
Design and Implementation of an Asymmetric
Block-Based Parallel File System

Letian Yi, Student Member, IEEE , Jiwu Shu, Member, IEEE , Ying Zhao, Yingjin Qian,

Youyou Lu, and Weimin Zheng, Senior Member, IEEE

Abstract—Existing block-based parallel file systems, which are deployed in the storage area network (SAN), blend metadata with data

in underlying disks. Unfortunately, such symmetric architecture is prone to system-level failures, as metadata on shared disks can be

damaged by a malfunctioning client. In this paper, we present an asymmetric block-based parallel file system, Redbud, which isolates

the metadata storage in the metadata server (MDS) access domain. Although centralized metadata management can effectively

improve the reliability of the system, it faces some challenges in providing high performance and availability. Towards this end, we

introduce an embedded directory mechanism to explore the disk bandwidth of the metadata storage; we also introduces adaptive

layout operations to deliver high I/O throughput for various file access pattern. Besides, by taking the MDS’s load into consideration, we

propose an adaptive timeout algorithm to make the MDS failure detection adaptive to the evolving workloads, improving the system

availability. Measurements of a wide range of workloads demonstrate the benefit of our design and that Redbud gains good scalability.

Index Terms—Parallel file system, asymmetric

Ç

1 INTRODUCTION

IN the SAN environment, a parallel file system is often
built to manage shared disks. These file systems usually

assume a conventional block I/O interface, such as read/
write blocks, with no particular intelligence at the disks.
They are often termed as block-based parallel file systems.

To simplify the disk management, existing block-based
parallel file systems opt to take a symmetric approach, where
metadata is blended with file data in their on-disk images
[4], [7], [19], [25], and clients of these parallel file systems
are connected to the disks that contain metadata as well as
data content. For example, the implementation of block-
model pNFS in Linux uses the same on-disk format with
Ext4 [4].

However, such symmetric parallel file systems are prone
to system-level failures, as metadata on shared disks can be
damaged by a malfunctioning or malicious client. In most
deployed block-based file systems, this threat is inevitable,
as a large number of drivers that typically communicate
with the kernel are installed in their clients. Unfortunately,
previous studies have shown that errors of such drivers
may overwrite file system structures through conventional
block interface and destroy on-disk data [22], [23], [30].
Despite of the effort from testing communities, with tens of
thousands of drivers, such errors still exist even in produc-
tion softwares.

One option for ensuring the safety of metadata in parallel
file systems is to outfit a front-end server for each disk (or
disk array) to emulate a intelligent device, such as NASD
[33] and TSD [34], which can effectively verify each opera-
tion of a client. However, the resulting storage systems sig-
nificantly increase the economic cost and the power of
cluster in practice [32]. In addition, interposing bulky, gen-
eral-purpose servers between the network and disks poten-
tially increase the latency of metadata access. In contrast,
building a parallel file system directly on disks without
intelligence avoids these shortcomings [7] [19].

Accordingly, we present an asymmetric block-based
parallel file system, Redbud. Redbud leverages the zon-
ing technique [9] of SAN to prevent clients from access-
ing the disks that store metadata. Specially, the disks
storing file data are used to construct data zones and the
clients can only connect to the data zones. On the other
hand, metadata zones are constituted by all disks that
store metadata, and they are managed by a metadata
server (MDS). Such design can effectively improve the
reliability of the system by using more reliable devices
or better controlled drivers for metadata storage to pre-
vent namespace from being damaged by malfunctions.

However, in an asymmetric block-based file system,
managing metadata on a centralized MDS faces challenges
in providing high performance and availability. Towards
this end, we make the following contributions in designing
an asymmetric block-based file system:

� We propose an embedded directory (ED) mechanism to
optimize the metadata access in the asymmetric
block-based file system. Centralized metadata man-
agement allows potential optimizations in organiz-
ing metadata for commonly seen metadata operation
pairs, such as lookup-stat. The embedded directory
mechanism stuffs both file inodes and layout struc-
tures, which map file logic offsets to on-disk blocks,

� L. Yi, J. Shu, Y. Zhao, Y. Lu and W. Zheng, are with the Department of
Computer Science, Tsinghua University, East Main building 8-201,
Beijing 100084, China. E-mail: lonat.front@gmail.com, {shujw, yingz,
zwm-dcs}@tsinghua.edu.cn.

� Y. Qian is with Oracle Corporation. E-mail: Yingjin.Qian@sun.com.

Manuscript received 21 Dec. 2011; revised 4 Nov. 2012; accepted 12 Dec.
2012. Date of publication 10 Jan. 2013; date of current version 24 June 2014.
Recommended for acceptance by P. McDaniel.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.6

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014 1723

0018-9340 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

into the parent directory content, so that the content
of the directory and its files/sub-directories are on
the same or adjacent blocks, decreasing the number
of disk accesses in the intensive metadata workloads.

� We propose an adaptive layout prefetching (ALFP) and
an on-demand pre-allocation (OD) algorithm to deliver
high I/O throughput for both exclusive file access
and heavily concurrent file access pattern. With the
help of MDS, the adaptive layout prefetching algorithm
allows clients to prefetch file layouts to reduce layout
requests, while carefully monitoring the competi-
tions of layouts among clients to avoid frequent rev-
ocations of fetched layouts. The on-demand pre-
allocation makes file pre-allocation being aware of
concurrent process streams that write the same file
at the same time. By doing so, clients can predict the
pre-allocation size and effectively mitigate the frag-
mentation of files.

� We propose a Line-least-square Curve Fitting (LCF)
based timeout algorithm to improve system avail-
ability. Failure detection in an asymmetric block-
based parallel file system becomes an urgent and
critical issue: if the requests to MDS cannot be
responded in a timely fashion, the client needs to
decide whether to send the requests again or to claim
a MDS failure. The LCF-based timeout algorithm
takes the workload on the MDS into consideration,
and adaptively predict the response time (and thus
the timeout value) of future requests, improving the
availability of system.

We implemented a Redbud prototype system, and tested
it in a SAN environment consisting of 33 nodes. Redbud
was evaluated and compared with several state-of-the-art
file systems using various benchmarks, real applications
and simulators. Our evaluations show that Redbud achieves
scalability as the cluster size increases, and achieves high
file availability when faults occur on clients.

Compared with the traditional approaches, the embed-
ded directory leads to 11-31 percent improvement of
metadata access throughput; although the adaptive layout
prefetching slightly decreases the exclusive access perfor-
mance, it improves concurrent performance by up to
40 percent; the on-demand pre-allocation reduces the frag-
mentation effectively, leading to a performance increase of
about 18 percent.

We next present the overview of the Redbud system in
Section 2. Section 3 presents how Redbud manages and
indexes metadata. The adaptive layout operations are
described in Section 4. Section 5 presents system failure tol-
erance. Section 6 evaluates Redbud through detailed experi-
ments. Related work is the subject of Sections 7 and 8
summarizes our research and presents the future work.

2 REDBUD OVERVIEW

2.1 Architecture

Fig. 1 shows all main components of Redbud system archi-
tecture. Assisted by a dedicated Metadata File System (MFS),
a Redbud Metadata Server running on a node collectively
manages the storage of all metadata and exports the entire
file system directory tree to all clients. Since all metadata is

stored on a dedicated backend storage (metadata zone) and
can only be accessed through MDS, it can be built on well-
chosen devices, for example, more reliable devices to pre-
vent namespace from being damaged by device failures.
The MFS is a module that runs inside the Linux kernel, and
therefore Redbud MDS can use the default Linux-VFS cach-
ing policy. Similarly, the Redbud client residing on a client
node also runs inside the kernel and provides file system
interface.

File data backend storages (data zones) are shared by all
cluster nodes in Redbud. Typically, clients and MDS con-
nect to data block devices via refined fiber channel. Data
block devices are further organized as parallel allocation
groups (PAGs), each one of which has its own free space
management and mapping structure, to provide high
concurrency.

