
Preventing Silent Data Corruptions from
Propagating During Data Reconstruction

Mingqiang Li, Student Member, IEEE, and Jiwu Shu, Member, IEEE

Abstract—One recent technical challenge facing the designers of erasure-coded storage systems is how to prevent silent data

corruptions from propagating during data reconstruction. This paper proposes a new technique of exploiting erasure-coded storage

systems to cope with silent data corruptions during data reconstruction. To develop a data reconstruction method that can prevent

silent data corruptions from propagating, we first define the consistency of a strip group and then study the impact of silent data

corruptions on the consistency of strip groups. Based on the conclusions obtained from the study, an efficient adaptive data

reconstruction method is developed for data reconstruction in the presence of silent data corruptions. A performance analysis of our

new data reconstruction method is then made using a probabilistic method. Our results show that the overall performance impact of our

data reconstruction method is negligible in practical systems. A comparison of techniques for coping with silent data corruptions in

erasure-coded storage systems is also made. The comparison shows that the technique based on our data reconstruction method is a

better choice to cope with silent data corruptions when periodic validation is used in an erasure-coded storage system.

Index Terms—Data reconstruction, erasure code, silent data corruption, storage system.

Ç

1 INTRODUCTION

DATA availability and reliability have become the primary
concern of most business and government organiza-

tions. Unexpected data loss or corruption can sometime be
seen as a catastrophic incident to these organizations.

However, as today’s storage systems grow in size and
complexity, they are increasingly confronted with concur-
rent disk failures [1], [2] together with multiple unrecover-
able sector errors [3], [4], [5]. To prevent data loss caused by
these disk errors, redundancy technologies are commonly
used in modern storage systems. Among these technologies,
erasure coding [6] is one of the most attractive technologies
because of its high fault tolerance and optimal (or approxi-
mately optimal) storage efficiency. It has been widely
adopted in RAID subsystems [7], [8] and various fault-
tolerant storage systems, such as OceanStore [9], Glacier [10],
FAB [11], PASIS [12], [13], RobuSTore [14], Pergamum [15],
Cleversafe [16], Allmydata [17], and Permabit [18]. We call
such storage systems as erasure-coded storage systems. In
erasure-coded storage systems, when some detectable errors
(including disk failures and unrecoverable sector errors)
occur, the lost data caused by them can be reconstructed from
the redundant data encoded by erasure codes.

Unfortunately, there also exist a significant number of
silent data corruptions [19], [20], [21], [22], [23], [24], [25]
(where the data is silently corrupted with no indication from
the disk array subsystem that an error has occurred) in

erasure-coded storage systems. A detailed introduction to
silent data corruptions in erasure-coded storage systems will
be given in Section 2.2. Silent data corruptions are much
more dangerous than detectable errors because they cannot
be directly detected and thus will not be recovered by
erasure-coded storage systems. More seriously, silent data
corruptions can propagate during data reconstruction when
we reconstruct lost data using a traditional data reconstruc-
tion method (such as the method proposed in [26]) that only
considers the issues of detectable errors. The traditional data
reconstruction method even can change some detectable
errors into silent data corruptions during data reconstruc-
tion, giving rise to a ripple effect for silent errors. This further
accelerates the increase of silent data corruptions. If the
number of silent data corruptions increases to a certain
extent, they can even cause unrepairable system errors,
resulting in unexpected loss. To prevent this from happen-
ing, silent data corruptions should be prevented from
propagating during data reconstruction. Meanwhile, they
are expected to be recovered simultaneously with detectable
errors during data reconstruction. Therefore, one technical
challenge facing the designers of erasure-coded storage
systems is how to prevent such silent data corruptions from
propagating while lost data is being reconstructed.

To cope with this challenge, the traditional method is to
co-locate metadata with disk data in an attempt to make
silent data corruptions detectable [20], [23], [24]. This
metadata can contain various types of extra information,
such as checksums or version numbers, which can be used
to detect certain types of silent data corruptions. In
erasure-coded storage systems, only the information ob-
tained in the RAID-like layer is expected to be contained in
this metadata according to the design principle of an
abstraction layer framework. However, the metadata
method has a remarkable drawback: it requires additional
storage overhead to store metadata and thus can involve
additional I/O overhead during write operations. Besides,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010 1611

. The authors are with the Institute of High-Performance Computing,
Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China.
E-mail: lmq06@mails.tsinghua.edu.cn; shujw@tsinghua.edu.cn.

Manuscript received 4 May 2009; revised 9 Oct. 2009; accepted 17 Jan. 2010;
published online 10 Feb. 2010.
Recommended for acceptance by C. Bolchini.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2009-05-0191.
Digital Object Identifier no. 10.1109/TC.2010.36.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

since colocating metadata with disk data complicates the
process of each update operation, it thus can increase the
chance of update failures, which may cause new silent data
corruptions in reverse. In addition, as will be shown in this
paper, the metadata method also has a defect: it cannot
detect all kinds of silent data corruptions that occur in the
RAID-like layer.

With the limitations of the metadata method, the question
is: Can we find a method that does not require colocating metadata
with disk data but can still prevent silent data corruptions from
propagating during data reconstruction? This paper will give an
answer to this question.

We noticed that besides the ability to recover from
detectable errors, erasure-coded storage systems also have
the ability to recover from silent data corruptions. In coding
theory [27], it is well known that a k-of-ðkþmÞ erasure code
has the ability to tolerate f lost strips together with r silently
corrupted strips, where f þ 2r � m. Furthermore, our study
in this paper reveals that the actual ability of an erasure
code to tolerate errors is often much beyond this upper
bound. Thus, erasure-coded storage systems also can be
exploited to deal with silent data corruptions. Based on this
property, we can develop a systematic way to cope with
silent data corruptions during data reconstruction.

This paper presents, for the first time, a mathematical
formulation and a thorough analysis of the propagation of
silent data corruptions during data reconstruction in
erasure-coded storage systems. Our analysis shows that
the propagation probability of silent data corruptions is
very high when we use a traditional data reconstruction
method to reconstruct lost data. This reinforces the need for
a new data reconstruction method to prevent silent data
corruptions from propagating.

In the process of developing such a data reconstruction
method, this paper first defines the consistency of a strip
group, which is a metric indicating whether all the strips
contained in the strip group hold the parity computation
relations of the adopted erasure code. Then, a systematic
study on the impact of silent data corruptions on the
consistency of strip groups is presented. Based on the
conclusions obtained from the study, an efficient adaptive
data reconstruction method that can cope with both lost
strips and silently corrupted strips is developed. To the best
of the authors’ knowledge, this is the first data reconstruction
method that addresses the issues of silent data corruptions
for erasure-coded storage systems. We then show when we
can correctly reconstruct lost data using the new data
reconstruction method and that the actual ability of an
erasure code to tolerate errors is often much beyond the
well-known upper bound that f þ 2r � m. To understand
the overall performance impact of the new data reconstruc-
tion method in practical systems, this paper also makes a
performance analysis using a probabilistic method. The
results show that the overall performance impact of the new
data reconstruction method is negligible in practical systems.

Finally, this paper makes a comparison of techniques for
coping with silent data corruptions in erasure-coded
storage systems. Two kinds of techniques that can be
integrated into the RAID-like layer, i.e., the traditional
metadata techniques and the new technique based on the
new data reconstruction method, are compared. These two
kinds of techniques make different tradeoffs among cost,

performance, and effectiveness. The comparison shows that
the technique based on the new data reconstruction method
is a better choice to cope with silent data corruptions when
periodic validation is used in an erasure-coded storage
system.

The paper is organized as follows: Next section gives the
necessary background and describes the problem of the
propagation of silent data corruptions during data recon-
struction. In Section 3, we first define the consistency of a
strip group and then study the impact of silent data
corruptions on the consistency of strip groups. An efficient
adaptive data reconstruction method that can cope with both
lost strips and silently corrupted strips is then developed in
Section 4. In Section 5, we study the overall performance
impact of the new data reconstruction method in practical
systems. Section 6 makes a comparison of techniques for
coping with silent data corruptions in erasure-coded storage
systems. Some related work on silent data corruptions is then
discussed in Section 7. Finally, Section 8 concludes the paper.

2 BACKGROUND AND PROBLEM DESCRIPTION

2.1 Erasure Codes—A Brief Overview

In this subsection, we provide a brief overview of erasure
codes [6]. We begin with the definition of three basic terms
that are widely used in the literature of erasure codes:

Element: A fundamental unit of data or parity that can be
a bit, a byte, a sector, or a larger disk block. This is the
building block of an erasure code. In coding theory [27], this
is the data that is assigned to a bit within a code symbol.

Stripe: A maximum set of data and parity elements that
are dependently related by the parity computation relations
of an erasure code. This is synonymous with a code word [27]
in that it is a complete word of an erasure code and is
independent of any other word.

Strip1: A maximum set of elements within a stripe that
are on the same disk. In coding theory [27], this is the data
mapped to a code symbol.

Here, we also define the term strip group that is often
used in this paper:

Strip Group: A group of strips within a stripe; denoted
by GG.

