fanned out to thousands of
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data servers when processing a single request, where predictable
and low tail latency is extremely important.

Many recent efforts to cut tail latencies focused on various layers
in the operating system, including core scheduling [20, 29, 35, 36],
queuemanagement [13], and cachingmechanisms [6]. They prevent
latency spikes either by separating large requests from small ones,
thus avoiding the queuing delay caused by head-of-line blocking
(HLB), or by minimizing the inferences of background operations
(e.g., garbage collection, data compaction, etc.).

Unfortunately, scant attention has been paid to the impact of
request conflicts on tail latencies. Conflicts are extremely common in
modern highly contentious transactional workloads: at Twitter [53],
for example, 25% of the clusters have a write ratio of more than 50%
and most of them follow the Zipfian distribution with skewness in
the range from 1 to 1.25 (highly skewed); similar workloads also
exist at Facebook [8]. While a vast amount of research has been
devoted tomitigating the overhead brought by request conflicts, e.g.,
transaction chopping [40, 57], transaction scheduling [14, 38, 43],
program analysis [27, 50, 51], etc., such techniques mainly focus
on the throughput (i.e., txn/s), and do not consider tail latencies.

In this paper, we first study how existing concurrency control pro-
tocols, e.g., optimistic concurrency control (OCC) and pessimistic
two-phase locking (2PL), function in terms of throughput and tail la-
tency. At one extreme, OCC assumes conflicts between transactions
are rare, so it detects conflicts only at the commit phase, and thus
incurs less locking overhead and scales effectively on multi-core
servers. Besides, in-memory transactions are typically short-lived,
enabling OCC to be efficient even at a high abort rate since the over-
head of re-running aborted transactions is not high [19]. Actually,
most recent work focuses on the variants of OCC to deliver high
performance (e.g., Silo [44], FOEDUS [23], MOCC [49], and T/S or-
dering protocols such as Cicada [25] and TicToc [55]). At the other
extreme is 2PL, which requires a transaction to acquire locks before
accessing records. 2PL’s long locking periods and requirements for
read locking make it less attractive for high throughput environ-
ments, and thus it is seldom adopted in recent in-memory databases.
However, when we run the default YCSB-A workload (high con-
tention, r:50% and w:50%), some 2PL variants (e.g., WOUND_WAIT),
exhibit a 99.9th percentile latency that is 12 − 20× lower than that
of Silo [44], a representative OCC-based DBMS.

We observe that the tail latency and throughput of OCC and
2PL are hurt by independent factors. For the tail latency, we notice
that transactions with high latencies typically abort many times.
WOUND_WAIT resolves conflicts by ensuring that transactions with
older timestamps are always committed first. Since aborted trans-
actions still use old timestamps, they typically have a higher prior-
ity to commit. As a result, WOUND_WAIT delivers low tail latency
by preventing aborted transactions from aborting again. For the
throughput, 2PL is less efficient since it incurs unnecessary blocking
and locking overheads when transactions conflict.
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Intuitively, with a proper combination of OCC and 2PL, we can
achieve both high throughput and low tail latency. We explore this
hypothesis by introducing the notion of pessimistic locking and

optimistic reading, or Plor. Specifically, a transaction must acquire
locks for both reads and writes before accessing records from the
database (i.e., pessimistic locking); but the transaction can ignore
lock conflicts and access records directly without being blocked
(i.e., optimistic reading).

Plor processes a transaction with the standard read and commit
phases. In the read phase, the transaction acquires a read or write
lock by storing its state (including the timestamp) in the lock man-
ager, which helps enforce the commit priority between conflicting
transactions when they commit. Plor does not check lock conflicts
in the read phase, so the locking process finishes immediately. Plor
delays the detection of conflicts to the commit phase, where we
need to ensure that conflicts can be safely delayed without causing
inconsistency, and correctly resolved without violating the isolation
guarantee. To achieve this, Plor requires writing transactions to
buffer updates locally in the read phase, during which a reader can
read this record directly without being blocked; similarly, writes can
also bypass reads since read operations do not modify the database
anyway. In the commit phase, Plor resolves potential conflicts
by scanning the transaction states that reside in all acquired locks
– Plor kills the corresponding transaction if its timestamps are
higher; otherwise, Plor lets the committing transaction wait until
the conflicting one has committed. Overall, Plor reads records op-
timistically in the read phase to remove the unnecessary blocking
overhead (for high throughput); in the commit phase, Plor ensures
that transactions are always committed with the timestamp order
(for low tail latency).

Unlike OCC that only requires write locks, transactions in Plor
require locks for both read and write operations. We incorporate a
latch-free locker to minimize the locking overhead. We find, inter-
estingly, decomposing the lock procedure into separate steps (i.e.,
lock acquisition and conflict detection) facilitates the design of a
light-weight lock primitive using lock-free data structures (§4.2).

Plor provides the serializability isolation by default, despite
it can be easily adapted to provide weaker isolation levels. For
example, when running Stock-Level transactions of TPC-C, Plor
only ensures the read-committed isolation. We evaluate Plor under
a variety of setups to explore the design space and trade-off of Plor,
including the transaction processing model (e.g., stored-procedures
vs. interactive transactions), data persistence (by logging data to
Optane DC Persistent Memories [28]), etc. In stored-procedure
mode, Plor only underperforms Silo and TicToc by 9% to 19% with
the YCSB-A workload, and achieves comparable throughput with
the TPC-C workload. Importantly, Plor reduces 99.9th percentile
latency by an order of magnitude. With the interactive mode, Plor
even delivers up to 2× higher throughput.

2 BACKGROUND AND MOTIVATION

2.1 Two-Phase Locking

Two-phase locking (2PL), as the first method proved to ensure
the correct execution of concurrent transactions, has been widely
adopted in traditional DBMSs. 2PL requires transactions to acquire
the lock in either exclusive or shared mode for a record before

writing or reading that record. To ensure correctness, 2PL enforces
two rules: first, different transactions cannot own conflicting locks

simultaneously; second, once a transaction surrenders ownership of
a lock, it cannot obtain additional locks. The second rule decouples
2PL into two phases (i.e., growing phase and shrinking phase). When
a transaction fails to acquire the lock due to the violation of the
first rule, 2PL puts the requesting transaction in the waiting queue
until the lock is available. A number of 2PL variants exist to avoid
deadlocks in case of cycles of waiting:
NO_WAIT never waits when acquiring a lock – whenever a lock
request is denied, the transaction is aborted immediately.
WAIT_DIE is a non-preemptive technique that assigns a timestamp
to each transaction and avoids deadlocks by comparing the times-
tamp with the lock owners. Specifically, when one transaction (e.g.,
𝑇𝑖 ) requests a lock currently held by some owners, 𝑇𝑖 is allowed to
be in the waiting queue only if it has a timestamp smaller than that
of all owners, namely WAIT; otherwise, 𝑇𝑖 is aborted, namely DIE.
WOUND_WAIT is a counterpart to WAIT_DIE. When a transaction
(e.g.,𝑇𝑖 ) requests a lock currently held by some owners, the owners
whose timestamps are bigger than𝑇𝑖 are aborted, namelyWOUND;
then, 𝑇𝑖 either becomes the new owner or waits for the lock, de-
pending on whether all owners are aborted, namely WAIT.

2.2 Optimistic Concurrency Control

OCC assumes that conflicts between transactions are rare, so it
processes transactions without locking records before committing
them. OCC consists of three phases, including (1) read phase: a
transaction reads records from the database and performs all up-
dates to a local private buffer; (2) validation phase: the transaction
checks whether the records it has read or written are modified by
other concurrent transactions; and (3) write phase: after a successful
validation, OCC commits the modified records to the database.

Silo [44] is an in-memory DBMS that follows the standard phases
in OCC to process transactions. In the validation phase, Silo first
locks all records in the write-set, and aborts the transaction if a
deadlock is suspected. Lock acquisition is done by toggling a 64-bit
word using atomic operations. Then, the transaction’s timestamp
is generated to mark the serialization point. It next checks that
records in the read-set have not changed and are not locked by
other transactions, which is also finished in a lock-free manner. In
this paper, we choose Silo to represent the OCC-based systems.

2.3 Motivation

In this section, we discuss how 2PL and OCC perform in terms
of throughput and tail latency. The experiment uses the YCSB
benchmark and we choose the default YCSB-A workload with vary-
ing skewness, which determines the contention level. The results
are shown in Figure 1, where the 99.9th percentile latencies and
throughput are collected as we increase the number of threads from
1 to 36. We present the details of this experiment in Section 6 and
summarize the main observations here. When conflicts are rare (in
Figure 1a, 𝜃 = 0.5), we find that the tail latencies of all systems are
extremely low (in the range of tens of 𝜇𝑠), which are only slightly
higher than their median latencies (not shown). However, as we
run the high-contention workload (in Figure 1b), their performance
varies greatly in terms of both throughput and tail latency.
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Figure 1: 2PL vs. OCC in Tail Latency and Throughput.