2.2 Metadata Types and Usage

Metadata in Redbud file system falls into three major types.
First, global file system metadata, such as superblock, is man-
aged and duplicated internally by MFS as in traditional file
systems. Second, free space metadata tracks all unused blocks
in PAG; for each PAG, MFS indexes its free space using a
B+tree, in which the key is the starting block number of a
contiguous free disk space and every leaf node corresponds
to a contiguous free space in the PAG. Third, file level meta-
data is also managed in MFS and includes two components
for each file in Redbud: (1) inode that contains the file attrib-
utes (such as mtime and size) and (2) layout that maps file
logic address to physical address on devices.

The file layout is organized as an array of segments, each of
which corresponds to a part of the file placed in a continuous
disk space. A segment is presented as a tuple of < file logic
address (64 bit), length (48 bit), PAG address (80 bit)> using a
total of 24 bytes, which means the file data of a size of length
starting from file logic address is located at PAG address. A
PAG address consists of a 16-bit PAG ID and a 64-bit offset
within that PAG. Assuming the size of each block (i.e., the
minimum space that can be represented by one segment) is
4K bytes, the worst-case additional space cost of using seg-
ments is 0.5 percent and occurs when files are at 4 KB-size or
fragmented into blocks. Because the average file size is ever-
increasing in network file systems [12], [18], this layout
representation will be more space efficient in the future.

Fig. 1. System architecture of Redbud.

1724 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

2.3 Collaborations

Redbud clients interact with the out-of-band MDS via
remote process call (RPC) protocol [10] implemented in the
RPC communication module. Table 1 shows the typical
RPC procedures in Redbud.

Redbud supports congregations of common RPC pairs.
For example, clients can aggregate the readdir-getattr pair for
ls operations, and the open-layoutget pair for accessing a file
promptly after opening it; most lookup and setattr are also
congregated in a request to modify file attributes (such as
chown and utime operations) promptly after determining
whether a file exists. Since clients always need to interact
with MDS to get metadata for each operation, such congre-
gated operations are preferred to reduce interaction cost and
are actually seem commonly from real world applications.

With the help of RPC procedures, the modules of Red-
bud are used collaboratively to complete a certain task. We
use the task of writing a file as an example to illustrate more
on this point. To write an empty file in Redbud, a client first
sends a request (open-getlyout) to MDS to ask for opening
the file and where to write new data; on receiving the
request, the MDS server accesses on-disk file inode to obtain
the attributes, and then selects a PAG and queries its free
space metadata to allocate some new blocks for the file;
then, both new segment and attributes are sent back to the
client, and the client writes the new data at PAG address
indicated by the segment.

3 METADATA MANAGEMENT

As all metadata cannot be loaded into memory on MDS,
MFS must aim to access disk efficiently for some metadata
access-intensive applications. In this section, we present
how metadata of directories and index is designed to mini-
mize disk access count.

3.1 Embedded Directory

Congregated RPC pairs rise opportunities for exploring disk
bandwidth fully on MDS. That is, if the metadata needed by
each operation of a congregated operation pair is contigu-
ously placed on the disk, multiple disk accesses of metadata
can be merged into a single one. For example, for perform-
ing an open-layoutget request on a file, if its segments are
placed adjacent to its inode, MFS can construct a single disk
request to obtain both its inode and segments. Towards this
end, Redbud introduces the embedded directory mechanism,
which contiguously places all metadata of a specific file
(including its inode and layout) into the directory content
blocks (DCBs) of its parent directory.

With ED, when creating a directory, we need to pre-allo-
cate blocks for its directory content to prepare for future
sub-file creations, and store the pointer to its directory con-
tent in its inode. When creating a sub-file, MFS allocates a
new block in the reserved directory blocks to write its inode.
While extending this file, the layout is first put after its
inode in the same block. Depending on the number of sub-
files/sub-directories and the size of each sub-file, directory
content blocks may grow differently according to the fol-
lowing three cases:

Normal: In this case, each sub-file/sub-directory takes
one block in the directory content (see the content blocks of
”/” and ”=dirN” in Fig. 2). Deleting a file in a directory does
not release the block in the directory content immediately.
All freed files are batched and lazy-free is performed on
freed blocks in the same directory.

Fragmentation: When a file system suffers from fragmen-
tation, storing a large file may generate a large number of
segments, and we need additional blocks for storing the lay-
out (see the content blocks of ”=dirF” in Fig. 2). In this case,
a dedicated fragmentation degree is maintained in every
directory’s inode structure. The degree value is simply the
ratio between the number of segments and the number of
files in the directory. Upon creating a file, if serious frag-
mentation is detected (when the degree value exceeds a pre-
defined threshold), an extra layout block is thus pre-
allocated and used to stuff layout segments to be generated.

Large directory: The embedded directory mechanism also
supports large directories that are normal in large data cen-
ters. We introduce a local directory map table (Lmap) block in
directory content to provide a mapping from a file/direc-
tory name hash value (using the n low-order bits of MD5
hash value) to the logical offset of its block containing its
inode in the directory content (see the content blocks of
”=dirL” in Fig. 2). By doing so, looking up a sub-file/sub-
directory inode can be done directly by looking up the
Lmap table without traversing the entire directory content.
In particular, for every 128 inodes in a large directory, we
construct a Lmap table block in the directory content, and
multiple Lmap blocks may exist for really large directories.

Unlike the traditional file systems, if a client only issues
the readdir requests (without stats request), Redbud opts to
read all content in the directory. This may enforce MDS to
read more data (more content blocks) than the traditional
method. However, previous studies show that accessing
several contiguous 4 KB disk blocks costs a relatively small

TABLE 1
Typical RPC Procedures in Redbud

Fig. 2. Organization of MFS’s B+tree. P indicates a pointer to a tree node
or a directory content block; K stands for a key in the B+tree.

YI ET AL.: DESIGN AND IMPLEMENTATION OF AN ASYMMETRIC BLOCK-BASED PARALLEL FILE SYSTEM 1725

amount more than accessing only one block (e.g., 1 percent
for 56 KB extra). Since our directory content blocks are
groups of contiguous blocks, the extra cost for acquiring all
content of a directory would be quite small.

3.2 Namespace Index

Balanced trees have been proven to be successful at
managing file system metadata because of their rapid
indexing properties [14], [15]. In particular, we design a
balanced tree to organize content blocks of directories
only, since metadata of files are embedded in their corre-
sponding directory content.

As shown in Fig. 2, MFS builds a directory index with a
dedicated B+tree, where all inodes and file layouts of a
directory are stored in the blocks (i.e., in the directory content
blocks) pointed by the keys in leaf nodes. The internal nodes
are composed of keys and pointers to their child nodes;
there is always one more pointer than keys in every node.
For example, P0 points to the objects that have keys smaller
than K0, P1 to those K0 � keys < K1. Therefore, when
accessing a specific directory, one traverses B+tree using its
key from the root node and gets its metadata’s pointer from
a leaf node.

Our goal of directory index design is to explore as
much directory locality as possible at runtime. By run-
time directory locality, we mean the set of directories that
a user is working on at runtime. If we place the meta-
data of those directories close to one another on disks,
we can achieve better I/O performance for the user at
runtime by avoiding moving the disk head all over the
place. In particularly, we make the following two
assumptions to capture runtime directory locality: a user
tends to access sub-directories of a same directory at
runtime; a user tends to access directories created by the
same user at runtime. Therefore, our metadata placement
tries to place the metadata of directories by considering
two priorities: placing sub-directories of a same directory
together as our primary priority; placing directories cre-
ated by one user together as our secondary priority.