Fig. 1 shows a representation of our notions of element,
strip, and stripe in a typical horizontal erasure code (in which
data and parity elements within a stripe are stored on
separate strips).

1612 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

Fig. 1. Element, strip, and stripe in a horizontal erasure code.

1. Compared with the term chunk that is often used in striped disk arrays
to define the granularity of data or parity from a single disk, strip is a stricter
term whose application scope is limited to erasure-coded storage systems.

Many erasure codes have been proposed over the last
40 years, especially during the last 20 years. Plank [6]
classifies them into three categories: Reed-Solomon codes
[28], [29], [30], [31], parity array codes [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], and Low Density Parity Check
(LDPC) codes [43], [44], [45], [46], [47]. Note that although
there also exist other families of erasure codes that do not
belong to Plank’s classification, such as GRID codes proposed
by Li et al. [48], to simplify our discussion, we still use Plank’s
classification and only consider the three categories of
erasure codes mentioned in [6]. Among these three categories
of erasure codes, Reed-Solomon codes and parity array codes
are much more suitable for storage systems than LDPC codes
and have been employed for fault tolerance in most practical
systems [7], [8], [9], [10], [15], [16], [17], [18]. Besides,
horizontal codes (such as Reed-Solomon codes) seem to be
more popular because they store data and parity elements on
separate strips and can be implemented more flexibly. Thus,
in this paper, we focus our attention on Reed-Solomon codes
and horizontal parity array codes. Moreover, we focus our
discussion primarily on Maximum Distance Separable (MDS)
codes2 since they are typical representatives among all
horizontal codes. Therefore, throughout this paper, when
referring to erasure codes, we always mean MDS horizontal
erasure codes.

In general, a k-of-ðkþmÞ erasure code encodes a stripe
of data into n ¼ kþm strips that are of the same size, such
that any k strips can be used to reconstruct the original user
data. We use DD and IP to denote the set of data strips and
the set of parity strips (i.e., DD ¼ fD0; D1; . . . ; Dk�1g and IP ¼
fP0; P1; . . . ; Pm�1g), respectively. When a write operation
updates a data strip, it should update all the corresponding
m parity strips at the same time. This process should be
atomically implemented. When m or fewer strips are lost,
they can be reconstructed from any combination of k strips
chosen from the set of the remaining strips.

All erasure codes can be represented by binary matrices
that are the basic structures upon which we perform
encoding and decoding. In a k-of-ðkþmÞ erasure code,
suppose there are w elements in each strip (see Fig. 1). We
can use a wðkþmÞ � wk binary matrix to perform encoding
(see Fig. 2). The transpose of this matrix is called as a
generator matrix, denoted by G. Then, the binary matrix in
Fig. 2 is GT . As shown in Fig. 2, GT has a specific format. Its

first wk rows form a wk� wk identity matrix. The next
wm rows consist of mk matrices, each of which is a
w� w binary matrix (denoted by Xi;j). Thus, GT can be
expressed as

GT ¼ I
X

� �
;

where I is a wk� wk identity matrix, and X ¼ ðXi;jÞm�k.
Let two binary matrices D and P represent the data and

parity in a stripe S, respectively. Then, S is expressed as

S ¼ D
P

� �
:

Suppose there are l bits in each element. Then, D and P can
be expressed as D ¼ ðDiÞk�1 and P ¼ ðPjÞm�1, respectively,
where Di and Pj are two w� l binary matrices correspond-
ing to a data strip and a parity strip, respectively. During
data encoding, we calculate S by the expression S ¼ GT �D.
Then, it is clear that P ¼ X �D. Consequently, we have the
following binary linear equations:

X0;0D0 þX0;1D1 þ � � � þX0;k�1Dk�1 ¼ P0;
X1;0D0 þX1;1D1 þ � � � þX1;k�1Dk�1 ¼ P1;

..

.

Xm�1;0D0 þXm�1;1D1 þ � � � þXm�1;k�1Dk�1 ¼ Pm�1:

8>>><>>>: ð1Þ

Any square submatrix of the coefficient matrix of the
above equations should be an invertible matrix. When m or
fewer strips are lost, we can reconstruct them by solving the
above equations using the matrix method proposed in [26].

2.2 Silent Data Corruptions in Erasure-Coded
Storage Systems

In an erasure-coded storage system, the disk array
subsystem consists of two layers: the disk drive layer and
the RAID-like layer (see Fig. 3). Here, the RAID-like layer
can be implemented either in software or in hardware.
These two layers both can cause silent data corruptions.

In the disk drive layer, disk drives can experience errors
that are undetected by the drive—which is referred to as
Undetected Disk Errors (UDEs) in [24]. UDEs are caused by
various disk-related firmware and hardware malfunctions.
According to when they are caused, Hafner et al. [24]
divides UDEs into two classes: Undetected Read Errors
(UREs) and Undetected Write Errors (UWEs). It should be
noted that for either UREs or UWEs, the symptoms for
applications are the same—stale or corrupted data3 re-
turned for a read operation. Typically, the effects of UREs

LI AND SHU: PREVENTING SILENT DATA CORRUPTIONS FROM PROPAGATING DURING DATA RECONSTRUCTION 1613

Fig. 2. Encoding using a binary matrix in an erasure code.

Fig. 3. Two layers of the disk array subsystem in an erasure-coded
storage system.

2. MDS codes are the family of erasure codes that attain the Singleton
bound [27] and thus can provide optimal storage efficiency.

3. The difference between stale data and corrupted data is that stale data
is correct but out-of-date data, while corrupted data is incorrect data.

are transient, while the effects of UWEs persist. Thus, UWEs
are more significant problems than UREs and are widely
concerned by both the academic and industry research [19],
[20], [22], [23], [24].

There are three representative types of UWEs deserving
mention here: misdirected writes [19], [22], [23] (also called as
off-track writes in [24]), lost writes [20], [22], [23] (also called
as phantom writes in [19] or dropped writes in [24]), and torn
writes [22], [23]. They are caused as follows:

Misdirected Writes: A buggy disk controller with
firmware errors could issue a misdirected write that places
the correct data on the disk but in the wrong location.

Lost Writes: A disk head that does not produce a
sufficiently strong signal in the right location to override
and reset the bits of the data already present can cause a lost
write that the drive reports as completed but that never
reaches the media.

Torn Writes: A disk drive that is power-cycled in the
middle of processing a write request can cause a torn write
that writes only a portion of the sectors successfully in the
write request.

In the RAID-like layer, one special process that should be
atomically implemented is that when a write operation
updates a data strip, it should update all the corresponding
parity strips at the same time. During this process, if some
errors (such as in-memory corruptions, processor miscalcu-
lations, or software bugs) occur in the RAID-like layer,
some of the update operations may be lost or be
misimplemented. Silent data corruptions of this kind are
referred to as Strip Update Errors (SUEs) in this paper. SUEs
can result in parity inconsistencies, i.e., the cases of mismatch
between data and parity stored in disk drives. Besides, it
should be noted that of UDEs, UWEs can also cause parity
inconsistencies.

From the above discussion, we can see that there exist two
categories of silent data corruptions in erasure-coded storage
systems: UDEs and SUEs, which come from two different
layers and occur independently from each other. They both
can cause silently corrupted strips in erasure-coded storage
systems.

2.3 The Propagation of Silent Data Corruptions
During Data Reconstruction

After giving a necessary background on silent data
corruptions in erasure-coded storage systems, we now
discuss the propagation of silent data corruptions during
data reconstruction.

In a k-of-ðkþmÞ erasure-coded storage system, when
f strips are lost or are identified to be corrupted in a stripe
(where 1 � f � m), the common way to handle this error is
to first randomly choose a combination of k strips from the
set of the remaining n� f strips and then reconstruct lost
data from the chosen combination. It is clear that there are
ðn�fk Þ such combinations.

Now, suppose there exist r silently corrupted strips in
the set of the remaining n� f strips, where 0 � r � n� f . If
the chosen combination is one of the ðn�f�rk Þ combinations
consisting of k correct strips, all lost strips can be correctly
reconstructed; while if some silently corrupted strips are
involved in the reconstruction operation, corrupt data will
be produced. Thus, when we reconstruct lost data using a
combination of k strips randomly chosen from the set of the

remaining strips, the probability of producing corrupt data
(denoted by Prcorrupt) is given by

Prcorrupt ¼
0; if r ¼ 0;

1�
n�f�r

kð Þ
n�f
kð Þ

; if 1 � r � m� f ;

1; if m� f < r � n� f:

8><>: ð2Þ

Table 1 shows this probability for different error
scenarios in an example system with k ¼ 10 and m ¼ 6
(such as Cleversafe’s widely dispersed storage system [16],
which uses these two configuration parameters as its
default). It can be seen from this table that the probability
of producing corrupt data with the existence of silently
corrupted strips is very high and increases rapidly as the
number of silently corrupted strips increases.

Because reconstructing lost data in a traditional manner
could lead to the propagation of silent data corruptions, we
immediately raise a question: Can we develop an effective data
reconstruction method to prevent silent data corruptions from
propagating?