2.3.1 Throughput. As expected, Silo achieves the highest peak
throughput among the compared schemes, which outperforms
other 2PL schemes by 40% - 57%. By analyzing the protocol-level
timeline of OCC and 2PL, we specify a number of factors that hurt
the throughput of 2PL schemes. Figure 2 shows how 2PL and OCC
handle different types of conflicts.
• Read-write conflicts. Under 2PL, when a transaction (i.e., 𝑇1 in
Figure 2a) is holding an exclusive write lock, another reader (i.e.,
𝑇2) has to block until 𝑇1 releases the lock. However, this is not
the case in OCC since readers do not need to acquire read locks.
OCC achieves this via a private buffer, where write operations
never modify the database before a transaction is committed. If 𝑇 2
finishes the validation phase before 𝑇 1 commits, then both of them
can commit (i.e.,𝑇 1 and𝑇 2 in Figure 2b). Otherwise, the reader (i.e.,
𝑇 2′ in Figure 2b) aborts and reruns.
• Write-write conflicts. 2PL acquires write locks before accessing
records, and releases them after the records have been committed.
As shown in Figure 2a, 𝑇3 blocks 𝑇4 all the way due to the write
conflicts, and 𝑇4 may further block other transactions and cause
cascading blocking. Under OCC, write locks are acquired at the com-
mit phase, which incur less blocking time. For read-modify-write
(RMW) operations, OCC needs to abort either 𝑇3 or 𝑇4 to ensure
serializability, which, instead, alleviates the cascading blocking
overhead.
• Locking overhead. A lock primitive under 2PL contains multiple
lock states (e.g., lock owners and waiters) and needs to support both
shared-read and exclusive-write semantics. As such, 2PL typically
suffers higher locking overhead. Silo, instead, does not need shared
locks and it avoids deadlocks by acquiring write locks in a deter-
ministic global order (e.g., pointer addresses of records). Hence, it
does not need waiting queues in the lock, and can acquire a lock
by simply toggling an atomic word via atomic CAS operations.
• Read-read contention. 2PL ensures serializability of read-only trans-
actions by acquiring read locks, which still incurs cache coherency
traffic when updating the same lock states. Silo only needs to check
versions for the records in the read-set, so it never blocks other
transactions (such reads are called invisible reads since they do not
write any control information to inform other writers [33]).

2.3.2 Tail Latency. WAIT_DIE and WOUND_WAIT exhibit lower
tail latency than Silo. When running at a target load of 0.7 Mtps,
they can restrict their 99.9th percentile (999p) latencies within 700
𝜇𝑠 and 200 𝜇𝑠 , respectively, 2.6× and 13× lower than that of Silo.

We observe that the latency of a committed transaction is highly
related to the number of aborts, i.e., more abort times lead to higher
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latency. Silo executes transactions without acquiring locks during
the read phase, so the already aborted transactions still share the
same chance as other newly invoked ones to commit during the next
retry, and this causes its high tail latency. In Figure 2b,𝑇 2′ owns the
oldest timestamp but still aborts. In some extreme cases where the
writers are modifying a record repeatedly, a read in Silo may even
suffer from starvation and cause long tail latency. As described in
§2.1, both WAIT_DIE and WOUND_WAIT are starvation-free proto-
cols. They ensure that transactions with smaller timestamps have a
higher priority to commit, and aborted transactions typically own
smaller timestamps since they start earlier. Thus, they grant aborted
transactions a higher priority to commit.

We also find that WOUND_WAIT’s tail latency is much lower
than that of WAIT_DIE. To understand this, we further analyze how
they manage the waiting queue in a lock. In WOUND_WAIT, when
the lock owner releases the lock, it grants the lock to the transac-
tion that owns the oldest timestamp in the waiting queue. Hence,
WOUND_WAIT always commits transactions with the timestamp or-

der, and thus delivers the lowest tail latency. In WAIT_DIE, however,
the lock owner grants the lock to the transaction with the largest
timestamp in the waiting queue. This is because WAIT_DIE keeps
an invariant that all the waiters in the queue should have smaller
timestamps than the lock owner. NO_WAIT has the highest tail la-
tency, since it aborts a transaction whenever a lock conflict occurs,
regardless of how many times the transaction has been aborted
before. To summarize our discussion so far, neither 2PL nor OCC
achieves high throughput and low tail latency simultaneously.

3 DESIGN PRINCIPLES AND OVERVIEW

An important takeaway from §2.3 is that, a proper combination
of OCC (with high throughput) and WOUND_WAIT (with low tail
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latency) in one concurrency control protocol is able to achieve the
two goals simultaneously.
Pessimistic locking and optimistic reading. The key insight
behind Plor is a novel hybridization of OCC andWOUND_WAIT. As
shown in Figure 2c, Plor follows a standard 2PL protocol to acquire
locks before actually accessing records (i.e., pessimistic locking), but
a transaction is allowed to ignore lock conflicts and access records
without being blocked (i.e., optimistic reading). The benefits of such
a design are two-fold. First, optimistic reading improves throughput
by avoiding detecting conflicts in the read phase. As shown in
Figure 2c, Plor does not necessarily block 𝑇2 when 𝑇1 is holding
the write lock, instead, 𝑇 2 can read the record directly by ignoring
the write lock, and safely commit the transaction before𝑇 1 commits.
This is different from 2PL where reads are blocked by a writer all
the way. Second, pessimistic locking requires transactions to keep
their timestamps in the lock, enabling Plor to commit transactions
with the timestamp order, thus delivering low tail latency.

While the idea of Plor is simple, two challenges still need to be
tackled properly. First, by ignoring conflicts in the read phase, a
transaction (e.g., 𝑇 1) in Plor may read incomplete records that are
been written by another writer; moreover, when 𝑇1 commits, the
records it reads may have already been modified by other writers,
then 𝑇 1 has to abort. If 𝑇 1 owns a smaller timestamp than the con-
flicting transaction, it’s impossible for Plor to enforce the commit
priority with the timestamp order. Second, OCC only locks for
write operations, while Plor requires both read and write locks.
Hence, we require that the lock primitive in Plor should cause
minimal overhead. To address these challenges, Plor introduces
two technical contributions.
Enforce the commit priority via delayed conflict detection.

To commit transactions with the timestamp order, Plor ensures
that ➀ conflicts can be safely ignored in the read phase, where
transactions never read incomplete or uncommitted data (safety),
and ➁ transactions are serialized with the timestamp order by
resolving conflict in the commit phase (priority).

Plor uses different ways to safely ignore read-write and write-
write conflicts. To avoid detecting read-write conflicts in the read
phase, Plor introduce a private buffer for each working thread, as
done in OCC. In this way, write operations always buffers modi-
fications locally, preventing readers from reading incomplete or
uncommitted data when they ignore write locks. Similarly, readers
do not necessarily block writes since readers do not modify records
anyway. For write-write conflicts, we delay acquiring write locks
directly: for blind writes, which update a record without reading
it beforehand, a transaction only needs to acquire write locks at
the commit phase (see 𝑇4 in Figure 2c); for read-modify-writes, a
transaction acquires shared locks in the read phase, and upgrades
them to exclusive mode at the commit phase (e.g.,𝑇 3). Note that de-
laying write locks is not always beneficial under certain workloads,
so we keep this as an optional technique (§6.4).

Plor performs conflict detection by delaying it to the commit
phase (for priority). We use WOUND_WAIT to resolve potential
conflicts leveraging the timestamps in the locks acquired in the
read phase. In Figure 2c, 𝑇 1 has to wait for 𝑇 2′ to commit before it
commits, since 𝑇 1 owns a bigger timestamp; otherwise, 𝑇 1 aborts
the reader if 𝑇1’s timestamp is smaller. In this way, Plor ensures
that transactions with older timestamps are always committed first.

Minimizing the locking overhead with a latch-free locker.