Given such metadata placement strategy, we want to
design keys for all directories, such that if two directories’
metadata are closely placed on a disk, their key values are
also closely located in the B+tree. By doing so, runtime direc-
tory locality also ensures better performance of searching in
the B+tree, because directories visited by a user only
involves nodes nearby, and we do not need to look for
directories all over the B+tree.

In particular, we design the key for each directory as a
128-bit tuple, with three components: {a parent directory ID
(54 bits), a stream ID within the cluster (20 bits), a directory ID
(54 bits)}. The stream ID aims to uniquely identify the user
that creates the directory in the cluster, and it is the conjunc-
tion of a user ID and a client ID. The directory ID is the phys-
ical address of the first content block in the directory. The
root directory (”/”) has the specific key {1, 0, 1} (for conve-
nience, we use decimal digit here).

It is easy to verify that our key value generation pre-
serves runtime directory locality. Sub-directories of a same
directory share the first 54 bits in their key values, hence
their key values are more nearby in the B+tree than
those of sub-directories from different directory. Similar

argument also applies for directories created by one
user. Finally, directory IDs that reflect actual physical
locations of directory content blocks on disks enforce the
consistency between the metadata placement and the key
placement furthermore. As shown in the Fig. 2, when
stream 10, which has created ”=dirN” (whose key is
{1, 10, 3}), intends to create a new directory named
”=dirL” under ”/”, MFS first lookups from the root node
and acquires the key of its parent directory (”/”). Then
the parent ID of ”=dirL” is filled with the directory ID of
”/” (which is 1 in the example). Since the key of ”=dirL”
has the same parent directory ID and stream ID as
”=dirN”, the two keys are close and they reside in the
same sub-tree of B+tree (the sub-tree is the Node2 in the
figure). With this organization, searching keys locates in
the same directory can be performed locally. For exam-
ple, after accessing ”=dirN”, accessing ”=dirL” in the
same directory only needs to traverse from Node2.

Unlike the modern file systems [15], Redbud utilizes the
B+tree to index only directories, preventing the frequent
creation and deletion of normal files to cause splitting/
merging nodes. As a result, the whole tree is locked only in
the ”mkdir/rmdir” operations that are scarce in typical
workloads [18].

4 ADAPTIVE LAYOUT MECHANISMS

Different applications in large data centers introduce diver-
sified file access patterns. For example, recent studies show
that scientific applications require inter-file parallel to be
accessed by multiple nodes across a cluster [7]. Contrarily,
76.1 and 97.1 percent of files are only opened by one client
in finance and engineering environments, respectively [12].
With the help of a centralized MDS server, we design two
adaptive layout mechanisms to achieve high performance
and minimize the number of interactions between clients
and MDS.

4.1 Layout Prefetching

When a client needs to access the content of an existing
file, it first sends a layoutget request to the MDS server to
fetch the segments of the file. Once obtaining the layout,
the client may hold the segments until the file is closed.
On the other hand, Redbud guarantees single-client-node
equivalent POSIX semantics for file system operations
across the cluster. That is, multiple clients in Redbud
can concurrently hold the segments that correspond to
the same file range for read operations. However, if a cli-
ent wants to write a range of a file, Redbud does not
allow the other clients to hold or obtain the segment that
corresponds to the written range. In this case, the MDS
server can send a revoke message to a client, asking the
client to purge the corresponding layout range from its
memory; and we say a conflict occurs in this case.

To decrease the number of messages for requesting seg-
ments, Redbud allows clients to predict the file ranges to be
accessed and prefetch related segments from MDS in a
layoutget request. However, a client should determine the
size of a prefetching range carefully: a large size may
increase the conflict probability, consequently, the segments
will be revoked by the MDS server in the future; contrarily,

1726 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

if the prefetching range size is too small, client may be
enforced to send a large number of layoutget requests even
for sequential and exclusive access. Hence, we introduce an
adaptive layout prefetching algorithm on the client side, which
considers both recent layoutget and revoke operations, to
determine the prefetching range size. In general, ALPF
would increase the prefetching range size if past requests
show a trend of sequential and exclusive access, and
decrease the size otherwise.

For each file, a Redbud client maintains a history list
structure, which records historical layoutget and revoke
requests on the file. For each request req, an entry consisting
of its time stamp tr and its layout range rreq is recorded in
the history list. The importance of a request req is deter-
mined by a decay function:

freq ¼
lognðct� trÞ; if ðct� trÞ � 1
jlognðct� trÞj; if 1 < ðct� trÞ � n�1

1=jlognðct� trÞj; if ðct� trÞ > n�1;

8
<

:
(1)

where ct is the current time, both ct and tr are in seconds,
and n < 1 (the default value of n is 0.8 in our
implementation).

Now, when a client needs to send a layoutget request,
ALPF first identifies two sets of requests from the history
list Sg and Sr, corresponding to the set of layoutget requests
and revoke requests that worked on the nearest continuous
range before the range of the current layout-get request,
respectively. Then the prefetching range size (denoted as
ps) is calculated as follows:

ps ¼Max 0; init � h �
X

req2Sg
freq þ u �

X

req2Sr
freq

0

@

1

A

0

@

1

A; (2)

where h is a positive coefficient and u is a negative coeffi-
cient; the init is the initial prefetching range size; in our
implementation, the default init is 16 KB, and the default
values of h, u are 1, �1 , respectively.

As a result, if a client frequently performs layoutget oper-
ations in a sequential workload, ALPF enlarges the prefetch-
ing size for future operations; on the contrary, if there are
some revoke requests in the history list, the prefetching size
is gracefully decreased to reduce potential conflicts. For
example, in the case of sequential exclusive write, no revoke
request is in the history list for the file, so the prefeching
range size grows fast and the client can prefetch the whole
file’s layout soon.

After determining the prefetching size, for every
layoutget request, two types of ranges are sent to the MDS
server: the min-range, which corresponds to the range of
the current read()/write() system call, and the prefetch-
range. On receiving the layoutget request, the MDS server
first checks if the prefetch-range has overlaps with the
ranges held by the other clients. If it has, the MDS server
will grant as large prefetching range as possible, without
revoking from the others.

However, min-range may also have overlaps with the
held ranges, and this conflict type is referred as manda-
tory conflict. In this case, the MDS server must revoke the
overlapped ranges from other clients. However, if man-
datory conflicts on a small region are frequent, revoke

messages could be the performance killer of a parallel
file system. With regards to this, the MDS server divides
a file into multiple 16 KB-regions. If too many manda-
tory conflicts occur in the same region, Redbud gives up
the prefetching on the region.

4.2 On-Demand Pre-Allocation

Now we consider the case for allocating new layout seg-
ments for a file when clients try to extend it. To place a
normal file contiguously on disk, the core idea of tradi-
tional pre-allocation in local file systems, such as Ext3/4
[16], is that, for every file that is being extended, the
allocator reserves a range of on-disk blocks near the last
non-hole block of the file for it. Blocks needed by subse-
quent write (extend) operations for that file are allocated
from that range, instead of from any arbitrary free space.
If the subsequent workload is dominated by sequential
write from a single process, this reservation ensures the
contiguous placement.

However, reliance on traditional pre-allocation algorithm
have limited the performance of parallel file system. In par-
ticular, the reservation algorithm cannot reduce the fragmen-
tation inside individual file that is written by multiple
processes concurrently. Fig. 3a shows a fragmentation exam-
ple of it. In the example, 64 processes (denoted as P1, P2, . . .,
P64) concurrently extending-write on a file. Assume each
process writes sequentially with the speed of one block at
each time Tn. For example, P1 writes logic block number 100
at T1, and 101 at T2, and so on. The traditional pre-allocation
would reserve a range of on-disk blocks for all processes to
write into. Consequently, logic blocks 100; 200 . . . ; 6;400 are
placed together in the reserved space in the order of arrival
time, and logic blocks 100 and 101 are far apart. As a result,
the mapping from logic block address to the physical block is
fragmented and subsequent (even sequential) access to this
file incurs a mass of disk head interferences.

