
Supporting System Consistency with Differential
Transactions in Flash-Based SSDs
Youyou Lu,Member, IEEE, Jiwu Shu,Member, IEEE, Jia Guo, and Peng Zhu

Abstract—Embedded transaction design inside solid state drives (SSDs) is an attractive way to support system consistency with low

overhead due to the no-overwrite property of flash memory. Recent research proposes shadow paging variants to reduce write traffic to

SSDs for longer lifetime while leveraging the random performance of SSDs. However, writes in transactions usually are small, and the

page-aligned shadow paging protocols still incur high write amplification, which hurts SSD lifetime. In this paper, we propose an

embedded transaction protocol, DiffTx, which differentially logs partial page updates in a write-ahead logging way and writes full page

updates in a shadow paging way, aiming at low write amplification. DiffTx further improves transaction performance using two

techniques. First, by clustering mapping metadata of full page updates with differential data of partial page updates in a single record,

DiffTx tracks pages of each transaction at low overhead. Second, DiffTx removes the write ordering on commit by delaying the

completeness check of writes, leveraging the clean-state write property of flash memory. Experiments show that DiffTx improves

throughput by 25.9 percent and halves write traffic on average compared to TxFlash, a typical embedded transaction protocol for

flash memory.

Index Terms—Solid state drive, flash memory, transactional SSD, differential transaction, crash recovery, consistency

Ç

1 INTRODUCTION

FLASH memory is getting widely used in both embedded
and enterprise systems in recent years. Different from

magnetic disks, flash memory cannot be overwritten [1], [2].
Page updates in a flash-based solid state drive (SSD) are
redirected to free pages while the old pages are left for gar-
bage collection. This no-overwrite property naturally keeps
both old and new data versions inside an SSD, which makes
it attractive to design transactions inside SSDs for system
consistency.

Traditional transaction recovery protocols, including
both write-ahead logging (WAL) [3] and shadow paging
[4], incur high overhead to support system consistency.
WAL (a.k.a journaling in file systems) writes the new version
of updated data pages to the log area, and then writes back
to their home locations to overwrite the old-version data.
With the use of a log area, old-version pages are protected
from being overwritten before the new-version pages are
written successfully. Shadow paging writes the updated
data pages to new locations and then updates the indexing
pointers. Since updated pages are written to newly allocated
pages, disk space becomes more fragmented. This leads to
more random I/Os, which are costly in hard disk drives
(HDDs). Comparatively, although WAL doubles the write
traffic, I/Os are performed in a sequential way. As such,
WAL is more suitable for HDD-based storage systems.

In SSD-based storage systems, shadow paging becomes
more promising than WAL for three reasons. First, the no-
overwrite property of flash memory naturally keeps the old
and new data versions. This favors the shadow paging pro-
tocol without explicitly writing new versions. Second, flash-
based SSDs have better random I/O performance than
HDDs. Random access problem in shadow paging is miti-
gated. Third, a flash memory cell can endure limited pro-
gram/erase (P/E) cycles, i.e., the endurance problem. WAL
doubles the write traffic, which accelerates the wear pro-
cess, and shortens the lifetime of an SSD. Different from
WAL, shadow paging writes only once. Therefore, shadow
paging is favored in SSD-based storage systems.

Recent research has proposed different shadow paging
variants inside SSDs to provide system consistency [5], [6],
[7], [8], [9]. To leverage the no-overwrite property of flash
memory, these protocols are designed inside SSDs and can
access both the old and new versions of a page. These trans-
action designs inside SSDs are called embedded transaction
designs. TxFlash [5] is a typical embedded transaction
design, which significantly improves performance of tradi-
tional storage systems that uses WAL. The improvement
comes from two aspects. First, TxFlash writes the updated
pages only once in a shadow paging way, which avoids the
duplicated writes as in WAL. Second, TxFlash eliminates
the use of commit record, which is used to indicate the suc-
cess of a transaction commit, and thus removes the write
ordering on commit. This write ordering is required to make
sure all updated pages have been persisted when issuing
the commit record [5], [7], [10], [11], [12]. To achieve this
goal, TxFlash introduces two new commit protocols, SCC
and BPCC, and uses pointers in each flash page to link all
pages in a transaction into a cyclic list. Different commit
protocols are proposed to make the shadow paging protocol
more suitable for flash-based SSDs [6], [7], [9].

� The authors are with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China.
E-mail: {luyouyou, shujw}@tsinghua.edu.cn, {jguo.tshu, zhupeng1011}
@gmail.com.

Manuscript received 22 Apr. 2014; revised 25 Mar. 2015; accepted 26 Mar.
2015. Date of publication 2 Apr. 2015; date of current version 15 Jan. 2016.
Recommended for acceptance by D. Atienza.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2419664

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 2, FEBRUARY 2016 627

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

However, two problems remain in embedded transaction
designs. First, while the properties of flash memory have
been exploited for better transaction designs, access pat-
terns from applications have not been well researched in
transaction designs. In transaction workloads, a large por-
tion of transactional writes are small, and their write sizes
are much smaller than the page size. Metadata operations in
file systems update multiple metadata pages, but only a few
bytes in each page are updated [13]. Similarly, database
applications update records from multiple pages, and each
record probably is of several bytes and far less than the
page size (e.g., 4 KB) [14]. Thus, we refer partial page updates
to those page writes that update only a small part in each
flash page, while the others are full page updates. Differential
update techniques [15], [16], [17], [18] by comparing the
new and old versions have been used to reduce the write
size. But these techniques have not been well incorporated
into embedded transaction designs.

Second, it remains a challenge to keep a low transaction
overhead when exploiting internal parallelism of SSDs in
transaction support. Pages in each transaction need to be
clustered (i.e., page clustering), so that they can be found for
recovery after failures. While the internal parallelism of an
SSD tends to distribute writes to different channels or chips,
it always incurs high overhead to track these pages for one
transaction. Also, the write ordering forces to wait for the
persistence of all log records before issuing the write of a
commit record. This write ordering prevents parallel execu-
tions of multiple writes, and thus hurts the internal parallel-
ism of SSDs.

To address the above two problems, we propose a differ-
ential transaction design, DiffTx, to differentially log the
partial page updates while updating the full pages in a
shadow updating way. DiffTx is designed to reduce write
traffic and keep transaction overhead low while exploiting
the internal parallelism of SSDs. DiffTx achieves the goals
from the following three aspects. First, DiffTx logs the dif-
ferential data of partial page updates instead of the whole
pages to reduce write traffic. Due to data locality, differen-
tial data can be merged for the home-location writes. Even
the differential logging writes data twice, one in the log area
and the other in the home location, the total write size is still
smaller than that in the shadow paging, which only writes
data once. Second, to keep the page clustering overhead
low, DiffTx stores the mapping metadata of the full page
updates along with the differential data of partial page
updates using a log record. Third, DiffTx removes the write
ordering on commit by delaying the completeness check on
recovery. Because writes are only performed on free pages,
pages that are written do not contain obsolete data. And
thus, pages either are clean or have new-version data.
Incomplete writes can be simply identified by checking
error correction code (ECC) of each page. This favors the
delayed completeness check.

Our contributions are summarized as follows:

1) We collect transactional write traces from both file
system and database workloads, and observe that a
large portion of transactional writes are small.

2) We propose an embedded transaction design,
DiffTx, to differentially log the partial page updates

while updating the full page updates in a shadow
updating way. This reduces write traffic and
improves transaction performance.

3) We efficiently cluster pages of a transaction by keep-
ing mapping metadata of full page updates along
with differential data of partial page updates, and
removes write ordering on commit by delaying the
completeness check of transaction writes. The two
techniques achieve low overhead while exploiting
the internal parallelism of SSDs.