Traditionally, a lock primitive should maintain multiple data struc-
tures (as in WOUND_WAIT), which makes it hard to acquire/release
locks atomically using lock-free data structures. However, this is
not the case in Plor – it acquires locks and detects conflicts in dif-
ferent phases. Understandably, ensuring the atomicity of the whole
(un)locking process is hard, but is easy for every single phase. We
will describe our latch-free locker in §4.2. For read-only transac-
tions, Plor further adopts a dynamic approach to consider both
throughput and tail latency (see 𝑇 5 in Figure 2c and §4.1).
Limitations. First, this paper mainly focuses on the impact of
request conflicts on tail latencies. When handling requests with
uneven distribution or variable sizes, existing task schedulers often
suffer from head-of-line blocking, exacerbating the tail latency prob-
lem. Since these factors have been well studied in recent work [13,
37], we do not discuss them again. Second, we only consider single-
node transactions and explore how Plor performs within interac-
tive services. we believe Plor can be applied in distributed transac-
tions as well, which we leave for future work. Third, Plor optimizes
tail latencies by compromising non-tail latencies (i.e., median la-
tency). This is easy to understand: by granting higher priority on
aborted transactions, newly invoked transactions are more likely
to abort when they conflict. As a result, Plor often exhibits higher
latency in the non-tail part. However, user-facing service level ob-
jectives (SLOs) are typically determined by tail latencies. As our
experiments will show in §6, non-tail latencies of Plor are often in
the range of several to hundreds of microseconds, which is orders
of magnitude lower than that of 999p tail latencies.

4 DESIGN OF PLOR

In this section, we first describe Plor (§4.1). Next, we describe the
lock design (§4.2) and the correctness proof of Plor (§4.3).

4.1 The Plor Concurrency Control

We first describe a baseline of Plor that only ignores read-write
conflicts in the read phase. Ignoring write-write conflicts is consid-
ered as an optional optimization and will be described in §4.1.4. For
simplicity, we first discuss how we run transactions that only con-
tain reads and updates to existing keys. Inserts and range queries
will be discussed later.

4.1.1 Data Structures. Plor launches multiple worker threads
to run transactions posted by clients. Each worker thread owns a
context (ctx), which contains the following information when it
runs a transaction.
• ctx.wid (16-bit, non-zero) is the ID of each worker thread.
• ctx.ts (47-bit) is the timestamp of the current running transac-
tion, which determines the serial order at the commit phase.

• ctx.status (1-bit) tracks the state of each worker thread, which
can be either running or aborted. With the WOUND_WAIT pro-
tocol, a worker thread kills a conflicting transaction by toggling
this field of the thread running that transaction.
Note that, wid, ts, and status together form a 64-bit integer,

which uniquely identifies the current running transaction. The
contexts of all worker threads form an array, namely ctx_arr[],
indexed by the worker ID, which is globally accessible.
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Data: ctx_arr[], read-set and write-set.
1 Commit (wid):

// Phase 1: detect read-write conficts.

2 for wr in write-set do
3 //wr.LockWr(wid); // when DWA is enabled.

4 wr.�.insert(excl_sig); // upgrade the lock.

// �[. . . ,excl_sig): returns all elements between head

and excl_sig (but w/o excl_sig).

5 for r in wr.�[. . . ,excl_sig) do
6 if ctx_arr[wid].ts < r.ts then

// kill r (younger than me).

7 ctx_arr[r.wid].status ← aborted;
8 else
9 while wr.�.contains(r) do

10 PollOnce(wid) ; // wait for it.

// Phase 2 (commit point): release read locks.

11 for rd in read-set do
12 rd.UnlockRd(ctx_arr[wid]);

// Phase 3: commit and release write locks.

13 for wr in write-set do
14 wr.commit_data(); // private_buf → DB.
15 wr.UnlockWr(ctx_arr[wid]);

16 PollOnce (wid):
17 if ctx_arr[wid].status == aborted then
18 abort() ; // check my status, abort if killed.

Algorithm 1: Commit Protocol.

Data: ctx_arr[], read-set and write-set.
1 Execute (wid):
2 ctx_arr[wid].ts = new_ts();
3 ctx_arr[wid].status = running;
4 . . .
5 recordi.LockRd(ctx_arr[wid]);
6 . . .
7 record j.LockWr(ctx_arr[wid]);
8 Commit(wid);

Algorithm 2: Execute Protocol.

1

Figure 3: A Transaction’s Lifecycle in Plor.

Figure 4: Lock Procedure.

Each worker thread also maintains read and write sets for the
current transaction. Read-set contains pointers that point to records
read by the transaction and write-set tracks modified records. The
records that are both read and modified appear in both the read-set
and write-set. Each item in the write-set also owns a private buffer
to accommodate a transaction’s updates to this record.

4.1.2 Read Phase. Plor follows a conventional 2PL protocol to
execute a transaction. As shown in Figure 3, a worker thread ini-
tializes its context before running a new transaction and always
acquires the corresponding lock before actually accessing a record.

Figure 4 describes how a lock manager handles shared and exclu-
sive lock requests, which exhibits the central idea of Plor. As done
in recent in-memory databases, we assign each record a lock man-
ager for higher concurrency [44, 54]. As shown at the beginning
of Figure 4, a lock manager keeps the following information: first,
the current writer (𝑤 ) that owners the lock exclusively; second, a
waiting list for writers (𝕎) ordered in ascending timestamp order;
and third, a list for readers ordered in arriving time order (ℝ).

To acquire a read lock, the worker thread simply ignores the
current writer and insert itself directly toℝ (Line 2). When a writer

Figure 5: Commit Protocol.

(i.e.,𝑤 ) is committing, the reader should be blocked to avoid reading
incomplete data (Lines 3 - 6), which will be described later. When
acquiring a write lock, Plor checks write-write conflicts but ignores
read-write conflicts. To achieve this, it first adds itself to 𝕎, and
then grabs the lock by racing on the𝑤 variable using an atomic CAS
operation. We use WOUND_WAIT to resolve write-write conflicts if
a writer is holding the lock (i.e., 𝑤 ≠ 0, Line 9). If the requesting
transaction has a smaller timestamp than the lock owner, it kills
the owner by toggling its status to aborted (Line 12). Then, the
lock requester waits until it acquires the lock (Lines 10 - 13). The
atomicity of lock acquisition will be discussed in §4.2. Once the
lock has been acquired, the worker accesses records and run the
transaction logic. Note that all of a transaction’s modifications are
buffered in the private buffer before the commit phase.

4.1.3 Commit Phase. On transaction completion, a worker at-
tempts to commit the transaction with three steps (see Figure 5). In
Phase 1, the worker thread detects read-write conflicts of all records
in the transaction’s write-set. It first upgrades the locks in the write-
set to exclusive mode (Line 4). Exclusive lock blocks all later readers
that attempt to acquire read locks, preventing them from reading
incomplete data. When a reader observes that a lock is in exclusive
mode, it aborts this committing transaction if the reader owns a
smaller timestamp, then, the reader waits until the exclusive lock
has been removed (Lines 3 - 6 in Figure 4). The implementation of
the exclusive locking mode will be discussed in §4.2. Once the lock
is in exclusive mode, the worker then detects conflicts by scanning
the readers in the lock: it kills all younger readers that own bigger
timestamps (Line 7), and waits for the older readers to release the
lock (Lines 9 - 10).

After Phase 1, the worker can safely commit the transaction. In
Phase 2, the worker releases all the read locks in its read-set, which is
done by removing itself from the list of readers (Line 15 in Figure 4).
In Phase 3, the worker commits the modified records to the database
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and releases the write locks. Releasing write locks consists of three
steps (Lines 17 - 20 in Figure 4): remove the committed transaction
from 𝕎, disable the exclusive locking mode, and find the oldest
waiter in 𝕎 and turn the lock ownership over to it.

Liveness. As shown in the lifecycle of a transaction in Plor,
a transaction can be killed by other conflicting ones at any stage
when it holds some conflicting locks. Hence, a transaction needs
to abort itself proactively if it has been killed, which avoids de-
pendency cycles and thus ensures liveness. We achieve this by
calling the PollOnce() function whenever a transaction waits for
a lock synchronously (Lines 6 and 13 in Figure 4, Line 10 in Fig-
ure 5); Note that a committing transaction does not need to check
its status anymore once it has finished phase 1; at this stage, it
neither acquires more locks nor waits for lock dependencies. How-
ever, other transactions are unaware of such information and may
still kill it (Line 7 in Figure 4). When the worker thread runs the
next transaction, it will finally see this aborted status and abort the
current transaction, causing unnecessary aborts. We address this
issue by placing status and ts in the same 64-bit word (i.e., ctx). A
thread aborts or activates a transaction by atomically changing the
whole word, which succeeds only if the target thread is still using
the original timestamp. The preemptive abort property of Plor
(i.e., a lower-timestamp transaction can abort higher-timestamp
conflicting transactions) ensures that the oldest transaction can
always be committed, since other conflicting ones cannot block
or abort it. Besides, the newly generated timestamp is monotonic,
and an aborted transaction still uses its original timestamp when
it reruns. Hence, an aborted transaction will finally become the
oldest one after a certain number of retries and then commit, which
guarantees the liveness of the protocol. Also, given that Plor is
starvation-free and the number of worker threads is less than that
of physical CPU cores, Plor will not deadlock the entire system
even if we use busy-waits in the lock manager.