Fig. 3. Examples of traditional and on-demand pre-allocation. sw and cw
stand for the current window and sequential window, respectively.

YI ET AL.: DESIGN AND IMPLEMENTATION OF AN ASYMMETRIC BLOCK-BASED PARALLEL FILE SYSTEM 1727

Redbud introduces on-demand pre-allocation to mitigate
the fragmentation when multiple processes extend the same
file. In OD, the file allocator first distinguishes write
streams, which is essentially a process that has opened
the shared file in the cluster. Every write stream is identified
by a unique stream ID, which is a tuple of < client node ID,
process ID> to uniquely represent a process running on a cli-
ent node. It then performs pre-allocation for every write
stream independently.

OD maintains two data structures for pre-allocation: a
current window (cw) and a sequential window (sw) for each
write stream. Similar to the traditional reservation, a current
window contains the blocks which have been persistently
pre-allocated to a stream (i.e., appeared as a segment in the
layout of the file). However, unlike the traditional reserva-
tion, not all file contents can be written into a current win-
dow by a stream. Instead, a current window also
corresponds to a range of file logic blocks. If a stream writes
a file logic block outside the range of the current window, it
will not be written into the current window. A sequential
window, on the other hand, is used to predict the future
extending requests. Disk blocks in a sequential window are
temporarily reserved for a stream, and other streams cannot
allocate any blocks from the sequential windows. Similarly,
a sequential window corresponds to a range of file logic
blocks as well. A sequential window becomes a current win-
dow, when a stream starts to write file logic blocks within
the range of a sequential window. At that time, all the
blocks in the sequential window are allocated permanently
for the file.

OD is designed for sequential write, so the file logical
blocks in a sequential window immediately follow those in
a current window. If a stream writes outside both its current
and sequential window, we say a layout_miss happens, and
use a counter miss to record how many such misses have
happened. In general, high miss numbers indicate that the
access pattern of a stream is not sequential write at all and
OD should be turned off immediately. In particular, we
employ two triggers for sequential window reservations:

� layout_miss: this trigger is hit if the current write
block is not located in the current or sequential win-
dow; or if the corresponding stream performs
extending operation on the file for the first time.

� pre_alloc_layout: this trigger is hit only if the current
extending request locates in the sequential window,
which means the sequential window becomes the
current window and a new sequential window
needs to be reserved for this stream for further
extending operations.

Algorithm 1 depicts the pseudo code of the OD algo-
rithm. As the algorithm shows, we adapt the sequential
window size sw_size to the varying workload to obtain
more continuous placement.

An example of on-demand pre-allocation performing on
a shared file is shown in Fig. 3b. At time T1, since it is the
first time for streams to write the shared file, the allocator
first initiates a sequential window for each stream. At T2,
requests (101 and 201) of P1 and P2 arrive. Since the
requested block locates in the sequential window, the
request hits pre_alloc_layout. Therefore, the allocator turns

the original sequential window to be the current window,
and then reserves a sequential window with an enlarged
size. The subsequent requests (102 and 202) of P1 and P2 at
T3 hit neither the layout_miss (the block it wrote locates in
the space of the current window) nor the pre_alloc_layout (it
does not reside in the current sequential window). There-
fore, the allocator neither moves the sequential window
ahead nor increases the counter miss. From the example we
can see that when sequential write progresses, all write
requests from a stream locate in the range indicated by its
current window. Reasonably, it is useful to reserve more
contiguous on-disk blocks for subsequent sequential write
requests. After the current window becomes full, the
sequential window moves forward to reserve more blocks.

5 ADAPTIVE TIMEOUT

In an asymmetric parallel file system, clients must con-
stantly detect if MDS fails as they communicate with
MDS for each metadata access. Static timeout is widely
adopted in modern parallel file systems, in which clients
reconnect MDS and resend their requests if previous
requests are not responded within a fixed amount of
time. Such strategy assumes that service time of every
request in the systems should not exceed the predefined
upper bound; if the request cannot be responded in the
service time, the request is considered failed. This
approach is applicable in small scale environment [10],
[17]. However, applying it in a large asymmetric parallel
file system, where burst access is normal, would compli-
cate recovery. For example, when layouts are committed
by a large number of clients simultaneously, the MDS
server would suffer from huge disk access latency and
service time thus cannot be determined easily. Obviously,
a small timeout value is reckless: when the timeout is
reached, thousands of clients may try to reconnect to
MDS and resend un-committed requests to recovery mis-
takenly. Contrarily, using a large timeout value, clients

1728 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

cannot cope with MDS failures in time and the file system
therefore hangs longer than expectation, damaging the
system availability [1].

We introduce adaptive timeout in Redbud. The main idea
is that, since workloads in data centers may be evolving
constantly, the service time of every individual request
should be determined based on the current load of MDS:
when MDS becomes congested because of burst requests,
the estimated service time should be increased; otherwise, if
the workload is reduced, the value should be decreased.
Obviously, if the service time can be predicted explicitly,
we can determine a timeout value correctly.

Again, we ask each Redbud client to record historical
request service time values and estimate a timeout value
for itself. By doing so, the MDS server does not have to
compute estimated service time values for all clients. In
particular, the service time is defined as the time range
between the time point when a client sends a RPC
request and the time point when the client receives the
response. This choice enforces clients to predict the end-
to-end service time, considering both network latency
time and MDS’s processing time.

Historical service time values are tracked by a time win-
dow, which spans multiple seconds, in a client. We split a
time window into N sub-windows: assuming the length of a
time window is H, the length of each sub-window, L, is
equal to H=N . Since a large number of requests may be
accomplished in each sub-window, we record the average
service time of them and present them using a pair of time
values: < ti; vi > ; ði ¼ 0; 1; . . . ; NÞ, where ti is the time
stamp of sub-window i and vi is the corresponding average
service time.

Based on the recorded historical values, we consider two
strategies to estimate service time: MAX and line least square
curve fitting. The MAX approach use the maximum value
among the records kept in a time window: estimateðvÞ ¼
maxðviÞ; ð0 � i � NÞ. This simple approach introduces little
cost (either implementation efforts or CPU load) on estimat-
ing but with limited prediction ability. The LCF method, on
the other hand, is adopted to perform curve fitting on his-
torical values to predict the timeout. Such fitting is reason-
able as service time changes gradually, instead of rapidly,
even in burst workloads. This is mainly because that the
cost to handle a request on disks is nearly constant, service
time is therefore proportional to queuing time (at MDS)
which is determined by the queue length. The estimation of
service time for current requests is given as below:

estimateðvÞ ¼ fðtÞ ¼ a0 þ a1 � t; (3)

where : a0 ¼
XN�1

i¼0

vi

 !

=N � a1

XN�1

i¼0

ti

 !

=N;

a1 ¼
PN�1

i¼0 tivi �
�PN�1

i¼0 ti
PN�1

i¼0 vi

�
=N

PN�1
i¼0 t2i �

�PN�1
i¼0 ti

�
=N

: (4)

While adaptive timeout can effectively improve accuracy
of timeout prediction, it cannot completely eliminate false
positives. Therefore, on detecting a timeout, the client
sends a probe message to MDS to check if it really fails. If
MDS is not failed, it immediately responds the probe
message after receiving it. Note that this probe message is
similar to traditionally lightweight ”heartbeat” message;
however, since our adaptive timeout algorithm makes
predictions more accurate, network traffic incurred by
probe messages can be significantly reduced.

6 EVALUATION

Our experimental evaluation answers four questions:
(1) What is the overall performance and the data availability
of the asymmetric block-based parallel file system? (2) How
much improvement can metadata placement gain over the
traditional methods? (3) How much improvement can
adaptive mechanisms gain over the traditional approaches?
(4) What is the impact on system availability when the LCF-
based approach is used?