To answer this question, we first recall some properties
of erasure codes from coding theory. In coding theory [27],
it is well known that if the locations of erroneous strips are
not known in advance, a k-of-ðkþmÞ erasure code has the
ability to detect and correct up to m=2 erroneous strips.
Thus, in a k-of-ðkþmÞ erasure-coded storage system, when
f strips are lost or are identified to be corrupted in a stripe
(where 1 � f � m), any combination of r silently corrupted
strips within the same stripe can be detected and corrected
as long as the condition f þ 2r � m is satisfied. This
property tells us that the propagation of silent data
corruptions can be prevented during data reconstruction
if we can develop a data reconstruction method specially
for coping with silent data corruptions.

Now, the problem becomes how to efficiently reconstruct
lost data in the presence of silent data corruptions. We will
solve this problem in the following sections.

3 THE IMPACT OF SILENT DATA CORRUPTIONS ON

THE CONSISTENCY OF STRIP GROUPS

Before discussing how to efficiently reconstruct lost data in
the presence of silent data corruptions, we investigate the
impact of silent data corruptions on the consistency of strip
groups in this section.

3.1 The Consistency of Strip Groups

In this section, we first define the consistency of strip
groups and then discuss how to determine the consistency.

1614 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

TABLE 1
The Value of Prcorrupt for Different Error Scenarios

in an Example System with k ¼ 10 and m ¼ 6

Definition 3.1. The consistency of a strip group GG is a metric
indicating whether all the strips contained in GG hold the parity
computation relations of the adopted erasure code. We use
�ðGGÞ to denote the consistency of GG. If GG is consistent, let
�ðGGÞ ¼ 0; else, let �ðGGÞ ¼ 1.

Obviously, we have the following two properties:

1. �ðGG1Þ ¼ 0) 8GG2 � GG1 : �ðGG2Þ ¼ 0;
2. �ðGG1Þ ¼ 1) 8GG2 � GG1 : �ðGG2Þ ¼ 1.

When a strip group contains not more than k strips, since
no inconsistency with the parity computation relations of
the adopted erasure code can be detected within the strip
group, we regard the strip group to be consistent. Thus, in
this paper, we will only consider the consistency of strip
groups that contain more than k strips, and when referring
to a strip group, we always mean a strip group containing
more than k strips.

For a strip group GG, we give an approach to determine
the consistency of GG in Fig. 4. When GG does not contain all
the k data strips, the approach given in Fig. 4 can
sufficiently utilize the reconstruction optimization technol-
ogies recently proposed in [26].

For a strip group consisting of correct strips, using the
approach given in Fig. 4, we immediately obtain the
following conclusion:

Theorem 3.1. A strip group consisting of correct strips is always
consistent.

3.2 The Impact of Silent Data Corruptions

In this section, we study the impact of silent data
corruptions on the consistency of strip groups.

As mentioned in Section 2.2, silent data corruptions can
cause silently corrupted strips in erasure-coded storage
systems. Here, we divide silently corrupted strips into
two classes:

Stale Strips: The class of silently corrupted strips that
completely consist of correct but out-of-date data caused
due to the loss of update operations.

Corrupted Strips: The class of silently corrupted strips
that contain incorrect data.

Note that a silently corrupted strip that partially contains
stale data is also included in the class of corrupted strips.

We then introduce some notations to describe silently
corrupted strips in Table 2. Here, since the updates on
parity strips are caused by the writes to data strips, we say a
stale parity strip is caused by the writes to a nonempty set <
of data strips if all the corresponding updates on this parity
strip were lost during the write processes of the data strips
in <. For example, Pjhstale � fDigi is a stale parity strip of
Pj caused due to the loss of the update on Pj during the
write process of Di, while Pjhstale � fDi1 ; Di2gi is a stale
parity strip of Pj caused due to the loss of the two updates
on Pj during the write processes of Di1 and Di2 .

Now, we begin to discuss the consistency of strip groups
that contain silently corrupted strips. In the following
discussion, we will focus our attention on when such strip
groups can be consistent.

We first present a theorem as follows:

Theorem 3.2. For a strip group GG containing more than k strips,
when all its data strips are correct data strips, and all its parity
strips are stale parity strips caused by the writes to the same
set of data strips, which does not contain any data strip in GG,
then �ðGGÞ ¼ 0.

The correctness of Theorem 3.2 can be easily validated
using the approach given in Fig. 4.

Example. We consider an example of such a strip group
GG ¼ fD0; D1; . . . ; D8; P0hstale � <i; P1hstale � <ig with
< ¼ fD9g taken from an erasure-coded storage system
with k ¼ 10 andm ¼ 6. According to Theorem 3.2, we can
deduce �ðGGÞ ¼ 0. We now validate the correctness of
�ðGGÞ ¼ 0 using the approach given in Fig. 4 as follows:
We perform a reconstruction operation using a combina-
tion fD0; D1; . . . ; D7; P0hstale � <i; P1hstale � <ig chosen
from GG. In the corresponding stripe, the two data strips
(i.e., D8 and D9) not contained in the chosen combination
are then regenerated by this reconstruction operation.
Their regenerated values are D8 and D9hstalei, respec-
tively. For the data stripD8 in GG, its regenerated value is a
correct value and thus is equal to the original value in GG.
This validates the correctness of �ðGGÞ ¼ 0.

Similarly, we can deduce the following conclusion:

Theorem 3.3. For a strip group GG containing more than k strips,
when the set of its data strips consists of correct data strips and
stale data strips, and all its parity strips are stale parity strips
caused by the writes to the same set of data strips, which
contains all the stale data strips in GG but does not contain any
correct data strip in GG, then �ðGGÞ ¼ 0.

Similar to Theorem 3.2, the correctness of Theorem 3.3 can
also be easily validated using the approach given in Fig. 4.

LI AND SHU: PREVENTING SILENT DATA CORRUPTIONS FROM PROPAGATING DURING DATA RECONSTRUCTION 1615

Fig. 4. An approach to determine the consistency of a strip group GG.

TABLE 2
Notations for Describing Silently Corrupted Strips

In this table, 0 � i � k� 1, 0 � j � m� 1, and < is a nonempty set of
data strips.

We here do not repeat it but just give an example to illustrate
when we can use Theorem 3.3 to determine the consistency of
strip groups.

Example. We consider a strip group GG ¼ fD0; D1; . . . ; D7;
D8hstalei; P0hstale � <i; P1hstale � <ig taken from an
erasure-coded storage system with k ¼ 10 and m ¼ 6.
We wonder when GG is consistent. According to Theo-
rem 3.3, when D8 2 < and < \ fD0; D1; . . . ; D7g ¼ ;, we
can deduce �ðGGÞ ¼ 0. For example, when < ¼ fD8g or
< ¼ fD8; D9g, �ðGGÞ ¼ 0.

In Theorem 3.2 and Theorem 3.3, we present two special
kinds of strip groups that are always consistent. In fact,
besides these two kinds of strip groups, we have also
checked the consistency of other kinds of strip groups using
the approach given in Fig. 4. Unfortunately, all other kinds
of strip groups do not have such good property and can
rarely be determined to be consistent using the approach
given in Fig. 4. Their probability of being determined to be
consistent is defined as consistency probability (denoted by
Prconsistency). Then, you may be interested in how to estimate
their consistency probability.

For a strip group GG, suppose eGG is its maximal subgroup
that is always consistent. Then, for each strip contained in
GG n eGG, we regenerate it from eGG. Suppose there are w� l bits
in each strip, wherew is the number of elements in each strip,
and l is the number of bits in each element. Then, the size of a
strip’s value space is 2w�l. Thus, for each strip contained in
GG n eGG, the probability of its regenerated value being equal to
its original value in GG is 1

2w�l
. Let � ¼ jGGj � j eGGj. We can

deduce that the consistency probability of GG is

PrconsistencyðGGÞ ¼
1

2w�l��
: ð3Þ

We consider an erasure-coded storage system with the
configuration parameters w ¼ 4 and l ¼ 512 B (i.e., the size
of a sector). In this system, for a strip group not belonging to
the two kinds of strip groups presented in Theorem 3.2 and
Theorem 3.3, we can deduce that its consistency probability
can be guaranteed to be not higher than 1

216384 (i.e., 1
24�ð512�8Þ�1)

according to Eq. (3). Thus, its consistency probability is very
negligible in practice.

From the above discussion, we can reasonably make an
assumption as follows:

Assumption 3.1. For a strip group GG containing more than
k strips, some of which are silently corrupted strips, if it does
not belong to the two kinds of strip groups presented in
Theorem 3.2 and Theorem 3.3, it is always assumed to be
inconsistent in practical systems.

From what have been discussed in this section, we finally
make an observation as follows:

Observation 3.1. For a strip group GG containing more than
k strips, if it is determined to be consistent using the approach
given in Fig. 4, it should be in one of the following three states:

1. All its strips are correct strips;
2. All its data strips are correct data strips, and all its

parity strips are stale parity strips caused by the writes
to the same set of data strips, which does not contain
any data strip in GG; or

3. The set of its data strips consists of correct data strips
and stale data strips, and all its parity strips are stale
parity strips caused by the writes to the same set of
data strips, which contains all the stale data strips in
GG but does not contain any correct data strip in GG.