Insert operations. Conflict detection of insert operations is quite
different since conflicts happen to non-existent records and there
is nothing to lock. We address this issue by adopting the approach
used in Silo [44], which inserts a new record in advance for the
insert request during the read phase. An insert operation on key
𝑘 is processed as follows: if 𝑘 already exists, then the transaction
is aborted; otherwise, the worker initializes a new record 𝑟 and ac-
quires the write lock of it in advance. Lock acquisition can always
succeed since the record is still invisible to other concurrent trans-
actions. Then the record is published to the database by inserting
a mapping from 𝑘 → 𝑟 in the index structure. If the transaction
aborts, the newly inserted mappings and records are removed.

Read-only transactions. Plor adopts a dynamic approach to
consider both throughput and tail latency. At first, Plor runs read-
only transactions via validation, as done in Silo. Read locks are
used only after a transaction aborts many times (3 in our implemen-
tation). MVCC runs read-only transactions that never abort (e.g.,
Cicada [25]). However, MVCC introduces extra overhead for main-
taining multiple versions and cleaning obsolete records; optimizing
the performance of MVCC is out of the scope of this paper.

4.1.4 Delayed Write-Lock Acquisition. This part describes
how we ignore write-write conflicts in the read phase by intro-
ducing delayed write-lock acquisition (DWA). A blind-write record

(i.e., a transaction writes a record without reading it beforehand)
can be modified by other transactions arbitrarily before it is com-
mitted. Hence, we simply acquire their write locks at the commit
phase (Line 3 in Figure 5). Read-modify-write records appear in
both read-set and write-set. Therefore, we only acquire their read
locks during the read phase, and upgrade them to exclusive mode
before committing the transaction. Delayed write-lock acquisition
further brings the following optimization opportunity: by acquiring
write locks at the commit phase, a transaction already has a full
write-set, so we can sort the write-set and acquire write locks in a
deterministic global order to avoid deadlocks. By enabling DWA,
Plor can finish the read phase without any lock blocking (similar
to OCC).

However, we find that adding too much optimism in the read
phase is not always beneficial. In stored-procedures, for instance,
concurrent transactions reach the commit phase too quickly, and
Plor often causes high abort rates when detecting conflicts using
WOUND_WAIT. We will analyze this in detail in §6.4.

4.2 Latch-Free Locker

We introduce the latch-free locker to handle read-write and write-
write conflicts in a lock-free manner. Plor decomposes lock acqui-
sition and conflict detection into different phases, and we find this
unique property greatly simplifies the way of implementing a lock
primitive using lock-free data structures.

For read locks, we only need to ensure that the list of readers (i.e.,
ℝ) is atomic when multiple readers insert entries in ℝ simultane-
ously. Luckily, there are many available open-sourced lock-free con-
current lists [3, 16]. Besides, detecting read-write conflicts should
also be done atomically (the green dashed boxes in Figure 4 and 5).
We need to ensure that once the lock is upgraded to an exclusive

mode, all later readers are blocked, and all the existing readers are
visible to the committing transaction. To realize this semantic, Plor
introduces a pre-defined 64-bit value (i.e., exlc_sig) in the list of
readers in a lock to indicate the exclusive mode. Specifically, ℝ is
ordered by the arriving time of each insertion; a committing trans-
action upgrades the lock by appending an excl_sig at the end of ℝ
(Line 4 in Figure 5), and then scans the readers whose entries ap-
pear before the excl_sig entry to detect read-write conflicts. When
a transaction acquires a read lock, it appends an entry into ℝ and
then scans backwards to find if there is an excl_sig entry and block
if necessary (Lines 3 - 6 in Figure 4).

For write locks, since we only allow one worker to exclusively
own the write lock, this can be achieved via CAS instructions on an
atomic word𝑤 (Line 9 in Figure 4). Detecting write-write conflicts
needs to manipulate 𝑤 and 𝕎 simultaneously (red dashed boxes
in Figure 4). However, pushing an item in 𝕎 and changing the
value of𝑤 cannot be performed atomically; similarly, turning the
lock over to the oldest waiter when releasing the lock (Line 20 in
Figure 4) cannot be done atomically either. One inconsistent case
arises when a lock requester (Ti) sees a non-zero𝑤 , and at the same
time, the lock owner releases the lock, and grants the lock to the
oldest waiter in𝕎 before Ti is visible in the list. Hence, Ti might
wait for someone that owns a higher timestamp. To address this,
Plor requires the waiters in𝕎 to compare its timestamp with𝑤
repeatedly and kill the lock owner if such inconsistent cases occur
(Lines 10 - 13 in Figure 4).
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Lock-free list using an atomic word.We find that implementing
a lock-free list can be further simplified by manipulating the bits
within an 8-byte atomic word. Specifically, we assign each worker
thread a bit in the atomicword, and the offset of the bit is determined
by the worker thread’s ID (i.e., wid). To insert an item into the list,
the worker thread simply sets the corresponding bit to 1 via a
fecth_and_add. To support exclusive mode, the last bit of each
atomic word (i.e., ℝ) is reserved to act as an excl_sig entry. When
a worker acquires a read lock, it uses fetch_and_add to set the
corresponding bit to 1, and checks whether the excl_sig entry has
already been set. If so, the reader clears its bit to zero and wait
accordingly. As a result, an 8-byte atomic word can support at most
63 worker threads, which is enough on our platform. We can still
use lock-free queues when more worker threads are added.

4.3 Correctness Proof of Plor

In this section, we prove that Plor is able to correctly enforce
serializability. To show this, we will prove that Plor guarantees
conflict serializability.

4.3.1 Preliminaries. We first define several frequently used no-
tations. A transaction 𝑇𝑖 is a sequence of operations, where each
operation can be a read 𝑟𝑖 (𝑋 ), write 𝑤𝑖 (𝑋 ), lock 𝑙𝑖 (𝑋 ), or unlock
𝑢𝑖 (𝑋 ) on record 𝑋 . It will be helpful for our purposes to distinguish
the type of a lock by writing 𝑙𝑟 (𝑋 ), 𝑙𝑤 (𝑋 ), or 𝑙𝑤+𝑒 (𝑋 ) for read lock,
write lock, and exclusive write lock respectively. Similarly, we will
write 𝑢𝑟 (𝑋 ) and 𝑢𝑤 (𝑋 ) for unlocks.

Definition 1 (Schedule).A schedule 𝑆 for transactions𝑇1,𝑇2, . . . ,𝑇𝑛
is any interleaving of the operations in the transactions such that the

order of operations in the same transaction is maintained.

Definition 2 (Serial Schedule). A schedule is serial if no trans-
action starts until another transaction has ended.

We next formally define conflicts. A write-write (WW) conflict in
a schedule 𝑆 is defined as a pair (𝑤𝑖 (𝑋 ),𝑤 𝑗 (𝑋 )) such that 𝑖 ≠ 𝑗 and
𝑤𝑖 (𝑋 ) occurs before𝑤 𝑗 (𝑋 ) in 𝑆 . We can similarly define read-write
(RW) conflicts and write-read (WR) conflicts. A conflict is any WW,
WR, or RW conflict.

We can now define two important notions.
Definition 3 (Conflict Eqivalence). Two schedules 𝑆, 𝑆 ′ on

the same transactions are conflict equivalent if they have exactly the

same set of conflicts.

Definition 4 (Conflict Serializable). A schedule is conflict
serializable if it is conflict equivalent to a serial schedule.

From here on, let 𝑆 be a schedule produced by Plor for a set of
transactions 𝑇1, . . . ,𝑇𝑛 that have committed. 𝑆 has the following
properties, which will be of use in the proof:
A. At any point in the schedule, at most one transaction can hold a

write lock for the same record 𝑋 . This follows from the atomic
execution of lines 9 - 13 in Figure 4.

B. All lock operations precede all the unlock operations within the
same transaction. This property is similar to that of the standard
2PL protocol. Indeed, in Plor a transaction releases all the locks
when it commits.

C. A transaction can write a record only after its lock has been
upgraded to exclusive mode (Lines 4 and 14 in Figure 5), despite

that DWA has been enabled or not, during which other readers
and writers cannot access this record.

4.3.2 Main Proof.

Theorem 1. Let 𝑆 be any schedule produced by Plor. Then, 𝑆 is

conflict serializable.