6.1 Experimental Setup

All experiments were performed on up to 33 nodes, includ-
ing a metadata server. Each node was configured with Intel
Xeon processor (4 cores) running at 1.60 GHz and 1024 MB
physical memory. All nodes were running Linux 2.6.32 ker-
nel. With plugged Qlogic2432 card, each machine was con-
nected to the Silk Worm fabric switcher by its own 400 MB/
s point to point link. Communication between clients and
MDS is GbE constructed by Catalyst Ethernet switches.
Shared disk devices are fiber disks sitting in a series of indi-
vidual JBOD arrays. According to the measurements of our
micro-benchmarks, peak performance (accessing the outer
tracks of the disks) of individual disks is about 172.2 MB/s
for sequential read and 178.3MB/s for sequential write, and
the average performance (accessing the middle tracks of the
disks) of individual disks is about 137.1 and 138.8 MB/s for
sequential read and write operations. In our experiments,
each PAG is configured with one disk and MDS is also built
using one disk.

We also compared Redbud with three state-of-the-art
parallel file systems: (1) two object-based asymmetric file
systems, Lustre [5] and Ceph [3]; (2) a pNFS implementation
in Linux (published in Linux kernel 2.6.32), which was a
symmetric block-based file system. In our experiments,
MDS and each object storage device (OSD) node of Lustre
was configured with one disk, and each OSD of Ceph also
uses one disk. The version of Lustre and Ceph is 1.6.0 and
0.46, respectively.

6.2 Overall Evaluation

In this section, we measure the aggregated throughput of
Redbud when scaling either clients or storage nodes and
the data availability of Redbud when some faults occur. To
evaluate the overall performance of Redbud, we ran an
IOzone [13] worker on every client to generate four types of
normal operations: read, write, re-read and re-write; the read/
write is to access file after the file is created and the re-read/
re-write is to access the existing file repeatedly. Except for
special declaration, we conducted the experiments of

YI ET AL.: DESIGN AND IMPLEMENTATION OF AN ASYMMETRIC BLOCK-BASED PARALLEL FILE SYSTEM 1729

IOzone with the request size of 32 KB. We use two typical
file data distribution of parallel file systems: (1) RF-Striping
strategy, in which MDS splits a file into 32M-parts and
every part is then placed on an individual PAG, and (2) RF-
FileRound strategy, in which MDS first selects a PAG in
”round-robin” fashion when creating a new file and then
places the whole file on the selected PAG.

6.2.1 Data Access Scalability

Fig. 4a shows how throughput varies when more client
nodes are added to Redbud. We can observe that, except for
slight performance lost, aggregated throughput increases
when scaling the cluster size. Generally, write operations
must perform more metadata updates such as layout change,
therefore, they performed poorer than read operations which
only updated inode attributes. From the figure, we can also
find that the Redbud gains more overall performance in the
re-write workload than the write one. The reason is that, to
write a new file (write workload), MDS must update layouts
and free space metadata before responding to the clients; re-
write operations, on the other hand, never update them
because the layouts need not to be changed before removing
file. Besides, as far as each situation is concerned, it is shown
that, with the increase in the client count, the CPU utilization
of MDS increases, whereas the average CPU load is still
lower than 2 percent when scaling to 32 clients.

Fig. 4b illustrates performance results as increasing the
PAGs. We can observe that a roughly linear growth of per-
formance as increasing disk. Fig. 4b also gives a comparison
between two data placement strategies in Redbud. Com-
pared with RF-Striping strategy, RF-FileRound strategy pro-
vides a ranged growth of aggregated throughput when all
clients perform intensive IO. The main reason is that, when
striping every file on all disks, the disk head interleave
incurs penalty because every disk is simultaneously
accessed by all clients in the cluster.

6.2.2 Data Availability

Since Redbud prevents the clients from damaging file sys-
tem consistency by isolating metadata storage in the MDS
access domain, it is meaningfully to examine how file
availability degrades when the faults occur on PAGs. We
generated a file system snapshot according to the analysis
of NetApp large scale network file systems [12], which
were used by over 1,500 employees. The snapshot had

about 1 TB file data and one million files. We injected two
types of faults: (1) data overwritten: we bypassed the file
system and randomly overwrote the data on the PAGs;
(2) disk failure: we remove PAGs after snapshots have
been stored in system. In both cases, we measured the
percentages of the files whose all contents are available
after faults have been injected.

Fig. 5a shows the file data availability result. From the
figure, we can observe that Redbud works quite well, with
the number of unavailable files proportional to the amount
of damaged data, in contrast to a symmetric file system
where a overwritten sector or disk crashes would lead to
the whole file system unavailable because of metadata cor-
ruption [4] [19]. In fact, availability sometimes degrades
slightly less than expected from a strict linear fall-off, this is
because a slight imbalance in data placement across disks
and within directories. Fig. 5b shows the result of file data
availability when removing disks. We can find that RF-File
Round strategy leads to better file availability than the dis-
tribution with RF-Striping strategy in average. This is
mainly because the large files are usually striped in multiple
disks with RF-Striping strategy, and removing one of these
disks will make the files unavailable.

6.3 Metadata Service

To evaluate the performance benefits of our method for
metadata placement, we tested Redbud, Lustre, Ceph and
pNFS in our environments. Lustre uses traditional directory
placement by exporting an Ext3; similar to Lustre, pNFS
stores all data and metadata on an Ext4 that is a improved
version of Ext3; Ceph, on the other hand, embeds inodes in
its directory and eliminates object-level metadata using
CRUSH algorithm; besides, by borrowing idea from log-
structure file systems, Ceph performs copy-on-write for
each write operation to optimize small writes. In all system
setups, 10 clients simultaneously accessed the MDS.

We first used Metarates application [27], which was an
MPI application that coordinated file system’s metadata
accesses from multiple clients. We generated three types of
workloads, and every client works in its own directory: first,
a concurrent create workload in which every client created
50,000 zero-byte files simultaneously in its own directory,
and a concurrent utime workload in which every client modi-
fies the access time of created file; second, we used a concur-
rent delete workload in which every client simultaneously
performs unlink() operation on all files in its own directory;

Fig. 5. File availability as the faults increase. Redbud was built with 10
and 12 PAGs in (a) and (b), respectively.

Fig. 4. Performance as the cluster size increases. In the (a), the number
of PAGs was equal to the number of clients. In the (b), we configured 10
clients to access their own files.

1730 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

finally, a concurrent readdir-stat workload that performed
both readdir() and stat() operation on the sub-files concur-
rently in the created directory.

Next, we used two benckmarks, PostMark [2] and Poly-
graph [35], and three different applications, tar, make and
make clean, to test performance of small file access that is a
metadata intensive workload. Three applications were
intended to approximate activities common to software
development, using files (or tar.gz packets) of Linux kernel
code. PostMark was configured by file-counts of 100,000
and transaction-count of 500,000, mimicking business trans-
actions environments. Polygraph, on the other hand, tar-
geted IO performance evaluations of web services: in our
runs, Polygraph generated two typical directory structures:
8�8�1 and 8�8�16, in which each configuration had 1 and 16
files in their leaf-directory respectively, and depth of direc-
tory was 8 with 8 subdirectories in each directory; after the
generation, Polygraph read the files from the file systems to
verify the data correctness; the file size in Polygraph was
randomly distributed in range of 10KB-1MB.

6.3.1 Metadata Access

We conducted the experiments to measure the metadata
access performance by running 4 Metarates processes on
each client. Since the reduction of disk access count contrib-
utes to the expected improvement, we also examine the
disk access count by intercepting the disk access in the gen-
eral block layer of kernel on the MDS and OSD.

