
ALV: A New Data Redistribution
Approach to RAID-5 Scaling

Guangyan Zhang, Weimin Zheng, and Jiwu Shu

Abstract—When a RAID-5 Volume is scaled up with added disks, data have to be redistributed from original disks to all disks including

the original and the new. Existing online scaling techniques suffer from long redistribution time as well as negative impact on

application performance. By leveraging our insight into a reordering window, this paper presents ALV, a new data redistribution

approach to RAID-5 scaling. The reordering window is a result of the natural space hole as data being redistributed, and it grows in

size. The data inside the reordering window can migrate in any order without overwriting other in-use data chunks. The ALV approach

exploits three novel techniques. First, ALV changes the movement order of data chunks to access multiple successive chunks via a

single I/O. Second, ALV updates mapping metadata lazily to minimize the number of metadata writes while ensuring data consistency.

Third, ALV uses an on/off logical valve to adaptively adjust the redistribution rate depending on application workload. We implemented

ALV in Linux Kernel 2.6.18 and evaluated its performance by replaying three real-system traces: TPC-C, Cello-99, and SPC-Web. The

results demonstrated that ALV outperformed the conventional approach consistently by 53.31-73.91 percent in user response time and

by 24.07-29.27 percent in redistribution time.

Index Terms—RAID-5 scaling, reordering window, I/O aggregation, lazy checkpoint, rate control.

Ç

1 INTRODUCTION

DUE to I/O parallelism and high availability, RAID-5 is
widely used on servers. Disk addition to a RAID-5

volume can meet two requirements simultaneously: larger
storage capacity and higher I/O bandwidth. This disk
addition is termed “RAID-5 scaling.”

Performing the process of RAID-5 scaling is a difficult
technical challenge for two reasons. First, almost every data
chunk has to be moved to preserve the round-robin order.
Second, due to the extremely high cost of downtime [1], the
data redistribution has to be performed online. Scaling a
RAID-5 volume requires an efficient approach to redistri-
buting the data online, so that: 1) data redistribution will be
completed in a short time; 2) the impact of data redistribu-
tion on application performance will not be significant; and
3) data consistency will be guaranteed even if the system
crashes or one disk fails during the scaling process.

So far, several approaches have been proposed for
redistributing data for RAID-5 scaling. Typical examples
include the gradual assimilation (GA) algorithm [2] and the
reshape toolkit in a Linux MD driver (MD-Reshape) [3].
Both of them suffer from a low data redistribution efficiency
due to the following limitations: 1) Issuing small redistribution
I/Os. Data redistribution has a sequential access pattern,
which is interleaved with user requests. Issuing small
redistribution I/Os breaks up this sequential streaming,
hence, bringing down the redistribution efficiency by a

certain magnitude [4]. 2) Updating mapping metadata fre-
quently. In order to keep data consistent, these approaches
frequently write mapping metadata onto disks (a.k.a.,
checkpoint). Because metadata are usually stored at the
beginning of all member disks, each metadata update causes
one long seek per disk. 3) Using nonadaptive rate control.
Existing approaches use nonadaptive schemes to control
redistribution rate so as to avoid interfering with application
performance to unacceptable levels. Due to workload
fluctuations on arbitrary time scales [5], these nonadaptive
schemes either degrade application performance greatly or
result in unsatisfactory redistribution speeds.

Data redistribution requires 1) reading and writing the
data chunks and 2) updating the mapping metadata to
record data movements. It is impossible to reduce the
number of data chunks moved while still maintaining the
round-robin order. Consequently, we focused on decreas-
ing the numbers of data accesses and metadata updates.

If data chunks have to be moved in a strict one by one
sequence, it will be difficult to optimize the data redistribu-
tion process. Our previous research [6] has discovered that
there is always a reordering window during data redis-
tribution for RAID-0 scaling. The data inside the reordering
window can migrate in any order without overwriting any
valid data. By leveraging our insight into a reordering
window, SLAS is proposed to scale RAID-0 volumes online,
which reduces the cost of data redistribution effectively.

We can predict that there is also a reordering window
during RAID-5 scaling. However, optimizing data redis-
tribution for RAID-5 scaling will be more difficult in order
to maintain data parity. First, for efficient data redistribu-
tion, calculating the size of the reordering window is
required, which will be more difficult. Second, write
operations are indispensable for data redistribution. The
performance difference between partial-stripe writes and
full-stripe writes is significant [7], [8]. For workloads of
mostly small writes, the throughput of RAID-5 arrays is

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 3, MARCH 2010 345

. The authors are with the Department of Computer Science and Technology,
Tsinghua National Laboratory for Information Science and Technology,
Tsinghua University, Room 8-208, East Main Building, Beijing 100084,
P.R. China. E-mail: {gyzh, zwm-dcs, shujw}@tsinghua.edu.cn.

Manuscript received 1 Nov. 2008; revised 6 June 2009; accepted 16 July 2009;
published online 25 Sept. 2009.
Recommended for acceptance by M. Gokhale.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-11-0542.
Digital Object Identifier no. 10.1109/TC.2009.150.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

penalized by a factor of 4 over RAID-0 arrays. SLAS,
designed and optimized for RAID-0 scaling, does not take
care of this difference. As a result, the small write problem
may arise in redistribution operations. What’s more, SLAS
has an important limitation—it moves data in a best-effort
manner. This will have a significant impact on application
performance in heavily loaded systems.

In this paper, we first quantify how the reordering
window grows in size as data redistribution progresses.
Then, we propose ALV,1 a new data redistribution
approach to RAID-5 scaling. It makes use of three key
techniques as follows:

. ALV changes the order of data movements to access
multiple successive chunks via a single I/O. As a
result, ALV requires fewer but larger redistribution
I/Os. The sequential pattern of data redistribution is
interleaved with user requests, so larger redistribu-
tion I/Os amortize positioning delays over more
data transfers, increasing redistribution throughput
[4]. Also, ALV uses the write alignment technique to
eliminate extra reads to old data and old parity for
calculating new parity. ALV moves the data once,
whose size is exactly a multiple of a stripe in the
new geometry.

. ALV updates mapping metadata lazily to minimize
the number of metadata writes. Data movement is
not checkpointed until a threat to data consistency
occurs. In this way, the number of metadata writes is
reduced significantly. Moreover, even if the system
or one disk fails unexpectedly, only some data
accesses will be wasted, while data remain consistent.

. ALV uses an on/off logical valve to adaptively
adjust the redistribution rate depending on applica-
tion workload. Data redistribution is throttled on
detection of high application workload. Otherwise, it
performs continuously. The goal is to maximize
redistribution rate dynamically without a significant
impact on application performance.

We implemented the ALV approach in the software RAID
of Linux Kernel 2.6.18 instead of a simulation system, which
is used to evaluating SLAS. The benchmark studies on the
three real-system workloads (i.e., TPC-C, Cello-99, and SPC-
Web) showed that ALV outperformed MD-Reshape by
53.31-73.91 percent in user response time and by 24.07-
29.27 percent in redistribution time simultaneously.

2 AN INSIGHT INTO A REORDERING WINDOW

We discover that there is always a reordering window
during data redistribution for RAID-5 scaling. To under-
stand how the reordering window arises and grows in size as
the redistribution progresses, we take RAID-5 scaling from
3 disks to 4 as an example. Fig. 1 shows the sequence of the
first six reordering windows.2 Only chunk 2 can first be
moved once, then only chunk 3, then both 4 and 5, then 6-8,
then 9-12, and so on. Let us focus on state 3. When Chunks 6,

7, and 8 are moved in an arbitrary order, no valid chunk is

overwritten. If Chunk 9 is also taken into account, when

Chunk 9 is moved before Chunk 7, the former overwrites the

latter. Here, Chunks 6, 7, and 8 make up a reordering window.
We give three definitions about a reordering window

as follows:

Definition 1. Given a RAID-5 volume made up of m disks, a

request to add n disks and transform the mþ n disks into a

346 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 3, MARCH 2010

Fig. 1. A series of states in data redistribution for RAID-5 scaling from

3 disks to 4. The size of the reordering window, represented by “R”,

increases gradually.