The above observation is very significant because it
reveals that one approach to determine the correctness of a
combination of k strips is to determine the consistency of a
corresponding larger-size strip group that properly contains
the combination. In the following section, we will develop a
new data reconstruction method based on this observation.

4 DATA RECONSTRUCTION IN THE PRESENCE OF

SILENT DATA CORRUPTIONS

Having understood the impact of silent data corruptions on
the consistency of strip groups, we now study how to
efficiently reconstruct lost data in the presence of silent data
corruptions in this section. We first propose an efficient
adaptive data reconstruction method in the first subsection.
Then, we discuss when we can correctly reconstruct lost
data using our proposed method in the second subsection.

4.1 An Efficient Adaptive Data Reconstruction
Method

In this subsection, we will develop an efficient adaptive
method for data reconstruction in the presence of silent
data corruptions.

Our data reconstruction method is developed under the
general framework of maximum-likelihood decoding [49]. As
shown in Observation 3.1, for a strip group containing more
than k strips, if it is determined to be consistent using the
approach given in Fig. 4, all its parity strips should be in one of
the following two states: correct or stale. Luckily, as we know,
in practical systems, the probability of a parity strip being
correct is much higher than that of the parity strip being stale
[22]. Thus, in a stripe, the number of correct parity strips is
often much larger than that of stale parity strips. Then, during
data reconstruction, to avoid encountering a consistent strip
group that contains stale parity strips before finding a
consistent strip group that consists of correct strips, we first
start with the strip groups that contain all the remaining
parity strips. During this process, if no consistent strip group
can be found, we continue to determine the consistency of
strip groups that contain fewer parity strips.

We now consider a stripe in which f strips are lost or are
identified to be corrupted, and there also exist some silently
corrupted strips. Suppose there are k	 data strips and
m	 parity strips contained in the set of the remaining strips,
where k	 þm	 ¼ kþm� f . We use DD	 and IP	 to denote the
corresponding data and parity sets, respectively, where
jDD	j ¼ k	 and jIP	j ¼ m	. It is clear that DD	 � DD and IP	 � IP.

To correctly reconstruct lost data in the presence of silent
data corruptions, we now present an adaptive data
reconstruction algorithm in Fig. 5. It should be noted that
the precondition to perform this algorithm is f < m. In this
algorithm, if TRUE is returned, all the lost strips have been
correctly reconstructed, and all the silently corrupted strips
have also been detected and corrected; and if FALSE is
returned, there exists no consistent strip group containing

1616 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

more than k strips, and the error scenario is then considered
to be beyond the ability of the adopted k-of-ðkþmÞ erasure
code to tolerate errors (this will be discussed in detail in the
next subsection). In practical systems, when FALSE is
returned, an exception event will be reported to the
upper-level file system to invoke higher-level protection
mechanisms.

We then discuss the implementation details of the
algorithm presented in Fig. 5. Here, in Step (2), to detect
and correct silently corrupted strips, we re-encode the stripe
after the reconstruction operation and then compare the
regenerated values with the original values in the stripe. In
addition, in Step (1), one important question is how to
efficiently determine whether there exists a consistent strip
group containing more than k strips in the set of strip
groups containing P. However, we notice that if we use the
approach given in Fig. 4 to determine the consistency of
each strip group, respectively, many unnecessary recon-
struction operations will be involved in this process. Thus,
to improve the performance of this process, we need to
develop a more efficient approach.

For given DD	 and P, Fig. 6 presents an efficient approach
to determine whether there exists a consistent strip group
with a size ðkþ 1Þ in the set of strip groups containing P.
Here, we only consider the consistent strip groups with a
size ðkþ 1Þ for the following two reasons:

1. A consistent strip group with a size ðkþ 1Þ is enough
for data reconstruction; and

2. If there exists no consistent strip group with a size
ðkþ 1Þ, there will also exist no consistent strip group
with a larger size (this can be easily deduced
according to the property that �ðGG1Þ ¼ 1) 8GG2 �
GG1 : �ðGG2Þ ¼ 1).

In the approach given in Fig. 6, if a strip group is
returned, a consistent strip group with a size ðkþ 1Þ has
been found, and then, we can immediately reconstruct all
the lost strips and detect and correct all the silently
corrupted strips using the consistent strip group; and if
NULL is returned, there exists no consistent strip group
containing more than k strips in the set of strip groups
containing P. We can easily deduce that the approach given
in Fig. 6 involves only one reconstruction operation in the
best case and k	�1

k��
� �

reconstruction operations in the worst
case, where � ¼ jPj. Its exact computational complexity
depends on the error scenario. However, we believe that it
is optimal in terms of computational complexity.

In this section, we have proposed an efficient adaptive
method for data reconstruction in the presence of silent data
corruptions. Unlike the existing data reconstruction meth-
ods, such as the matrix methods proposed in [26], our data
reconstruction method here can cope with both lost strips
and silently corrupted strips.

4.2 When Can We Correctly Reconstruct Lost Data?

In this subsection, we will discuss when we can correctly
reconstruct lost data using our data reconstruction method
proposed in Section 4.1.

4.2.1 The Conditions to Correctly Reconstruct Lost Data

Basically, in a k-of-ðkþmÞ erasure-coded storage system,
when f strips are lost or are identified to be corrupted in a
stripe, there should exist more than k correct strips in the set
of the remaining strips so as to form a consistent strip group
containing more than k strips. Suppose there exist r silently
corrupted strips in the set of the remaining strips. Then, we
should have n� f � r
 kþ 1. Since n ¼ kþm, we can
deduce a necessary condition that f þ r � m� 1.

Now, under the condition that f þ r � m� 1, we begin
to discuss when we can correctly reconstruct lost data using
our data reconstruction method proposed in Section 4.1.
Meanwhile, to make our discussion more easily under-
stood, we will give some example scenarios taken from an
erasure-coded storage system with k ¼ 10 and m ¼ 6.

When some strips are lost or are identified to be
corrupted in a stripe, it is clear that if the number of
correct parity strips is larger than that of silently corrupted
parity strips in the set of the remaining strips, our data
reconstruction method can always correctly reconstruct lost
data. Here, the “if” condition is often looser than the
well-known condition that f þ 2r � m in coding theory
[27]. This advantage results from the probabilistic char-
acteristics of the consistency of strip groups exploited in
Section 3.2.

Example. In an erasure-coded storage system with k ¼ 10
and m ¼ 6, we consider a stripe in which one data strip
and one parity strip are lost, and one data strip and two
parity strips are silently corrupted. In this stripe,
although f þ 2r � m is not satisfied, since f þ r �
m� 1 is satisfied, and the number of correct parity strips

LI AND SHU: PREVENTING SILENT DATA CORRUPTIONS FROM PROPAGATING DURING DATA RECONSTRUCTION 1617

Fig. 5. An adaptive data reconstruction algorithm.

Fig. 6. An efficient approach to determine whether there exists a
consistent strip group with a size ðkþ 1Þ in the set of strip groups
containing P.

is larger than that of silently corrupted parity strips in
the set of the remaining strips, our data reconstruction
method can still correctly recover all the faulty strips.

Now, let us consider the more complex case where the
number of correct parity strips is not larger than that of
silently corrupted parity strips in the set of the remaining
strips. According to Observation 3.1, it is clear that if the set
of correct parity strips is larger than any set of stale parity
strips caused by the writes to the same set of data strips, our
data reconstruction method can always correctly recon-
struct lost data. Here, it should be noted that even when the
“if” condition is not satisfied, our data reconstruction
method can still correctly reconstruct lost data as long as
no consistent strip group containing more than k strips can
be formed by stale parity strips.

Example. In an erasure-coded storage system with k ¼ 10
and m ¼ 6, we consider a stripe in which one data strip
and one parity strip are lost, and three parity strips are
stale parity strips caused by the writes to the same set <
that contains at least two remaining data strips. In this
stripe, although the set of correct parity strips is smaller
than the set of stale parity strips caused by the writes to
<, since no consistent strip group containing more than
k strips can be formed by the three stale parity strips, our
data reconstruction method can still correctly recover all
the faulty strips.

4.2.2 The Limitations of Our Data Reconstruction

Method

Until now, we have discussed the conditions to correctly
reconstruct lost data using our data reconstruction method
proposed in Section 4.1. Then, someone may ask in what
case we cannot correctly reconstruct lost data using our
data reconstruction method. We will give the answer to this
question in the following discussion.

When f þ r
 m, there exist not more than k correct
strips. Then, in the set of strip groups containing more than
k strips, there exists no consistent strip group that consists of
correct strips. At this time, the corresponding error scenario
is beyond the ability of the adopted k-of-ðkþmÞ erasure
code to tolerate errors.

Then, under the condition that f þ r � m� 1, we begin
to discuss when we cannot correctly reconstruct lost data
using our data reconstruction method.

