
15

GRID Codes: Strip-Based Erasure Codes
with High Fault Tolerance for Storage
Systems

MINGQIANG LI, JIWU SHU, and WEIMIN ZHENG

Tsinghua University

As storage systems grow in size and complexity, they are increasingly confronted with concurrent

disk failures together with multiple unrecoverable sector errors. To ensure high data reliability

and availability, erasure codes with high fault tolerance are required. In this article, we present

a new family of erasure codes with high fault tolerance, named GRID codes. They are called such

because they are a family of strip-based codes whose strips are arranged into multi-dimensional

grids. In the construction of GRID codes, we first introduce a concept of matched codes and then

discuss how to use matched codes to construct GRID codes. In addition, we propose an iterative

reconstruction algorithm for GRID codes. We also discuss some important features of GRID codes.

Finally, we compare GRID codes with several categories of existing codes. Our comparisons show

that for large-scale storage systems, our GRID codes have attractive advantages over many existing

erasure codes: (a) They are completely XOR-based and have very regular structures, ensuring easy

implementation; (b) they can provide up to 15 and even higher fault tolerance; and (c) their storage

efficiency can reach up to 80% and even higher. All the advantages make GRID codes more suitable

for large-scale storage systems.

Categories and Subject Descriptors: B.8.1 [Performance and Reliability]: Reliability, Test-

ing, and Fault-Tolerance; D.4.2 [Operating Systems]: Storage Management—Secondary storage;

H.1.1 [Models and Principles]: Systems and Information Theory—Information theory; H.3.2

[Information Storage and Retrieval]: Information Storage

General Terms: Algorithms, Reliability, Theory

Additional Key Words and Phrases: Disk failure, erasure code, fault tolerance, storage system,

unrecoverable sector error

ACM Reference Format:
Li, M., Shu, J., and Zheng, W. 2009. GRID codes: Strip-based erasure codes with high fault toler-

ance for storage systems. ACM Trans. Storage, 4, 4, Article 15 (January 2009), 22 pages. DOI =
10.1145/1480439.1480444 http://doi.acm.org/10.1145/1480439.1480444

This work was supported by the National Natural Science Foundation of China under Grant Nos.

60873066 and 60473101, the National Grand Fundamental Research 973 Program of China un-

der Grant Nos. 2004CB318205 and 2007CB311100, and the Program for New Century Excellent

Talents in University (NCET-05-0067).

Authors’ addresses: M. Li, J. Shu, and W. Zheng, Department of Computer Science and Technology,

Tsinghua University, Beijing 100084, China; email: lmq06@mails.tsinghua.edu.cn; {shujw,zwm-

dcs}@tsinghua.edu.cn.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1553-3077/2009/01-ART15 $5.00 DOI 10.1145/1480439.1480444 http://doi.acm.org/

10.1145/1480439.1480444

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

15:2 • M. Li et al.

1. INTRODUCTION

One of the biggest challenges in designing storage systems is how to provide
the reliability and availability that are expected by system users. However,
as storage systems grow in size and complexity, they are increasingly con-
fronted with concurrent disk failures [Eduardo Pinheiro and Barroso 2007;
Schroeder and Gibson 2007] together with multiple unrecoverable sector er-
rors [Bairavasundaram and Schindler 2007]. To ensure high data reliability
and availability, highly fault-tolerant technologies are required. Furthermore,
as mentioned in Hafner [2005], as the industry moves into very long-term
archival storage systems or dRAID (distributed Redundant Arrangement of
Independent Devices) node-based systems, the need for highly fault-tolerant
technologies will become more urgent.

There are two kinds of highly fault-tolerant technologies: n-way mirroring
technologies and erasure-coding technologies. N-way mirroring technologies
can provide sufficient reliability, but have very low storage efficiency (only 1/n).
In contrast, erasure-coding technologies can provide both high fault tolerance
and high storage efficiency. Thus, erasure-coding technologies have become very
popular with the designers of storage systems and have been used in many
practical systems [Chen and Patterson 1994; Frølund and Veitch 2004; Goodson
and Reiter 2004; Wilcke and Loo 2006; Collins and Plank 2005; Aguilera and
Xu 2005; Xia and Chien 2007].

Under this background, many erasure codes have been proposed in recent
years. Referring to Plank [2005], we divide them into four categories.

—Reed-Solomon codes. Reed-Solomon codes [Reed and Solomon 1960; Roth
and Lempel 1989] provide arbitrarily high fault tolerance and optimal stor-
age efficiency (because they are Maximum Distance Separable, or MDS,
codes), but require complex Galois field arithmetic. Even if formulated as
parity array codes [Blomer and Zuckerman 1995; Plank and Xu 2006], they
still have relatively low storage performance [Plank 2008].

—Parity array codes. Some of these (like EVENODD [Blaum and Menon
1995], Row-Diagonal Parity (RDP) codes [Corbett and Sankar 2004], STAR
[Huang and Xu 2005], Liberation codes [Plank 2008], and X-code [Xu
and Bruck 1999]) are completely XOR-based MDS codes, but have low
fault tolerance (not higher than 3). Others can provide high fault toler-
ance, but still have disadvantages: (i) WEAVER codes [Hafner 2005] are
non-MDS codes and have very low storage efficiency (not higher than
50%); and (ii) the generalizations of EVENODD [Blaum and Vardy 2001,
1996] and Feng’s codes [Feng and Shen 2005a, 2005b] are based on ring
theory and thus require not only XOR operations but also cyclic shift
operations.

—Parity check codes. Parity check codes [Rubinoff 1961; Wong and Shea 2001;
Anne and Latifi 2004] are completely based on XOR operations, but have
relatively low storage efficiency.

—LDPC codes. Low-density Parity Check (LDPC) codes [Gallager 1962; Luby
and Spielman 2001; Plank and Thomason 2004; Plank and Thomason 2005]

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

GRID Codes: Strip-Based Erasure Codes with High Fault Tolerance • 15:3

are completely XOR-based codes and can provide high fault tolerance and
near-optimal storage efficiency, but their structures are too irregular to im-
plement efficiently in storage systems.

Although there are so many erasure codes proposed for storage systems, none
of them has become a de facto standard in the storage industry, and we believe
that “no such ‘perfect’ code can exist” [Hafner 2005].

In this article, we present a new family of erasure codes with high fault
tolerance, named GRID codes. They are called such because they are a family
of strip-based codes whose strips are arranged into multi-dimensional grids.
They evolve from parity check codes and are constructed based on single parity
check (SPC) codes and completely XOR-based MDS parity array codes.

In the construction of GRID codes, we first introduce a concept of matched
codes. Matched codes are a group of codes that are chosen for constructing
a GRID code. We then discuss how to choose matched codes. Meanwhile, we
discuss how to construct a GRID code from a group of chosen matched codes.
In addition, we propose an iterative reconstruction algorithm for GRID codes.