1. ALV is an acronym here for “Aggregate accesses to data chunks, Lazy
updates of mapping metadata, and Valve-based rate control.”

2. There is a variety of strategies in RAID-5 that evenly distributes the
data chunks and parity chunks [9]. The specific data distribution shown
here and used throughout this paper is called the left-asymmetric
distribution. All conclusions for the other distributions are similar.

new RAID-5 volume is termed a RAID scaling request and is
represented by A(m, n).

Definition 2. Given a RAID scaling request Aðm;nÞ and a
chunk x, the state that Chunk x0 (for any integer x0 and
0 � x0 < x) has been moved and Chunk x00 (for any integer x00

and x00 � x) has not been moved is called a RAID scaling state
and is represented by Sðm;n; xÞ.

Definition 3. Given a RAID scaling state S(m, n, x), the
reordering window of A(m,n) at chunk x is a window of data
chunks that begins with data chunk x and consists of a
specified number (window size) of data chunks. Its window size
is represented by R(m, n, x), and Rðm;n; xÞ ¼Max{w: w is a
nonnegative integer; for any integers x0, x00 2 ½x; xþ wÞ and
x0 < x00, Chunks x0 and x00 cannot be overwritten by each other
or by a parity chunk no matter in what order they are moved}.

The data redistribution causes an arbitrary data chunk x
in the original geometry to be overwritten by either a data
chunk x0 or a parity chunk in the new geometry. For any
state Sðm;n; xÞ, two observations are obtained as follows:

Observation 1. If Chunk x is overwritten by Chunk x0,
Chunks x; xþ 1; xþ 2; . . . ; x0 � 1 can be moved in an
arbitrary order without overwriting any valid chunk.
Chunks x; xþ 1; xþ 2; . . . ; x0 � 1 make up a reordering
window.

Observation 2. If Chunk x is overwritten by a parity chunk,
we suppose that Chunk x00 is the first data chunk greater3

than the parity chunk in the new geometry. Then
Chunks x; xþ 1; xþ 2; . . . ; x00 � 1 can be moved in an
arbitrary order without overwriting any valid chunk.
Chunks x; xþ 1; xþ 2; . . . ; x00 � 1 make up a reordering
window.

Based on the two observations, we get Theorem 1.

Theorem 1. The size of a reordering window is

Rðm;n; xÞ ¼ n� x

m� 1

j k
þ �;

� ¼

0; r < t ^ r � t0;
�1; r < t ^ r > t0;

1; r � t ^ rþ 1 � t0;
0; r � t ^ rþ 1 > t0;

8>>><
>>>:

where r ¼ xmod ðm� 1Þ, t ¼ m� 1� ðgmodmÞ, t0 ¼
m þ n� 1� ðgmod ðmþ nÞÞ, and g ¼ bx=ðm� 1Þc.

Proof. As far as Aðm;nÞ is concerned, in the original
geometry, a given chunk x lies in the stripe whose
ordinal number is g ¼ bx=ðm� 1Þc. The parity chunk in
Stripe g lies in the disk whose ordinal number is
t ¼ m� 1� ðgmodmÞ. Since each stripe consists of
m� 1 data chunks, we denote r ¼ xmod ðm� 1Þ. If
r < t, Chunk x lies in the disk whose ordinal number
is d ¼ r; Otherwise, the parity chunk is less4 than
Chunk x, therefore, d ¼ rþ 1.

In the new geometry, the parity chunk in Stripe g lies
in the disk whose ordinal number is t0 ¼ mþ n� 1 �
ðg mod ðmþ nÞÞ. If d 6¼ t0, Chunk x is overwritten by a

data chunk x0; otherwise, Chunk x is overwritten by a
parity chunk.

First, let us inspect the case where Chunk x is
overwritten by Chunk x0 (i.e., d 6¼ t0). If d < t0, then
x0 ¼ g� ðmþ n� 1Þ þ d. If d > t0, then the parity chunk
is less than Chunk x0. Therefore, we get x0 ¼ g� ðm þ
n� 1Þ þ d� 1. By Observation 1, we can get Rðm;n; xÞ ¼
x0 � x.

The other case is that Chunk x is overwritten by the
parity chunk (i.e., d ¼ t0). Suppose that Chunk x00 is the
first data chunk greater than the parity chunk in the new
geometry. We get x00 ¼ g� ðmþ n� 1Þ þ d. By Observa-
tion 2, we have Rðm;n; xÞ ¼ x00 � x.

By summarizing the two cases, we get

Rðm;n; xÞ

¼
g� ðmþ n� 1Þ þ d� x; d < t0;

g� ðmþ n� 1Þ þ d� x; d ¼ t0;
g� ðmþ n� 1Þ þ d� x� 1; d > t0;

8><
>:

¼
g� ðmþ n� 1Þ þ d� x; d � t0;
g� ðmþ n� 1Þ þ d� x� 1; d > t0:

�

Since g ¼ bx=ðm� 1Þc;

d ¼ x mod ðm� 1Þ; r < t
x mod ðm� 1Þ þ 1; r � t ;

�

and bx=ðm� 1Þc � ðm� 1Þ þ x mod ðm� 1Þ ¼ x, we have

Rðm;n; xÞ

¼

n� bx=ðm� 1Þc; r < t ^ r � t0;
n� bx=ðm� 1Þc � 1; r < t ^ r > t0;

n� bx=ðm� 1Þc þ 1; r � t ^ rþ 1 � t0;
n� bx=ðm� 1Þc; r � t ^ rþ 1 > t0:

8>>><
>>>:

That is,

Rðm;n; xÞ ¼ n� x

m� 1

j k
þ �;

� ¼

0; r < t ^ r � t0;
�1; r < t ^ r > t0;

1; r � t ^ rþ 1 � t0;
0; r � t ^ rþ 1 > t0;

8>>><
>>>:

where r ¼ xmod ðm� 1Þ, t ¼ m� 1� ðgmodmÞ, t0 ¼
mþ n� 1� ðgmod ðmþ nÞÞ, and g ¼ bx=ðm� 1Þc. tu

Corollary 1. Given m and n;Rðm;n; xÞ increases with x in a

step-like manner.

Proof. In Theorem 1, the first addend, n� bx=ðm� 1Þc,
increases with x in a step manner, and the value of � is 0,

�1, or 1. Therefore, Rðm;n; xÞ increases with x in a step-

like manner. Corollary 1 is verified by the values of

Rð3; 1; xÞ, as shown in Fig. 2. tu

Our discovery of a reordering window provides two
opportunities for optimizing. First, multiple successive
chunks can be accessed via a single I/O. For instance, in
a redistribution state during RAID-5 scaling from 3 disks to
4, shown in Fig. 3, the reordering window consists of

ZHANG ET AL.: ALV: A NEW DATA REDISTRIBUTION APPROACH TO RAID-5 SCALING 347

3. The order relationship is in the RAID-0 order, same as below.
4. The order relationship is in the RAID-0 order, same as below.