4) We evaluate DiffTx using both file system and data-
base workloads. Results show that DiffTx improves
throughput by 25.9 percent and halves the write size
on average compared to TxFlash [5], a shadow pag-
ing variant for flash-based SSDs.

The rest of this paper is organized as follows. Section 2
discusses transaction recovery protocols and reveals the
access pattern of transaction workloads. Section 3 describes
the DiffTx design, including the interface and component
extensions as well as the commit protocol. We evaluate
DiffTx in Section 4 and give related work in Section 5. And
Section 6 concludes.

2 BACKGROUND

2.1 Flash Memory

Flash memory is a kind of solid state storage media which
provides low read and write latency. Flash memory cells
can not be overwritten [1], [2]. Flash pages can only be
written after they are erased, which is known as clean-
state update. A page has two parts: page data (e.g., 4 KB)
and page metadata (e.g., 128 B). Page metadata, which is
used to keep ECC and other information, is also called
out-of-band (OOB) area. Flash memory is read or written
in the unit of pages, but is erased in the unit of flash
blocks (e.g., 512 KB). To hide the long latency of erase
operations, pages are redirected to free pages while the
old pages are marked as invalid for later erase. The FTL
(Flash Transaction Layer) in an SSD keeps a mapping
table for the page write redirection. This no-overwrite
property in the FTL can be leveraged to support transac-
tions using the shadow paging protocol.

In an SSD, the flash memory is connected to the flash con-
troller through multiple channels. There are multiple chips
in each channel, and each chip consists of multiple planes.
Reads and writes can be distributed to different planes or
channels for parallelism. This internal parallelism of an SSD
provides high aggregated bandwidth.

In addition, each flash memory cell endures limited
program/erase (P/E) cycles. Reliability of a cell is weak-
ened as the P/E cycle approaches the limit. This is known
as the endurance problem of SSDs.

2.2 Transaction Recovery

Transaction provides ACID (atomicity, consistency, isola-
tion and durability) properties to a series of read/write
operations. While isolation is ensured by concurrency con-
trol module, atomicity and durability are provided by trans-
action recovery module. Both concurrency control and
transaction recovery modules are needed to ensure system
consistency. In this paper, we focus on transaction recovery

628 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 2, FEBRUARY 2016

using flash memory, and assume that concurrency control is
performed in programs, similar to [6], [7], [9].

In transaction recovery, there are two main techniques,
write-ahead logging [3] and shadow paging [4]. Fig. 1a
shows the WAL protocol. In WAL, pages in a transaction
are written to the log area followed by a commit record
(as shown in the dark boxes). The commit record is not
issued until all log writes are persistent. The persistence
of the commit record indicates success of the transaction
commit. These log pages are checkpointed to their home
locations (shown as the light boxes) in the data area,
when the log area runs short of space. Since the new-ver-
sion data will be checkponited to the data area, the index-
ing pointers, which keep the mapping entries from
logical addresses to physical addresses, always point to
the data pages in the data area (shown as the dotted
lines). Fig. 1b shows the transactional flash (TxFlash) pro-
tocol, which is a variant of the shadow paging protocol
and is optimized for flash memory. For simplicity, we call
this variant as in-flash shadow paging. Due to the no-over-
write property of flash memory, updated pages in a trans-
action are written to free pages (shown as the dark
boxes). After this, the mapping entries in the FTL map-
ping table are updated to point to the new version (from
the dotted lines to the solid lines). Transactional writes
are updated only once in a shadow updating way, with-
out being written back to their home locations. To cluster
pages for each transaction, TxFlash introduces two cyclic
commit protocols, SCC and BPCC [5], to link all pages of

a transaction in a cyclic list using pointers in the page
metadata of each flash page (shown as the solid lines that
link all dark boxes into a cycle in Fig. 1b). The two cyclic
commit protocols are used for transaction status identifi-
cation without the use of commit records.

In this paper, we observe that transaction updates are
usually small, which will be discussed in Section 2.3.
Based on this observation, we propose the differential log-
ging technique to log the differential parts of these
updates (e.g., page A, B and D) in a WAL-like way as
shown in Fig. 1c. We also leverage the no-overwrite prop-
erty of flash memory for full page updates, e.g., page C.
As such, we propose DiffTx, which combines differential
logging (for partial page updates) with in-flash shadow
paging (for full page updates), to reduce write size and
improve performance.

2.3 I/O Pattern of Transactional Writes

Transactions are often used to provide consistency of file
system metadata or database operations. These operations
usually update multiple pages but update only a small part
in each page. For instance, a file create operation creates its
own inode, its parent’s inode and the directory entry etc.
The size of an inode is 256 bytes in ext3, and the size of a
directory entry depends on the length of the file name and
is usually several bytes. A database operation updates mul-
tiple record in different pages. In most cases, the size of a
record is only several bytes, which is far less than a page
size (e.g., 4 KB).

To study the I/O pattern, we collect I/O traces from
both file system (fileserver, varmail, webproxy) and data-
base (TPC-C) workloads, and analysis the write size pat-
tern of all write operations. (See Section 4.1 for detailed
setup of trace collections). Fig. 2 plots the cumulative dis-
tribution function (CDF) of the update size in each page.
In file system workloads, we collect the actual write sizes
only for metadata updates while updating data pages
fully. From the figure, we have two observations. First,
the majority of page updates are either smaller than 1 KB
or close to 4 KB. The number of pages that have write
size from 1 KB to near 4 KB is comparatively small.
Second, a large portion of page writes are small updates.
With the two observations, DiffTx could be efficient by
combining differential logging for partial page updates
with shadow paging for full page updates.

Fig. 1. Transaction recovery protocols.

Fig. 2. Cumulative distribution function (CDF): the cumulative frequency
of page write sizes.

LU ET AL.: SUPPORTING SYSTEM CONSISTENCY WITH DIFFERENTIAL TRANSACTIONS IN FLASH-BASED SSDS 629

3 DESIGN

In this section, we first present the overview of a transac-
tional SSD design, including the interface and FTL exten-
sions for DiffTx. We then describe the DiffTx commit
protocol. DiffTx reduces write size by incorporating shadow
paging (for full page updates) with write-ahead logging (for
partial page updates) for versioning and clustering. And it
removes write ordering with delayed completeness check
of transactional writes. Finally, we discuss the recovery pro-
cess after system failures.

3.1 Overview

DiffTx is an embedded commit protocol inside an SSD for
transaction recovery. To support this kind of in-device
transaction recovery, we extend both device interface and
FTL of an SSD. Fig. 3 shows the framework of a transac-
tional SSD (TxSSD) using DiffTx protocol. The DiffTx TxSSD
extends the interface with new transactional commands,
including BEGIN, COMMIT and ABORT. With these trans-
actional commands, software systems, including user
applications, database management systems and operating
systems, can pass transactional statuses to storage devices.
In addition to these three commands, a DIFFWRITE com-
mand is added to pass the differential parts of partial page
updates from the software to the device. Descriptions of
these commands are listed in Table 1.

The FTL is also extended with new components (shown
as colored diagrams in Fig. 3) to process transaction recov-
ery. In addition to conventional components (e.g., FTL map-
ping table, garbage collection, wear leveling) in a FTL, there
are three new components: the Active TxTable, the Com-
mit/Recovery Logic, and the Volatile S-Log. The Active
TxTable tracks the mapping metadata of updated pages for
each unfinished (active) transaction. The Commit/Recovery
Logic processes the commit or abort operations during nor-
mal runnings and performs recovery after system failures.
The Volatile S-Log is the summary log used for DiffTx to
store the mapping metadata of full page updates and the
differential data from partial page updates. It serves as the
logging area for DiffTx, and it has a persistent copy in flash
memory, which we refer to as the Persistent S-Log.