Proof. Similar to existing methods used to prove the conflict
serializability of 2PL, we will use induction in the number of trans-
actions in the schedule 𝑆 .

For the base case of the induction, 𝑆 contains only one transaction
𝑇 . In this case, 𝑆 is itself a serial schedule, and hence it is trivially
conflict serializable.

For the induction step, let 𝑆 be a schedule of 𝑛 transactions
𝑇1,𝑇2, . . . ,𝑇𝑛 . By the inductive hypothesis, any schedule consisting
of at most 𝑛 − 1 transactions must be conflict serializable. We show
that 𝑆 is also conflict serializable.

Let𝑢𝑖 (𝑋 ) be the first unlock operation found in 𝑆 , which is issued
by transaction 𝑇𝑖 .

𝑆 : . . . , . . . , 𝑢𝑖 (𝑋 ), . . . , . . .
Let 𝑆 ′ be the schedule constructed by moving all the operations

of 𝑇𝑖 forward to the beginning of 𝑆 while maintaining their order:

𝑆 ′ : . . . , . . . , . . . , . . .︸            ︷︷            ︸
operations of𝑇𝑖

,

𝑆 ′′︷                                        ︸︸                                        ︷
. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .︸                                        ︷︷                                        ︸
operations of other 𝑛 − 1 transactions

Claim 1: 𝑆 ′ and 𝑆 are conflict equivalent.

Proof of the claim.We show that conflict equivalence holds for all
three types of conflicts.
Write-write conflict. Consider a write operation𝑤𝑖 (𝑌 ) by trans-
action 𝑇𝑖 on record 𝑌 . We will show that any other write operation
𝑤 𝑗 (𝑌 ) on the same record must happen after 𝑤𝑖 (𝑌 ). Indeed, sup-
pose for the sake of contradiction that𝑤 𝑗 (𝑌 ) occurs before𝑤𝑖 (𝑌 )
in the schedule:

𝑆 : . . . ,𝑤 𝑗 (𝑌 ), . . . ,𝑤𝑖 (𝑌 ), . . .
Before anywrite, in Plor the transactionmust own thewrite lock

for the corresponding record. By Property A, at most one transaction
can hold this lock at any point, hence 𝑇𝑗 must have released the
lock before 𝑇𝑖 acquires it in order to write 𝑌 . Hence, the schedule
must be as follows:

𝑆 : . . . , 𝑙𝑤𝑗 (𝑌 ), . . . ,𝑤 𝑗 (𝑌 ), . . . , 𝑢𝑤𝑗 (𝑌 ), . . . , 𝑙
𝑤
𝑖 (𝑌 ), . . . ,𝑤𝑖 (𝑌 ), . . .

However, by our assumption, 𝑢𝑖 (𝑋 ) is the first unlock operation in
𝑆 , and thusmust occur before𝑢𝑤

𝑗
(𝑌 ), indicating that𝑢𝑖 (𝑋 ) precedes

𝑙𝑖 (𝑌 ) in the schedule, which is a contradiction to Property B.
Read-write conflict. Consider a write operation𝑤𝑖 (𝑌 ) of trans-
action 𝑇𝑖 on record 𝑌 . We will show that any other read operation
𝑟 𝑗 (𝑌 ) on the same record must happen after𝑤𝑖 (𝑌 ) in 𝑆 . Indeed, sup-
pose for the sake of contradiction that 𝑟 𝑗 (𝑌 ) occurs before𝑤𝑖 (𝑌 )
in the schedule:

𝑆 : . . . , 𝑟 𝑗 (𝑌 ), . . . ,𝑤𝑖 (𝑌 ), . . .
Before the write𝑤𝑖 (𝑌 ), the transaction𝑇𝑖 must acquire the write

lock 𝑙𝑤
𝑖
(𝑌 ) in exclusive mode (i.e., 𝑙𝑤+𝑒

𝑖
(𝑌 )). We argue that 𝑙𝑤+𝑒

𝑖
(𝑌 )

must appear after 𝑟 𝑗 (𝑌 ) in the schedule. Indeed, if not, 𝑇𝑖 would
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have to release the lock on 𝑌 before𝑤𝑖 (𝑌 ), a contradiction. Hence,
the schedule must be as follows:

𝑆 : . . . , 𝑙𝑟𝑗 (𝑌 ) . . . , 𝑟 𝑗 (𝑌 ), . . . , 𝑙
𝑤+𝑒
𝑖 (𝑌 ), . . . ,𝑤𝑖 (𝑌 ), . . .

Now, consider the readers’ list of record 𝑌 when 𝑇𝑖 upgrades the
write lock to exclusive mode. Since 𝑇𝑗 is not aborted, this means
that at some earlier point 𝑇𝑖 must have released the read lock on 𝑌 .
Hence, the schedule is:

𝑆 : . . . , 𝑙𝑟𝑗 (𝑌 ) . . . , 𝑟 𝑗 (𝑌 ), . . . , 𝑢
𝑟
𝑗 (𝑌 ), . . . , 𝑙

𝑤+𝑒
𝑖 (𝑌 ), . . . ,𝑤𝑖 (𝑌 ), . . .

By our assumption, 𝑢𝑖 (𝑋 ) is the first unlock operation in 𝑆 , and
thus must occur before 𝑢 𝑗 (𝑌 ). But that means that 𝑢𝑖 (𝑋 ) precedes
𝑙𝑤+𝑒
𝑖

(𝑌 ) in the schedule, which is a contradiction to Property B.
Write-read conflict. Consider a read operation 𝑟𝑖 (𝑌 ) by transac-
tion 𝑇𝑖 on record 𝑌 . We will show that any other write operation
𝑤 𝑗 (𝑌 ) on the same record must happen after 𝑟𝑖 (𝑌 ) in 𝑆 . Indeed,
suppose for the sake of contradiction that 𝑤 𝑗 (𝑌 ) occurs before
𝑟𝑖 (𝑌 ) in the schedule:

𝑆 : . . . ,𝑤 𝑗 (𝑌 ), . . . , 𝑟𝑖 (𝑌 ), . . .

Transaction 𝑇𝑗 must acquire the write lock of 𝑌 and upgrade it
to exclusive mode before writing. Furthermore, before reading trans-
action 𝑇𝑖 must acquire a read lock 𝑙𝑟

𝑖
(𝑌 ). We now distinguish two

cases, depending on whether 𝑙𝑟
𝑖
(𝑌 ) occurs before or after 𝑙𝑤+𝑒

𝑗
(𝑌 ).

In the first case, 𝑙𝑟
𝑖
(𝑌 ) occurs before 𝑙𝑤+𝑒

𝑗
(𝑌 ). Then, the schedule

looks as follows:

𝑆 : . . . , 𝑙𝑟𝑖 (𝑌 ), . . . , 𝑙
𝑤+𝑒
𝑗 (𝑌 ), . . . ,𝑤 𝑗 (𝑌 ), . . . , 𝑟𝑖 (𝑌 ), . . .

Following a similar argument to the one in the read-write conflict
case,𝑇𝑖 must release the read lock on 𝑌 before𝑇𝑗 upgrades the lock
to exclusive mode. But then 𝑢𝑟

𝑖
(𝑌 ) would occur before𝑇𝑖 reads 𝑌 , a

contradiction to how Plor behaves.
In the second case, 𝑙𝑟

𝑖
(𝑌 ) occurs after 𝑙𝑤+𝑒

𝑗
(𝑌 ), and hence the

schedule is as follows:

𝑆 : . . . , 𝑙𝑤+𝑒
𝑗 (𝑌 ), . . . , 𝑙𝑟𝑖 (𝑌 ), . . . , 𝑟𝑖 (𝑌 ), . . .

But then, because of lines 3 - 6 in Figure 4,𝑇𝑗 must unlock 𝑌 before
𝑇𝑖 obtains the read lock. Hence, 𝑢𝑤

𝑗
(𝑌 ) occurs before 𝑙𝑟

𝑖
(𝑌 ) in the

schedule. By our assumption, 𝑢𝑖 (𝑋 ) is the first unlock operation in
𝑆 , and thus must occur before 𝑢𝑤

𝑗
(𝑌 ). But that means that 𝑢𝑖 (𝑋 )

precedes 𝑙𝑟
𝑖
(𝑌 ) in the schedule, contradicting Property B. □

To conclude, let us consider again the schedule 𝑆 ′. This sched-
ule consists of all operations in transaction 𝑇𝑖 , followed by a sub-
schedule 𝑆

′′
of 𝑛 − 1 transactions. By the induction hypothesis, 𝑆 ′′

is conflict equivalent to a serial schedule. Consequently, the initial
schedule 𝑆 ′ is also equivalent to a serial schedule. Since by Claim 1
𝑆 and 𝑆 ′ are conflict equivalent, 𝑆 is conflict serializable as well. □

5 IMPLEMENTATION

In our implementation, we apply Plor in DBx1000 [54], which is
a multi-threaded, shared-everything OLTP DBMS. The tables in
DBx1000 are stored in a row-oriented manner. Since DBx1000 only
supports hash-based indexes, we revise it to use Masstree [26] as
an alternative ordered index scheme.