Chunks 18-26. Chunks 18, 20, 24, and 26 can be read via
only one I/O, instead of four I/Os; Chunks 19, 22, and 26
can be written via only one I/O, instead of three I/Os (see
Fig. 4). Second, after a data chunk in the reordering
window is copied, both its new and original replicas are
valid. As a result, even if the mapping information is not
updated immediately after it is copied, data consistency is
still guaranteed. In the above example, we suppose that
Chunks 19, 22, and 26 have been copied to their new
locations and the mapping metadata have not been
updated (see Fig. 4), when the system fails. The original
replicas of Chunks 19, 22, and 26 will be used after the
system reboots. Chunk copying does not overwrite any
valid data, therefore, data remain consistent unless Chunks
19, 22, and 26 have been updated since being copied. That is
to say, an unexpected system failure only wastes some data
accesses, without compromising data consistency. There-
fore, most of metadata updates can be postponed without
loss of data consistency.

3 ALV: A SCALING APPROACH

Leveraging our insight into a reordering window, we
propose ALV, an efficient data redistribution approach to
RAID-5 scaling. To better understand how ALV works, we
will first present an overview of its data redistribution
process, followed by a description of the three key
technologies in ALV.

3.1 Overview of the Redistribution Process

Before scaling, a mapping equation [10] describes the
original geometry, where m disks serve user requests. Fig. 5
illustrates an overview of the redistribution process that is
caused by Aðm;nÞ. ALV uses a sliding window to describe
the mapping information of a continuous segment in a
RAID-5 volume under scaling. During scaling, only the
data that lie within the sliding window are copied to new
locations. It should be noted that a sliding window is

different from a reordering window. The former is a
mapping-management solution during RAID scaling, while
the latter is a characteristic in the process of RAID scaling.
To meet the restriction of data consistency, a sliding
window should be no larger than the corresponding
reordering window.

An incoming user request is mapped in one of the
following three ways according to its logical address:

. If it is greater than any data chunk in the sliding
window, it is mapped through the original geome-
try, where m disks serve user requests.

. If it is less than any data chunk in the sliding
window, it is mapped through the new geometry,
where mþ n disks serve user requests.

. If its logical address is within the range of the sliding
window, it is mapped through the sliding window
(see Fig. 8 for more details).

When all of the data in a sliding window are moved, the
sliding window slides ahead by one window size. In this
way, the newly added disks are gradually available to serve
user requests. After the sliding window reaches the end of
the original volume, no data are read for redistribution.
When data redistribution is completed, a new mapping
equation is used to describe the new geometry.

3.2 Aggregate Accesses to Data Chunks

The reordering window characteristic enables data chunks
within a sliding window to be moved in an arbitrary order.
Since the transfer rate of a disk drive increases with the
size of a disk access, ALV changes the movement order of
data chunks to access multiple successive chunks via a
single I/O. Take the state Sð3; 1; 18Þ as an example for
which we have Rð3; 1; 18Þ ¼ 9. As shown in Fig. 6, ALV
issues the first I/O request to read Chunks 18, 20, 24, and
26; the second request to read Chunks 19, 22, and 25; and
the third request for Chunks 21 and 23 simultaneously. By
this means, to read all of these chunks, ALV requires only
three I/Os, instead of nine.

348 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 3, MARCH 2010

Fig. 2. Values of Rð3; 1; xÞ for x 2 ½0; 100�. Rð3; 1; xÞ increases with x in a
step-like manner.

Fig. 3. A state of data redistribution (disk 3 is newly added).

Fig. 4. If data chunks are copied to their new locations and metadata are
not yet updated when the system fails, data consistency is still
maintained because the data in their original locations are valid and
available.

Fig. 5. An overview of the data redistribution process. As the sliding
window slides ahead, the newly added disks are gradually available to
serve user requests.

When all nine chunks are read into a memory buffer
and all new parity chunks are computed, ALV issues the
first I/O request to write Chunk 18, a new parity chunk Q7,
and Chunk 24; the second I/O to write a parity chunk Q6

as well as Chunks 21 and 25; the third I/O for Chunks 19,
22, and 26; and the fourth I/O for Chunks 20, 23, and a
parity chunk Q8 simultaneously (see Fig. 7). In this way,
only four write requests are issued as opposed to 12.

In the previous case, nine data chunks reside in the
memory at some time, so the memory space needs to be
reserved to hold the nine chunks. The set of data chunks
that is read into the memory via a group of asynchronous
I/Os is called an aggregation window. For Aðm;nÞ, m reads
and mþ n writes are required to redistribute all of the data
in an aggregation window. Clearly, the size of an aggrega-
tion window is not fixed but tunable. Provided that the size
of the aggregation window is six, the first six chunks (i.e.,
Chunks 18-23) are first read into the memory. In this case,
the first read request reads Chunks 18 and 20; the first write
request writes Chunk 18 and a parity chunk Q7. To move all
these nine chunks, five reads and eight writes are required.

The access aggregation converts sequences of small
requests into fewer but larger requests. The cost of one
seek is prorated over multiple chunks. Moreover, because
full-stripe writes are more efficient than partial-stripe
writes, the optimal chunk size for RAID-5 is relatively
small [11]. A typical choice is 32 or 64 KB [3], [12], [13], [10].
Thus, accessing multiple successive chunks via a single I/O
enables ALV to have a larger redistribution throughput.
Since data densities in disks increase at a much faster rate
than improvements in seek times and rotational speeds,
access aggregation grows profitable.

When writes for redistributing data are not aligned
among all of the disks, RAID-5 array controller first reads
the old user’s data and the old corresponding parity
information. Then, it calculates the new parity information
using the old data, the new data, and the old parity
information [14], [7]. ALV uses the write alignment technique
to eliminate extra reads to old user’s data and old parity (see
Fig. 7). The size of an aggregation window is exactly a
multiple of a stripe in the new geometry. While using ALV,
RAID-5 array controller calculates the new parity informa-
tion using only the new data. The write alignment technique
can improve the performance of data redistribution.

3.3 Lazy Updates of Mapping Metadata

While the data redistribution is in progress, the RAID
storage serves user requests. Furthermore, the coming user
I/Os may be write requests whose target addresses are
within the current sliding window. As a result, if ALV
writes mapping metadata simply after all of the chunks
within the sliding window are moved, data consistency

may be destroyed. ALV uses lazy updates of mapping
metadata to minimize the number of metadata writes
without loss of data consistency.

The key idea behind lazy updates is that the mapping
metadata are not updated onto the disks (a.k.a., checkpoint)
until a threat to data consistency appears. Fig. 8 shows a
state transition diagram describing lazy updates of map-
ping metadata, where moving all of the data within an
aggregation window is an operation unit.

. Once all of the data within an aggregation window
have been moved, the aggregation window goes
ahead by one aggregation window size (State 0).

. The mapping metadata are not updated until one of
the two states appears: 1) when the aggregation
window reaches the end of the current sliding
window (State 1), the data redistribution is check-
pointed and a new sliding window is initialized
(State 2); 2) when a user write request arrives in the
region where data have been moved and the
movement has not been checkpointed (State 3),
the data redistribution is checkpointed and a new
sliding window is initialized (State 4) before the
write request is served.

. In States 2 or 4, once all of the data in the first
aggregation window have been moved, the redis-
tribution state transmits to State 0.

Lazy updates of mapping metadata decrease the number
of metadata writes significantly, since one metadata write
stores the map changes of many data chunks. In the best case,
moving all of the chunks within a sliding window requires
only one metadata write. Furthermore, the reordering
window characteristic enables lazy updates to guarantee
data consistency. Even if the system fails unexpectedly when
some chunks have been copied and their mapping metadata
have not been updated, only some of the data accesses are
wasted. The data consistency is not destroyed since the
chunks in their original locations are valid. It should be
noted that the probability of a system failure is very low.