3.1.1 Components

Active TxTable. Active TxTable is used to keep the mapping
metadata of transactions that have not been committed.
Only after the transaction commits, the mapping metadata
are updated to the FTL mapping table in order to be made

visible to other transactions. The Active TxTable keeps the
mapping metadata of all updated pages for each active
transaction. The mapping metadata are shown as the
META-PU (metadata for page update) in Fig. 4. The META-
PU is also appended to the Volatile S-Log for differential
logging. For a full page update, the IS-DIFF is unset, and the
LPN, VER, BASE-PPN are used. LPN, VER and PPN respec-
tively represent the logical page number, the version num-
ber and the physical page number. For a partial page
update, the IS-DIFF is set, and the OFF, LEN and DATA-
LOC are also used in addition to the LPN, VER and BASE-
PPN. The OFF and LEN represent the offset and length of
the differential data in the base page, and the DATA-LOC
represents the data offset in the log record. The physical
page number of a base page may get changed during gar-
bage collection. DiffTx chooses to merge the base page with
its differential data during garbage collection, to avoid the
update to the BASE-PPN.

To support differential logging in DiffTx, each mapping
entry in the FTL mapping table is extended with an obsolete
bit flag. The flag is set when the latest data are updated in
the S-Log, and thus the read operation needs to read the lat-
est version from the S-Log.

S-Log. S-Log keeps the summary of a transaction,
including both the mapping metadata of full page updates
and the metadata and data of partial page updates. As
shown in Fig. 4, each log record in S-Log has two parts:
the S-Log Record Header and the S-Log Record Body. The
S-Log Record Header keeps the descriptive metadata of
the whole record, such as the transaction identifier (TxID)
and the number of updated pages of this transaction
(TxLEN), the number of log pages in this record (REC-
LEN), in the record head. It also keeps the mapping meta-
data, META-PU (as discussed in the Active TxTable part).
The S-Log Record Body sequentially records the differen-
tial data of all the partial page updates in the transaction.

Fig. 3. The framework of transactional SSDs for DiffTx.

TABLE 1
Device Interface in DiffTx

Operation Description

READ(LBA, len...) read data from LBA (logical
block address)

WRITE(TxID, LBA, len...) write data to the transaction
TxID

DIFFWRITE(TxID, LBA,
start, len, diff_data)

write the differential data

BEGIN(TxID) check the availability of the
TxID and start the transaction

COMMIT(TxID) commit the transaction TxID
ABORT(TxID) abort the transaction TxID

Fig. 4. The S-Log layout.

630 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 2, FEBRUARY 2016

3.1.2 Interface and Operations

Differential data can be calculated by comparing differential
page update to the previous version of the page. We
use DIFFWRITE command for a complementary way.
DIFFWRITE passes the differential data directly from the
software without the reading of previous versions.

Operations. When a transaction begins, it issues a BEGIN
command with a TxID to the SSD. The SSD checks the avail-
ability of the TxID. It then initiates an active list in the
Active TxTable for tracking the updates in this transaction.
For the pagewrites in this transaction, the data andmetadata
are respectively written to the Read/Write Cache and the
Active TxTable. If the write operation is a full page write
using a WRITE command, the page is updated to the Read/
Write Cache, and the metadata (LPN, version, PPN) are
updated to the Active TxTable. If the write is an partial page
write using a DIFFWRITE command, the differential data is
updated to the volatile S-Log, and the metadata (LPN, ver-
sion, PPN, offset, len) is updated to the Active TxTable.
When a transaction ends, it either issues a COMMIT or
ABORT command. For a COMMIT command, full pages in
the Read/Write Cache and differential data in the S-Log are
written to the persistent storage. After this, the FTLmapping
table is updated using the metadata of this transaction in the
Active TxTable.1 For an ABORT command, the data and
metadata from the Read/Write Cache, the S-Log and the
Active TxTable of the transaction are all discarded.

Fig. 5 shows the update flow in DiffTx. First, the map-
ping metadata of write requests, including both full (using
WRITE commands) and partial (using DIFFWRITE com-
mands) page updates, are updated in the Active TxTable.
Full page updates are written to the Read/Write Cache in
the device. For partial page updates, the original write
requests are inserted into a temporal request queue, and
new log write requests are generated for the differential
data. Differential data, as well as mapping metadata for
both partial and full page updates, are written to a log

record and written to the Volatile S-Log. Second, when a
transaction commits, the volatile data pages and S-Log
records are written back to flash memory. Third, these map-
ping metadata are updated to the FTL mapping table. Until
the S-Log runs short of space, the original write requests in
the temporal request queue are merged, and the home-
location write requests are generated.

3.2 DiffTx Commit Protocol

A commit protocol carefully keeps and switches the data
versions, so as to be able to determine the commit status of
each transaction. A commit protocol has the following three
functions: (1) versioning: to keep both old and new versions,
(2) clustering: to cluster all updated pages for each transac-
tion, and (3) commit identification: to determine the status of
a transaction during recovery.

3.2.1 Differential Logging

Versioning. Transaction atomicity requires that all or none
pages of a transaction are updated, i.e., pages are all
switched to the new version or all kept in the old version.
Both new and old versions need to be kept in case of falling
back when system fails. In shadow paging (e.g., TxFlash
[5]), page updates are written to new locations followed by
updating the mapping entries. In write-ahead logging (e.g.,
journaling in ext3 [19]), page updates are written to the log
area followed by being written back to their home location.

DiffTx combines the two protocols. Full page updates are
updated in the shadow paging way by leveraging the no-
overwrite property of flash memory. Because of the no-
overwrite property of flash memory, page updates are
redirected to free pages. By keeping these mappings in the
Active TxTable rather than in the FTL mapping table, both
versions are accessible. Partial page updates are updated in
the write-ahead logging way. The dirty parts in each partial
page update are written to the S-Log, as shown in Fig. 4.
The new version can be read by merging the differential
data in the log with the old version. In this way, DiffTx
combines the shadow paging with the write-ahead logging
to provide versioning.

Clustering. A commit protocol needs to be able to find all
pages of each transaction for undo or redo operations, and
this requires page clustering of each transaction. WAL

Fig. 5. Update Flow in DiffTx: (1) Transaction writes are first buffered in disk cache, and metadata are temporally kept the Active TxTable. Full page
updates are buffered in Read/Write Cache, while partial page updates have their differential data buffered in the Volatile S-Log. (2) After transaction
commits, the full pages in the Read/Write Cache or the S-Log are written back to flash memory for transaction durability. (3) Only after the transaction
data are persistent, the FTLmapping table are updated to reveal the latest committed pages to succeeding transactions.

1. Note that ordering here is different from commit ordering in
transactions. Commit ordering in transactions requires commit record
written after persistence of all log pages. Commit ordering lies between
two persistence operations and thus prevents succeeding flash write
operations. In contrast, ordering here does not prevents persistence of
succeeding writes, as the FTL updates are memory operations.

LU ET AL.: SUPPORTING SYSTEM CONSISTENCY WITH DIFFERENTIAL TRANSACTIONS IN FLASH-BASED SSDS 631

clusters pages by sequentially appending them in the log.
However, full page updates in flash memory are written to
different parallel units due to internal parallelism of SSDs.
TxFlash uses pointers to link all pages in each transaction to
be a cycle. But the erase operation breaks the cycle, which
incurs high overhead to maintain the cyclic property as
discussed in TxFlash (SCC/BPCC) protocol [5].

DiffTx clusters all pages by putting the metadata of full
page updates together with the differential data in the S-
Log. As shown in Fig. 4, mapping metadata of all updated
pages are sequentially appended in the S-Log Record
Header. Therefore, all pages of a transaction can be found
by reading the mapping metadata of the log record.