When some strips are lost or are identified to be corrupted
in a stripe, in the set of the remaining strips, if there exists a
set of stale parity strips caused by the writes to the same set
of data strips, which meets the following two conditions:

1. this set of stale parity strips is larger than the set of
correct parity strips, and

2. a consistent strip group containing more than k strips
can be formed by this set of stale parity strips,

our data reconstruction algorithm presented in Fig. 5 will
then reconstruct lost data from the consistent strip group
formed by this set of stale parity strips. Thus, some corrupt
strips will be produced.

In the above two conditions, if the first condition is
replaced by a new condition that the size of this set of stale
parity strips is equal to that of the set of correct parity strips,

our data reconstruction algorithm presented in Fig. 5 will
possibly reconstruct lost data from a consistent strip group
consisting of correct strips or from a consistent strip group
formed by this set of stale parity strips. Then, the correctness
of the data reconstruction process depends on the distribu-
tion of lost strips and silently corrupted strips in the stripe.

To make the above discussion more easily under-
stood, we now give two example scenarios taken from
an erasure-coded storage system with k ¼ 10 and m ¼ 6.

Example. We first consider a stripe in which one data strip
is lost, and four parity strips are stale parity strips caused
by the writes to the same set < that contains not more
than two remaining data strips. In this stripe, since the
set of stale parity strips caused by the writes to < is
larger than the set of correct parity strips, and a
consistent strip group containing more than k strips
can be formed by the four stale parity strips caused by
the writes to <, some corrupt strips will be produced by
our data reconstruction algorithm presented in Fig. 5.

Example. We then consider another stripe in which one data
strip is lost, and three parity strips are stale parity strips
caused by the writes to the same set < that contains not
more than one remaining data strips. In this stripe, a
consistent strip group containing more than k strips can
also be formed by the three stale parity strips caused by
the writes to<. However, the number of stale parity strips
caused by the writes to < here is equal to that of correct
parity strips. Thus, our data reconstruction algorithm
presented in Fig. 5 will possibly reconstruct lost data from
a consistent strip group consisting of correct strips or from
a consistent strip group formed by the three stale parity
strips caused by the writes to <. The correctness of the
data reconstruction process depends on the distribution of
lost strips and silently corrupted strips in the stripe.

For the corrupt strips produced by our data reconstruc-
tion method, we notice that all of them are stale strips. An
example is as follows:

Example. In an erasure-coded storage system with k ¼ 10
and m ¼ 6, we consider a stripe in which D9 and P5 are
lost, and the set of the remaining strips is fD0; D1; . . . ; D8;
P0; P1; P2hstale � <i; P3hstale � <i; P4hstale � <ig wit h
< ¼ fD0; D9g. It is clear that all the three stale parity
strips are caused during the write processes ofD0 andD9.
If we reconstruct this stripe using our data reconstruction
method proposed in Section 4.1, a set of strip values (i.e.,
D0hstalei, D1, . . . ,D8,D9hstalei, P0hstale � <i, P1hstale �
<i, P2hstale � <i, P3hstale � <i, P4hstale � <i, and
P5hstale � <i) will be produced from the consistent strip
group GG ¼ fD1; . . . ; D8; P2hstale � <i; P3hstale � <i;
P4hstale � <ig. Here, for the three strips (i.e., D0, P0, and
P1) not contained in GG, since their original values are not
consistent with the values regenerated from GG, they are
then mistakenly regarded as silently corrupted strips in
the process of data reconstruction and are thus replaced
by the regenerated values.

From the above example, we can see that all the corrupt
strips produced by our data reconstruction method are stale
strips. In fact, if more than half of parity strips fail to be

1618 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

updated during the write processes of a set of data strips,
there is no way to guarantee not producing stale strips
during the subsequent data reconstruction process unless
an additional version mirroring technique [23] is used. This
is easily understood according to the majority principle.
Then, the corresponding error scenario is considered to be
beyond the ability of an erasure code to tolerate errors.

From what have been discussed in this subsection, we
can see that our data reconstruction method proposed in
Section 4.1 can fully exploit the fault-tolerance potential of
an erasure code. Our data reconstruction method cannot
correctly reconstruct lost data only in the case where the
error scenario is beyond the theoretical ability of the
adopted erasure code to tolerate errors.

5 THE PERFORMANCE IMPACT OF OUR DATA

RECONSTRUCTION METHOD

When our data reconstruction method proposed in
Section 4.1 is adopted in erasure-coded storage systems,
one important concern is its performance impact. In this
section, we will show that the overall performance impact
of our data reconstruction method is negligible in practical
systems.

As we know, our data reconstruction method not only
reconstructs lost strips in a stripe but also detects and
corrects silently corrupted strips in the same stripe.
Consequently, all the strips in the stripe should be accessed
during data reconstruction. Here, if we use a traditional
data reconstruction method (that does not consider the
issues of silent data corruptions) to perform the similar
functions as our data reconstruction method (though the
correctness of the data reconstruction process then cannot
be guaranteed), all the strips in the stripe should also be
accessed during data reconstruction. Thus, our data
reconstruction method does not cause additional I/O
overhead. Then, we only need to investigate the additional
computational overhead caused by our data reconstruction
method in this section.

In our data reconstruction method, the one and only one
kind of complex and time-consuming operation is the
reconstruction operation. Thus, we will use the number of
reconstruction operations (denoted by Nop) involved in the
data reconstruction process as an evaluation metric in the
following discussion.

5.1 The Computational Complexity

Before considering the overall performance impact of our
data reconstruction method in practical systems, we first
estimate the computational complexity of our data recon-
struction method.

In a k-of-ðkþmÞ erasure-coded storage system, we
consider a stripe in which f strips are lost or are identified
to be corrupted, and there also exist r silently corrupted
strips in the set of the remaining strips. Suppose there are
k	 data strips and m	 parity strips contained in the set of the
remaining strips, where k	 þm	 ¼ kþm� f .

When we use our data reconstruction method to
reconstruct the stripe, it is clear that Nop ¼ 1 in the case
where k	 þm	 ¼ kþ 1. However, the case where k	 þm	 >
kþ 1 is much more complex. We discuss it as follows:

In the case where k	 þm	 > kþ 1, when r ¼ 0, it is clear
that Nop ¼ 1. When r > 0, suppose there are rD data strips
and rP parity strips contained in the set of silently corrupted
strips, where rD þ rP ¼ r. Then, under the conditions to
correctly reconstruct lost data given in Section 4.2.1, the
value range of Nop can be estimated as follows:

1. When rP ¼ 0,

Nop 2 1;
k	 � 1

k�m	

� �� �
;

2. When 1 � rP � k	 þm	 � k� 1,

NopðrP Þ 2
"XrP�1

i¼0

m	

i

� �
k	 � 1

k� ðm	 � iÞ

� �

þ 1;
XrP
i¼0

m	

i

� �
k	 � 1

k� ðm	 � iÞ

� �#
:

Remark. According to the condition that f þ r � m� 1
given in Section 4.2.1, we can deduce that rP � k	 þ
m	 � k� 1. Thus, we here only consider the case where
rP 2 ½0; k	 þm	 � k� 1�.

To further understand the estimated value range of Nop,
we give an example as follows:

Example. In an erasure-coded storage system with k ¼ 10
and m ¼ 6, we consider a stripe in which one data strip
and one parity strip are lost (i.e., the case where k	 ¼ 9 and
m	 ¼ 5). Under the conditions to correctly reconstruct lost
data given in Section 4.2.1, the value range ofNop is shown
in Fig. 7. From this figure, we can see that when we use
our data reconstruction method to reconstruct a stripe, the
number of reconstruction operations involved in the data
reconstruction process increases with the number of
silently corrupted parity strips. This characteristic is
decided by the structure of our data reconstruction
algorithm presented in Fig. 5. However, the exact value
of the number of reconstruction operations depends on
the distribution of lost strips and silently corrupted strips
in the stripe.

LI AND SHU: PREVENTING SILENT DATA CORRUPTIONS FROM PROPAGATING DURING DATA RECONSTRUCTION 1619

Fig. 7. The value range of Nop for different values of rP in the case where
k	 ¼ 9 and m	 ¼ 5 in an erasure-coded storage system with k ¼ 10 and
m ¼ 6.

Finally, it should be noted that in the case where FALSE

is returned by our data reconstruction algorithm presented

in Fig. 5, Nop ¼
Pk	þm	�k�1

i¼0 ðm	i Þð
k	�1

k�ðm	�iÞÞ, which is the upper

bound of Nop.

5.2 The Overall Performance Impact

Now, we employ our data reconstruction method in

practical systems. We will study its overall performance

impact using a probabilistic method in this subsection.
According to the values of rD and rP , Nop is roughly

estimated as follows:

1. When rP ¼ 0 and rD ¼ 0 (i.e., r ¼ 0),

Nop ¼ 1;

2. When rP ¼ 0 and rD > 0,

Nop �
k	 � 1

k�m	

� �
;

3. When 1 � rP � m	,

Nop �
Xk	þm	�k�1

i¼0

m	

i

� �
k	 � 1

k� ðm	 � iÞ

� �
:

Suppose the probability of a strip being silently

corrupted is p. Then, for a stripe, the corresponding

probability (denoted by Pr) for different values of rD and

rP can be estimated as follows:

1. For rP ¼ 0 and rD ¼ 0 (i.e., r ¼ 0),

Pr � ð1� pÞk
	þm	 ;

2. For rP ¼ 0 and rD > 0,

Pr � ð1� pÞm
	
� ½1� ð1� pÞk

	
�;

3. For 1 � rP � m	,

PrðrP Þ � ð1� pÞm
	�rP � prP :

Using the results obtained above, we can estimate the

average value of the number of reconstruction operations

(denoted byNop) involved in the data reconstruction process.