3.4 Valve-Based Rate Control

During scaling a RAID-5 volume, data redistribution and
foreground applications share and even contend for the I/O
resources in the system. ALV keeps track of the application
workload on the RAID-5 volume, and further, adjusts the
redistribution speed dynamically.

ALV uses an on/off logical valve to adjust the redis-
tribution rate. Whether data redistribution performs in the
next period of time Piþ1 depends on application workload
Wi in the current period Pi. As shown in Fig. 9, in the period
Piþ1, data redistribution performs if Wi is relatively low,
whereas it is throttled (maybe by thread sleeping) if Wi is

ZHANG ET AL.: ALV: A NEW DATA REDISTRIBUTION APPROACH TO RAID-5 SCALING 349

Fig. 6. Aggregate reads for Sð3; 1; 18Þ. Multiple successive chunks are
read via a single I/O.

Fig. 7. Aggregate writes for Sð3; 1; 18Þ. Multiple successive chunks are
written via a single I/O.

high. This means that we use Wi to approximate Wiþ1.
Therefore, the period length should not be too large.

Since storage QoS is measured in throughput and
latency, ALV monitors two performance metrics inside the
volume: system congestion and service time. When system
congestion appears, at least one user I/O cannot enter the
volume for service immediately. The dominating reason for
congestion is that the volume buffers are exhausted
temporarily. ALV also monitors the latency5 for every user
I/O. Let Ni be the number of user I/Os completed in Pi. Let
LiðkÞ be the latency of the kth user I/O in Pi. Let the latency
bound for the period Pi be denoted by Bi. We define the
latecomer ratio LRi as the fraction of user I/Os whose
latency is greater than Bi : LRi ¼ jfk : LiðkÞ > Bi; k ¼
1; . . . ; Nigj=Ni. When system congestion occurs in the
period Pi, or when LRi > �, the workload Wi is adjudicated
to be high, and vice versa. Here, � is called “a slack factor”. If
� ¼ 0, it will cause unaffordable overprovisioning and
unsatisfactory redistribution speeds due to highly variable
service times in storage systems [15] and workload
fluctuations on arbitrary time scales [5].

Existing adaptive schemes for rate control regard a
storage system as a black box and detect the application
workloads outside the storage system by measuring the
performance perceived by the applications [16], [15].
Consequently, changes in the load that the storage system
endures actually cannot be detected very quickly, due to the
prefetching and caching in the file systems. Conversely,
ALV monitors the load inside the volume, which makes it
possible to quickly obtain very accurate information about
the load. This makes the control actions more responsive. In
addition, ALV provides a control parameter Bi for an
application-level rate control.

4 IMPLEMENTATION

We implemented ALV in the MD driver shipped with

Linux Kernel 2.6.18. MD is a software RAID system, which

uses MD-Reshape to scale RAID-5 volumes [3]. Implement-

ing ALV in MD makes it convenient to make a performance

comparison between ALV and MD-Reshape. About

500 lines of code, counted by the number of semicolons

and braces, were modified or added to the MD driver.
When RAID scaling Aðm;nÞ begins, MD creates the

data mover, a kernel thread to perform the data redis-

tribution. ALV uses three variants to track how the

expansion is progressing and determine the movement

stage that the target part of the volume involves (see

Fig. 8). ALV cannot redistribute a new aggregation

window until all of the I/O requests, already issued to

this window, are completed. To redistribute an aggrega-

tion window, ALV performs three steps in turn:

. ALV simultaneously sends m I/Os to read all of data
chunks within the aggregation window.

. Once all of these I/Os are completed, ALV fiddles
with pointers to shuffle the data chunks, and it
calculates the parity.

350 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 3, MARCH 2010

Fig. 9. The state transition diagram describing valve-based rate control.
Data redistribution performs when the valve is on, whereas data
redistribution is throttled when the valve is off.

5. It is not the latency perceived by applications, but rather the time that
RAID-5 controller processes an I/O request.

Fig. 8. The state transition diagram describing lazy updates of mapping metadata. Data redistribution is checkpointed only when the aggregation
window reaches the edge of the current sliding window (state 1) or when a user write request arrives in the region, where data have been moved but
the movement has not been checkpointed (state 3).

. ALV simultaneously sends mþ n I/Os to write all of
data chunks within the aggregation window and the
corresponding parity data.

While an aggregation window is being redistributed, any
I/O attempt into the aggregation window is blocked until
the redistribution of this window is finished. ALV wakes up
all of the I/Os queuing up at the aggregation window once
this redistribution is over.

When a user I/O arrives, ALV detects whether the
system is congested. When a user I/O is completed, ALV
also verifies whether this I/O is a latecomer. If ALV
concludes that the workload pressure is high in the current
period of time, the data mover thread sleeps for a period of
time; otherwise, the thread performs data redistribution
continuously for a period. In our experiments, a period was
set one second.

5 PERFORMANCE EVALUATION

This section presents results of a comprehensive experi-
mental evaluation comparing ALV with MD-Reshape. This
performance study analyzes their performance in terms of
user response time and redistribution time.

5.1 Evaluation Methodology

We evaluated our design by running trace-driven experi-
ments over a real system. To replay I/O traces, we
implemented a block-level replay tool using POSIX asyn-
chronous I/O. It opens a block device with the O_DIRECT
option, and issues an I/O request, when appropriate,
according to trace files. When an I/O request is completed,
it gathers the corresponding response time. Each experiment
lasted from the beginning to the end of the data redistribution.

Our experiments used the following three real-system
disk I/O traces with different characteristics:

. TPC-C traced disk accesses of the TPC-C database
benchmark with 20 warehouses [17]. It was collected
in 2001 with one client running 20 iterations.

. Cello-99 was collected on an HP UNIX server with
2 GB memory in 1999 [18]. The I/O accesses were
filtered by the file system cache. Therefore, its
temporal locality is quite poor. The Cello-99 work-
load is also highly bursty.

. SPC-Web is from Storage Performance Council
(SPC) [19], a vendor-neutral standards body. It was
collected from a system running a Web search
engine. This trace is read dominant and with high
locality [20].

The testbed used in these experiments is described as
follows: Linux kernel 2.6.18 was installed on a 2.4 GHz Intel
Xeon machine with 1 GB of memory and an Emulex LP982
HBA card. The file system used was EXT3. Via a Brocade
Silkworm 3800 FC switch, this machine was connected with
an FC JBOD controlling several Seagate ST3146807FC disks.

A group of rate-control parameters means a trade-off
between the redistribution time objective and the response
time objective. Furthermore, unless both redistribution time
and user response time, using the one approach, are,
respectively, smaller than those using the other approach,
we do not know if we can predict that the former approach

outperforms the latter. Therefore, for convenient comparison,
we chose control parameters for the different experiments.

For comparing user response time, we collected the
response time of each user request, broke the response-time
sequence into equal-sized short sequences, and obtained an
average response time from each short sequence.

5.2 Performance Advantages of ALV over
MD-Reshape

The purpose of our first experiment was to quantitatively
characterize the advantages of ALV through a comparison
with MD-Reshape. We conducted a RAID-scaling request
Að3; 1Þ, where each disk had a capacity of 30 GB. Each
approach performed with the 64 KB chunk size under a
TPC-C workload. In this experiment, ALV reserved the
2 MB memory space for each member disk to hold an
aggregation window. To provide a fair comparison, we
increased the stripe cache size to 512 4 KB-buffers per disk
for MD-Reshape. “Sync_speed_max” and “sync_speed_
min” in MD-Reshape were set 200 and 1 MB/s, respec-
tively. The latency bound in ALV was set 15 ms statically
and the slack factor was set 0.1. This parameter setup acts as
the baseline for the latter experiments from which any
change will be stated explicitly.