Interactive Processing model. Most in-memory database pro-
totypes in academia [19, 44, 49, 55] run transactions in stored-
procedure mode, where all accesses in a transaction and the exe-
cution logic are ready before execution. A recent study finds that
interactive transaction processing still dominates in production en-
vironments [32]. As such, we also revise DBx1000 to support inter-
active processing mode. Specifically, we decouple Plor into two
parts, including a transaction processing engine (runs on clients)
to execute the transaction logic, and a storage engine to manage
the actual data. Clients interact with the storage engine by sending
data queries via networked RPCs. In our implementation, we use
eRPC [21] to send requests, which is a fast and general-purpose
remote procedure call library.

Data Durability.Many recent DBMSs [25, 44, 55] ensure data
durability via parallel logging. The basic idea is to group transac-
tions into epochs and perform logging in batches. This optimiza-
tion is based on the fact that accessing external storage devices
is extremely slow. While parallel logging improves throughput,
it impacts latency inevitably by delaying the responses to clients.
Fortunately, emerging non-volatile memory technologies, such as
Intel’s Optane DC Persistent Memory (Optane DCPMM) [28], ex-
hibit extremely low write latencies (around 100 𝑛𝑠) and provide
us with the opportunity to log data immediately without group
commit and separate loggers. To understand how logging to Op-
tane DCPMMs impacts tail latency and throughput, we implement
both redo and undo logging in Plor. For redo logging, a transaction
buffers the updated records in DRAM, and never makes updates to
the database during the read phase. At the commit phase, updates
are appended to the log file before committing them in place. Hence,
a transaction performs redo logging only when it can commit. For
undo logging, the old version of a record is logged immediately
before modifying it. Undo logging makes aborts more expensive
due to the extra logging overhead in the read phase.

6 EVALUATION

In our evaluation, we try to answer the following questions:
• Does Plor achieve the goal of delivering low tail latency and
high throughput under high-contention workloads on various
setups?

• Does Plor still provide comparable throughput to that of Silo
under low contention workloads?

• How does each technique in Plor help with optimizing tail la-
tency and throughput?

6.1 Experimental Setup

Testbed.Our experiments run on a machine with two Intel® Xeon®
Gold 6240M CPUs (each with 18 physical cores and 25 MiB LLC,
clocked at 2.6 GHz), 192 GiB DDR4 DRAM, and 4 Optane DCPMMs
(256 GiB per module, 1 TB in total). The server is installed with
Ubuntu 18.04 and Linux 4.15. To get steady results, the experiments
pin threads to different cores, which are evenly distributed across
two NUMA nodes.

By default, transactions are processed in stored-procedure mode
and persistent logging is disabled. When evaluating the effect of
persistent logging, the worker threads log data to local Optane
DIMMs that are attached to the same CPU. Optane DCPMMs are
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configured in App-Direct mode and their spaces are managed by the
NOVA file system [52], which is a scalable NVM-aware file system.
When evaluating the interactive transaction processing mode, the
experiments run on two such machines. They are connected with a
Mellanox MSB7790-ES2F switch using MCX555A-ECAT ConnectX-
5 EDR HCAs, which support the 100Gbps Infiniband network.

Compared Algorithms. DBx1000 includes a pluggable lock
manager that supports different concurrency control schemes, and
this allows us to compare them within the same system. We choose
three 2PL-based schemes (NO_WAIT, WAIT_DIE and WOUND_WAIT),
twoOCC schemes (Silo [44] and TicToc [55]) and one hybrid scheme
(MOCC [49]) for comparison in this paper.MOCC [49] usesNO_WAIT
and OCC dynamically to access records based on their hotness (we
differentiate the design details of MOCC and Plor in §7). We believe
that they are representative of the types of concurrency control
protocols we target. Other approaches are possible, such as deter-
ministic [43] or static analysis [50, 51] approaches. However, these
types of approaches, unlike ours, require that transactions’ read and
write sets to be known a priori. For this reason, we also disable the
retrospective lock list (RLL) technique in MOCC, since RLL assumes
that transactions are deterministic (the read and write sets of an
aborted transaction never change when it reruns).

Workload. Experiments use two standard benchmarks, includ-
ing YCSB [9] and TPC-C[1]. TPC-C models online transaction pro-
cessing (OLTP) databases with a configurable number ofwarehouses.
It consists of nine tables, where customers are assigned to a set of
districts within a local warehouse, and orders are placed in those dis-
tricts. Among the five types of transactions, Payment and NewOrder
make up 88% of the default TPC-C mix. They mostly interact with
its local warehouses, but 10% of NewOrder and 15% of Payment
transactions access a remote warehouse. Stock-Level represents
a heavy read-only database transaction and has relaxed isolation
requirements (i.e., read-committed). To execute such transactions,
2PL releases the lock immediately after accessing a new record, and
OCC skips the validation phase directly. DBx1000 uses hash indexes
for the tables that do not require range queries, and we still keep
this optimization.

The Yahoo! Cloud Serving Benchmark (YCSB) emulates large-
scale on-line services. By default, each query accesses a single
record (1KB) and the contention level is controlled via a Zipfian
distribution by tuning the parameter 𝜃 . YCSB-A and YCSB-B are
used in this paper. YCSB-A represents the update-heavy and high-
contention workload (50% reads and 50% writes, parameter=0.99).
YCSB-B represents the read-intensive workload (95% reads and 5%
writes, parameter=0.5). We slightly modify the two workloads to
use a bimodal distribution of transaction sizes, where 90% are small
transactions (4 operations per transaction) while the rest 10% are
big ones (16 operations per transaction).

Measurements.When we run transactions in stored-procedure
mode, we generate transaction requests locally, instead of receiving
requests from remote clients through the network, thus preventing
irrelevant factors (e.g., network, queuing delays) from impacting
tail latencies. When collecting latencies, each transaction request
is timestamped with a start time when it is invoked by the worker
thread. In the context of interactive mode, the start timestamp is
generated by the transaction processing engine. The end-to-end
latency is computed only after the transaction has been committed.
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Figure 6: YCSB-A (𝜃 = 0.99, w:50%, r:50%). Stored-procedure; (a) the

99.9th percentile latency against throughput by varying the number

of workers; (b) the latency distribution when running 20 workers.

6.2 High-Contention Workloads

We first evaluate Plor under high contention workloads. Both
stored-procedure and interactive processing modes are evaluated.
In the stored-procedure mode, we disable deferred write-lock acqui-
sition by default, and we will analyze it in §6.4 in detail.

6.2.1 Stored-Procedure Mode. We first run high-contention
workloads in stored-procedure mode.

YCSB-A. Figure 6 shows the 99.9th percentile latency (i.e., 999p)
against the throughput as we increase the number of worker threads
(from 1, 4, 8, to 36 with a step of 4). For Silo and TicToc, we add up
to 48 threads to get their peak throughput. The latency distribution
when we run 20 threads are shown at the bottom of Figure 6. We
make the following observations.

First, Plor achieves 25% to 42% higher peak throughput than that
of 2PL schemes, and only underperforms OCC-based approaches by
9% (for Silo) and 19% (for TicToc). Plor performs better than 2PL
due to the following reasons. 1) Like OCC, Plor removes read-write
blocking overhead during the read phase, and only detect conflicts at
the commit phase, which improves concurrency. 2) Plor introduces
the latch-free locker, which avoids the locking overhead (we will
analyze this in §6.4 in detail). TicToc delivers the highest peak
throughput since it lazily computes a valid commit timestamp based
on the records accessed by the transaction, which permits more
concurrency. Note that Silo and TicToc require more than 40 threads
to reach their maximum throughput, while Plor only requires 20
threads. The main reason lies in that Silo and TicToc can only decide
whether or not to abort a transaction at the commit phase, which
wastes CPU cycles under high abort rates. Transactions running
with Plor, instead, can be killed at either the read phase or the
commit phase. After reaching the peak point, Plor’s performance
reduces slightly by 10% as the number of threads increases, and
this also happens in WAIT_DIE and WOUND_WAIT. We believe this
can be addressed by using better admission control policies.
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Second, Plor shows comparable 99.9th percentile latencies to
that of WOUND_WAIT, which are significantly lower than that of
Silo and TicToc. As shown in Figure 6a, for a target throughput
running at 1 million tps, Plor is able to restrict its 999p latency
within 294 𝜇𝑠 , which is 14.5× and 8.8× lower than that of Silo and
TicToc, respectively. Plor exhibits low tail latency since it still uses
WOUND_WAIT to resolve conflicts, which commits transactions with
the timestamp order. The tail latency and throughput of MOCC are
between those of NO_WAIT and Silo, since it is a combination of
the two algorithms.