Then, according to the value of Nop, we can estimate the

overall performance impact of our data reconstruction

method in practical systems.
Here, the lower bound ofNop is 1, which is also equal to the

number of reconstruction operations involved in a traditional

data reconstruction method (that does not consider the issues

of silent data corruptions). A smaller Nop means a smaller

overall performance impact. If Nop can be estimated to very

approach to 1, the overall performance impact can then be

regarded to be negligible in practical systems.
In the following discussion, we will give some examples,

taken from an erasure-coded storage system with the

configuration parameters k ¼ 10, m ¼ 6, w ¼ 4, and l ¼
512 B (i.e., the size of a sector), to show that the overall

performance impact of our data reconstruction method is
negligible in practical systems.

Here, since the probability of producing silent data
corruptions is about an order of magnitude smaller than
that for unrecoverable sector errors [22], [23], referring to
the unrecoverable bit-error probability estimated in [4] and
[5], the probability of a bit being silently corrupted (denoted
by pbit) can be estimated to be 10�15 for nearline (SATA)
diks and 10�16 for enterprise class (Fibre Channel) disks.
Then, the equivalent probability of a strip being silently
corrupted is p � pbit � w� l, which is 1:6384� 10�11 in the
case of nearline diks and 1:6384� 10�12 in the case of
enterprise class disks.

In Table 3, we estimate the upper bound of Nop for
different erasure scenarios in the cases of both nearline and
enterprise class disks. Here, we only consider the erasure
scenarios where f < m, which is the precondition to use our
data reconstruction method.

From Table 3, we can see that Nop is equal to 1 in the case
where k	 þm	 ¼ kþ 1 and is very close to 1 in the case
where k	 þm	 > kþ 1. Thus, we can make a conclusion
that the overall performance impact of our data reconstruc-
tion method is negligible in practical systems.

6 A COMPARISON OF TECHNIQUES FOR COPING

WITH SILENT DATA CORRUPTIONS

In erasure-coded storage systems, according to the design
principle of an abstraction layer framework, the RAID-like
layer is in the best position to correct silent data corruptions
it detects and locates when such corrections are theoreti-
cally and practically possible. Thus, in this section, we
consider the following two kinds of techniques that can be
integrated into the RAID-like layer: the traditional meta-
data techniques (such as the family of four metadata
techniques proposed in [24]) and the new technique based
on our data reconstruction method. Before comparing these
two kinds of techniques, we first give a brief overview of
metadata techniques.

1620 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

TABLE 3
The Upper Bound of Nop Estimated for Different
Erasure Scenarios in an Example System with

k ¼ 10, m ¼ 6, w ¼ 4, and l ¼ 512 B

6.1 Metadata Techniques—A Brief Overview

Metadata techniques colocate some forms of metadata (that
may contain checksums, version numbers, or other infor-
mation of the data) along with data/parity strips. They are
often used in an ad hoc manner, i.e., choosing different
forms of metadata for protection against different types of
silent data corruptions. As mentioned in Section 2.2, there
exist two categories of silent data corruptions, i.e., Un-
detected Disk Errors (UDEs) and Strip Update Errors
(SUEs), in erasure-coded storage systems. We discuss how
to use metadata to cope with them as follows:

To protect against UDEs, we use the metadata that
contains checksums to cross-check each strip. The metadata
for cross-checking is stored separately from the strip it
checks and thus has to be updated by a separate write.
Here, someone may consider to use the metadata that
contains simpler version numbers to self-check each strip.
The metadata for self-checking is stored colocated with the
strip it checks and thus can be updated by the same write to
the strip. Although the metadata for self-checking involves
much less additional I/O overhead than the metadata for
cross-checking, it cannot detect silent data corruptions
caused by lost writes. In contrast, the metadata for
cross-checking can detect all kinds of silent data corrup-
tions. In addition, to cross-check a strip, there should be at
least two metadata copies stored separately from each other
in the corresponding stripe. If there is only one metadata
copy, then when the metadata copy and the strip it
cross-checks are detected to be inconsistent, there is no
direct way to determine which one is silently corrupted.
However, if there are more than one metadata copy, the
problem can then be solved according to the majority
principle. Furthermore, the number of metadata copies
should be carefully decided. Suppose there are � metadata
copies for cross-checking a strip in a metadata solution.
Then, when more than �� 2 strips are lost or are identified
to be corrupted in a stripe, the metadata solution cannot
work. Generally, in a k-of-ðkþmÞ erasure-coded storage
system, the number of metadata copies for cross-checking a
strip can be set to be mþ 1, and then, f lost strips together
with r silently corrupted strips caused by UDEs can be
tolerated in a stripe as long as f þ r � m.

For SUEs, metadata techniques cannot always work. The
SUEs caused due to the loss of update operations can be
detected using a metadata technique called as version
mirroring [23]. However, for other kinds of SUEs (such as
the SUEs caused due to processor miscalculations), there is
no effective metadata technique that can detect them.

6.2 Making the Best Choice to Cope with Silent Data
Corruptions

There are several evident differences between the tradi-
tional metadata techniques and the new technique based
on our data reconstruction method. We list these differ-
ences as follows:

. The former cannot detect SUEs except those caused
due to the loss of update operations, while the latter
can cope with all kinds of silent data corruptions.

. The necessary condition for the former to tolerate
errors is f þ r � m (resulting in at least m ¼ 1 for

r ¼ 1), while that for the latter is f þ r � m� 1
(resulting in at least m ¼ 2 for r ¼ 1).

. The former requires additional storage overhead to
store metadata, while the latter does not need
additional disk space. Consequently, the former
involves additional I/O overhead during write
operations, while the latter does not affect write
performance.

. When a read operation on a strip is validated, the
former should read only two metadata copies from
two other strips in the same stripe, while the latter
should read at least k other strips in the same stripe.

We can see that these two kinds of techniques make
different tradeoffs among cost, performance, and effective-
ness.

We then begin to discuss how to make the best choice for
different requirements on cost, performance, and effective-
ness. As we know, the additional storage cost involved by
metadata techniques is often negligible. Thus, we will only
focus our attention on performance and effectiveness in the
following discussion.

In erasure-coded storage systems, validation can be used
on every read operation to guarantee the integrity of the data
to the host or periodically as an integrity control check.
Validation on every read operation provides a very high
level of data integrity but can cause a performance penalty on
each read operation. To minimize the performance penalty
on the read operation, metadata techniques can be used here
as a better choice to cope with silent data corruptions for its
advantage that it can involve less additional I/O overhead
during the validation. Even so, the performance penalty on
the read operation is still very high. Thus, validation on every
read operation often cannot meet users’ requirement on
performance. Then, some system designers propose to use
periodic validation, which is always integrated into periodic
disk scrubbing [50], [51]. Here, since disk scrubbing itself has
to read all disk data, validation can involve only a little
additional computational overhead, which is negligible
compared with I/O overhead. Periodic validation provides
a relatively lower level of data integrity. The level of data
integrity depends on the frequency of the validation. Luckily,
periodic validation often can provide a high enough level of
data integrity that is expected by system users. When
periodic validation is used in an erasure-coded storage
system, the technique based on our data reconstruction
method is a better choice to cope with silent data corruptions
for its advantage that it does not involve any additional
I/O overhead during write operations.

7 RELATED WORK

In recent years, silent data corruptions have attracted much
attention. Two studies, one at CERN [21] and one using data
from NetApp [22], analyze the occurrence and character-
istics of silent data corruptions in state-of-the-art storage
systems. Their results show that there exist a significant
number of silent data corruptions in storage systems. This
reinforces the need for effective techniques to cope with
silent data corruptions.

To address the issues caused by silent data corruptions, a
significant amount of work has recently been undertaken in

LI AND SHU: PREVENTING SILENT DATA CORRUPTIONS FROM PROPAGATING DURING DATA RECONSTRUCTION 1621

both the academic and industry research. We introduce
them as follows:

The paper by Schwarz et al. [50] uses signatures (which
have some of the characteristics of hashes, a type of
checksum) together with disk scrubbing to detect some forms
of silent data corruptions. However, the focus of this paper is
on how the scheduling of disk scrubbing affects overall
system reliability, and thus, the authors do not directly
address the issue of correcting silent data corruptions.

Prabhakaran et al. [19] study how file systems can
address disk errors. They develop an IRON taxonomy for
detection and recovery techniques, but these techniques are
mostly viewed from the perspective of a file system. In
comparison, our technique proposed for coping with silent
data corruptions lies in the RAID-like layer, which is the
layer closest to disk drives in erasure-coded storage
systems. According to the design principle of an abstraction
layer framework, the RAID-like layer is in the best position
to correct silent data corruptions it detects and locates when
such corrections are theoretically and practically possible.