Fig. 10 illustrates that, as a result of effective exploitation
of the reordering window characteristic, ALV demonstrated
a noticeable improvement over MD-Reshape in two metrics.
First, the redistribution time using ALV was obviously
shorter than that using MD-Reshape. They were 3,600 and
4,828 seconds, respectively. In other words, ALV had a
25.43 percent shorter redistribution time than MD-Reshape.
One of the main factors in ALVs reducing the redistribution
time was the decline of the redistribution I/Os via access
aggregation. Another main factor was the decline of
metadata writes by lazy updates. As shown in Table 1,
the number of the redistribution I/Os issued by ALV was
only 0.29 percent of that by MD-Reshape; the number of the
metadata updates performed by ALV was only 0.28 percent
of that by MD-Reshape.

Second, ALV more significantly outperformed MD-
Reshape in the user response time. A study of the
distribution of user response times during the data
redistribution (Fig. 11) showed that ALV had a markedly
smaller impact on the user response times than MD-
Reshape did. The average user response time in the

ZHANG ET AL.: ALV: A NEW DATA REDISTRIBUTION APPROACH TO RAID-5 SCALING 351

Fig. 10. Performance comparison between MD-Reshape and ALV under
the TPC-C workload.

redistribution using MD-Reshape was 738.147 ms, whereas
that using ALV was 192.608 ms. That is to say, ALV reduced
the average I/O latency experienced by applications by as
much as 73.91 percent with respect to MD-Reshape. This
improvement occurred because of two reasons: 1) the
decline in both data accesses and metadata writes decreased
the disk queue lengths. Moreover, this significantly alle-
viated the redistribution’s interference with the application
I/Os, and thereby, enabled the applications to obtain more
sequential accesses. The throughput of a sequential pattern
can be an order of magnitude higher than that of a random
pattern [21]. 2) The adaptive rate control in ALV alleviated
the adverse impact of the data redistribution on the
application performance.

Fig. 10 also demonstrates the difference in the quality of
rate control using MD-Reshape and ALV. MD-Reshape
caused excessive oscillation in the user response time
throughout the redistribution. In comparison, ALV rapidly
reduced the user response time to a lower level, and
preserved this level steadily until the redistribution ended.
The reason MD-Reshape caused excessive oscillation was
that its funnel-like scheme for rate control could not adapt
to great changes of application behaviors over time.
Differently, ALV achieved a satisfactory stability because
it could detect the accurate workload pressure quickly, and
in turn, it provided a real-time control to the redistribution
rate using an on/off logical valve.

5.3 Impact of the Application Workload

A factor that might affect the benefits of ALV is the workload
under which data redistribution performs. We measured the
performance of MD-Reshape and ALV to perform Að3; 1Þ
under the Cello-99 and SPC-Web workloads.

For the Cello-99 workload, “sync_speed_max” and
“sync_speed_min” in MD-Reshape were set 10 and 1 MB/s.

Fig. 12 shows the measured redistribution times and user
response times using MD-Reshape and ALV. It again
revealed the efficacy of ALV in improving the redistribution
time and user response time simultaneously. The redistribu-
tion times using MD-Reshape and ALV were 3,027 and
2,141 seconds, respectively. That is to say, ALV brought an
improvement of 29.27 percent in the redistribution time. The
average user response times using MD-Reshape and ALV
were 1,108.110 and 444.381 ms. In other words, ALV
enhanced the user response time by 59.90 percent.

For the SPC-Web workload, “sync_speed_max” and
“sync_speed_min” in MD-Reshape were set 7 and 1 MB/s,
respectively. Fig. 13 plots the user response time using
MD-Reshape and ALV as the data redistribution pro-
ceeded. Similarly, ALV brought an improvement in the
redistribution time and user response time simultaneously.
The redistribution times using MD-Reshape and ALV were
4,338 and 3,294 seconds. That is to say, ALV had a
24.07 percent shorter redistribution time than MD-Reshape.
The average user response times were 484.130 and
226.023 ms, respectively. In other words, ALV improved
the user response time by 53.31 percent.

To compare the performance of ALV under different
workloads, Fig. 14 shows the improvement in the
redistribution time and user response time by ALV, as
compared with MD-Reshape. For completeness, we also
conducted a comparison experiment on the redistribution
time with no loaded workload. To scale a RAID-5 volume

352 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 3, MARCH 2010

TABLE 1
The Number of Data Accesses and Metadata Updates with the

Two Approaches

Fig. 11. Cumulative distribution of user response times during the data
redistributions by the two approaches under the TPC-C workload.

Fig. 12. Performance comparison between MD-Reshape and ALV under
the Cello-99 workload.

Fig. 13. Performance comparison between MD-Reshape and ALV under
the SPC-Web workload.

offline, MD-Reshape used 1,836 seconds whereas ALV
consumed only 1,571 seconds. ALV provided an improve-
ment of 14.43 percent in the redistribution time.

We drew two conclusions from Fig. 14. First, the
improvement in redistribution time under any workload
was noticeably higher than that with no loaded workload.
There were two reasons for this phenomenon: 1) the
application accesses resulted in a disturbance to the
sequence of disk seeks required by the data redistribution;
2) MD-Reshape issued small redistribution requests. As a
result, the application accesses affected the redistribution
efficiency using MD-Reshape more adversely due to the
frequent long seeks.

Second, under various workloads, ALV consistently out-
performed MD-Reshape by 53.31-73.91 percent in the user
response time and by 24.07-29.27 percent in the redistribution
time simultaneously. Compared with the improvement
under the TPC-C workload, the improvement under the
Cello-99 workload, in the redistribution time, was higher,
while that in the user response time was lower. This was due
to another different choice in the rate-control spectrum,
which led to new allotment of the benefit by ALV between the
data redistribution and the application accesses. Most
interesting was that the two aspects of improvement under
the SPC-Web workload were simultaneously lower than
those under the TPC-C workload. This was because the
SPC-Web trace is absolutely read dominant (99.98 percent)
[20], and in turn, the workload suffered from nearly no extra
writes of parity. As a result, the application accesses
disturbed the sequence of disk seeks required by the data
redistribution in a low level. Hence, the improvement by
ALV under the SPC-Web workload was slightly smaller.

5.4 Sensitivity Analysis on the Rate-Control
Parameters

Our valve-based rate control is dependent on two para-
meters: the latency bound and the slack factor. In order to
examine the effect of our rate control more clearly, we first
conducted some experiments using ALV under the TPC-C
workload, with latency bounds of 6, 8, 10, and 12 ms.

We compared the performance of ALV in these experi-
ments with that of MD-Reshape in the baseline experiment
shown in Section 6.2. Due to the space limit, we did not
present the measured redistribution time and user response

time for each latency bound. Instead, we only plotted the
improvement by ALV over MD-Reshape in Fig. 15. This
comparison indicated that with various latency bounds,
ALV consistently outperformed MD-Reshape by 73.91-
77.27 percent in the user response time and by 19.08-
25.43 percent in the redistribution time simultaneously. This
means that ALV offers the administrator a long spectrum of
rate-control choices that provide a higher application
performance and a shorter redistribution time.