Commit identification. During recovery after system
crashes, the commit protocol checks the completeness of all
updates for each transaction, so as to identify the commit
status of the transaction. In WAL, the completeness check is
to check the availability of the commit record. Because the
commit record is issued only after all pages have been writ-
ten back to the storage persistently, this write ordering
guarantees that all updates have been persisted if the com-
mit record is persistent. To maintain the ordering, I/O oper-
ations halt until the persistence of all updates in the log,
leading to high performance penalty [5], [7], [10], [11], [12].

DiffTx removes this ordering during normal execution
and checks the completeness of both the log record and the
full page updates during recovery. Only when both of them
are complete, the transaction is determined to be commit-
ted. The completeness check of the log record is performed
by checking the availability of its log pages (i.e., flash pages
that store log records). A log record may have one or more
log pages, and these pages are appended sequentially in the
S-Log. Since page updates can only be written to free pages,
pages with non-zero values in the log are valid log pages. A
log record is complete if the number of valid pages matches
the REC-LEN value (i.e., the number of log pages in current
log record) stored in the S-Log Record Header.

The completeness check of log records is based on two
observations. First, atomicity of a flash page can be checked
using the ECC stored in its page metadata (as shown in
Fig. 6). Because writes can only be performed in free pages,
log pages contain either all zeros or new-version data, but
not obsolete data versions. Therefore, the new-version data
are complete, if the page has non-zero values and the page
passes ECC checking. Second, once the log record is
completely written, the transaction metadata it contains are
complete. This is because the S-Log log record is persisted
after transaction commits. At the time when transaction
commits, the transaction metadata has already been
appended completely in the log record. Therefore, the
completeness of log record writes ensures the completeness
of their transaction metadata. With the two observations,
we can confirm the transaction metadata completeness in
each log record by checking the completeness of each log

page using ECC and the completeness of the log record
using REC-LEN value in its log header.

The completeness check of the full pages is performed by
iterating the META-PU of full page updates in the log
record and checking the availability of each of them. The
completeness of each page is checked using ECC in the
page metadata. In the page metadata, we add new fields
(LPN, VER, TxID) to identify the transaction belongings of
each page. By checking both the availability and the transac-
tion belongings, the completeness check of full page
updates in each transaction is done. As such, the complete-
ness of all updated pages in each transaction is checked to
identify the commit status.

While the completeness check of both the log record and
the full page updates can remove the write ordering before
commit operation, it requires random reads of full page
updates and hurts the recovery performance. In order to
mitigate the recovery performance penalty in DiffTx, a log
record can carry a flag to indicate the completeness of previ-
ous transactions during normal execution. The complete-
ness flag is the transaction ID that is stored in the S-Log
Record Header. For instance, Tx m has written back its log
record and full pages when Tx n writes its log record. Tx n
keeps the ID m (i.e., the metadata of completeness of Tx m)
as the completeness flag in the S-Log Record Header of
Tx n’s log record. Therefore, Tx m is complete if its com-
pleteness flag in Tx n is found, and its completeness check
of full page updates does not need to be performed.

If either the log record or the full pages are not complete,
the transaction is not-committed. During normal execution,
the aborted transaction simply discard the log record.
Because of the absence of the log record, the transaction is
identified to be not-committed during recovery. If some full
pages have been persisted in an aborted transaction, these
pages are not indexed in the FTL mapping table, so that they
are invalid and are erased by later garbage collection process.

3.2.2 Checkpoint and Merge

A read operation needs to read andmerge both the base page
and the differential data. In addition to read operations, a
checkpoint operation merges the differential data with their
base pages and writes them back to flash memory. A check-
point operation is performed when the S-Log runs out of
space. One page may have different parts or versions in the
S-Log. To avoid multiple flash memory accesses for merging
one page, the S-Log is mapped to DRAMmemory as the Vol-
atile S-Log. All differential data are accessed in DRAMmem-
ory. Since DRAM memory accesses are much faster than
flashmemory accesses, this does not slow read operations.

All differential data in the S-Log need to be read and
merged with the base page, if there is no full page update of
this logical page since last checkpoint. Otherwise, the base
page is updated to the latest full page update, and only
the differential data that are written later than the full page
update are read while the previous versions are discarded.

3.2.3 Other Issues

Garbage collection in DiffTx has two restrictions. One is that
garbage collection is performed for S-Log, i.e., pages in the
S-Log are not erased before they are checkpointed. The

Fig. 6. The page metadata layout.

632 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 2, FEBRUARY 2016

other is that only pages indexed in neither the FTL mapping
table nor the Active TxTable are eligible to be erased. With
this restriction, both new and old versions are kept. Wear
leveling is performed as normal. The S-Log area is allocated
from different physical locations, and the old physical pages
are rated for wear leveling.

FTL mapping table needs frequent persistence for
durability in case of system failures. In DiffTx, the map-
ping metadata have been kept in the log record for trans-
actional writes. Since the log record is written back to
flash memory on transaction commits, the mapping meta-
data are persistent for committed transactions. For non-
transactional writes, DiffTx also provides durability for
their mapping metadata by appending the mapping meta-
data to the S-Log.

3.3 Recovery

After system crashes, volatile data in the FTL, including
those in the FTL mapping table, the Active TxTable, the
Read/Write Cache and the Volatile S-Log, get lost.2 Data
and metadata have persistent copies in flash memory,
because volatile data and metadata of a transaction are
persisted on the commit operation (as discussed in
Section 3.1.2). Therefore, recovery process is performed to
identify the committed transaction using persistent data in
flash memory, and then to redo committed transactions and
undo not-committed transactions. In DiffTx, recovery steps
are as follows:

1) First, the Persistent S-Log is scanned to check the
completeness of each log record. Since the log
records are appended in the S-Log, only the last one
can be incomplete. If it is incomplete, the transaction
is identified as not-committed.

2) Second, for transactions that do not have a complete-
ness flag in the S-Log, the completeness of its full
page updates needs to be checked. If not all of these
full pages are updated, the transaction is incomplete
and is identified as not-committed. Transactions that
pass the check of above two steps are committed
transactions.

3) Finally, the recovery process redoes the committed
transactions and discards the not-committed ones.
For committed transactions, the differential data are
merged with their base pages, and all mappings of
their page updates are updated to the FTL mapping
table. For not-committed transactions, the log
records, including the differential data, are dis-
carded. Full pages that have been written in not-
committed transactions are untouched and will be
erased by later garbage collection process.

In not-committed transactions, since the log records are
appended in the S-Log, these log records are discarded
without affecting other transactions. Full pages that have
been written are left untouched, and they do not affect other
pages, page versions or other transactions. This is because
they are treated as invalid pages in SSDs, as they are not
indexed in either the FTL mapping table or the Active

TxTable. The mappings are kept in the Active TxTable
instead of in the FTL mapping table before the writeback of
the log record. Since the Active TxTable is volatile and gets
lost after system failures, these mappings are lost. There-
fore, the full page updates are identified as invalid pages
and will be collected as garbage.

With above steps, transactions are identified as either
committed or not-committed. And the committed transac-
tions are redone while the not-committed ones are dis-
carded to recovery the SSD to a consistent state.

4 EVALUATION

We evaluate DiffTx against previous transaction protocols,
WAL, TIPL and TxFlash (SCC/BPCC), aiming to answer
the following questions:

1) How does DiffTx perform compared to previous
approaches in terms of performance (Section 4.2)
and endurance (Section 4.3)?

2) What is the overhead of checkpoint (Section 4.4) and
recovery (Section 4.5)?

3) What are the impacts from changes in transaction
abort ratio (Section 4.6) and the log size (Section 4.7)?

In this section, we first describe the experimental setup
before answering the above three questions.