Sundaram [20] gives a description of how NetApp
protects against various kinds of disk errors. They use
colocated checksums per 4-KB block and periodic disk
scrubbing to address the problem of silent data corruptions
caused by firmware bugs. In addition, since checksums can
detect only local silent data corruptions, they adopt a novel
technique, which involves storing logical identifiers (e.g.,
logical address obtained from the upper-level layer) with
the data and writing new versions of the data on new
physical locations, to solve the problem of lost writes and
misdirected writes. Unfortunately, as shown in [23], this
combination of protection mechanisms still cannot prevent
parity pollution caused due to disk scrubbing and user
writes in erasure-coded storage systems because logical
identifiers can be verified only by user reads. This again
demonstrates that the optimal solution to the problem of
silent data corruptions lies in the RAID-like layer closest to
disk drives in erasure-coded storage systems.

Existing work closest to our research here is the research
by Hafner et al. [24]. They explore a family of four metadata
techniques to the problem of Undetected Disk Errors
(UDEs), which can be integrated into the RAID-like layer
in erasure-coded storage systems. However, these techni-
ques have a remarkable defect: they fail to consider the
UDEs that may occur on metadata and parity. Besides, these
techniques cannot be used to cope with another category
of silent data corruptions mentioned in Section 2.2, i.e.,
Strip Update Errors (SUEs). In comparison, our technique in
this paper can cope with all kinds of silent data corruptions,
including both UDEs and SUEs. Furthermore, as mentioned
in Section 6.2, our technique is a better choice to cope with
silent data corruptions when periodic validation is used in
an erasure-coded storage system.

The work of Krioukov et al. [23] makes a detailed
analysis of the exact protection offered by each type of
metadata like checksums, physical and logical identity,
version numbers, etc. Krioukov et al. use model checking to
evaluate whether common protection techniques used in
RAID subsystems are sufficient in light of the increasingly
complex failure modes of modern disk drives. They also
identify a scheme, including version mirroring, physical
and logical identity, block checksums, and RAID, to

eliminate data loss or corruption for a given realistic range
of disk errors. However, this scheme requires logical
identity that should be obtained from the upper-level layer
and thus conflicts with the design principle of an abstrac-
tion layer framework. In comparison, our main effort in this
paper is a data reconstruction method that can effectively
prevent silent data corruptions from propagating. More-
over, our data reconstruction method here can be used to
cope with all kinds of silent data corruptions, including
both UDEs and SUEs.

Finally, in the literature of distributed erasure-coded
storage systems, there is also some related work that
deserves mention. To verify whether a given strip indeed
corresponds to a specific original block, cross-checksums [52],
[53] (or fingerprinted cross-checksums [54]) are often used in
these systems. However, their main purpose is to achieve a
high level of security in an untrusty environment in which
Byzantine clients [12], [13] may exist. Thus, it would involve
very extravagant overhead if we use cross-checksums (or
fingerprinted cross-checksums) to cope with silent data
corruptions in the disk array subsystems of erasure-coded
storage systems.

8 CONCLUSIONS

In this paper, we have carried out a thorough study on how
to prevent silent data corruptions from propagating during
data reconstruction in the context of erasure-coded storage
systems. We first showed how silent data corruptions can
propagate during data reconstruction and then proposed to
prevent the propagation of silent data corruptions during
data reconstruction by exploiting the error-correcting
ability of erasure codes. To develop a data reconstruction
method that can prevent silent data corruptions from
propagating, we introduced a concept of the consistency of
a strip group and then studied the impact of silent data
corruptions on the consistency of strip groups. Based on the
conclusions obtained from the study, we developed an
efficient adaptive data reconstruction method that can cope
with both lost strips and silently corrupted strips. We then
discussed when we can correctly reconstruct lost data using
our new data reconstruction method. Our discussion shows
that when using our data reconstruction method, the actual
ability of an erasure code to tolerate errors is often much
beyond the well-known upper bound that f þ 2r � m in
coding theory [27]. We also studied the overall performance
impact of our data reconstruction method in practical
systems using a probabilistic method. Our results show that
the overall performance impact of our data reconstruction
method is negligible in practical systems. Finally, we made
a comparison of techniques for coping with silent data
corruptions in erasure-coded storage systems. The compar-
ison shows that the technique based on our data recon-
struction method is a better choice to cope with silent data
corruptions when periodic validation is used in an
erasure-coded storage system.

ACKNOWLEDGMENTS

The authors would like to thank Professor Qing (Ken) Yang
in the Department of Electrical, Computer, and Biomedical
Engineering at the University of Rhode Island for his great

1622 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

help in preparing the manuscript of this paper. The authors

are also grateful to the anonymous reviewers and the

associate editor Professor Cristiana Bolchini for their

constructive and valuable comments that helped in im-

proving this paper. This work was supported by the

National Science Fund for Distinguished Young Scholars

of China (Grant No. 60925006) and the National High

Technology Joint Research Program of China (Grant

No. 2009AA01A403).

REFERENCES

[1] E. Pinheiro, W.D. Weber, and L.A. Barroso, “Failure Trends in a
Large Disk Drive Population,” Proc. File and Storage Technologies
(FAST ’07), Feb. 2007.

[2] B. Schroeder and G.A. Gibson, “Disk Failures in the Real World:
What Does an MTTF of 1,000,000 Hours Mean to You?” Proc. File
and Storage Technologies (FAST ’07), Feb. 2007.

[3] L.N. Bairavasundaram, G.R. Goodson, S. Pasupathy, and J.
Schindler, “An Analysis of Latent Sector Errors in Disk Drives,”
Proc. SIGMETRICS ’07, Jun. 2007.

[4] A. Dholakia, E. Eleftheriou, X.-Y. Hu, I. Iliadis, J. Menon, and K.
Rao, “A New Intra-Disk Redundancy Scheme for High-Reliability
RAID Storage Systems in the Presence of Unrecoverable Errors,”
ACM Trans. Storage, vol. 4, no. 1, pp. 1-42, May 2008.

[5] I. Iliadis, R. Haas, X.-Y. Hu, and E. Eleftheriou, “Disk Scrubbing
Versus Intra-Disk Redundancy for High-Reliability RAID Storage
Systems,” Proc. SIGMETRICS ’08, Jun. 2008.

[6] J.S. Plank, “Erasure Codes for Storage Applications,” Tutorial
Slides, Fourth USENIX Conf. File and Storage Technologies (FAST’05),
Dec. 2005.

[7] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and D.A. Patterson,
“RAID: High-Performance, Reliable Secondary Storage,” ACM
Computing Surveys, vol. 26, no. 2, pp. 145-185, Jun. 1994.

[8] C. Carlane and A. Osuna, “IBM System Storage N Series
Implementation of RAID Double Parity for Data Protection,”
IBM Redpaper REDP-4169-00, http://www.redbooks.ibm.com/
redpapers/pdfs/redp4169.pdf, Apr. 2006.

[9] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D.
Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C.
Wells, and B. Zhao, “OceanStore: An Architecture for Global-Scale
Persistent Storage,” Proc. Ninth Int’l Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’00), Nov.
2000.

[10] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: Highly
Durable, Decentralized Storage Despite Massive Correlated Fail-
ures,” Proc. Second Symp. Networked Systems Design and Implemen-
tation (NSDI ’05), May 2005.

[11] S. Frolund, A. Merchant, Y. Saito, S. Spence, and A. Veitch, “A
Decentralized Algorithm for Erasure-Coded Virtual Disks,” Proc.
Int’l Conf. Dependable Systems and Networks (DSN ’04), Jun. 2004.

[12] G.R. Goodson, J.J. Wylie, G.R. Ganger, and M.K. Reiter, “Efficient
Byzantine-Tolerant Erasure-Coded Storage,” Proc. Int’l Conf.
Dependable Systems and Networks (DSN ’04), Jun. 2004.

[13] J. Hendricks, G.R. Ganger, and M.K. Reiter, “Low-Overhead
Byzantine Fault-Tolerant Storage,” Proc. 21st ACM Symp. Operat-
ing Systems Principles (SOSP ’07), Oct. 2007.

[14] H. Xia and A.A. Chien, “RobuSTore: A Distributed Storage
Architecture with Robust and High Performance,” Proc. 2007
ACM/IEEE Conf. Supercomputing (SC ’07), Nov. 2007.

[15] M.W. Storer, K.M. Greenan, E.L. Miller, and K. Voruganti,
“Pergamum: Replacing Tape with Energy Efficient, Reliable,
Disk-Based Archival Storage,” Proc. File and Storage Technologies
(FAST ’08), Feb. 2008.

[16] Cleversafe, Inc. Cleversafe Dispersed Storage. Open source code
distribution at http://www.cleversafe.org/downloads, 2010.

[17] Allmydata, Inc. Unlimited Online Backup, Storage, and Sharing,
http://www.allmydata.com/, 2010.

[18] Permabit Technology Corporation. Disk Based Enterprise Archive,
Data Archiving Solutions, http://www.permabit.com/, 2010.