After introducing GRID codes, we discuss some of their important features.
We find that GRID codes possess the advantages of both parity check codes and
parity array codes.

Finally, we compare GRID codes with several categories of existing codes.
Our comparisons show that for large-scale storage systems, our GRID codes
have attractive advantages over many existing erasure codes.

—They are completely XOR-based and have very regular structures, ensuring
easy implementation.

—They can provide up to 15 and even higher fault tolerance.

—Their storage efficiencies can reach up to 80% and even higher.

All these advantages make GRID codes more suitable for large-scale storage
systems.

This article is organized as follows. We first list some definitions and nota-
tions in the next section. Section 3 introduces some related work. We describe
our GRID codes in Section 4. Section 5 discusses some important features of
GRID codes. Comparisons between GRID codes and other existing codes are
made in Section 6. We conclude this article in Section 7.

2. DEFINITIONS AND NOTATIONS

Since there are some inconsistencies concerning the use of common terms on
storage and erasure code, we state our definitions here to avoid confusion.
Referring to Hafner and Roa [2004] and Hafner [2006, 2005], we list some
definitions and notations that will be used throughout the article.

—Data: a chunk of bytes or blocks that hold unmodified user data;

—Parity: a chunk of bytes or blocks that hold redundant information generated
from user data by an erasure code;

—Element: a fundamental unit of data or parity that can be a bit, a byte, a
sector, or a larger disk block;

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

15:4 • M. Li et al.

Fig. 1. Element, strip, and stripe in an horizontal code.

—Stripe: a maximal set of data and parity elements that are dependently re-
lated by an erasure code; the stripe size is defined as the number of disks
that hold a stripe and is denoted by n.

—Strip: a maximal set of elements in a stripe that are stored on the same disk;
the strip size is defined as the number of elements contained in a strip and
is denoted by s.

—Horizontal codes: the family of erasure codes in which data and parity ele-
ments within a stripe are stored in separate strips (Figure 1 shows a repre-
sentation of our notions of element, strip, and stripe in a typical horizontal
code.);

—Vertical codes: the family of erasure codes in which each strip within a stripe
contains both data and parity elements;

—Distance: the minimum number of erased strips that can result in user data
loss; denoted by d .

—Fault tolerance: the maximum number of erased strips that an erasure code
promises to be able to reconstruct; denoted by t. It is clear that t = d − 1.

—Storage efficiency: the ratio of user data to the total of user data plus redun-
dancy data; denoted by E.

—Maximum Distance Separable (MDS) codes: the family of erasure codes that
attain the Singleton bound [MacWilliams and Sloane 1977] and thus provide
optimal storage efficiency;

—Non-MDS codes: the family of erasure codes that do not attain the Singleton
bound;

—Data out-degree: the number of parity elements to which a data element
contributes;

—Parity in-degree: the number of data elements that are involved in computing
a parity element;

—Write lock zone: the set of data and parity elements within a stripe that should
be locked during a write operation so as to ensure parity consistency in case
of failures;

—Reconstruction zone: the set of strips within a stripe that are involved in a
reconstruction operation.

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

GRID Codes: Strip-Based Erasure Codes with High Fault Tolerance • 15:5

3. RELATED WORK

Before presenting our GRID codes, we introduce some related work in this
section. Many erasure codes have been proposed in recent years. Referring to
Plank [2005], we divide them into four categories.

Reed-Solomon codes. There are two types of Reed-Solomon codes: stan-
dard Reed-Solomon codes (based on Vandermonde matrices) [Reed and Solomon
1960], and Cauchy Reed-Solomon codes (based on Cauchy matrices) [Roth and
Lempel 1989], both of which are horizontal codes. Data on each device is broken
up into w-bit strips, and the ith strip on each parity device is calculated from
the ith strip on each data device using Galois field arithmetic (GF(2w)). They
provide arbitrarily high fault tolerance and optimal storage efficiency (because
they are MDS codes), but require complex Galois field arithmetic. Recently, in
order to reduce the overheads of encoding and decoding processes, the binary
matrix coding technology has been employed in Cauchy Reed-Solomon codes to
convert them to parity array codes that work on groups of w bits [Blomer and
Zuckerman 1995; Plank and Xu 2006]. Even so, they still have relatively low
storage performance [Plank 2008].

Parity array codes. They come in three types: (i) horizontal codes, such as
EVENODD [Blaum and Menon 1995] (and its generalizations Blaum and Vardy
[2001, 1996]), row-diagonal parity (RDP) codes [Corbett and Sankar 2004],
STAR [Huang and Xu 2005], Feng’s codes [Feng and Shen 2005a, 2005b] and
Liberation codes [Plank 2008]; (ii) vertical codes, such as X-code [Xu and Bruck
1999] and WEAVER codes [Hafner 2005]; and (iii) horizontal and vertical codes
(the hybrids of horizontal codes and vertical codes), such as HoVer codes [Hafner
2006]. Some of them (like EVENODD, RDP codes, STAR, Liberation codes, and
X-codes) are MDS codes and are completely based on simple XOR operations,
but have low fault tolerance (not higher than 3). Others can provide high fault
tolerance, but still have disadvantages: (i) WEAVER codes are non-MDS codes
and have very low storage efficiency (not higher than 50%); and (ii) the gener-
alizations of EVENODD and Feng’s codes are based on ring theory and thus
require not only XOR operations but also cyclic shift operations.

Parity check codes. Parity check codes are constructed based on single par-
ity check (SPC) codes. One typical representative of them is the widely used
two-dimensional one, namely horizontal and vertical parity check (HVPC)
code. Recently, several higher-dimensional ones have also been proposed in
Rubinoff [1961], Wong and Shea [2001], and Anne and Latifi [2004]. Parity
check codes are completely based on XOR operations, but have relatively low
storage efficiency.

LDPC codes. Low-density parity check (LDPC) codes [Gallager 1962; Luby
and Spielman 2001] are one-dimensional XOR-based codes and are constructed
based on the Tanner graph [Tanner 1981]. They were originally designed for
communication channels, but have recently been studied in the context of stor-
age applications over wide-area networks Plank and Thomason [2005, 2004].
In these applications, random packet loss (or delay) is the dominant erasure

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

15:6 • M. Li et al.

Fig. 2. An example of horizontal and vertical parity check (HVPC) codes.

model (rather than total device failure). Good LDPC codes with high fault toler-
ance and near-optimal storage efficiency often have highly irregular structures,
which are not well suited to storage systems.

Although there are so many erasure codes proposed for storage systems, none
of them has become a de facto standard in the storage industry because every
code is designed by making some trade-offs among fault tolerance, performance,
and storage efficiency. As mentioned in Hafner [2005], “No such ‘perfect’ code
can exist.”

4. GRID CODE DESCRIPTION

In this section, we will describe our GRID codes. Since the GRID codes evolve
from parity check codes and are constructed based on single parity check (SPC)
codes and completely XOR-based MDS parity array codes, before giving the
definition of GRID codes, we first briefly introduce parity check codes and com-
pletely XOR-based MDS parity array codes.