4.1 Experimental Setup

We evaluate DiffTx against previous transaction protocols:
WAL [3], TIPL [16] and TxFlash [5]. WAL is a traditional
protocol which is widely used in DBMSs and file systems.
TIPL uses redundant logging, in-page logging (IPL) and
system logging. TIPL allocates one log sector for each page,
and all differential updates are appended in the log sector
before being merged to the page. This is known as in-page
logging. TIPL also appends the differential updates to the
system log to support transactions. TxFlash is a variant of
shadow paging that is optimized for flash memory to lever-
age the no-overwrite property of SSDs.

We use both file system and database workloads for
evaluation. We revise ext3 file system and PostgreSQL data-
base management system to collect transaction traces. We
then replay these traces on our transactional SSD (TxSSD)
simulator, which extends a trace-driven SSD simulator [1]
with transactional protocols based on DiskSim [20].

TxSSD simulator. TxSSD extends the interface and FTL
components in SSD simulator to support embedded transac-
tion protocols. To support DiffTx, TxSSD is extended with
the interface as shown in Table 1 and the components as
shown in Fig. 3. In the evaluation, TxSSD simulator is con-
figured using the parameters listed in Table 2 following
Samsung K9F8G08UXM NAND flash datasheet [21].
Compared to conventional SSDs, the extended components
in DiffTx SSD consumes extra memory space. The Active
TxTable consumes about 0.3MB. Memory consumption of
the Volatile S-Log is fixed, and the default S-Log size in
DiffTx is set to 32 MB. In DiffTx, pages that have write sizes
smaller than 512 B are set to partial page updates, while the
others are full page updates.

WAL, TIPL and TxFlash protocols are also implemented
in TxSSD. They share the transactional interface with DiffTx

2. Device memory is volatile except in high-end SSDs, which use
capacitors or batteries.

LU ET AL.: SUPPORTING SYSTEM CONSISTENCY WITH DIFFERENTIAL TRANSACTIONS IN FLASH-BASED SSDS 633

and have slightly differences in FTL component extensions. In
WAL, the log area is also mapped to the volatile memory.
Records are only persisted on commit. WAL simulates two
kinds of journaling: data journaling and metadata journaling.
To simulate data journaling, WAL logs both data and meta-
data of file systems in the log area. This is called WAL(D) in
this paper. To simulate metadata journaling, WAL logs only
metadata of file systems in the log area. This is called WAL
(M) in this paper. The default log size is also set to 32 MB. In
TIPL evaluation, we allocate one 512 B log sector (i.e., in-page
log) for each 4 KB flash page. Every eight flash pages share
one flash page to store the in-page log. If one of the log sector
is full, the whole page that contains the eight log sectors is
written to flash memory. TIPL also allocates 32 MB for the
system log by default. Once the system log runs short of
space, a checkpoint is performed to persist all dirty pages and
log sectors. In TxFlash evaluation, we implement both SCC
and BPCC protocols. Page metadata of each page is extended
with pointers to support the two cyclic commit protocols.

Transaction traces. In both file systems and DBMSs, group
commit technique is widely used to reduce persistence
overhead by grouping multiple transactions [19], [22], [23].
Disk I/O traces are more accurate than transaction I/Os.
Thus, we collect disk I/Os at block driver level rather than
transaction I/Os at memory level. For file system traces, we
revise the journaling module (JBD) in ext3 to collect the I/O
traces on JBD commit. For database traces, we collect I/Os
in the PostgreSQL using IO-Trace tool [17], [24], which
records the differential parts of each I/O operation.

File system traces (fileserver, varmail, webproxy) are col-
lected by running filebench [25] on ext3 file system in Kernel
3.10.11. The JBD commit time interval is set to 1 second, and
we collect 20-minute trace for each workload. Database
traces (TPC-C) are collected using Hammerora 2.11 [26] on
PostgreSQL 9.3.1 [27] using default configurations. The
trace sizes are listed in Table 3, and the I/O patterns are
shown in Fig. 2.

4.2 Performance

We measure transaction throughputs and commit latencies
of different workloads using WAL, TIPL, TxFlash3 and
DiffTx protocols to evaluate the protocol performance. In
WAL evaluation, we evaluate both metadata and data

journaling for file system workloads. Metadata journaling
only logs the metadata while writing data to their home
locations, e.g., ordered mode in ext3. Data journaling logs
both metadata and data, e.g., data mode in ext3. These two
types of journaling are referred to WAL(M) and WAL(D) in
the following part. Because database management systems
do not have metadata journaling, WAL(D) and WAL(M) are
not differentiated for TPC-C workload and are referred to
WAL in this paper.

Transaction throughput. Fig. 7 shows the throughput of
each workload using WAL, TIPL, TxFlash and DiffTx
transaction protocols. On average, DiffTx outperforms
WAL(D), WAL(M), TIPL and TxFlash by 42.0, 32.8, 31.5 and
25.9 percent, respectively. The benefit mainly comes from
the reduced write traffic. WAL(M) has better performance
than WAL(D), because it avoids data updates to the log
area. TxFlash avoids both data and metadata updates to the
log area, and has even better performance than WAL(M).
TIPL has better performance than WAL(D), as it reduces
write traffic by only logging the differential data. But TIPL
still need to write two logs, the in-page log and the system
log. Comparatively, DiffTx writes only one log for the
partial page updates, and writes full page updates in a
show paging way. DiffTx further reduces write traffic and
achieves the best performance of all evaluated protocols.

In the evaluation, workload varmail has slight different
performance in WAL compared to other workloads. In var-
mail, WAL has similar write traffic with TxFlash. This is
because writes have good locality in varmail, and are coa-
lesced well when written back from the log area to the data
area. The reason why TxFlash has poorer performance than
WAL is that WAL writes in a more sequential way
than TxFlash. WAL allocates a continuous space, which can
distribute writes to different units and better exploit the
internal parallelism of SSDs. In contrast, TxFlash tries to
allocate physical pages for each logical page in the same
channel, and channel workloads are not always balanced.

TABLE 2
Parameters of TxSSD Simulator

Parameter Default Value

Flash page size 4 KB
Pages per block 64
Planes per package 8
Packages 8
SSD size 32 GB
Garbage collection threshold 5 percent
Page read latency 0.025 ms
Page write latency 0.200 ms
Block erase latency 1.5 ms

TABLE 3
Evaluation Workloads

Workloads tot. # of pages tot. # of Txs avg. pages per Tx

Fileserver 319,859 52 6151.1
Varmail 1,051,628 60,227 17.5
Webproxy 1,295,414 1,045 1239.6
TPC-C 1,403,278 78,129 18.0

Fig. 7. Transaction throughput of different protocols.

3. When abort ratio is zero, both SCC and BPCC protocols in
TxFlash have similar performance. Thus, we do not differentiate them
when abort ratio is zero.

634 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 2, FEBRUARY 2016

In general, transaction performance is improved as write
traffic is reduced. DiffTx achieves the best performance of
all evaluated protocols.

Commit latency. Fig. 8 shows averaged commit latencies
(in log scale) of the evaluated workloads in different proto-
cols. DiffTx has the least commit latencies in all evaluated
protocols. It dramatically reduces commit latencies for
workloads with large transaction size, such as fileserver and
webproxy. It reduces the commit latencies by 74.2, 67.6, 30.7
and 55.6 percent in fileserver workload and by 53.1, 29.3,
28.7 and 29.1 percent in webproxy workload compared to
WAL(D), WAL(M), TIPL and TxFlash, respectively. The
benefit in DiffTx comes from two aspects: the removed
write ordering on commit and the reduced write traffic.
DiffTx removes the commit record and thus does not need
to halt I/Os during transaction commits. Also, as fewer
pages are required to be persisted to flash memory, the
commit latency is reduced. In all, DiffTx achieves lower
commit latency than other protocols.