The right bar graphs in the subfigures of Fig. 6 show that,
the proportion of Redbud’s disk access count to the other
approaches in four workloads varies greatly. First, except
for utime workloads, the disk access count of Ceph is close
to that of Redbud. Utime operations introduce higher pro-
portion of disk access count in Ceph than that of Redbud,
this is because that the cleaning process of Ceph’s OSD
needs to periodically perform garbage collection, incurring
many disk accesses. Second, the improvement of Redbud
for deletion workload is much less than that of pNFS and
Lustre. The main reason is that, in deletion operation, the
embedded directory only eliminates the disk access of the
updates on the inode bitmap blocks. The disk access count
of the other operations, on the other hand, can be further
decreased by avoiding to access the inode blocks. Finally, in
the readdir-stat workload, the decreased disk access propor-
tion increases as the directory size increases. This phenome-
non is due to the design of the prefetching algorithm in the
linux kernel: the size of prefetching window is gradually
enlarged when it correctly predicts the blocks to be used

[28]. This optimization causes the system using embedded
directory algorithm to essentially merge more disk requests
of the readdir-stat operations into some larger ones.

The left graphs in the subfigures of Fig. 6 also provide a
performance comparison between Redbud and the other
file systems. It is interesting that, under the deletion/read-
dir-stats workloads, though disk access count of Ceph does
not appear to be much different from that of Redbud, the
results show the performance of Redbud is higher than that
of Ceph. The reason is that, MDS in Ceph acts as a cache-of-
metadata and OSD is a simulated device using a server,
therefore, accessing metadata needs a large number of net-
work interactions between MDS and OSD. The results also
indicate that the performance improvement gained from
Redbud’s metadata placement ranges from 8 percent
(10,000 sub-files for every directory in the delete workload)
to 31 percent (10,000 sub-files for every directory in the
readdir-stat workload).

6.3.2 Small File Access

In this group of experiments, we intended to quantitatively
characterize the performance of small file access by running
a process on each client. Fig. 7 shows the executive time pro-
portion of two benchmarks and three different applications.
We can observe that Redbud gains 3-14 percent reduction
than the other file systems in execution time for programs,
including PostMark, tar and make-clean. Compiling the ker-
nel program (Make workload), on the other hand, generates
CPU-intensive workload in our environment, therefore, we
see a much smaller improvement.

The improvement of Redbud for webservice benchmark,
however, is much higher. First, Redbud outperforms Ceph
with a improvement of up to 32 percent, the main reason is
that, when the processes concurrently generated intricate

Fig. 6. Comparison of Metadata Access Performance.

Fig. 7. Executive time proportion of benchmarks and applications. Both
8�8�16 and 8�8�1 are the different polygraph configuration as described
in text.

YI ET AL.: DESIGN AND IMPLEMENTATION OF AN ASYMMETRIC BLOCK-BASED PARALLEL FILE SYSTEM 1731

directory structures, as Ceph writes data in a copy-on-write
fashion, the metadata locality is inherently damaged, and
the performance of subsequent read access is therefore com-
promised. Second, the observed improvement over Lustre
is also related to exploiting directory locality in Redbud;
since a new directory is always allocated in a different
group in Ext3, traversing a deep directory in Lustre there-
fore needs to move the disk head all over the place; Redbud,
on the other hand, constrains a user’s directory in an index
subtree, effectively decreasing the number of disk positions.
Finally, the symmetric block-based file system, pNFS, per-
forms worst in all cases; by further analyzing the character-
istics of disk access, we find that metadata accesses heavily
interleave with data accesses in pNFS, because pNFS co-
locates metadata and file data on the same disk; since these
interleaves potentially squeezes out file system’s metadata
from disk cache, the performance of metadata access, which
is critical under these workloads, is seriously impacted.

6.4 Layout Management

We also chose two widely used benchmarks: IOR2 [20]
and BTIO [21], which are MPI applications and used by
parallel file system vendors and users, to evaluate the
effectiveness of layout prefetching and on-demand pre-
allocation algorithm. IOR2 and BTIO launches MPI pro-
cesses to concurrently write a large amount of data to
one file (each of m MPI processes is responsible to write
1/m of a file),then read its own written data back to ver-
ify the correctness of the data; as soon as the written
data is available, each process reads the data written by
the other processes. The average request size of IOR2
(more than 32 KB) is larger than that of BTIO (less than
16 KB). We also profiled the executions of them using
either non-collective I/O or collective I/O, and the size
of collective-I/O requests is around 40 MB, much larger
than the size of requests with non-collective I/O.

6.4.1 Layout Prefetching

In this section, we compare ALPF of Redbud with two tradi-
tional prefetching approaches: naive and token algorithm.
For the naive approach, any write() request will enforce cli-
ent to conservatively get the precise layout range to be writ-
ten [4], [19]; for the token approach, a node accessing a file
will aggressively acquire a range token for the whole file,

and when the other nodes write the same file, MDS needs to
revoke the part between the requesting offset and the last
byte held by the former [3], [5], [7]. Revoke requests in all
algorithms in the client is handled by a specific thread.

We first conduct experiments on one PAG and run an
IOzone worker on a client to generate exclusive access pat-
tern. Fig. 8a shows the read/write throughput of Redbud as
the request size increases. Since the token algorithm allows
the client to cache the layout of the whole file locally, it is
obviously the best case for the exclusive access pattern, and
outperforms the ALPF about 5-11 percent. However, ALPF
significantly improves the performance than conservative
naive approach by predicting the layout request ranges,
especially with small request size; improvement is
decreased as the request size becomes large, this is mainly
because the network interaction overhead incurred by get-
ting layout is amortized into huge disk request latency.

We next evaluate the concurrent access performance,
using IOR2 benchmark. As shown in Fig. 8b, since the num-
ber of the network interaction is increased as more work
threads join in the experiments, performance of all algo-
rithms is decreased. ALPF outperforms token algorithm
about 4-40 percent. The reason is that clients change their
write range frequently in the workload [11] and token algo-
rithm brings a large number of revoke messages into the
system. Comparison of CPU utilization in MDS using differ-
ent algorithms is also shown in the Fig. 8b. The results indi-
cate that, ALPF adds less cost to the MDS than token
algorithm. This is because our ALPF implementation lever-
ages the clients to predict the prefetching range, reducing
the CPU overhead of MDS.

6.4.2 On-Demand Pre-Allocation

To evaluate the effectiveness of on-demand pre-allocation,
we also compared Redbud to: (1) a Redbud version using
reservation method for file data preallocation; (2) Ceph,
Lustre and pNFS, which use delay allocation, Ext3 and Ext4
reservation method, respectively.

As shown in Fig. 9a, Lustre performs similarly to the
Redbud version using reservation method, and runs with
OD pre-allocation maintain higher throughput (about 18
percent) than Lustre by mitigating the file fragmentation.
Besides, Redbud outperforms Ceph by up to 56 percent; the
main reason is that, in these runs, since the written data gen-
erated by a client needs to be read by the other clients, the
newly written data must be flushed into disks immediately,
thus reducing the effectiveness of delayed allocation in

Fig. 8. Results of adaptive layout prefetching. In our experiments, we
used the default parameters of Redbud to determine the ps,
h ¼ 1; u ¼ �1; n ¼ 0:8.

Fig. 9. Throughput results of macro-benchmarks. All of them are running
on a 16-nodes cluster and each node runs 4 processes. All data are
striped in 8 PAGs.

1732 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

Ceph. Compared with BTIO, the improvement for IOR2 is
smaller, as shown in Fig. 9b. This is because that, in IOR2,
the request size is larger, and each process accesses adjacent
data in its access scope. We can also find that the program’s
throughput with collective I/O performs is much better
than its non-collective version because the latter version
generates smaller requests; this may makes the effectiveness
of on-demand preallocation being disappointed in this case.