Third, the non-tail latencies (i.e., from 0th toNth percentile, where
𝑁 = 0.995 in Figure 6b) of Plor are higher than that of Silo. This
is as expected since Silo and Plor have close peak throughput, so
they should also exhibit similar average latencies. Given that Plor
shows lower tail latency, it must have higher non-tail latencies.

TPC-C. We set the number of warehouses to 1 to model the
high-contention workload and the results are shown in Figure 7.
The evaluated systems perform differently in two aspects compared
to that with the YCSB-A workload. First, we observe that Plor’s tail
latency is lower than that of Silo and TicToc in the range of 92th
to 100th percentile (see Figure 7b), which is different from that in
YCSB-A (99.5th to 100th). We specify two main reasons. First, TPC-
C has a higher contention level when using a single warehouse. In
such a setting, all the Payment and NewOrder transactions need to
access the same warehouse and thus always conflict with each other.
Second, TPC-C consists of a complicated mixture of transactions
with different execution logic, where some of them only access a few
records (e.g., Payment), while others may access tens to hundreds of
records in a single transaction (e.g., Delivery and Stock-Level).
We also find that long transactions are more likely to abort in Silo
and TicToc, exacerbating the tail latency problem.

Second, WAIT_DIE and MOCC achieve almost the same peak
throughput as that of Plor and Silo. By profiling the details, we ob-
serve that transactions in TPC-C often cause single-point conflicts
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Figure 8: Interactive Transaction Processing. (a) and (b) show

the 99.9th percentile latency against throughput for YCSB-A and TPC-

C workloads, respectively, under interactive mode.

on the warehouse record. In WAIT_DIE, such conflicts are handled
better than that in WOUND_WAIT. For example, when a NewOrder
transaction is holding the read lock of the warehouse, the following
Payment transaction with a higher timestamp is aborted when it
tries to acquire the write lock. If another NewOrder transaction
comes, it still can acquire the read lock since it does not conflict
with the former one. However, this won’t happen in WOUND_WAIT,
where the Payment transaction is placed in the waiting queue,
which again blocks the following NewOrder transactions. In MOCC,
only a few frequently updated records are locked (e.g., warehouse),
and this helps MOCC to avoid unnecessary aborts while without
introducing extra locking overhead on other records. The through-
put of TicToc peaks at 134 Ktps (not shown in the figure since it
has a 999p latency of more than 20𝑚𝑠 at this point), which is 7.5%
higher than that of Plor.

6.2.2 Interactive Processing Mode. We now analyze the per-
formance of Plor running in the interactive processing mode. To
prevent the data storage engine from becoming the bottleneck, two
machines that run the two engines always use the same number of
worker threads. Delayed write-lock acquisition is evaluated in this
part (denoted as +DWA).

Figure 8a and 8b show the results with YCSB-A and TPC-C work-
loads, respectively. Under the YCSB-A workload, Silo shows very
poor performance. We observe it exhibits the highest abort ratio
among the compared schemes, and these aborted transactions con-
sume most CPU cycles to access remote records. TicToc performs
better than Silo since it lazily generates commit timestamps, which
incurs a fewer number of aborts. Plor outperforms WOUND_WAIT
by 49% in terms of peak throughput and still keeps comparable
999p latencies. When the delayed write-lock acquisition technique
is enabled, +DWA further improves throughput by 2×. +DMA has
almost the same abort ratio as that of Silo. However, this does not
impact its efficiency, since aborted transactions in +DWA can be
killed in advance by conflicting transactions, and this avoids most
of the unnecessary remote accesses. Under the TPC-C workload
(see Figure 8b), the major difference is that Silo has almost the same
peak throughput as that of +DWA. As illustrated before, TPC-C
with one warehouse only permits very limited concurrency, and
both Silo and +DWA reach the maximum performance that can
be achieved. Even so, +DWA still achieves 4× lower 999p latency
as their throughputs saturate. Their latency distributions exhibit
almost the same trend as that in Figures 6 and 7. Due to the space
limitation, we do not show them again.
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6.3 Varying-Contention Workloads

In this part, we evaluate the performance of Plor by varying the
contention level. Specifically, when running the YCSB-A workload,
we change the skewness by turning the 𝜃 parameter from 0.99 to 0.3;
with the TPC-C workload, we increase the number of warehouses
from 1 to 20. All experiments are run in stored-procedure with
20 threads (DWA in Plor is disabled). As shown in Figure 9, we
can find that all evaluated systems exhibit lower tail latency and
higher throughput as the contention level decreases. Among them,
Plor consistently provides the lowest tail latency under the two
workloads as the contention level varies. For the TPC-C workload,
Plor’s 999p latency is almost unchanged when more warehouses
are added, while SILO and TicToc show a reduction of 17× and 36×,
respectively, for the 999p latency.

We further evaluate the performance of low-contention work-
loads (i.e, YCSB-B) in stored-procedures. Figure 10 only reports
throughputs since aborts are rare and the tail latency is almost un-
changed. By using the default record size (i.e., 1 KB, in Figure 10a),
we find that all 2PL-based schemes, including Plor, scale linearly.
Two reasons account for their high performance. First, YCSB-B is
read-dominated and conflicts are rare; Second, 2PL and Plor only
need to copy data for write operations (from the private buffer to
the database), whose overhead is almost negligible since YCSB-B
only contains 5% write operations. Silo, TicToc and MOCC, instead,
have to copy all the records into the private buffer for a transaction,
and thus deliver the worst throughput. In Figure 10b, we modify
the record size to 10 bytes to explore the maximum throughput
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each concurrency control scheme can achieve. We observe that all
schemes scale linearly as the number of threads increases. More-
over, the throughput of TicToc is slightly higher than the other
schemes since it incurs lower locking overhead.

6.4 Factor Analysis

Internal Mechanisms. To understand in great detail the benefits
and overhead brought by various techniques of Plor, we show
a factor analysis in Figure 11. Among the evaluated techniques,
+LF Locker adds the latch-free locker technique upon Baseline Plor,
and +DWA enables the delayed write-lock acquisition in Plor. To
highlight the effects of each technique, YCSB-B′ is used in 11a,
which is a medium-contended workload with a parameter of 0.8.
Stored-procedure mode is used in this part.

The major takeaway from Figure 11a is that avoiding read-write
conflict detection is an important optimization for Plor when pro-
cessing read-dominated workloads, which improves throughput
by 35%. Both +LF Locker and +DWA show limited performance
improvement. For +LF Locker, since YCSB-B′ is medium-contended,
the lock thrashing overhead is not high. +DWA target at reducing
write-write conflict, which is not the main overhead in YCSB-B′.

Figure 11b shows the 99.9th percentile latency as a function
of throughput under the YCSB-A workload. To help with under-
standing their performance, the execution time breakdown of each
mechanism is collected and shown in Figure 12. We make the fol-
lowing two observations from the figures:

First, +LF Locker improves throughput by 25% compared to
that of Base Plor. By analyzing the execution breakdown, +LF
Locker reduces the locking overhead from 4.4% to less than 0.1%.
Baseline Plor shows almost the same peak throughput as that of
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WOUND_WAIT; however, this does not indicate that the baseline
does not have any benefits. By delaying the detection of conflicts,
Plor separates the lock acquisition and conflict detection into dif-
ferent phases. Since Baseline Plor uses mutex locks to serialize
concurrent accesses to the locking states, it has to acquire twice as
many mutex locks as WOUND_WAIT, which eliminates the benefits
Plor brings. Even so, Baseline Plor still reduces read-write conflicts
from 29% to 5%.

Second, +DWA mitigates the write-write conflicts greatly (from
63% to 29% with 36 threads). However, +DWA’s peak throughput is
slightly lower than that of +LF Locker and its performance collapses
as the number of threads increases. From Figure 12b we can observe
that +DWA shows a much higher abort ratio. During the read phase,
+DWA processes transactions without any lock blocking (similar to
OCC). In stored-procedure mode, transactions running with +DWA

will quickly reach the commit phase. However, +DWA resolves con-
flicts with WOUND_WAIT, which makes most transactions execute
too optimistically and abort in the end.