Fig. 9 shows the frequency distribution of commit laten-
cies of TPC-C workload in different protocols, to evaluate
the latency consistency. The other workloads show similar
results and are omitted due to space limitation. From the
figure, we can observe that DiffTx shows small variance in
commit latency. Most transactions have commit latencies
smaller than 2 milliseconds. In comparision, the other
procotols have transactions in which commit latencies
are between 2 to 4 milliseconds. Therefore, we conclude
DiffTx has consistent commit latencies.

4.3 Endurance

We measure the write amplification to evaluate the protocol
impact on flash endurance. Write amplification [2] is calcu-
lated by dividing the flashmemorywrite size with the work-
load write size, which is the sum of page size in full page
updates and differential data size in partial page updates.

Fig. 10 shows the write amplification of different proto-
cols. Generally, WAL(M) and TIPL write less than WAL(D),
TxFlash writes less than WAL(M), and DiffTx writes the
least. WAL(D) writes both data and metadata twice, respec-
tively in the log area and the data area. WAL(M) writes only
the metadata twice. TxFlash reduces the writes to only once,
by leveraging the no-overwrite property of flash memory.
While the three protocols write in page units, TIPL reduces
write traffic in byte units, by logging only the differential
parts of each page. But TIPL write three times, respectively
in the in-page log, the system log and the data pages. In con-
trast, DiffTx logs only the differential data so as to reduce
the write traffic. The merge operation could also mitigate
the write amplification of the log writes. Thus, DiffTx can
achieve low write amplification. All evaluated workloads in
Difftx have write amplification of a little over one. In other
words, the write data to flash memory has nearly the same
size as the application write. DiffTx limits write amplifica-
tion to a low degree.

Workload varmail shows different results for WAL(D)
and TIPL. Though TIPL writes only differential data, it has
higher write amplification than WAL(D), which writes data
in full pages twice. This is because most pages in varmail
have update size larger than 512 B, which is the size of the
log sector in TIPL. The in-page logging technique, which
allocates one dedicated log sector for one page, is ineffective
for this kind of workloads. In contrast, DiffTx uses only one
log, S-Log, to accommodate differential data from different
pages, and is more effective in write traffic reduction.

4.4 Checkpoint Overhead

We count the checkpoint frequency and measure the total
checkpoint time to evaluate the checkpoint overhead of
DiffTx against WAL(D), WAL(M) and TIPL. All of them use
default log size (32 MB). TxFlash does not have checkpoint
operations and is not evaluated.

Table 4 shows the measured checkpoint frequency and
checkpoint time as well as the calculated average check-
point time. DiffTx has a much lower checkpoint frequency
than both WAL(D) and WAL(M), and thus has much lower
checkpoint time in total. Because only differential data are

Fig. 8. Commit latency of different protocols.

Fig. 9. Variance of commit latencies (TPC-C).

Fig. 10. Write traffic of different protocols.

LU ET AL.: SUPPORTING SYSTEM CONSISTENCY WITH DIFFERENTIAL TRANSACTIONS IN FLASH-BASED SSDS 635

updated to the log, the log in DiffTx is used up slower than
that in WAL(D) or WAL(M). DiffTx has lower total check-
point time but large average checkpoint time than TIPL.
Thus, in term of total checkpoint time, DiffTx and TIPL win
in different workloads:

1) In fileserver workload, there is no checkpoint in
DiffTx. This is because fileserver has either full page
updates, which do not need logging, or partial page
updates with extreme small writes. The sizes of these
partial page updates are tens of bytes, as shown in
Fig. 2, leading to higher efficiency in differential log-
ging. Therefore, DiffTx gains more in workloads like
fileserver.

2) In TPC-C workload, TIPL has smaller total check-
point time than DiffTx. This is because some pages
in TIPL have been merged and persisted due to the
used up of the in-page log, which has a log size of
512 B. The in-page log is consumed more quickly in
TPC-C, and this causes frequent merge operations in
in-page logging of TIPL. The overhead has been
amortized in the in-page logging. In contrast, DiffTx
performs all merge operations on checkpoint. Also,
DiffTx needs to read pages to be merged with the
differential data, and this leads to slight higher
checkpoint time. Thus, TIPL has lighter checkpoint
time in workloads like TPC-C.

Even though the checkpoint overhead in some work-
loads can be amortized to the in-page logging in TIPL,
DiffTx has better performance and endurance in whole, as
discussed in Sections 4.2 and 4.3. And generally, DiffTx
has lower checkpoint overhead than WAL(D), WAL(M)
and TIPL.

4.5 Recovery Time

We also measure the recovery time of the evaluated proto-
cols. The recovery time is the log or device scan time to
recover the consistent state after system failures.

Fig. 11 shows the recovery time of WAL, TxFlash and
DiffTx. Since both WAL(D) and WAL(M) scan only the log
to recover the consistent state, the maximum recovery time
depends on the log size. For the default log size of 32 MB in
evaluation, WAL(D) and WAL(M) (referred to WAL in
Fig. 11) have the recovery time of 64 ms, which is the least
of the three. TxFlash has to scan the whole device to find all
pointers in each page for its recovery protocols. For the
default SSD size of 32 GB, it takes 6,957 ms, which is the lon-
gest of the three. DiffTx needs to read both the log and
the base pages, which are needed to be merged with the dif-
ferential data in the log to recover the latest page versions.

DiffTx has the modest recovery time, 633 ms. It takes much
shorter time than TxFlash, because there is no need to scan
the whole SSD. It takes longer time than WAL, because it
needs to read base pages for differential data in the log. TIPL
needs to read the log, but does not need to perform merge
operations. The merge operations are performed by the in-
page logging when a page is read. So, TIPL takes shorter
recovery time, 114ms. In all, recovery time in DiffTx is slight
larger than that in WAL and TIPL, but is much smaller than
that in TxFlash. In the four protocols, recovery time in WAL,
TIPL and DiffTx depends on the amount of valid log in the
log area, and recovery time in TxFlash depends on the size
of an SSD. When the SSD capacity grows, recovery time in
TxFlash is expect to increase linearly, but not in DiffTx. As
such, recovery time in DiffTx is acceptable.

4.6 Impact of the Abort Ratio

To evaluate the abort ratio impact in different protocols, we
measure both the effective throughput (IOPS for committed
transactions) and the write traffic (the number of pages that
are written) of each workload under different abort ratios.

Fig. 12a shows the effective throughput of TPC-C work-
load under different abort ratios. All evaluated protocols,
including WAL, TIPL, TxFlash (SCC/BPCC) and DiffTx,
show a decrease in effective throughput with the increase of
abort ratio. Among these protocols, SCC shows a sharper
decrease from 13,910 IOPS on abort ratio 0 percent to 1,579
IOPS on abort ratio 50 percent. This is because SCC forces the
aborted pages to be erased before a new version is written.
The forced erase operations exaggerate the garbage collection
cost. While all the protocols show decreased performance as
the abort ratio increases, DiffTx has the best performance and
shows an average decrease in performance.

Fig. 12b shows the write size of TPC-C workload under
different abort ratios to further explain the abort ratio
impact on performance. SCC shows a dramatic increase of
write size when abort ratio increases, e.g., write size on
abort ratio 50 percent is 3.6 times that on abort ratio 0

TABLE 4
Checkpoint Overhead

Workloads avg. ckpt time (ms) # of ckpts tot. ckpt time (ms)

WAL(D) WAL(M) TIPL DiffTx WAL(D) WAL(M) TIPL DiffTx WAL(D) WAL(M) TIPL DiffTx

Fileserver 1,564 1,398 280 0 24 39 13 0 33,563 61,017 3,639 0
Varmail 13 20 2 3 102 102 44 17 1,302 2,045 78 43
Webproxy 1,143 122 2.3 17 58 157 100 3 7,060 179,505 230 52
TPC-C 1,513 1,513 1 518 171 171 107 10 258,646 258,646 141 5,181

Fig. 11. Recovery time of different protocols.