4.1 A Brief Introduction of Parity Check Codes and Completely XOR-Based MDS
Parity Array Codes

4.1.1 Parity Check Codes. Parity check codes [Rubinoff 1961; Wong and
Shea 2001; Anne and Latifi 2004] are constructed based on single parity check
(SPC) codes. Before introducing parity check codes, we first describe SPC codes.

In the scheme of SPC codes, we append a parity strip (denoted by P) at the
end of data strips (denoted by D0, D1, . . . , and Dk−1, where k ≥ 2), and the
parity strip is calculated by the expression P = D0 ⊕ D1 ⊕ · · · ⊕ Dk−1. In SPC
codes, there is no restriction on their stripe size and strip size. SPC codes can
always tolerate one fault.

We now introduce parity check codes. Parity check codes are constructed
based on single parity check (SPC) codes. One typical representative of them
is the widely used two-dimensional one, namely horizontal and vertical parity
check (HVPC) code. We will introduce HVPC codes as follows.

HVPC codes arrange data strips into a two-dimensional array. Figure 2 gives
an example of HVPC codes. In this figure, there are k1 ×k2 data strips that form
a array (Di, j)k1×k2

, where k1 ≥ 2 and k2 ≥ 2. The row parity strips and column
parity strips are calculated by the expressions{

Pi,∗ = Di,0 ⊕ Di,1 ⊕ · · · ⊕ Di,k2−1, i = 0, 1, . . . , k1 − 1;

P∗, j = D0, j ⊕ D1, j ⊕ · · · ⊕ Dk1−1, j , j = 0, 1, . . . , k2 − 1.
(1)

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

GRID Codes: Strip-Based Erasure Codes with High Fault Tolerance • 15:7

The diagonal parity strip can then be calculated by

P∗,∗ = P0,∗ ⊕ P1,∗ ⊕ · · · ⊕ Pk1−1,∗, (2)

or

P∗,∗ = P∗,0 ⊕ P∗,1 ⊕ · · · ⊕ P∗,k2−1. (3)

From Figure 2, we can see that HVPC codes cannot reconstruct four erased
strips that form a rectangle erasure pattern. Thus, the fault tolerance of HVPC
codes is 3. In addition, in HVPC codes, there is no restriction on the strip size.

There also exist other higher-dimensional parity check codes. We will not
enumerate all of them. Please see Rubinoff [1961], Wong and Shea [2001], and
Anne and Latifi [2004] for details. In all of them, there is no restriction on the
strip size.

4.1.2 Completely XOR-Based MDS Parity Array Codes. We now introduce
completely XOR-based MDS parity array codes. They come in two types: hori-
zontal codes and vertical codes.

Horizontal codes are those codes in which data and parity elements within a
stripe are stored in separate strips. We do not enumerate all of them, but only
take EVENODD [Blaum and Menon 1995] with 2 fault tolerance and STAR
[Huang and Xu 2005] with 3 fault tolerance as examples. In an EVENODD
code with the stripe size n, there are n − 2 data strips and two parity strips in
each stripe, and each strip should contain n − 3 elements, where n − 2 should
be a prime number. In a STAR code with the stripe size n, there are n − 3 data
strips and three parity strips in each stripe, and each strip should contain n−3
elements, where n − 3 should be a prime number.

Vertical codes are those codes in which each strip within a stripe contains
both data and parity elements. Similarly, we do not enumerate all of them, but
only take X-code [Xu and Bruck 1999] with 2 fault tolerance as an example. In
an X-code with the stripe size n, there should be n − 2 data elements and two
parity elements contained in each strip, where n should be a prime number.

In the earlier discussions, we only focus on those properties that will be in-
volved in the construction of GRID codes. For further details about EVENODD,
STAR, and X-code, please refer to Blaum and Menon [1995], Huang and Xu
[2005], and Xu and Bruck [1999].

4.2 Definition of GRID Codes

Since our GRID codes are strip-based codes, we first introduce the concept of
strip-based codes and then define our GRID codes.

As shown in the previous subsection, unlike other existing erasure codes that
build their redundant relations based on the elements, parity check codes build
their redundant relations based on the strips. This leads us to introduce two
new concepts.

—Element-based codes: the family of erasure codes that build their redundant
relations based on the elements;

—Strip-based codes: the family of erasure codes that build their redundant
relations based on the strips.

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

15:8 • M. Li et al.

Fig. 3. Stripe layout of a two-dimensional GRID code.

Because strip-based codes build their redundant relations based on higher-
level units, we are very interested in how to exploit their potential.

Following this thread, we develop a new family of strip-based codes, named
GRID codes. The definition of GRID codes is given as follows.

Definition 4.1. GRID codes are a family of strip-based codes whose strips
are arranged into multi-dimensional grids.

In this article, we will focus our discussions on two-dimensional GRID codes
that evolve from HVPC codes. It is to be noted that the higher-dimensional
GRID codes can also be constructed in a similar manner.

Figure 3 illustrates the stripe layout of a two-dimensional GRID code. In a
stripe, all the strips are arranged into a two-dimensional grid. All the strips
in each row form a row substripe, and those in each column form a column
substripe. Suppose that the row substripe size (defined as the number of strips
contained in each row substripe) is nr , and the column substripe size (defined
as the number of strips contained in each column substripe) is nc. Then, the
stripe size of this two-dimensional GRID code is n = nr × nc.

In GRID codes, all the row substripes should be encoded by the same erasure
code, and all the column substripes should also be encoded by the same erasure
code. Moreover, the code chosen for all the row substripes should match with
that for all the column substripes. We call the two codes matched codes.

Definition 4.2. Matched codes are a group of codes that are chosen for con-
structing a GRID code.

We will discuss how to choose matched codes in the construction of GRID
codes in the next subsection.

4.3 Construction of GRID Codes

In the construction of GRID codes, the first step is to choose matched codes.
In order to construct completely XOR-based GRID codes with high storage ef-
ficiency, we use completely XOR-based MDS codes in matched codes, including

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

GRID Codes: Strip-Based Erasure Codes with High Fault Tolerance • 15:9

Table I. Some Examples of Completely XOR-Based MDS Codes

Code Fault Tolerance Stripe Size Strip Size

SPC Code t = 1 Arbitrary —–

Parity Horizontal EVENODD t = 2 n = p + 2 s = p − 1

Array Code STAR t = 3 n = p + 3 s = p
Code Vertical Code X-Code t = 2 n = p s = p

In this table, p is a prime number.

SPC codes and completely XOR-based MDS parity array codes (such as EVEN-
ODD, STAR, and X-code). Table I gives some examples of completely XOR-based
MDS codes and shows their important properties, such as fault tolerance, stripe
size, and strip size.