In the runs, we also measured the metadata overhead of
Redbud using different pre-allocation algorithms. Table 2
shows the number of segments generated by the programs
and the average CPU utilization of MDS without using col-
lective-IO. The Vanilla mode indicates pre-allocation is not
used. The results show that, with Vanilla mode, files are
severely fragmented, and the runs generate significantly
more segments than that of the other modes. We can also
observe that OD approach has the potential to reduce
the segments count (for both reads and writes) by a factor of
5-10 compared to the same file system with traditional reser-
vation pre-allocation. With the less segments to be operated
in a block-based parallel file systems, the less CPU load is
involved in MDS as revealed from the results. Since the
increased metadata overhead causes less efficient mapping,
we expect more benefits can be gained from OD pre-alloca-
tion in these programs as the system scales.

6.5 Handling Timeout

We then evaluate LCF-based adaptive timeout handling
mechanism. To evaluate the effectiveness of LCF-based
adaptive timeout algorithm in large scale system, we used
the simulator [31] developed for parallel file systems to sim-
ulated 32,000 clients to access a MDS. We generated work-
load to mimic the burst workload of typical the data centers
[49] [11] [5]: we divided the clients into 400 groups and
every group contained 80 clients; and in the first 200 sec-
onds of our experiments, every client in one group sent 100
metadata requests (create and truncate operation which
enforce MDS to write layout’s changes into MFS) to MDS
every second and then waited for responses.

We compared our adaptive timeout algorithm with: (1)
Static method, in which the timeout value is 30 seconds for
every RPC requests as the modern file systems [3], [4], [5];
and (2) Max method mentioned in Section 5.1.

Fig. 10a shows the estimated service time using different
methods. In the initial seconds (0-240 seconds) of the experi-
ment, the actual service time increases rapidly, this is
because in this stage the clients continuously send requests
and MDS queues most of them. We can also find that the
service time predicted by the LCF is slightly larger than the
actual service time at most time, and it can vary the esti-
mated service time as the workload evolves. The MAX

method, on the other hand, generates smaller prediction
values than the actual service time in the initial seconds;
this is because in most time, it obtains the maximum value
from the past service times, which are always smaller than
the service time to be increased. These prediction deviations
of every method directly lead to different timeout ratio:
Fig. 10b shows the average number of the detected timeout
along the timeline. The Static method can only completely
eliminate timeouts in the initial 110 seconds. When the
actual service time increases rapidly, MAX method incurs
more timeout than LCF because it leads to high false posi-
tive rate using the smaller service time. We can also find
that LCF approach still brings some timeout in the initial
120 seconds. This is mainly because the records kept in the
sub-windows are the average values of past requests. To
address this problem, we may perform more accurate pre-
diction by fitting the curve using the service time of every
request instead of the average value in sub-windows; how-
ever, this may introduce more memory and CPU overhead
because of a mass of requests in burst workloads.

7 RELATED WORK

Asymmetric parallel file systems. Some file systems designed
around NASD such as Lustre [5] uses general-purpose local
file system (Ext3) to build its namespace; PVFS2 [29], which
is based on file-storage, employs the Berkeley-DB to store
and index metadata and distributes file data on multiple
storage servers. HDFS [26] and Google File System [8],
which are also based on the file-storage, store their metadata
in a dedicated name node and all file data is placed in the
data servers. Since asymmetric architecture isolates the
metadata in MDS access domain, it can eliminate the proba-
bility of damaging the metadata by buggy software installed
on clients. We believe this elimination is especially useful to
the SAN environments where any nodes can touch the
shared disks using the conventional block interface.

Traditional block-based file systems for SAN environ-
ments are in symmetric fashion: CXFS [25] is the cluster ver-
sion of XFS [14] that allows multiple nodes to access data on
shared disks; implementation of pNFS in block-mode for
Linux [4] exports Ext4 to achieve parallel access based on
standard NFSv4.1 protocol. Both GFS2 and GPFS [7] distrib-
ute all data by a ”network storage pool” layer; to use multi-
ple disks, a logic volume is often configured and all
metadata and data is blended in the volume. In this paper,

Fig. 10. Comparison Results of different timeout handling approaches.
LCF uses 50 seconds for the size of its time window that is divided into
10 sub-windows. The actual service time in the figure indicates the accu-
rate service time for every request.

TABLE 2
Statistical Results in Runs

YI ET AL.: DESIGN AND IMPLEMENTATION OF AN ASYMMETRIC BLOCK-BASED PARALLEL FILE SYSTEM 1733

our experiments demonstrate that the asymmetric block-
based parallel file system can gain data access scalability as
well as the traditional symmetric ones.

Adaptive mechanisms: To maintain the POSIX read/
write atomic semantics, two traditional approaches are
often used: Token and Naive algorithm are used in [5], [7]
and in [4], [19], respectively. Redbud introduces adaptive
approaches and our experiments demonstrate that these
approaches make a good tradeoff between the gained per-
formances of exclusive and share access pattern.

Reservation pre-allocation algorithm is widely used in
most parallel file systems [4], [5], [19]. Since this approach is
not aware of the concurrent write streams, it leads to the file
fragmentation in parallel application. The other widely
adopted approach uses the ideas borrowed from LFS: the
object storage servers in Ceph [3] aggressively perform
copy-on-write. Assuming that free blocks are always avail-
able, this approach works well for write activity. Our
experiments have shown that the performance of read traf-
fic can be compromised in many cases. Delayed allocation is
also proposed in these file systems to postponed allocation
to page flush time [14]. However, it does not fit application
with explicit sync requests. On the other hand, our experi-
ments show that on-demand pre-allocation effectively miti-
gates more fragments than these approaches.

Most parallel file systems implement the static timeout
algorithm in their protocol to handle server failure [1], [4],
[6], [8]. However, as shown in our experiments, the static
approach incurs a mass of false positives in burst metadata
workloads and our adaptive timeout mechanism overcomes
this problem.

Metadata storage. Classical local file systems have pro-
posed to place related metadata nearby on disk to explore
access locality [15], [16]. However, the goal of embedded
directory is to place all related metadata as contiguously as
possible. Ceph [3] embedded inode into the directory to
decrease the network interaction. This embedding works
well in object-based file systems. However, by also stuffing
the file mapping in the directory content, our work on
embedded directory seeks an approach to target block-
based parallel file systems which must explicitly use file lay-
out mapping. Most parallel file systems [3], [5], [6], [7] opt to
explore the directory locality of the workload; Redbud also
carefully integrates the user’s information into the index to
expect to exploring the runtime locality.

8 CONCLUSION AND FUTURE WORK

In this paper, we present and evaluate an asymmetric paral-
lel file system. Unlike the traditional block-based file sys-
tems for SAN environments, Redbud decouples data and
metadata storage to improve system reliability, and we are
glad to see this architecture can gain scalable performance.

We tackle the challenges of asymmetric architecture in
providing high performance and availability. Towards
overall performance end, we introduce the embedded direc-
tory to reduce the number of disk accesses effectively, and
two adaptive layout algorithms to make system adaptive to
various access pattern; to improve system availability, we
also propose the LCF-based timeout algorithm to predict
the service time by taking the current MDS’s current load

into consideration, reducing the false-positive of traditional
approaches. Our experiments demonstrate the effectiveness
of our design and implementation.

Since the asymmetric architecture allows us to leverage
the solid state drives (SSD) [24] to improve the performance
of metadata access, we plan to optimize the performance of
MFS built on SSDs. Although embedded directories and
index tree potentially decrease the number of SSD writes
that suffer from large latency, we intend to further improve
the MFS performance on SSD by distinguishing the hot and
cold metadata in MDS at runtime. The distinguishing
allows us to co-locate the cold metadata in the same page of
SSDs, avoiding the frequent erasure of the page because of
overwriting the hot metadata.