We conducted a qualitative analysis on how two aspects
of the improvement varied with regard to the change in the
latency bound. Using linear regression, we estimated that
the slope coefficient for the improvement in redistribution
time was 1.37 (see Fig. 15). This positive coefficient
indicated that the improvement by ALV in the redistribu-
tion time increased with the latency bound. Because the
experiments using ALV were compared with the same
baseline experiment using MD-Reshape, this also means
that ALV performed the data redistribution faster with a
larger latency bound. However, this speedup of data
redistribution came at a cost of the application performance.
The negative slope coefficient (i.e., �0:674) for the improve-
ment in the user response time indicated that the improve-
ment by ALV in the user response time decreased with the
latency bound. In other words, users in the ALV redis-
tribution with a larger latency bound experienced a bit
higher I/O response time. The reason was that more disk
bandwidth was dedicated to the data redistribution.

Second, we performed a sensitivity analysis on the slack
factor to show how various values affect the degree of
interference between the data redistribution and the fore-
ground applications. We set the latency bound to 15 ms and
changed the slack factor from 0.0 to 0.2. As shown in Fig. 16,
as the slack factor increased, the improvement in the
redistribution time increased, while that in the user
response time decreased. Two extreme cases proved to be
the most interesting. When the slack factor was 0.0, the
user response time was improved significantly, while the
redistribution time was prolonged, as compared with
MD-Reshape. Conversely, when the slack factor was 0.2,
the redistribution time was reduced more significantly,

ZHANG ET AL.: ALV: A NEW DATA REDISTRIBUTION APPROACH TO RAID-5 SCALING 353

Fig. 14. Comparison of performance improvement by ALV over
MD-Reshape under different workloads. The label “unloaded” means
the improvement when scaling a RAID-5 volume offline.

Fig. 15. Comparison of performance improvement by ALV over
MD-Reshape with different latency bounds. In the functions, x does
not stand for a latency bound accurately but an ordinal number in the
x-axis, i.e., not 6, 8, 10, 12, and 15 ms, but 1, 2, 3, 4, and 5. This is very
enough for a qualitative analysis on how two aspects of the improvement
vary with regard to the change in the latency bound.

while the user response time was worsened, as compared
with MD-Reshape.

5.5 Impact of the Chunk Size

To examine the impact caused by the different chunk sizes,
we conducted a performance evaluation on MD-Reshape
and ALV. They were to perform Að3; 1Þ with chunk sizes of
16, 32, 128, and 256 KB under the TPC-C workload.
“Sync_speed_max”(s) in MD-Reshape were set 8, 10, 10,
and 8 MB/s, respectively; “sync_speed_min”(s) were set 1,
3.5, 1, and 1 MB/s, respectively.

Fig. 17 plots the improvement by ALV over MD-Reshape
in the redistribution time and the average response time.
One can see that, for all of the examined chunk sizes, ALV
consistently outperformed MD-Reshape in both the redis-
tribution time and user response time. The improvement in
the redistribution time fluctuated between 25.43 and
34.31 percent. Simultaneously, the improvement in the user
response time stabilized between 73.91 and 77.64 percent.

The result of the linear regression indicated that two
aspects of the improvement were relatively steady with
relation to the chunk size. The reason for a slight increase
(due to their positive slope coefficient) was that the
metadata updates in the ALV redistribution became fewer
with a larger chunk size. MD-Reshape writes mapping
metadata every 3 MB of data, regardless of the chunk size.
Therefore, MD-Reshape wrote mapping metadata for the

same times with different chunk sizes. However, since the
size of a reordering window is independent of the chunk
size, to scale a given volume under the same workload,
ALV wrote mapping metadata for a fewer times with a
larger chunk size.

5.6 Impact of the Volume Size

We studied the effect of the volume size by varying the
volume size. We measured the performance of MD-Reshape
and ALV to perform RAID scaling requests of Að5; 1Þ,
Að7; 1Þ, and Að9; 1Þ under the TPC-C workload. “Sync_-
speed_max”(s) in MD-Reshape, with volume sizes of 5, 7,
and 9 disks, were set 6, 4.5, and 3.5 MB/s, respectively.

Fig. 18 shows a comparison of the performance im-
provement by ALV over MD-Reshape as the volume size
increases along the x-axis. It can be seen that the
improvement in the redistribution time stabilized between
21.94 and 26.55 percent. Simultaneously, as the number of
disks in the RAID-5 volume increased, the improvement in
the user response time decreased. The reason for the
decreased improvement at a higher volume size was that
the same trace was applied to all of the volume sizes. As a
result, with more disks, the lower I/O request intensity was
imposed on an individual disk, which implied that a less
interference would be avoided by ALV. However, as the
overall I/O traffic intensity increases proportionally to the
volume size, we expect the improvement by ALV to be
more significant. Moreover, since more disks in a RAID-5
volume lead to a lower mean time between failures
(MTBFs) for the volume, it is a common practice to limit
the number of disks in a RAID-5 volume.

5.7 Impact of the Buffer Size

Finally, to examine the impact of the buffer size on the
performance of MD-Reshape and ALV, we conducted several
experiments with buffer sizes of 1, 2, 3, and 4 MB. For
completeness, the experiments included two parts: one with
no loaded workload and another under the TPC-C workload.

When no workload was loaded, ALV behaved well with
all of the buffer sizes. With the default rate-control
parameter setup, however, the behavior of MD-Reshape
was quite unexpected. As the buffer size increased from 1 to
2 MB, the redistribution time decreased from 2,345 to
1,836 seconds. However, the redistribution time increased
to 8,255 seconds when the buffer size was 3 MB. This
strange phenomenon was because the mechanism for rate

354 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 3, MARCH 2010

Fig. 16. Comparison of performance improvement by ALV over
MD-Reshape with different slack factors.

Fig. 17. Comparison of performance improvement by ALV over
MD-Reshape with different chunk sizes. In the functions, x does not
stand for a chunk size accurately but an ordinal number in the x-axis,
i.e., not 16, 32, 64, 128, and 256 KB, but 1, 2, 3, 4, and 5. This is enough
for a qualitative analysis on how two aspects of the improvement vary
with regard to the change in the chunk size.

Fig. 18. Comparison of performance improvement by ALV over
MD-Reshape with different volume sizes.

control slowed down the redistribution deliberately. To

avoid the rate control from impairing the redistribution

efficiency, we set “sync_speed_min” to a large value (i.e.,
150 MB/s). As shown in Fig. 19, the redistribution time

using MD-Reshape and ALV decreased as the buffer size

increased along the x-axis. With each buffer size, ALV

outperformed MD-Reshape consistently. The improvement

by ALV fluctuated between 13.68 and 26.10 percent.
Under the TPC-C workload, “sync_speed_min”(s) in

MD-Reshape with buffer sizes of 1, 3, and 4 MB were set 1,
3.5, and 4 MB/s, respectively, while “sync_speed_max”(s)

were all set 10 MB/s. Fig. 20 plots the improvement in

redistribution time and user response time by ALV over

MD-Reshape. It indicates that, with different buffer sizes,

ALV consistently outperformed MD-Reshape by 58.83-
85.05 percent in the user response time and by 24.39-

35.33 percent in the redistribution time simultaneously.

5.8 Result Summary

The experimental results are summarized as follows:

1. With no loaded workload, ALV shortened the
redistribution time by 14.43 percent, as compared
with MD-Reshape.

2. Under various workloads, ALV consistently out-
performed MD-Reshape by 53.31-73.91 percent in
the user response time and by 24.07-29.27 percent in
the redistribution time simultaneously.

3. As the latency bound or the slack factor in ALV
increased, the improvement by ALV in the redis-
tribution time increased, whereas that in the user
response time decreased.