The matched codes chosen for a two-dimensional GRID code should consist of
two completely XOR-based MDS codes. Suppose that the code chosen for all the
row substripes is coder , and that chosen for all the column substripes is codec.
We then use M(coder , codec) to represent this group of matched codes. Corre-
spondingly, the two-dimensional GRID code constructed from M(coder , codec)
is denoted by GRID(coder , codec).

We now discuss how to choose M(coder , codec) for a two-dimensional
GRID code. Meanwhile, we discuss how to use M(coder , codec) to construct
GRID(coder , codec).

To simplify our discussions, we divided all the completely XOR-based MDS
codes into two categories: horizontal codes and vertical codes. Obviously, the
SPC codes belong to the category of horizontal codes.

According to the preceding classification, there are three cases for a pair of
completely XOR-based MDS codes that may be chosen to form M(coder , codec):

—two horizontal codes;

—one horizontal code and one vertical code; and

—two vertical codes.

We will discuss them as follows.

4.3.1 Case 1: Two Horizontal Codes. In this case, the strip sizes of the two
codes should meet the following condition.

Condition 4.3. When the two codes in M(coder , codec) consist of two hori-
zontal codes, the strip sizes of coder and codec should be equal.

Especially if one code is an SPC code, the other one can be any completely
XOR-based MDS code. This is because the fundamental unit of an SPC code is
the strip. Moreover, if coder and codec are both SPC codes, GRID(coder , codec)
becomes an HVPC code.

In this case, the corresponding GRID(coder , codec) has two kinds of stripe
layouts:

—Row-first layout. This is the stripe layout in which all the row substripes are
first encoded by coder , and the column substripes that do not contain parity
strips are then encoded by codec.

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

15:10 • M. Li et al.

Fig. 4. Two kinds of stripe layouts of GRID (EVENODD, SPC).

—Column-first layout. This is the stripe layout in which all the column sub-
stripes are first encoded by codec, and the row substripes that do not contain
parity strips are then encoded by coder .

We now take an EVENODD code and an SPC code as an example. They can
form M(EVENODD, SPC) and thus can be used to construct the GRID code
GRID(EVENODD, SPC). Figure 4 shows the two kinds of stripe layouts of
GRID(EVENODD, SPC). As shown in Figure 4(a), in the row-first layout, all
the row substripes are first encoded by the EVENODD code, and the column
substripes that do not contain parity strips are then encoded by the SPC code.
Similarly, as shown in Figure 4(b), in the column-first layout, all the column
substripes are first encoded by the SPC code, and the row substripes that do
not contain parity strips are then encoded by the EVENODD code.

4.3.2 Case 2: One Horizontal Code and One Vertical Code. In this case, the
strip sizes of the two codes should meet the following condition.

Condition 4.4. When the two codes in M(coder , codec) consist of one hori-
zontal code and one vertical code, the strip sizes of coder and codec should be
equal.

Unlike in the previous case, the corresponding GRID (coder , codec) here has
only one kind of stripe layout, namely the horizontal-code-first layout. The rea-
son is that in vertical codes, each strip contains both data and parity elements,
and this prevents us from constructing the vertical-code-first layout.

We now take a STAR code and an X-code as an example. From Table I,
we can see that their strip sizes are both prime numbers and thus can be
equal. They can form M(STAR, X − Code) and thus can be used to construct
GRID(STAR, X − Code). Figure 5 shows the one and only kind of stripe layout
of GRID(STAR, X − Code). As shown in this figure, all the row substripes are
first encoded by the horizontal code STAR, and the column substripes that do
not contain parity strips are then encoded by the vertical code X-code.

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

GRID Codes: Strip-Based Erasure Codes with High Fault Tolerance • 15:11

Fig. 5. One and only kind of stripe layout of GRID(STAR, X − Code).

Table II. Some Examples to Illustrate which Two Codes can Form Matched Codes

SPC Parity Array Code

Horizontal Code Vertical Code

Code EVENODD STAR X-Code

SPC Code
√ √ √ √

Parity Horizontal EVENODD
√ √ × ×

Array Code STAR
√ × √ √

Code Vertical Code X-Code
√ × √ ×

In this table, the symbol
√

is used to denote that the two codes can form matched codes, while the symbol

× is used to denote that the two codes cannot form matched codes.

4.3.3 Case 3: Two Vertical Codes. From what has been discussed in the
previous case, we can see that in the construction of GRID codes, if all the row
(column) substripes choose a vertical code, all the column (row) substripes then
cannot choose a vertical code again. Therefore, two vertical codes cannot form
matched codes and thus cannot be used to construct a two-dimensional GRID
code.

Having discussed all the three cases, we now give some examples to illustrate
which two codes can form matched codes in Table II. The results in this table
can be easily deduced from Table I. From this table, we can make the following
observations.

—In M(coder , codec), if one of the two codes is an SPC code, the other one can
be any completely XOR-based MDS code.

—A horizontal code always matches with itself.

—In M(coder , codec), the two codes cannot both be vertical codes.

For all of the examples of matched codes in Table II, their corresponding GRID
codes can be easily constructed by using the approaches that have been devel-
oped in our previous discussions.

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

THEOREM 4.5.

15:12 • M. Li et al.

Fig. 6. An iterative reconstruction algorithm for GRID(coder , codec).

Fig. 7. Three examples of unrecoverable erasure patterns for GRID(EVENODD, SPC).

4.4 Lost Data Reconstruction in GRID Codes

In this subsection, we first propose an iterative reconstruction algorithm for
GRID codes. For a two-dimensional GRID code GRID(coder , codec), suppose
that the fault tolerance of coder is tr , and that of codec is tc. Then, the iterative
reconstruction algorithm for GRID(coder , codec) is given in Figure 6.

In this algorithm, if TRUE is returned, all the erased strips have been recon-
structed; if FALSE is returned, some erased strips cannot be reconstructed, and
these remaining erased strips form an unrecoverable erasure pattern, which has
the following two properties:

(1) the number of erased strips in each row is larger than tr ;

(2) the number of erased strips in each column is larger than tc.

Take GRID (EVENODD, SPC) for example. Figure 7 gives three examples of
unrecoverable erasure patterns for GRID (EVENODD, SPC).

Having given the reconstruction algorithm, we now discuss the fault toler-
ance of GRID (coder , codec). We notice that for a given erasure scenario, if the
number of erased strips is smaller than (tc +1)×(tr +1), all the erased strips will
be reconstructed by the iterative reconstruction algorithm shown in Figure 6.
However, if the number of erased strips is equal to (tc + 1) × (tr + 1), and if all
the erased strips form a (tc +1)× (tr +1) array that is an unrecoverable erasure
pattern for GRID (coder , codec), all the erased strips cannot be reconstructed.
Thus, the distance of GRID (coder , codec) is d = (tc +1)× (tr +1). Then, we have
the following conclusion.