Besides, we are working on developing a quality of ser-
vice architecture to allow aggregate class-based traffic prior-
itization [3]. A number of other enhancements are also
planned, including improved allocation logic and check-
sums or other bit-error detection mechanisms to improve
data safety.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous
reviewers for their suggestions on improving this paper.
This work was supported by the National Natural Science
Foundation of China (Grant No. 60925006), and the
National Science and Technology Support Plan of China(-
Grant No.2011BAH04B02), and the National High Tech-
nology Research and Development Program of China
(Grant No. 2012AA011003).

REFERENCES

[1] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M. Eisler, D.
Noveck, D. Robinson, and R. Thurlow, “The NFS Version 4 Pro-
tocol,” Proc. Second Int’l System Administration and Networking
Conf. (SANE ’00), p. 94, 2000.

[2] J. Katcher, “PostMark: A New File System Benchmark,” Network
Appliance Inc.Technical Report TR3022 1997.

[3] S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, and C. Maltzahn,
“Ceph: A Scalable, High-Performance Distributed File System,”
Proc. Seventh Symp. Operating Systems Design and Implementation
(OSDI ’06), 2006.

[4] http://www.pnfs.com, 2014.
[5] P.J. Braam, “The Lustre Storage Architecture,” http://www.lu-

stre.org/documentation.html, Cluster File Systems, Inc., 2004..
[6] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, and B. Mueller,

“Scalable Performance of the Panasas Parallel File System,” Proc.
Sixth USENIX Conf. File and Storage Technologies (FAST ’08),
pp. 17-33, 2008.

[7] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for
Large Computing Clusters,” Proc. Conf. File and Storage Technolo-
gies (FAST ’02), pp. 231-244, 2002.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File
System,” Proc. 19th ACM Symp. Operating Systems Principles
(SOSP ’03), pp. 29-43, 2003.

[9] SAN Zoning Methods, http://www.comptechdoc.org/docs, 2014.
[10] A.D. Birrell and B.J. Nelson, “Implementing Remote Procedure

Calls,” ACM Trans. Computer Systems, vol. 2, no. 1, pp. 39-59, 1984.
[11] F. Wang, Q. Xin, B. Hong, S.A. Brandt, E.L. Miller, D.D.E.

Long, and T.T. McLarty, “File System Workload Analysis for
Large Scale Scientific Computing Applications,” Proc. 21st
IEEE Conf. Mass Storage Systems and Technologies (MSST ’04),
pp. 139-152, 2004.

[12] A.W. Leung, S. Pasupathy, G. Goodson, and E.L. Miller,
“Measurement and Analysis of Large-Scale Network File
System Workloads,” Proc. USENIX Ann. Technical Conf.,
pp. 213-226, 2008.

1734 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

[13] http://www.iozone.org/, 2014.
[14] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and

G. Peck, “Scalability in the XFS File System,” Proc. USENIX Ann.
Technical Conf., 1996.

[15] H. Reiser, “ReiserFS,” www.namesys.com, 2004.
[16] S. Tweedle, “EXT3, Journaling File System,” July 2000.
[17] M.D. Schroeder and M. Burrows, “Performance of Firefly RPC,”

ACM SIGOPS Operating Systems Rev., vol. 23, no. 5, pp. 83-90, Dec.
1989.

[18] D. Roselli, J. Lorch, and T. Anderson, “A Comparison of File Sys-
tem Workloads,” Proc. USENIX Ann. Technical Conf., pp. 41-54,
June 2000.

[19] http://sourceware.org/cluster/gfs/, 2014.
[20] http://visa.cis.fiu.edu/tiki/IOR2, 2014.
[21] http://www.nas.nasa.gov/Resources/Software/npb.html, 2014.
[22] M.M. Swift, B.N. Bershad, and H.M. Levy, “Improving the Reli-

ability of Commodity Operating Systems,” ACM Trans. Computer
Systems Archive, vol. 23, no. 1, pp. 77-110, Feb. 2005.

[23] F. Zhou, J. Condit, Z. Anderson, and I. Bagrak, “SafeDrive: Safe
and Recoverable Extensions Using Language-Based Techniques,”
Proc. Seventh USENIX Symp. Operating Systems Design and Imple-
mentation (OSDI ’06), 2006.

[24] http://www.samsung.com/Products/Semiconductor/SSD, 2014.
[25] SGI CXFS Clustered File System, Datasheet, SiliconGraphics, Inc.,

2000.
[26] http://hadoop.apache.org/, 2014.
[27] www.cisl.ucar.edu/css/software/metarates/, 2014.
[28] F. Wu, H. Xi, and C. Xu, “On the Design of a New Linux Reada-

head Framework,” ACM SIGOPS Operating Systems Rev., vol. 42,
pp. 75-84, July 2008.

[29] www.pvfs.org/, 2014.
[30] A. Kadav, M.J. Renzelmann, and M.M. Swift, “Tolerating Hard-

ware Device Failures in Software,” Proc. 22nd ACM Symp. Operat-
ing Systems Principles (SOSP ’09), 2009.

[31] Y. Qian, E. Barton, T. Wang, N. Puntambekar, and A. Dilger, “A
Novel Network Request Scheduler for a Large Scale Storage Sys-
tem,” Computer Science, vol. 23, no. 3/4, pp. 143-148, 2009.

[32] http://www.enterprisestorageforum.com/storage-technology/
4-storage-technologies-lost-to-the-recession.html, 2014.

[33] G.A. Gibson, D.F. Nagle, K. Amiri, J. Butler, F.W. Chang, H.
Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka, “A
Cost-Effective, High-Bandwidth Storage Architecture,” Proc.
Eighth Int’l Conf. Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pp. 92-103, Oct. 1998.

[34] G. Sivathanu, S. Sundararaman, and E. Zadok, “Type-Safe Disks,”
Proc. Seventh Symp. Operating Systems Design and Implementation
(OSDI ’06), 2006.

[35] http://www.web-polygraph.org/, 2014.

Letian Yi received the bachelor’s and master’s
degrees in computer science from the National
University of Defence Technology in 2005 and
2008, respectively. He is currently working
toward the doctoral degree in the Department of
Computer Science and Technology at Tsinghua
University. His current research interests include
mass storage, parallel file systems, computer
networks, and distributed systems.

Jiwu Shu received the PhD degree in computer
science from Nanjing University in 1998. In 2000,
he finished the postdoctoral position research at
Tsinghua University and has been teaching at
Tsinghua University since then. He is now a pro-
fessor in the Department of Computer Science
and Technology, Tsinghua University. His current
research interests include cloud storage, perfor-
mance, security and reliability for storage sys-
tem, parallel/distributed processing technology.

Youyou Lu received the bachelor’s degree from
Nanjing University in 2009. He is currently work-
ing toward the doctoral degree in the Department
of Computer Science and Technology at Tsing-
hua University. His current research interests
include mass storage, parallel file systems, and
distributed systems.

Ying Zhao received the bachelor’s degrees in
computer science from Peking University and the
PhD degree in computer science from the
University of Minnesota. She is currently an
associate professor of Tsinghua University. Her
current research interests include data mining,
performance and reliability of parallel/distributed
systems.

Weimin Zheng received the master’s degree
from Tsinghua University in 1982. He is the
director of the Institute of High Performance
Computing Technology, Department of Com-
puter Science and Technology, Tsinghua Univer-
sity. His research covers parallel computer
architecture, parallel computing, compiler techni-
ques, and network storage.

Yinjin Qian received the master’s and PhD’s degrees in computer sci-
ence from the National University of Defence Technology. He is cur-
rently a researcher in Oracle. His current research interests include
performance and reliability of parallel/distributed systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YI ET AL.: DESIGN AND IMPLEMENTATION OF AN ASYMMETRIC BLOCK-BASED PARALLEL FILE SYSTEM 1735

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