4. With different chunk sizes, the improvement by
ALV over MD-Reshape was relatively steady.

5. As the number of disks in a RAID-5 volume increased,
the improvement by ALV decreased slightly.

6. With different buffer sizes, whether with or without
loaded workload, ALV outperformed MD-Reshape
noticeably.

6 RELATED WORK

6.1 Disk Addition into RAID-5 Volumes

The HP AutoRAID [13] allows an online capacity expan-

sion. But the system cannot add new disks into an existing

RAID-5 volume. Newly created RAID-5 volumes use all of
the disks in the system, but previously created RAID-5
volumes continue to use only the original disks.

A patent [22] presents a method to eliminate the need to
rewrite the original data blocks and parity blocks on
original disks. However, the method makes parity blocks
be either only on original disks or only on new disks. The
obvious distribution nonuniformness of parity blocks will
bring into a performance penalty.

Franklin and Wong [23] presented a RAID scaling
method using spare space with immediate access to new
space. First, the old data are distributed among the set of
data disk drives and at least one new disk drive while, at
the same time, new data are mapped to the spare space.
Upon completion of the distribution, the new data are
copied from the spare space to the set of data disk drives.
This method requires spare disks available in the RAID.

In another patent, Hetzler [24] presented a method to
RAID-5 scaling, namely MDM. MDM exchanges some data
blocks between original disks and new disks. MDM can
perform RAID scaling with reduced data movement. How-
ever, it keeps the data storage efficiency unchanged after
scaling. When ALV is exploited, the data storage efficiency is
maximized, which many practitioners consider desirable.

D-GRAID [25] restores only live file system data to a hot
spare so as to recover from failures quickly. Likewise, it can
accelerate the redistribution process if only the live data
blocks from the perspective of file systems are redistributed.
However, this needs for semantically smart storage sys-
tems. Differently, ALV is independent of file systems and
can work with any ordinary disk storage.

Gonzalez and Cortes [2] proposed a GA algorithm to
control the overhead of scaling a RAID-5 volume. However,
GA has a large redistribution cost for two reasons. First, it
redistributes one stripe in the new geometry repeatedly.
Therefore, it reads or writes only one chunk via an I/O.
Second, to enable the redistribution process to restart at the
same point when the system comes up from a failure, GA
writes mapping metadata onto disks immediately after
redistributing each stripe.

The reshape toolkit in the Linux MD driver (MD-
Reshape) [3] writes mapping metadata for each fixed-sized
data window, instead of doing so for only one stripe.
However, all of the user requests to the data window have

ZHANG ET AL.: ALV: A NEW DATA REDISTRIBUTION APPROACH TO RAID-5 SCALING 355

Fig. 19. Performance comparison between MD-Reshape and ALV with
different buffer sizes when no workload is loaded.

Fig. 20. Comparison of performance improvement under the TPC-C
workload with different buffer sizes.

to queue up and wait for processing until all of the data
chunks within the window are redistributed. Therefore,
MD-Reshape cannot reduce the number of metadata
updates by simply enlarging the data window. On the
other hand, MD-Reshape issues very small (4 KB) I/O
operations for data redistribution. This limits the redis-
tribution performance due to there being more disk seeks.

6.2 Rate Control in Data Migration

The most intuitive control scheme is to issue migration
requests in a low priority in order to minimize adverse
impact of data migration on application performance [13],
[26], [20]. Under complicated workloads, however, how to
assign the relative priorities is still an open problem. The
second scheme, as used in MD-Reshape [3], uses an upper
bound and/or a lower bound to control the migration rate,
regardless of application states. Because application beha-
viors vary greatly over time, this funnel-like scheme is
unlikely to behave well. With a redistribution deadline
guaranteed, the third scheme, like GA [2], tries to use idle
periods of disks to perform data redistribution. This scheme
controls the degradation of application performance by
specifying different redistribution deadlines. With unpre-
dictable workloads, however, it is difficult to predefine a
reasonable deadline.

A feedback-based method, called MS Manners [27],
slows down the run rate of the low-importance process
when its progress slows. It cannot provide guarantees to
important tasks because it only monitors the progress of
low-importance processes. Lu et al. [16] proposed a control-
theoretic approach to control the rate of data migration.
However, it is a challenge to find a function that describes
the sensitivity of average user latency with regard to the
change in migration rate, especially when application
workloads are not steady. Differently, ALV uses a simple
on/off logical valve to adjust the redistribution rate. Hence,
it is unnecessary to discover the relation between user
latency and migration rate.

6.3 Failure Recovery in RAID-5

When a member disk in a RAID-5 volume fails, all of the
lost data must be rebuilt and written to a spare disk quickly
[28]. Holland et al. [26] found that disk-oriented rebuilding
outperforms stripe-oriented rebuilding. The former reads
multiple stripes from all surviving disks simultaneously,
while the latter proceeds ahead by one stripe. Through
simulation experiments, Fu et al. [29] demonstrated that a
larger size of a rebuild unit6 results in a shorter rebuild time
and a higher user response time. Hou et al. [30] found that
acceptable I/O response and rebuild times can be obtained
by choosing a single track as the rebuild unit. Unlike all of
the previous methods that perform a sequential rebuild,
PRO [20] integrates workload characteristics into the
reconstruction algorithm, and rebuilds frequently-accessed
areas prior to rebuilding infrequently accessed areas.

Our basic ideas for enhancing the efficiency of RAID-5
scaling were inspired by these results on failure recovery.
However, there is an obvious difference between failure
recovery and disk addition: no data are overwritten when

the former writes the data on the spare disk in an arbitrary
order, while some data chunks may be overwritten if the
latter redistributes data chunks in an arbitrary order.
Fortunately, our discovery of a reordering window in data
redistribution alleviates this difference.

7 CONCLUSIONS AND FUTURE WORK

This paper makes the following contributions:

. An insightful opportunity for performance optimi-
zation is presented: when scaling a RAID-5 volume,
there is always a reordering window within which
data consistency can be maintained while changing
the order of data movements.

. ALV, an efficient data redistribution approach to
RAID-5 scaling is proposed. First, ALV changes the
order of data movements to access multiple succes-
sive chunks via a single I/O. Second, ALV updates
mapping metadata lazily to minimize the number of
metadata writes. Third, ALV uses valve-based rate
control to adjust the redistribution rate adaptively.

. ALV is implemented in Linux Kernel 2.6.18, and its
performance is evaluated through a comparison
with the conventional approach MD-Reshape. The
results demonstrated that ALV consistently out-
performed MD-Reshape by 53.31-73.91 percent in
the user response time and by 24.07-29.27 percent in
the redistribution time under the TPC-C, Cello-99,
and SPC-Web workloads.

Similar to scaling up (i.e., adding disks into a RAID-5
volume), scaling down (i.e., disk removal) also needs
redistributing data. The only difference is that scaling down
performs data redistribution from the end to the beginning
of the volume, while scaling up does it in the opposite
order. There is also a reordering window during redis-
tribution for scaling down. In future, we will extend the
ALV approach for RAID-5 scaling down.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their suggestions on improving this paper. This work
was supported by the National Grand Fundamental
Research 973 Program of China under Grant No.
2007CB311100, the National High Technology Research
and Development Program of China under Grant No.
2009AA01Z139, the National Natural Science Foundation of
China under Grants 60903183 and 60873066, and the
Specialized Research Fund for the Doctoral Program of
Higher Education of China under Grant No. 20070003092.

REFERENCES

[1] D. Patterson, “A Simple Way to Estimate the Cost of Downtime,”
Proc. 16th Large Installation Systems Administration Conf. (LISA ’02),
pp. 185-188, Oct. 2002.