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

GRID Codes: Strip-Based Erasure Codes with High Fault Tolerance • 15:13

Table III. Fault Tolerance of Some Two-Dimensional GRID Codes

GRID (coder , codec) Fault Tolerance

GRID (SPC,SPC) (i.e. HVPC code) t = 3

GRID (SPC,EVENODD) or GRID (EVENODD,SPC) t = 5

GRID (SPC, STAR) or GRID (STAR, SPC) t = 7

GRID (SPC, X − Code) or GRID (X − Code, SPC) t = 5

GRID (EVENODD,EVENODD) t = 8

GRID (STAR, STAR) t = 15

GRID (STAR, X − Code) or GRID (X − Code, STAR) t = 11

The fault tolerance of GRID (coder , codec) is

t = (tc + 1) × (tr + 1) − 1, (4)

where tr is the fault tolerance of coder , and tc is that of codec.

5. FEATURES

In this section, we discuss some important features of GRID codes, including
both advantages and disadvantages.

5.1 High Fault Tolerance

From Theorem 4.5 in Section 4.4, we can see that for a two-dimensional GRID
code GRID (coder , codec), its fault tolerance is t = (tc + 1) × (tr + 1) − 1,
where tr is the fault tolerance of coder , and tc is that of codec. Table III
gives the fault tolerance of some two-dimensional GRID codes. From this
table, we can see that two-dimensional GRID codes can provide up to 15 fault
tolerance.

Furthermore, for an any-dimensional GRID code GRID (code1, code2, . . . ,
codem) (m ≥ 2), we can easily deduce the following conclusion.

THEOREM 5.1. The fault tolerance of GRID (code1, code2, . . . , codem) is

t = (t1 + 1) × (t2 + 1) × · · · × (tm + 1) − 1, (5)

where m ≥ 2, and ti is the fault tolerance of codei (i = 1, 2, . . . , m).

This theorem further shows that GRID codes can provide very high fault
tolerance.

From the preceding discussions, we can see that GRID codes can provide up
to 15 and even higher fault tolerance and thus are very suitable for large-scale
storage systems in which the possibility of concurrent disk failures, together
with multiple unrecoverable sector errors, is very remarkable.

In addition, since GRID codes are completely XOR-based non-MDS codes,
they can be exploited to tolerate more faults beyond their fault tolerance by
using the method proposed in Wylie and Swaminathan [2007]. Especially when
applied to those storage systems that are composed of heterogeneous devices
with different failure and recovery rates, GRID codes can be further exploited
to work better by using the method proposed in Greenan and Wylie [2008].

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

15:14 • M. Li et al.

Fig. 8. Optimal storage efficiency of GRID(STAR, STAR) and GRID(STAR, SPC) in some stripe

sizes. In this figure, for each stripe size n, the storage efficiency of each code is calculated by using

the (nr , nc) pair with the highest storage efficiency.

5.2 High Storage Efficiency

For a two-dimensional GRID code GRID (coder , codec), according to the types of
coder and codec, we will discuss its storage efficiency in two cases.

5.2.1 Case 1: Two Horizontal Codes. In this case, suppose that the row
substripe size is nr , and the column substripe size is nc. Then, the stripe size
of GRID(coder , codec) is n = nr × nc. In addition, suppose that the fault toler-
ance of coder is tr , and that of codec is tc. Then, there are tr × nc + tc × nr −
tr × tc parity strips in each stripe. Thus, the corresponding storage efficiency
is

E = 1 − tr × nc + tc × nr − tr × tc

n
. (6)

From this formula, we can see that E depends on n, nr , nc, tr , and tc, and
increases with n.

To further understand how the storage efficiency E increases with the stripe
size n, we take GRID (STAR, STAR) with t = 15 and GRID (STAR, SPC) with
t = 7 for an example and investigate their storage efficiency in different stripe
sizes. Since the stripe size is n = nc × nr , we notice that for a given stripe
size n, there sometimes exists more than one (nr , nc) pair. For example, for
GRID (STAR, SPC), when n = 256, there exist four such (nr , nc) pairs: (8, 32),
(16, 16), (32, 8), and (64, 4). For each (nr , nc) pair, we can calculate the corre-
sponding storage efficiency by using Eq. (6). In this process, we find that among
these (nr , nc) pairs, the one in which the value of nr/nc is closer to that of tr/tc
has higher storage efficiency. In practice, we will always choose the (nr , nc) pair
with the highest storage efficiency. Figure 8 gives the optimal storage efficiency
of GRID (STAR, STAR) and GRID (STAR, SPC) in some stripe sizes. From this
figure, we can make the following observations.

—The storage efficiency of a GRID code increases with the stripe size and can
increase to a very high level, even higher than 80%.

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

GRID Codes: Strip-Based Erasure Codes with High Fault Tolerance • 15:15

Fig. 9. Storage efficiency of GRID (SPC, X − Code) and GRID (STAR, X − Code).

—The GRID code with higher fault tolerance always has lower storage effi-
ciency than that with lower fault tolerance. This shows a trade-off between
fault tolerance and storage efficiency.

5.2.2 Case 2: One Horizontal Code and One Vertical Code. In this case,
suppose that the stripe size and fault tolerance of the horizontal code are nh
and th, respectively, and those of the vertical code are nv and tv, respectively.
It is clear that there are th × nv parity strips encoded by the horizontal code.
Thus, the number of parity elements contained in these th × nv parity strips is
s× th ×nv. In addition, in the remaining (nh − th)×nv strips that are encoded by
the vertical code, there are tv × (nh − th) × nv parity elements. Then, there are
s × th × nv + tv × (nh − th) × nv parity elements in total. Thus, the corresponding
storage efficiency is E = 1 − s×th×nv+tv×(nh−th)×nv

s×nh×nv
, which is equivalent to

E = 1 − s × th + tv × nh − th × tv

s × nh
. (7)

From this formula, we can see that E depends on s, nh, th, and tv, and in-
creases with s and nh.

To further understand how the storage efficiency E increases with the strip
size s and the stripe size of the horizontal code nh, we take GRID (SPC, X −Code)
and GRID (STAR, X −Code) as an example and discuss their storage efficiency,
respectively.

In GRID (SPC,X-Code), s should be a prime number that is larger than tv, nh
is nr that should meet nh ≥ 3, th = 1, and tv = 2. Thus, the storage efficiency
of GRID (SPC, X − Code) is E = 1 − s×1+2×nr−1×2

s×nr
= 1 − s+2nr−2

s×nr
, where s is a

prime number that is larger than 2, and nr ≥ 3. Figure 9(a) gives the storage
efficiency of GRID (SPC, X − Code) in some scenarios with different strip sizes
and different row substripe sizes. From this figure, we can see that the storage
efficiency of GRID (STAR, X − Code) increases with the strip size and the row
substripe size and can increase to a very high level, even higher than 80%.

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

15:16 • M. Li et al.