636 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 2, FEBRUARY 2016

percent. This is because of the aforementioned forced erase
restriction. Other protocols do not show a large difference
in write size when abort ratio increases. Among all these
protocols, DiffTx shows the smallest write traffic.

4.7 Impact of the Log Size

Wemeasure the transaction throughput and the write traffic
of fileserver and TPC-C workloads with different log sizes
to evaluate the log size impact of the protocols. Varmail and
webproxy workloads show similar results and thus are
omitted in this paper.

Fig. 13 plots transaction throughput and write traffic of
fileserver and TPC-C with different log sizes. Fig. 13a shows
transaction throughput of fileserver workload with log size
ranging from 4 to 128 MB. From the figure, we can observe
that DiffTx shows a stable performance under various log
sizes while WAL is more sensitive to the change of log size.
WAL shows an approximately 10 percent increase in trans-
action throughput as log size is increased from 4 to 128 MB,

while DiffTx shows no significant increase. Fig. 13b shows
write traffic of fileserver workload with different log sizes,
which explains the differences in transaction throughput
shown in Fig. 13a. The reason is that more pages can
be merged in WAL when log size becomes larger. The
increased possibility of merge operations leads to decreased
write size and thus increases transaction throughput. Com-
paratively, DiffTx achieves better performance with rather
low log size, and the performance is stable. Figs. 13c and
13d respectively show transaction throughput and write
traffic of TPC-C workload under different log sizes. TPC-C
workload has similar results with filerserver workload. In
TPC-C workload, DiffTx also achieves better and more
stable performance than WAL and TIPL.

5 RELATED WORK

Transaction support in flash-based SSDs. Research is active on
leveraging the no-overwrite property of flash memory to
support system consistency. Atomic-write [6] leverages the

Fig. 12. Impact of the abort ratio on transaction throughput and write traffic (for workload TPC-C).

Fig. 13. Impact of the log size on transaction throughput and write traffic (for workloads Fileserver and TPC-C).

LU ET AL.: SUPPORTING SYSTEM CONSISTENCY WITH DIFFERENTIAL TRANSACTIONS IN FLASH-BASED SSDS 637

no-overwrite property of flash memory for versioning and
uses a log-structured FTL for clustering. It sequentially
appends mapping entries of each transaction to the FTL
mapping log. Atomic FTL [28] sequentially appends pages
in log blocks for both versioning and clustering. Transac-
tional Flash File System [29] provides transaction support
for file systems in micro-controllers of NOR-based flash
SSDs. OFSS [2] leverages the out-of-place update for ver-
sioning and employs an updating window to assist the
page clustering of each transaction. But these studies focus
on the consistency of file systems, which have no aborts.

Commit protocols in flash-based SSDs have also been
designed to support general transactions which have aborts.
TxFlash [5] leverages the out-of-place update for versioning
and links all pages of each transaction into a cyclic list for
page clustering. SCC and BPCC protocols are designed to
differentiate the aborted pages from the erased pages by
putting more constraints to the garbage collection (GC) pro-
cess. To reduce the overhead caused by GC process in
TxFlash, Flag Commit [30] proposes to use SLC NAND flash
memory, which supports multiple in-place updates, to reset
the pointers in the cyclic list. LightTx [7], [9] divides flash
blocks with different transaction states into different zones
so as to reduce the page clustering cost, even if there are
aborts. But all of them use full page updates for transac-
tions. In contrast, DiffTx supports general transactions with
higher efficiency by using differential logging.

Shortcut-JFS [31] proposes to update large writes in the
shadow updating way while leaving small updates for nor-
mal file system journaling. Shortcut-JFS is closely related to
DiffTx but with two main differences. First, Shortcut-JFS is
designed for byte-addressable non-volatile memory, which
naturally supports fine-grained small writes. DiffTx has to
compact the small writes into pages. Second, Shortcut-JFS
updates large writes in the log area, and this causes fragmen-
tation after log truncation. DiffTx only stores the mapping
metadata in the log and thus ease the log truncation operation.

Recent research also studies the transaction support with
hardware from different views. UBJ [32] proposes to use
byte-addressable NVM in main memory to union the trans-
action versioning with the cache buffer. Literature [33] dis-
cusses the write ordering relaxing for host-side flash cache
in consideration of both consistency and performance. Opti-
mistic File System [11] relaxes write ordering on transaction
commit and keeps transaction correctness, while requests
are reordered in disk buffer. MARS [34] implements trans-
actions and copies data inside SSDs to save device band-
width, because the internal bandwidth of an SSD is larger
than the device bandwidth.

Differential page writes. Differential updates have been
proposed in flash-based SSDs to improve endurance. Delta-
FTL [18] proposes to write only the delta part of each page
by reading last version and comparing the two versions.
Page-Differential Logging [15] and FTL2 [17] share the simi-
lar idea. But this technique does not work either for WAL or
shadow paging. In WAL, pages are first appended to the
log area, and the two versions in the same location do not
necessarily have the lineage relation. Shadow paging
requires writes updated in pages and does not support dif-
ferential writes.

In-page logging [14] also writes only the differences of
each page. Each flash block has an allocated log space for
storing the differences of its pages. Transactional IPL [16]
proposes to support transactions based on IPL. Since a
transaction may have pages accessed in different flash
blocks, Transaction IPL allocates a system-wide log to sup-
port transaction in addition to the in-page log. The in-page
log consumes more space, and also incurs high writeback
frequency when a log sector becomes full. In contrast,
DiffTx differential partial page updates from full page
updates, and uses only one log for differential logging,
result in lighter write traffic.

ReconFS [13] logs the differential parts of metadata pages
and provides only metadata (namespace) consistency. Com-
paratively, DiffTx aims for data consistency by combining
the differential logging with the in-flash shadow paging.

6 CONCLUSION

Embedded transaction support in SSDs is promising due to
the no-overwrite property of flash memory, which favors
the shadow paging way with low write amplification. How-
ever, writes in a transaction usually update only a small
part of each page, which are known as partial page updates.
The write-ahead logging way can be more effective to
reduce write amplification by differentially logging these
writes. In this paper, we propose an embedded transaction
protocol, DiffTx. DiffTx combines write-ahead logging (for
partial page updates) with shadow paging (for full page
updates), aiming at low write amplification. In addition,
DiffTx exploits the internal parallelism of an SSD and
reduces the transaction overhead at the same time. DiffTx
clusters transaction pages by logging the mapping metadata
of full page updates with the differential data of partial
page updates. It also removes the write ordering on com-
mit by delaying the completeness check of transaction
writes leveraging the clean-state update property. Both
the two techniques enable better performance and lower
transaction overhead. Evaluations using both file system
and database workloads show remarkable performance
improvement and SSD lifetime extension with significant
write amplification reduction.

ACKNOWLEDGMENTS

The authors would like to thank Wei Wang and Yunyun
Jiang for discussions and feedbacks. This work was sup-
ported by the National Natural Science Foundation of
China (Grant No. 61433008, 61327902), the National High
Technology Research and Development Program of China
(Grant No. 2013AA013201), Samsung Electronics Co., Ltd.,
Tsinghua-Tencent Joint Laboratory for Internet Innovation
Technology, and Tsinghua University Initiative Scientific
Research Program. Jiwu Shu is the corresponding author.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S.
Manasse, and R. Panigrahy, “Design tradeoffs for SSD perform-
ance,” in Proc. USENIX Annu. Tech. Conf., 2008, pp. 57–70.