[19] V. Prabhakaran, L.N. Bairavasundaram, N. Agrawal, H.S.
Gunawi, A.C. Arpaci-Dusseau, and R.H. Arpaci-Dusseau, “IRON
File Systems,” Proc. 21st ACM Symp. Operating Systems Principles
(SOSP ’05), Oct. 2005.

[20] R. Sundaram, “The Private Lives of Disk Drives,” Tech OnTap,
NetApp, Inc., http://www.netapp.com/go/techontap/matl/
sample/0206tot_resiliency.html, Feb. 2006.

[21] K. Péter, “Silent Corruptions,” CERN, http://fuji.web.cern.ch/
fuji/talk/2007/kelemen-2007-C5-Silent_Corruptions.pdf, Jun.
2007.

[22] L.N. Bairavasundaram, G.R. Goodson, B. Schroeder, A.C. Arpaci-
Dusseau, and R.H. Arpaci-Dusseau, “An Analysis of Data
Corruption in the Storage Stack,” Proc. File and Storage Technologies
(FAST ’08), Feb. 2008.

[23] A. Krioukov, L.N. Bairavasundaram, G.R. Goodson, K. Srinivasan,
R. Thelen, A.C. Arpaci-Dusseau, and R.H. Arpaci-Dusseau,
“Parity Lost and Parity Regained,” Proc. File and Storage
Technologies (FAST ’08), Feb. 2008.

[24] J.L. Hafner, V. Deenadhayalan, W. Belluomini, and K. Rao,
“Undetected Disk Errors in RAID Arrays,” IBM J. Research and
Development, vol. 52, nos. 4/5, pp. 413-425, Jul./Sep. 2008.

[25] E.W.D. Rozier, W. Belluomini, V. Deenadhayalan, J. Hafner, K.
Rao, and P. Zhou, “Evaluating the Impact of Undetected Disk
Errors in RAID Systems,” Proc. Int’l Conf. Dependable Systems and
Networks (DSN ’09), Jun. 2009.

[26] J.L. Hafner, V. Deenadhayalan, K. Rao, and J.A. Tomlin, “Matrix
Methods for Lost Data Reconstruction in Erasure Codes,” Proc.
File and Storage Technologies (FAST ’05), Dec. 2005.

[27] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting
Codes. Elsevier, 1977.

[28] I.S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite
Fields,” J. Soc. for Industrial and Applied Math., vol. 8, no. 2, pp. 300-
304, Jun. 1960.

[29] R.R. Roth and A. Lempel, “On MDS Codes via Cauchy Matrices,”
IEEE Trans. Information Theory, vol. 35, no. 6, pp. 1314-1319, Nov.
1989.

[30] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and D.
Zuckerman, “An XOR-Based Erasure-Resilient Coding Scheme,”
Technical Report TR-95-048, Int’l Computer Science Inst., Aug.
1995.

[31] J.S. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon Codes
for Fault-Tolerant Network Storage Applications,” Proc. Fifth IEEE
Int’l Symp. Network Computing and Applications (NCA ’06), Jul. 2006.

[32] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An
Efficient Scheme for Tolerating Double Disk Failures in RAID
Architectures,” IEEE Trans. Computers, vol. 44, no. 2, pp. 192-202,
Feb. 1995.

[33] M. Blaum, J. Bruck, and A. Vardy, “MDS Array Codes with
Independent Parity Symbols,” IEEE Trans. Information Theory,
vol. 42, no. 2, pp. 529-542, Mar. 1996.

[34] M. Blaum, J. Brady, J. Bruck, J. Menon, and A. Vardy, “The
EVENODD Code and its Generalization,” High Performance
Mass Storage and Parallel I/O: Technologies and Applications,
J. Jin, T. Cortest, and R. Buyya, eds., chapter 14, pp. 187-208,
IEEE and Wiley Press, 2001.

[35] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,
and S. Sankar, “Row-Diagonal Parity for Double Disk Failure,”
Proc. File and Storage Technologies (FAST ’04), Apr. 2004.

[36] C. Huang and L. Xu, “STAR: An Efficient Coding Scheme for
Correcting Triple Storage Node Failures,” Proc. File and Storage
Technologies (FAST ’05), Dec. 2005.

[37] G. Feng, R. Deng, F. Bao, and J. Shen, “New Efficient MDS Array
Codes for RAID Part I: Reed-Solomon-Like Codes for Tolerating
Three Disk Failures,” IEEE Trans. Computers, vol. 54, no. 9,
pp. 1071-1080, Sept. 2005.

[38] G. Feng, R. Deng, F. Bao, and J. Shen, “New Efficient MDS Array
Codes for RAID Part II: Rabin-Like Codes for Tolerating Multiple
(
 4) Disk Failures,” IEEE Trans. Computers, vol. 54, no. 12,
pp. 1473-1483, Dec. 2005.

[39] J.S. Plank, “The RAID-6 Liberation Codes,” Proc. File and Storage
Technologies (FAST ’08), Feb. 2008.

[40] L. Xu and J. Bruck, “X-Code: MDS Array Codes with Optimal
Encoding,” IEEE Trans. Information Theory, vol. 45, no. 1, pp. 272-
276, Jan. 1999.

[41] J.L. Hafner, “WEAVER Codes: High Fault Tolerant Erasure Codes
for Storage Systems,” Proc. File and Storage Technologies (FAST ’05),
Dec. 2005.

[42] J.L. Hafner, “HoVer Erasure Codes for Disk Arrays,” Proc. Int’l
Conf. Dependable Systems and Networks (DSN ’06), Jun. 2006.

[43] R.G. Gallager, Low-Density Parity-Check Codes. MIT Press, 1963.

LI AND SHU: PREVENTING SILENT DATA CORRUPTIONS FROM PROPAGATING DURING DATA RECONSTRUCTION 1623

[44] M.G. Luby, M. Mitzenmacher, A. Shokrollahi, and D.A. Spielman,
“Efficient Erasure Correcting Codes,” IEEE Trans. Information
Theory, vol. 47, no. 2, pp. 569-584, Feb. 2001.

[45] R.M. Tanner, “A Recursive Approach to Low-Complexity Codes,”
IEEE Trans. Information Theory, vol. 27, no. 5, pp. 533-547, Sept.
1981.

[46] J.S. Plank and M.G. Thomason, “A Practical Analysis of Low-
Density Parity-Check Erasure Codes for Wide Area Storage
Applications,” Proc. Int’l Conf. Dependable Systems and Networks
(DSN ’04), Jun. 2004.

[47] J.S. Plank, R.L. Collins, A.L. Buchsbaum, and M.G. Thomason,
“Small Parity-Check Erasure Codes—Exploration and Observa-
tions,” Proc. Int’l Conf. Dependable Systems and Networks (DSN ’05),
Jun. 2005.

[48] M. Li, J. Shu, and W. Zheng, “GRID Codes: Strip-Based Erasure
Codes with High Fault Tolerance for Storage Systems,” ACM
Trans. Storage, vol. 4, no. 4, Article 15, Jan. 2009.

[49] A. Vardy, “Algorithmic Complexity in Coding Theory and the
Minimum Distance Problem,” Proc. 29th ACM Symp. Theory of
Computing (STOC ’97), May 1997.

[50] T.J.E. Schwarz, Q. Xin, E.L. Miller, and D.D.E. Long, “Disk
Scrubbing in Large Archival Storage Systems,” Proc. 12th IEEE/
ACM Int’l Symp. Modeling, Analysis, and Simulation of Computer and
Telecomm. Systems (MASCOTS ’04), Oct. 2004.

[51] A. Oprea and A. Juels, “A Clean-Slate Look at Disk Scrubbing,”
Proc. File and Storage Technologies (FAST ’10), Feb. 2010.

[52] L. Gong, “Securely Replicating Authentication Services,” Proc.
Ninth Int’l Conf. Distributed Computing Systems (ICDCS ’89), Jun.
1989.

[53] H. Krawczyk, “Distributed Fingerprints and Secure Information
Dispersal,” Proc. 12th Ann. ACM Symp. Principles of Distributed
Computing (PODC ’93), Aug. 1993.

[54] J. Hendricks, G.R. Ganger, and M.K. Reiter, “Verifying Distributed
Erasure-Coded Data,” Proc. 12th Ann. ACM Symp. Principles of
Distributed Computing (PODC ’07), Aug. 2007.

Mingqiang Li received the BSc degree in
mathematics from the University of Electronic
Science and Technology of China in 2006. He is
now working toward the PhD degree in the
Department of Computer Science and Technol-
ogy at Tsinghua University. His current re-
search interests include storage systems,
coding theory, and distributed computing. He
is a student member of the IEEE and the IEEE
Computer Society.

Jiwu Shu received the PhD degree in computer
science from Nanjing University in 1998, and
finished the postdoctoral research at Tsinghua
University in 2000. Since then, he has been
working as a teacher at Tsinghua University. He
is now a professor in the Department of
Computer Science and Technology at Tsinghua
University. His current research interests in-
clude storage systems and parallel computing.
He is a member of the IEEE and the IEEE
Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1624 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