In GRID (STAR, X −Code), s should be a prime number that is larger than tv,
nh = s + 3, th = 3, and tv = 2. Thus, the storage efficiency of GRID (STAR, X −
Code) is E = 1 − s×3+2×(s+3)−3×2

s×(s+3)
= 1 − 5

s+3
, where s is a prime number that is

larger than 2. Figure 9(b) gives the storage efficiency of GRID (STAR, X −Code)
in some strip sizes. From this figure, we can see that the storage efficiency of
GRID (STAR, X −Code) increases with the strip size and can increase to a very
high level, even higher than 80%.

From what we have discussed in this subsection, we can see that two-
dimensional GRID codes often provide high storage efficiency, and in some
scenarios their storage efficiency can reach up to 80% and even higher. This
advantage can become very remarkable when they are applied in large-scale
storage systems.

Furthermore, for higher-dimensional GRID codes, we can easily deduce sim-
ilar conclusions.

5.3 Optimal Small-Write Performance

Poor small-write performance is one of the primary challenges in the design of
erasure-coded storage systems. We thus discuss the small-write performance
of GRID codes in this subsection.

As we know, in erasure codes, for a given fault tolerance t, the theoretical
lower bound of the data out-degree is t, and the corresponding lower bound of
the number of I/Os involved in each small-write is 2(t + 1) (here, the small-
write operation is performed by a read-modify-write process). Thus, to provide
good small-write performance, in the construction of GRID codes, we always
choose those codes with the property that the data out-degree is equal to the
fault tolerance. Examples of such codes are SPC codes, EVENODD, STAR, and
X-code.

In a two-dimensional GRID code GRID (coder , codec), we can deduce that the
data out-degree is (tc + 1) × (tr + 1) − 1, which is equal to the fault tolerance
t. Thus, there are only 2(t + 1) I/Os involved in each small write. Therefore,
GRID (coder , codec) provides optimal small-write performance.

Similarly, for higher-dimensional GRID codes, we can easily deduce the same
conclusion.

5.4 Low Reconstruction Cost

In GRID codes, when t strips are erased in a stripe, a host can reconstruct them
by using the iterative reconstruction algorithm developed in Section 4.4. In this
process, the host only needs to read those substripes that contain the t erased
strips. Thus, the number of I/Os involved in this process is often much smaller
than the stripe size n. As we know, in most existing erasure codes, such as Reed-
Solomon codes [Reed and Solomon 1960], when t strips are erased in a stripe,
the host needs to read all the remaining strips to reconstruct them and then
write the reconstructed data back to the disks, and this process can involve n
I/Os. Thus, when t strips are erased in a stripe, compared with these existing
codes, GRID codes have a significant advantage with respect to reconstruction
cost. Similarly, when fewer than t strips are erased in a stripe, we can easily

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

GRID Codes: Strip-Based Erasure Codes with High Fault Tolerance • 15:17

deduce the same conclusion. Therefore, when some strips are erased in a stripe,
GRID codes often have low reconstruction cost.

5.5 Localization Effects

In GRID codes, each stripe consists of substripes, and each substripe is encoded
by its own code. Thus, we can deduce that the data out-degree and parity in-
degree of a GRID code are often much smaller than its stripe size, providing
proof of both a localized write-lock zone and a localized reconstruction zone.
Therefore, in GRID codes, many operations, such as small-write operations
and reconstruction operations, have localization effects.

5.6 Flexibilities and Restrictions

There are some flexibilities and restrictions in GRID codes. We discuss them
as follows.

5.6.1 Flexibilities in the Construction of GRID Codes. There are some
flexibilities in the construction of GRID codes. From Table III, we can
see that for a given fault tolerance, there sometimes exists more than
one kind of GRID code. For example, for t = 5, there exist four kinds
of GRID codes, namely GRID (SPC, EVENODD), GRID (EVENODD, SPC),
GRID (SPC, X − Code), and GRID (X − Code, SPC). Moreover, as mentioned
in Section 4.3, for a GRID code GRID (coder , codec), if the two codes coder and
codec are both horizontal codes, there always exist two kinds of stripe layouts.
One such example is GRID (EVENODD, SPC), of which the two kinds of stripe
layouts are shown in Figure 4. In practice, we can make our decisions on choos-
ing which GRID code and which stripe layout according to the requirements of
the practical systems.

5.6.2 Restrictions on the Stripe Layouts of GRID Codes. There are some
restrictions on the stripe layouts of GRID codes. We take a two-dimensional
GRID code GRID (coder , codec) as an example. The stripe size n should be n =
nr × nc, where nr and nc are the row substripe size and column substripe size,
respectively. In addition, the strip size of coder should be equal to that of codec.
Moreover, as shown in Table I, there are sometimes some restrictions on the
stripe sizes of coder and codec (though we can simply assume that there are
more disks that have all zeros without affecting the encoding and decoding
procedures [Blaum and Menon 1995]). From this example, we can see that in
GRID codes, there are some restrictions on the stripe size and strip size, which
can together determine the stripe layouts.

5.6.3 Restrictions on the Fault Tolerance of GRID Codes. In addition,
there are also some restrictions on the fault tolerance of GRID codes. From
Theorem 5.1, we can see that for a GRID code GRID (code1, code2, . . . , codem)
(m ≥ 2), its fault tolerance is t = (t1 + 1) × (t2 + 1) × · · ·× (tm + 1) − 1, where ti is
the fault tolerance of codei (i = 1, 2, . . . , m). Thus, we can deduce the following
conclusion.

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

15:18 • M. Li et al.

Table IV. GRID Codes vs. Reed-Solomon Codes

Fault Tolerance Storage Efficiency Operation

GRID Codes t = (t1 + 1) × (t2 + 1) ×
· · · × (tm + 1) − 1

Non-optimal XOR

Reed-Solomon

Codes

Arbitrary Optimal Finite field

arithmetic

THEOREM 5.2. There is no GRID code with the fault tolerance t∗ when t∗ + 1
is a prime number.

For example, there is no GRID code with the fault tolerance 10 because
10 + 1 = 11 is a prime number.

In practice, for a given fault tolerance, if there is no GRID code with this
fault tolerance, we always choose a GRID code with a higher fault tolerance.

6. COMPARISONS

We compare GRID codes with other existing erasure codes in this section.

6.1 GRID Codes vs. Reed-Solomon Codes

Table IV compares GRID codes with Reed-Solomon codes [Reed and Solomon
1960; Roth and Lempel 1989]. From this table, we can see that the primary
advantage of GRID codes over Reed-Solomon codes is that the former require
simpler operations. As mentioned in Plank [2005], the bandwidth of XOR (often
3 GB/s) is much higher than that of multiplication over the Galois field GF(2w)
(e.g., 150 MB/s over GF(216)). Therefore, GRID codes can have much better
performance than Reed-Solomon codes.

6.2 GRID Codes vs. Parity Array Codes

Table V compares GRID codes with parity array codes. From this table, we can
make the following observations.