[2] Y. Lu, J. Shu, andW. Zheng, “Extending the lifetime of flash-based
storage through reducing write amplification from file systems,”
in Proc. 11th USENIX Conf. File Storage Technol., 2013, pp. 257–270.

638 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 2, FEBRUARY 2016

[3] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: A transaction recovery method supporting fine-granular-
ity locking and partial rollbacks using write-ahead logging,” ACM
Trans. Database Syst., vol. 17, pp. 94–162, 1992.

[4] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F.
Putzolu, and I. Traiger, “The recovery manager of the system R
database manager,” ACM Comput. Surveys, vol. 13, pp. 223–242,
1981.

[5] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou, “Transactional
flash,” in Proc. 8th USENIX Conf. Oper. Syst. Design Implementation,
2008, pp. 147–160.

[6] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K. Panda,
“Beyond block I/O: Rethinking traditional storage primitives,” in
Proc. 17th IEEE Int. Symp. High Perform. Comput. Arch., 2011,
pp. 301–311.

[7] Y. Lu, J. Shu, J. Guo, S. Li, and O. Mutlu, “LightTx: A lightweight
transactional design in flash-based SSDs to support flexible trans-
actions,” in Proc. IEEE 31st Int. Conf. Comput. Design, 2013,
pp. 115–122.

[8] Y. Lu, J. Shu, and P. Zhu, “TxCache: Transactional cache using
byte-addressable non-volatile memories in SSDs,” in Proc. 3rd
IEEE Nonvolatile Memory Syst. Appl. Symp., 2014, pp. 1–6.

[9] Y. Lu, J. Shu, J. Guo, S. Li, and O. Mutlu, “High-performance
and lightweight transaction support in flash-based SSDs,” IEEE
Trans. Comput., 2015, to be published http://dx.doi.org/10.1109/
TC.2015.2389828.

[10] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Consistency without ordering,” in Proc. 10th
USENIX Conf. File Storage Technol., 2012, p. 9.

[11] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Optimistic crash consistency,” in Proc. 24th
ACM Symp. Oper. Syst. Principles, 2013, pp. 228–243.

[12] Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-ordering consistency
for persistent memory,” in Proc. IEEE 32nd Int. Conf. Comput.
Design, 2014, pp. 216–223.

[13] Y. Lu, J. Shu, and W. Wang, “ReconFS: A reconstructable file sys-
tem on flash storage,” in Proc. 12th USENIX Conf. File Storage Tech-
nol., 2014, pp. 75–88.

[14] S.-W. Lee and B. Moon, “Design of flash-based DBMS: An in-page
logging approach,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2007, pp. 55–66.

[15] Y.-R. Kim, K.-Y. Whang, and I.-Y. Song, “Page-differential log-
ging: An efficient and dbms-independent approach for storing
data into flash memory,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2010, pp. 363–374.

[16] S.-W. Lee and B. Moon, “Transactional in-page logging for multi-
version read consistency and recovery,” in Proc. 27th IEEE Int.
Conf. Data Eng., 2011, pp. 876–887.

[17] T. Wang, D. Liu, Y. Wang, and Z. Shao, “FTL2: A hybrid flash
translation layer with logging for write reduction in flash memo-
ry,” in Proc. 14th ACM SIGPLAN/SIGBED Conf. Lang., Compilers
Tools Embedded Syst., 2013, pp. 91–100.

[18] G. Wu and X. He, “Delta-FTL: Improving SSD lifetime via exploit-
ing content locality,” in Proc. 7th ACM Eur. Conf. Comput. Syst.,
2012, pp. 253–266.

[19] S. C. Tweedie, “Ext3, journaling filesystem,” in Proc. Ottawa Linux
Symp., 2000, pp. 24–29.

[20] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger, “The
DiskSim simulation environment version 4.0 reference manual,”
Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-
PDL-08-101, 2008.

[21] (2012). Samsung K9F8G08UXM flash memory datasheet. [Online].
Available: http://www.datasheetarchive.com/-K9F8G08U0M-
datasheet.html

[22] P. Helland, H. Sammer, J. Lyon, R. Carr, P. Garrett, and A. Reuter,
“Group commit timers and high volume transaction systems,”
Hewlett-Packard Lab., Palo Alto, CA, USA, Tech. Rep. 88.1, 1989.

[23] S. C. Tweedie, “Journaling the Linux ext2fs filesystem,” in Proc.
4th Annu. Linux Expo, 1998, pp. 1–8.

[24] (2004). Disk I/O tracing for Linux 2.6 kernels. [Online]. Available:
http://www.ysaito.com/linux-iotrace

[25] (2012). Filebench benchmark. [Online]. Available: http://
sourceforge.net/apps/mediawiki/filebench

[26] (2013). HammerDB. [Online]. Available: http://hammerora.
sourceforge.net/

[27] (2012). PostgreSQL. [Online]. Available: http://www.postgresql.
org/

[28] S. Park, J. H. Yu, and S. Y. Ohm, “Atomic write FTL for robust
flash file system,” in Proc. 9th Int. Symp. Consumer Electron., 2005,
pp. 155–160.

[29] E. Gal and S. Toledo, “A transactional flash file system for micro-
controllers.” in Proc. USENIX Annu. Tech. Conf., 2005, pp. 89–104.

[30] S. T. On, J. Xu, B. Choi, H. Hu, and B. He, “Flag commit: Support-
ing efficient transaction recovery on flash-based DBMSs,” IEEE
Trans. Knowl. Data Eng., vol. 24, no. 9, pp. 1624–1639, Sep. 2012.

[31] E. Lee, S. Yoo, J.-E. Jang, and H. Bahn, “Shortcut-JFS: A write effi-
cient journaling file system for phase change memory,” in Proc.
28th IEEE Symp. Mass Storage Syst. Technol., 2012, pp. 1–6.

[32] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache and
journaling layers with non-volatile memory,” in Proc. 11th USE-
NIX Conf. File Storage Technol., 2013, pp. 73–80.

[33] R. Koller, L. Marmol, R. Rangaswami, S. Sundararaman, N.
Talagala, and M. Zhao, “Write policies for host-side flash caches,”
in Proc. 11th USENIX Conf. File Storage Technol., 2013, pp. 45–58.

[34] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and S. Swanson,
“From ARIES to MARS: Transaction support for next-generation,
solid-state drives,” in Proc. 24th ACM Symp. Oper. Syst. Principles,
2013, pp. 197–212.

Youyou Lu received the BS degree from Nanjing
University in 2009 and the PhD degree from
Tsinghua University in 2015, both in computer
science. He is currently a postdoctoral research
fellow in the Department of Computer Science
and Technology, Tsinghua University. His current
research interests include nonvolatile memories
and file systems. He is a member of the IEEE.

Jiwu Shu received the PhD degree in computer
science from Nanjing University in 1998, and
finished his postdoctoral position research at
Tsinghua University in 2000. Since then, he has
been teaching at Tsinghua University, and is
currently a professor in the Department of Com-
puter Science and Technology, Tsinghua Univer-
sity. His current research interests include
storage security and reliability, nonvolatile mem-
ory-based storage systems, and parallel and dis-
tributed computing. He is a member of the IEEE.

Jia Guo received the BS degree from Nanjing
University in 2010 and the MS degree from Tsing-
hua University in 2013, both in computer science.
His research interests include flash-based
storage systems.

Peng Zhu received the BS degree in computer
science from the Hunan Institute of Technology
in 2012. He is currently working toward the
master’s degree in Hunan University. He was a
research assistant in the Department of Com-
puter Science and Technology, Tsinghua Univer-
sity from 2013 to 2014. His research interests
include flash-based storage systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LU ET AL.: SUPPORTING SYSTEM CONSISTENCY WITH DIFFERENTIAL TRANSACTIONS IN FLASH-BASED SSDS 639

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