[2] J. Gonzalez and T. Cortes, “Increasing the Capacity of RAID5 by
Online Gradual Assimilation,” Proc. Int’l Workshop Storage Network
Architecture and Parallel I/Os, Sept. 2004.

[3] N. Brown, “Online RAID-5 Resizing. Drivers/md/Raid5.c in the
Source Code of Linux Kernel 2.6.18,” http://www.kernel.org/,
Sept. 2006.

356 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 3, MARCH 2010

6. A rebuild unit is the amount of rebuild data, which is atomically read
from each surviving disk.

[4] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. Ganger, “Argon:
Performance Insulation for Shared Storage Servers,” Proc. Fifth
USENIX Conf. File and Storage Technologies (FAST ’07), Feb. 2007.

[5] S. Gribble, G. Manku, E. Roselli, and E. Brewer, “Self-Similarity in
File Systems,” Proc. SIGMETRICS ’98, pp. 141-150, Apr. 1998.

[6] G. Zhang, J. Shu, W. Xue, and W. Zheng, “SLAS: An Efficient
Approach to Scaling Round-Robin Striped Volumes,” ACM Trans.
Storage , vol. 3, no. 1, pp. 1-39, Mar. 2007.

[7] H. Jin, X. Zhou, D. Feng, and J. Zhang, “Improving Partial Stripe
Write Performance in RAID Level 5,” Proc. Second IEEE Int’l
Caracas Conf. Devices, Circuits and Systems (ICCDCS ’98), pp. 396-
400, Mar. 1998.

[8] A. Kuratti and W.H. Sanders, “Performance Analysis of the RAID
5 Disk Array,” Proc. Int’l Computer Performance and Dependability
Symp., pp. 236-245, Apr. 1995.

[9] E. Lee and R. Katz, “The Performance of Parity Placements in Disk
Arrays,” IEEE Trans. Computers, vol. 42, no. 6, pp. 651-664, June
1993.

[10] C. Kim, G. Kim, and B. Shin, “Volume Management in SAN
Environment,” Proc. Eighth Int’l Conf. Parallel and Distributed
Systems (ICPADS ’01), pp. 500-505, 2001.

[11] P. Chen and E. Lee, “Striping in a RAID Level 5 Disk Array,” Proc.
1995 ACM SIGMETRICS Conf. Measurement and Modeling of
Computer Systems, May 1995.

[12] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, third ed. Morgan Kaufmann Publishers, Inc., 2003.

[13] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, “The HP
AutoRAID Hierarchical Storage System,” ACM Trans. Computer
Systems, vol. 14, no. 1, pp. 108-136, Feb. 1996.

[14] D. Stodolsky, G. Gibson, and M. Holland, “Parity Logging
Overcoming the Small Write Problem in Redundant Disk Arrays,”
Proc. 20th Ann. Int’l Symp. Computer Architecture (ISCA ’93), pp. 64-
75, 1993.

[15] A. Verma, U. Sharma, J. Rubas, D. Pease, M. Kaplan, R. Jain,
M. Devarakonda, and M. Beigi, “An Architecture for Lifecycle
Management in Very Large File Systems,” Proc. 22nd IEEE-
13th NASA Goddard Conf. Mass Storage Systems and Technology
(MSST ’05), Apr. 2005.

[16] C. Lu, G. Alvarez, and J. Wilkes, “Aqueduct: Online Data
Migration with Performance Guarantees,” Proc. First USENIX
Conf. File and Storage Technologies (FAST ’02), pp. 219-230, 2002.

[17] Performance Evaluation Laboratory, Trace Distribution Center,
Brigham Young Univ., http://tds.cs.byu.edu/tds/, 2002.

[18] Public Software, Storage Systems Dept. at HP Labs, http://
tesla.hpl.hp.com/public_software/, 2009.

[19] Storage Networking Industry Assoc., http://www.snia.org, 2009.
[20] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang, and

Z. Song, “PRO: A Popularity-Based Multi-Threaded Reconstruc-
tion Optimization for RAID-Structured Storage Systems,” Proc.
Fifth USENIX Conf. File and Storage Technologies (FAST ’07),
pp. 277-290, Feb. 2007.

[21] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang, “DULO: An
Effective Buffer Cache Management Scheme to Exploit Both
Temporal and Spatial Locality,” Proc. USENIX Conf. File and
Storage Technologies (FAST ’05), Dec. 2005.

[22] C.B. Legg, “Method of Increasing the Storage Capacity of a Level
Five RAID Disk Array by Adding, in a Single Step, a New Parity
Block and N-1 New Data Blocks Which Respectively Reside in a
new Columns, Where N Is at Least Two Document Type and
Number,” US Patent: 6000010, 1999.

[23] C.R Franklin and J.T. Wong, “Expansion of RAID Subsystems
Using Spare Space with Immediate Access to New Space,” US
Patent 10/033,997, 2006.

[24] S.R. Hetzler, “Data Storage Array Scaling Method and System
with Minimal Data Movement,” US Patent 20080276057, 2008.

[25] M. Sivathanu, V. Prabhakaran, A.C. Arpaci-Dusseau, and R.H.
Arpaci-Dusseau, “Improving Storage System Availability with
D-GRAID,” Proc. Third USENIX Conf. File and Storage Technologies,
Mar. 2004.

[26] M. Holland, G. Gibson, and D. Siewiorek, “Architectures and
Algorithms for On-Line Failure Recovery in Redundant Disk
Arrays,” Distributed and Parallel Databases, vol. 11, no. 3, pp. 295-
335, July 1994.

[27] J. Douceur and W. Bolosky, “Progress-Based Regulation of Low-
Importance Processes,” Proc. 17th ACM Symp. Operating Systems
Principles (SOSP ’99), pp. 247-260, Dec. 1999.

[28] A. Thomasian and J. Menon, “RAID5 Performance with Dis-
tributed Sparing,” IEEE Trans. Parallel and Distributed Systems,
vol. 8, no. 6, pp. 640-657, June 1997.

[29] G. Fu, A. Thomasian, C. Han, and S. Ng, “Rebuild Strategies for
Redundant Disk Arrays,” Proc. Conf. Mass Storage Systems and
Technologies (MSST ’04), Apr. 2004.

[30] R. Hou, J. Menon, and Y. Patt, “Balancing I/O Response Time and
Disk Rebuild Time in a RAID5 Disk Array,” Proc. Hawaii Int’l Conf.
System Sciences, pp. 70-79, 1993.

Guangyan Zhang received the bachelor’s and
master’s degrees in computer science from Jilin
University in 2000 and 2003, respectively, and
the doctor’s degree in computer science and
technology from Tsinghua University in 2008.
He is now an assistant professor in the
Department of Computer Science and Technol-
ogy at Tsinghua University. His current research
interests include network storage, parallel file
systems, and distributed systems.

Weimin Zheng received the master’s degree
from Tsinghua University in 1982. He is a
professor in the Department of Computer
Science and Technology at Tsinghua Univer-
sity. His research interests include distributed
computing, compiler techniques, and network
storage.

Jiwu Shu received the doctor’s degree in
computer science from Nanjing University in
1998. In 2000, he finished his postdoctoral
position research at Tsinghua University and
has been teaching at Tsinghua University since
then. He is now a professor in the Department
of Computer Science and Technology at
Tsinghua University. His current research inter-
ests include storage area networks, parallel and
distributed computing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: ALV: A NEW DATA REDISTRIBUTION APPROACH TO RAID-5 SCALING 357