—Compared with EVENODD [Blaum and Menon 1995], RDP codes [Corbett
and Sankar 2004], STAR [Huang and Xu 2005], Liberation codes [Plank
2008], and X-code [Xu and Bruck 1999], which are MDS codes and are com-
pletely based on simple XOR operations, GRID codes can provide much higher
fault tolerance.

—Compared with WEAVER codes [Hafner 2005], which are completely based
on simple XOR operations and can provide high fault tolerance, GRID codes
can provide higher fault tolerance and higher storage efficiency.

—Compared with the generalizations of EVENODD [Blaum and Vardy 2001,
1996] and Feng’s codes [Feng and Shen 2005a, 2005b], which are MDS codes
and can provide high fault tolerance, GRID codes require simpler operations
and thus can have better performance.

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

GRID Codes: Strip-Based Erasure Codes with High Fault Tolerance • 15:19

Table V. GRID Codes vs. Parity Array Codes

Fault Tolerance Storage Efficiency Operation

GRID Codes Up to 15 and even higher Non-optimal

EVENODD 2

RDP Codes 2

STAR 3 Optimal XOR

Liberation

Codes

2

X-Code 2

GRID Codes Up to 15 and even higher Up to 80% and even

higher

WEAVER Codes Up to 12 Not higher than 50% XOR

GRID Codes t = (t1 + 1) × (t2 + 1) ×
· · · × (tm + 1) − 1

Non-optimal XOR

Generalizations

of EVENODD

From 3 to 8 Optimal Ring

arithmetic

Feng’s Codes Arbitrary

6.3 GRID Codes vs. Parity Check Codes

GRID codes and parity check codes [Rubinoff 1961; Wong and Shea 2001; Anne
and Latifi 2004] are both completely XOR-based codes. We compare their fault
tolerance and storage efficiency in the following content.

We first compare their fault tolerance. We take two-dimensional strip-based
codes as an example. The fault tolerance of horizontal and vertical parity check
(HVPC) code is 3, while that of a two-dimensional GRID code can be up to 15
and perhaps higher. Thus, we can easily deduce that GRID codes always have
higher fault tolerance than parity check codes.

We now compare their storage efficiency. We take a three-dimensional parity
check (3DPC) code [Wong and Shea 2001] and a GRID code GRID (STAR, SPC),
both with 7 fault tolerance, as an example. Figure 10 gives their optimal storage
efficiency in some stripe sizes. In this figure, all the values of storage efficiency
are calculated in the same manner as in Figure 8. From this figure, we can
see that GRID (STAR, SPC) has higher storage efficiency than 3DPC. Thus, we
can deduce that GRID codes always have higher storage efficiency than parity
check codes.

6.4 GRID Codes vs. LDPC Codes

Low-density parity check (LDPC) codes [Gallager 1962; Luby and Spielman
2001] were originally designed for communication channels, but have recently
been studied in the context of storage applications over wide-area networks
[Plank and Thomason 2004, 2005]. Good LDPC codes with high fault tolerance
and near-optimal storage efficiency often have highly irregular structures. Com-
pared with these codes, GRID codes have very regular structures and thus can
be more easily implemented in storage systems.

From what we have discussed in this section, we can see that GRID codes
have attractive advantages over many existing erasure codes.

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

15:20 • M. Li et al.

Fig. 10. Optimal storage efficiency of GRID(STAR, SPC) and 3DPC in some stripe sizes.

—They are completely XOR-based and have very regular structures, ensuring
easy implementation;

—they can provide up to 15 and even higher fault tolerance; and

—their storage efficiencies can reach up to 80% and even higher.

All these advantages make GRID codes more suitable for large-scale storage
systems.

7. CONCLUSIONS

This article has presented a new family of erasure codes with high fault tol-
erance, named GRID codes. They are called such because they are a family
of strip-based codes whose strips are arranged into multi-dimensional grids.
These codes have several significant features: (a) They are completely XOR-
based and have very regular structures, ensuring easy implementation; (b) they
can provide up to 15 and even higher fault tolerance; (c) although they are not
Maximum Distance Separable (MDS) codes, their storage efficiency can reach
up to 80% and even higher; (d) they provide optimal small-write performance;
(e) they often have low reconstruction cost; (f) their operations, such as small-
write operations and reconstruction operations, have localization effects; (g)
there are some flexibilities in their construction and also some restrictions on
their stripe layouts and fault tolerance. GRID codes provide the designers of
storage systems with good trade-offs among fault tolerance, performance, and
storage efficiency. All the features make GRID codes more suitable for any
large-scale storage system with the requirements of high fault tolerance, high
performance, and high storage efficiency.

It is to be noted that besides the GRID codes whose strips are arranged into
multi-dimensional grids, there could be other kinds of strip-based codes whose
strips could be arranged into other geometrical shapes. Hence, one of our future

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

GRID Codes: Strip-Based Erasure Codes with High Fault Tolerance • 15:21

research directions is to exploit other geometrical shapes for constructing new
kinds of strip-based codes.

REFERENCES

AGUILERA, M. K., JANAKIRAMAN, R., AND XU, L. 2005. Using erasure codes efficiently for storage

in a distributed system. In Proceedings of the Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’05), 336–345.

ANNE, N. B., THIRUNAVUKKARASU, U., AND LATIFI, S. 2004. Three and four-dimensional parity-check

codes for correction and detection of multiple errors. In Proceedings of the International Confer-
ence on Information Technology: Coding and Computing (ITCC), vol. 2. IEEE Computer Society,

840–845.

BAIRAVASUNDARAM, L. N., GOODSON, G. R., PASUPATHY, S., AND SCHINDLER, J. 2007. An analysis of

latent sector errors in disk drives. In Proceedings of the ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems. ACM Press, New York, 289–

300.

BLAUM, M., BRADY, J., BRUCK, J., MENON, J., AND VARDY, A. 2001. The EVENODD code and its

generalization: An efficient scheme for tolerating multiple disk failures in RAID architectures.

In High Performance Mass Storage and Parallel I/O: Technologies and Applications, 187–208.

BLAUM, M., BRUCK, J. AND VARDY, A. 1996. MDS array codes with independent parity symnbols.

IEEE Trans. Inf. Theory 42, 2, 529–542.

BLAUM, M., BRADY, J., BRUCK, J., AND MENON, J. 1995. EVENODD: An efficient scheme for tolerating

double disk failures in RAID architectures. IEEE Trans. Comput. 44, 2, 192–202.

BLOEMER, J., KALFANE, M., KARP, R., KARPINSKI, M., LUBY, M., AND ZUCKERMAN, D. 1995. An XOR-

based erasure resilient coding scheme. Tech. rep. TR-95-048, International Computer Science

Institute, Berkeley, California.

CHEN, P. M., LEE, E. K., GIBSON, G. A., KATZ, R. H., AND PATTERSON, D. A. 1994. RAID: High-

Performance, reliable secondary storage. ACM Comput. Surv. 26, 2, 145–185.

COLLINS, R. L. AND PLANK, J. S. 2005. Assessing the performance of erasure codes in the wide-area.