Effects of Request Distribution. As described in §6.1, we
revise the YCSB-A workload to use a bimodal distribution of trans-
action sizes (i.e., 10% are big transactions and the rest 90% are small
ones). In this part, we study how the request distribution hurts
tail latencies by varying the size of big transactions. As shown in
Figure 13b, the 999p latency of Silo increases by 45× as we change
the size of big transactions from 4 to 128 (32× of growth). This
indicates that OCC aggravates the tail latency problem when it
meets workloads mixed with big transactions. Instead, the 999p
latency of Plor increases only by 12×, which is even slower than
the growth of the transaction sizes. This further confirms that abort
times is the dominating factor that hurts tail latencies in Plor for
high-contention workloads.

Effects of Persistent Logging. Figure 14 evaluates the effects
of redo and undo logging on various concurrency control schemes.
We still use the TPC-C workload in stored-procedure mode. In
general, logging in Optane DCPMMs adds very limited overhead
to each scheme. By comparing the results with that in Figure 7,
we find that the throughput of Silo with redo logging is almost
unchanged. Optane DCPMMs exhibits comparable write latency to
that of DRAM, so the logging overhead is not significant. Besides,
with redo logging, a transaction logs data only after it reaches the
commit point, so it never causes unnecessary logging overhead. We
do not evaluate Silo, TicToc and MOCCwith the undo logging mode
since they never perform in-place updates before the commit phase
– undo logging mode requires an update to be logged before it is
modified in-place. 2PL schemes perform better under undo mode,
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We use TPC-C (1 warehouse) in stored-procedure mode.

where they only have a performance decline within 10%. 2PL can
abort a transaction at any phase, so they do not cause unnecessary
logging overhead too much when aborting a transaction. Undo
logging causes higher tail latency than redo, but still, Plor exhibits
the lowest tail latency among the compared systems. 2PL schemes
are less efficient under redo mode. The reason is that 2PL locks the
records all the way, and logging further prolongs the lock holding
time, limiting concurrency.

Effects of Commit Priority. Real-time database systems (RT-
DBS), an important line of research, use timing constraints to yield
reliable responses [18, 41, 45]. They achieve this by granting a dead-
line to each transaction and trying to minimize the percentage of
late transactions. When resolving conflicts, RTDBS uses deadline
as the commit priority between conflicting transactions, i.e., trans-
actions with earlier deadlines have a higher priority to commit.

In this part, we apply the deadline-based commit priority policy
in Plor and compare its performance against our original version,
which uses arrival timestamp as the commit priority. The deadline
assignment formula used here is similar to [18], i.e., 𝐷𝑇 = 𝐴𝑇 +
𝑆𝐹 ∗ 𝑅𝑇 , where 𝐷𝑇 , 𝐴𝑇 , and 𝑅𝑇 are the deadline, arrival time and
resource time, respectively, of the running transaction, while 𝑆𝐹
is a slack factor. For simplicity, the resource time is equal to the
number of records accessed by the current transaction. We run the
experiment with different values of 𝑆𝐹 and the results are shown
in Figure 15. We can find that as the value of 𝑆𝐹 increases, the
tail latency of Plor increases as well. As we analyzed before, big
transactions often incur higher tail latency. However, from the
formula we can understand that, big transactions typically have
later deadlines when 𝑆𝐹 > 0, which indicates that big transactions
have lower commit priority and they are more likely to abort in the
first few attempts to commit, leading to the high tail latency.

7 RELATEDWORKS

Tail Latency Optimization. A number of recent works achieve
microsecond-scale SLOs (service-level objectives) in different lay-
ers in the operating system. For example, dataplane operating sys-
tems optimize for throughput and tail latency by separating the OS
dataplane from the OS control plane [5, 15, 34, 35]; microsecond-

scale core scheduling systems introduce user-space thread allocation
and scheduling policies [20, 29, 31, 36, 47]; microsecond-scale queue

manager controls tail latency by changing the amount of resources
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dedicated to long-running requests [13, 17, 24, 37]; and storage man-

agement reduces the impact that caused by background tasks or
hardware resources [4, 6]. Plor starts from a different perspective
by studying how high-contention workloads impact the tail latency
in transactional systems.
Transaction Scheduling. Ding et al. [14] present a framework to
batch across a transaction’s entire life cycle for OLTP systems based
on OCC. They show that batching does not necessarily indicate
high tail latency, instead, by adopting proper reordering policies,
batching even has the chance of reducing tail latency. Different from
them, Plor does not reorder or batch transactions. Deterministic
databases (e.g., Calvin [43], SLOG [38], etc.) order transactions’
conflicting record accesses deterministically before executing them,
where transactions never abort except for outside events. Dast
is a recent variant of deterministic databases designed to achieve
low tail latency for serializable transactions in edge computing. It
reorders cross-region transactions to prevent them from blocking
intra-region ones. However, deterministic databases require a priori
knowledge of read/write sets of transactions, which is not always
the case for some general transaction workloads [1, 2]; besides,
some of them also do not scale well on multi-core platforms [50].
Plor is designed to run general transactions while delivering both
high throughput and low tail latency.
Optimizing High-Contention Workloads. Transaction chop-
ping [40, 57] and its recent followers (e.g., IC3[50] and Runtime
Pipelining [27, 51]) decompose a transaction into a series of atomic
sub-transactions and allow them to run in parallel. Transaction
chopping improves throughput under high-contention workloads,
but it is not a direct solution for reducing the tail latency. For in-
stance, IC3 executes sub-transactions optimistically, which cannot
prevent aborted transactions from aborting again. Besides, similar
to deterministic databases, these approaches also require the full
knowledge of read and write sets prior to transaction execution.

Multi-version concurrency control (MVCC) and timestamp or-
dering are another line of research that optimize high-contention
workloads. In MVCC (e.g., MV2PL [7], Cicada [25]), each record
has multiple versions, where locks acquired for reading data do not
conflict with locks acquired for writing data. Similar optimization
also exists in OCC-based approaches (e.g., Silo [44] and STO [19]).
Plor borrows these ideas to optimize throughput, but we consider
tail latency as well. In timestamp ordering, Cicada [25] decides a
transaction to commit or abort by comparing its timestampwith the

read and write timestamps of the records it accessed. TicToc [55]
does not grant timestamps for the running transaction in the read
phase, instead, a valid timestamp is lazily computed in the com-
mit phase. Plor uses timestamp as well, but with the main goal
of ensuring that old transactions can always commit first. Neither
Silo nor TicToc has such a guarantee – once a transaction aborts, it
must use a newer timestamp for committing; differently, aborted
transactions in Plor use old timestamps to increase their priority
in the next commit.
Hybrid Concurrency Control. The idea of hybridizing OCC and
2PL has been implemented many times in the past [10, 39, 49].
For example, MOCC [49] uses 2PL and OCC dynamically to access
records based on their hotness. It locks hot records via a variant of
NO_WAIT to prevent writers from clobbering readers, and reads cold
records optimistically like traditional OCC to avoid the unnecessary
locking overhead. However, such a combination does not reduce
tail latencies since neither NO_WAIT nor OCC prevents the aborted
transactions from aborting again. Hsync [39] achieves high perfor-
mance graph analytics through synchronous parallel processing by
co-using OCC and 2PL. it uses a locking-based scheduler for high
degree vertices, and a non-locking-based scheduler for low degree
vertices. Callas [51] proposes the modular concurrency control that
partitions transactions into groups and allows different concurrency
control protocols to be used in different groups. Spanner [10] is a
distributed database based on 2PL and it delays write-lock acquisi-
tion, which is similar to that of Plor. Polyjuice [48] decouples the
timeline of a transaction into multiple steps and uses learning-based
techniques to dynamically select the most optimal protocol for exe-
cuting each step. CormCC [42] provides a framework for mixing
different CC protocols and changing them online with minimal
overhead. Above approaches follow a methodology of selecting a
suitable protocol when a certain scenario is met, while the internal
logic of each protocol is unchanged. Differently, Plor integrates the
principles of OCC and WOUND_WAIT into a new protocol, whose
main goal is considering both throughput and tail latency, which
are mostly ignored by past work.

8 CONCLUSION

In this paper, we present pessimistic locking and optimistic reading

(Plor), a new concurrency control scheme that enables both high
throughput and low tail latency, and evaluate it under various
setups. While the techniques inside Plor may not suitable for all
kinds of setups, we find that Plor achieves close or comparable
throughput as that of OCC and reduces 99.9th percentile latency
by an order of magnitude when running in stored-procedure mode.
Delaying write lock acquisition further improves throughput by
2× for interactive mode under YCSB-A workloads.
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