In Proceedings of the Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’05), 182–187.

CORBETT, P., ENGLISH, B., GOEL, A., GRCANAC, T., KLEIMAN, S., LEONG, J., AND SANKAR, S. 2004. Row-

Diagonal parity for double disk failure correction. In Proceedings of the 3rd USENIX Conference
on File and Storage Technologies (FAST’04). USENIX Association, 1–14.

FENG, G.-L., DENG, R. H., BAO, F., AND SHEN, J. C. 2005a. New efficient MDS array codes for RAID,

Part I. Reed-Solomon-Like codes for tolerating three disk failures. IEEE Trans. Comput. 54, 9,

1071–1080.

FENG, G.-L., DENG, R. H., BAO, F., AND SHEN, J. C. 2005b. New efficient MDS array codes for RAID,

Part II. Rabin-Like codes for tolerating multiple (greater than or equal to 4) disk failures. IEEE
Trans. Comput. 54, 12, 1473–1483.

FRøLUND, S. MERCHANT, A., SAITO, Y., SPENCE, S., AND VEITCH, A. 2004. A decentralized algorithm for

erasure-coded virtual disks. In Proceedings of the Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN’04), 125–134.

GALLAGER, R. G. 1962. Low density parity check codes. IRE Trans. Inf. Theory 8, 1, 21–28.

GOODSON, G. R., WYLIE, J. J., GRANGER, G. R., AND REITER, M. K. 2004. Efficient Byzantine-tolerant

erasure-coded storage. In Proceedings of the Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’04), 135–144.

GREENAN, K. M., MILLER, E. L., AND WYLIE, J. J. 2008. Reliability of flat XOR-based erasure codes

on heterogeneous devices. In Proceedings of the 38th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN’08). IEEE Computer Society, 147–156.

HAFNER, J. L. 2006. Hover erasure codes for disk arrays. In Proceedings of the Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’06). IEEE Computer Soci-

ety, 217–226.

HAFNER, J. L. 2005. Weaver codes: Highly fault tolerant erasure codes for storage systems. In

Proceedings of the 4th USENIX Conference on File and Storage Technologies (FAST’05). USENIX

Association, 211–224.

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

15:22 • M. Li et al.

HAFNER, J. L., DEENADHAYALAN, V., KANUNGO, T., AND RAO, K. K. 2004. Performance metrics for

erasure codes in storage systems. Tech. rep. RJ 10321 (A0408-003). IBM Research Division,

Almaden Research Center. August.

HUANG, C. AND XU, L. 2005. Star: An efficient coding scheme for correcting triple storage node fail-

ures. In Proceedings of the 4th USENIX Conference on File and Storage Technologies (FAST’05).
USENIX Association.

LUBY, M. C., MITZENMACHER, M., SHOKROLLAHI, M. A., AND SPIELMAN, D. A. 2001. Efficient erasure

correcting codes. IEEE Trans. Inf. Theory 47, 2, 569–584.

MACWILLIAMS, F. J. AND SLOANE, N. J. A. 1977. The Theory of Error-Correcting Codes. North-

Holland, New York.

PINHEIRO, E., WEBER, W. D., AND BARROSO, L. A. 2007. Failure trends in a large disk drive popula-

tion. In Proceedings of the 5th USENIX Conference on File and Storage Technologies (FAST’07).
USENIX Association, 17–29.

PLANK, J. S. 2008. The RAID-6 liberation codes. In Proceedings of the 6 th USENIX Conference
on File and Storage Technologies (FAST’08). USENIX Association, 1–14.

PLANK, J. S. 2005. Erasure codes for storage applications. Tutorial slides presented at the 4th

USENIX Conference on File and Storage Technologies (FAST’05). http://www.cs.utk.edu/∼plank/

plank/papers/FAST-2005.html.

PLANK, J. S. AND THOMASON, M. G. 2004. A practical analysis of low-density parity-check erasure

codes for wide-area storage applications. In Proceedings of the Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’04). IEEE Computer Society.

PLANK, J. S. AND XU, L. 2006. Optimizing Cauchy Reed-Solomon codes for fault-tolerant network

storage applications. In Proceedings of the 5th IEEE International Symposium on Network Com-
puting and Applications (NCA’06). IEEE Computer Society, 173–180.

PLANK, J. S., BUCHSBAUM, A. L., COLLINS, R. L., AND THOMASON, M. G. 2005. Small parity-check era-

sure codes- Exploration and observations. In Proceedings of the Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’05). IEEE Computer Society, 326–335.

REED, I. S. AND SOLOMON, G. 1960. Polynomial codes over certain finite fields. J. Soc. Industrial
Appl. Math. 8, 2, 300–304.

ROTH, R. M. AND LEMPEL, A. 1989. On MDS codes via Cauchy matrices. IEEE Trans. Inf. Theory
35, 6, 1314–1319.

RUBINOFF, M. 1961. N-Dimensional codes for detecting and correcting multiple errors. Commun.
ACM 4, 12, 545–551.

SCHROEDER, B. AND GIBSON, G. A. 2007. Disk failures in the real world: What does an MTTF of

1,000,000 hours mean to you? In Proceedings of the 5th USENIX Conference on File and Storage
Technologies (FAST’07). USENIX Association, 1–16.

TANNER, R. M. 1981. A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 27,

5, 533–547.

WILCKE, W. W., GARNER, R. B., FLEINER, C., FREITAS, R. F., GOLDING, R. A., GLIDER, J. S., KENCHAMMANA-

HOSEKOTE, D. R., HAFNER, J. L., MOHIUDDIN, K. M., RAO, K. K., BECKER-SZENDY, R. A., WONG, T. M.,

ZAKI, O. A., HERNANDEZ, M., FERNANDEZ, K. R., HUELS, H., LENK, H., SMOLIN, K., RIES, M., GOETTERT,

C., PICUNKO, T., KAHN, H., AND LOO, T. 2006. IBM intelligent bricks project: Petabytes and

beyond. IBM J. Res. Devel. 50, 2-3, 181–197.

WONG, T. E., AND SHEA, J. M. 2001. Multi-Dimensional parity check codes for bursty channels. In

Proceedings of the IEEE International Symposium on Information Theory (ISIT’01), 123.

WYLIE, J. J. AND SWAMINATHAN, R. 2007. Determining fault tolerance of XOR-based erasure codes

efficiently. In Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’07). IEEE Computer Society, 206–215.

XIA, H. AND CHIEN, A. A. 2007. Robustore: A distributed storage architecture with robust and high

performance. In Proceedings of the ACM/IEEE Conference on SuperComputing (SC’07), 1–11.

XU, L. AND BRUCK, J. 1999. X-Code: MDS array codes with optimal encoding. IEEE Trans. Inf.
Theory 45, 1, 272–276.

Received June 2007; revised December 2008; accepted December 2008

ACM Transactions on Storage, Vol. 4, No. 4, Article 15, Publication date: January 2009.

