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Many RAID-6 codes have been proposed in the literature, but each has its limitations. Horizontal code
has the ability to adapt to the arbitrary size of a disk array but its high computational complexity is a
major shortcoming. In contrast, the computational complexity of vertical code (e.g. X-code) often achieves the
theoretical optimality, but vertical code is limited to using a prime number as the size of the disk array In
this article, we propose a novel efficient RAID-6 code for arbitrary size of disk array: generalized X-code. We
move the redundant elements along their calculation diagonals in X-code onto two specific disks and change
two data elements into redundant elements in order to realize our new code. The generalized X-code achieves
optimal encoding and updating complexity and low decoding complexity; in addition, it has the ability to
adapt to arbitrary size of disk array. Furthermore, we also provide a method for generalizing horizontal code
to achieve optimal encoding and updating complexity while keeping the code’s original ability to adapt to
arbitrary size of disk array.

Categories and Subject Descriptors: B.8.1 [Performance and Reliability]: Reliability, Testing, and Fault-
Tolerance; H.1.1 [Models and Principles]: Systems and Information Theory—Information theory; H.3.2
[Information Storage and Retrieval]: Information Storage

General Terms: Algorithms, Performance, Reliability, Theory

Additional Key Words and Phrases: Generalized X-code, computational complexity, number of disks, size of
disk array, storage

ACM Reference Format:

Luo, X. and Shu, J. 2012. Generalized X-code: An efficient RAID-6 code for arbitrary size of disk array. ACM
Trans. Storage 8, 3, Article 10 (September 2012), 16 pages.

DOI = 10.1145/2339118.2339121 http://doi.acm.org/10.1145/2339118.2339121

1. INTRODUCTION

As the size of the disk array in storage systems grows larger and larger, fault tolerance
becomes one of the key factors in designing new storage systems [Li et al. 2009].
Redundant Arrays of Inexpensive Disks (RAID) [Patterson et al. 1988, 1989; Chen
et al. 1994] technology is widely used in modern storage systems to achieve large
capacity and high reliability.

Traditional RAID technology has levels from 0 to 5 [Patterson et al. 1988], but
each level tolerates at most one disk failure. As disk capacity increases much faster
than bandwidth, the time needed to rebuild an entire disk is becoming longer and
longer. Meanwhile, the probability of disk failures and latent sector errors arises along
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with the growth in size and complexity of storage systems [Bairavasundaram et al.
2007; Pinheiro et al. 2007; Schroeder and Gibson 2007]. Thus, the probability of two
concurrent disk failures is increasing. For these reasons, we need RAID architectures
to provide a fault tolerance of two or even more disks. RAID-6 is the first level of RAID
architecture to provide a fault tolerance of two [Chen et al. 1994].

The erasure code used on RAID-6 in the literature can be divided into two categories:
horizontal code and vertical code. Horizontal code indicates the class of code where
redundant elements within a stripe are stored separately from the data elements, such
as in EVENODD code [Blaum et al. 1995], RDP code [Corbett et al. 2004], and EEO
code [Feng et al. 2010]. The other type of RAID-6 code is called vertical code, where
data elements and redundant elements can be allocated through all disks in a stripe;
examples are X-code [Xu and Bruck 1999], B-code [Xu et al. 1999], P-code [Jin et al.
2009], and WEAVER code [Hafner 2005].

In RAID architecture, when data elements are updated, all the redundant elements
related to them must be modified as well, increasing the response time for the ap-
plication. In large storage systems, intensive inputs/outputs (I/Os) are provided; data
elements are frequently updated, so the complexities of encoding and updating become
important metrics for measuring erasure code. A given code system defines the number
of redundant elements needed to be modified with a single data element’s update as
the updating complexity for this element. RAID-6 code, with a fault tolerance of two,
has a theoretical optimal updating complexity of two.

Different sizes of disk array are required in different storage systems. The match of
disks from logic to practice is another issue to be considered in designing new erasure
code. In this article, the number of disks means the logical amount of disks in theoretical
analysis, while the size of disk array means the actual number of disks in real storage
systems. Researchers usually use the “number of disks” in the logical design of new
erasure code, but specific erasure code does not always have the ability to adapt to the
arbitrary size of the disk array in real storage systems.

Of all the RAID-6 codes, horizontal code has the best the ability to adapt to the
arbitrary size of the disk array, but its high computational complexity is a major short-
coming. On the other hand, vertical code’s computational complexity often achieves
the theoretical optimality, but vertical code is hampered by the strict requirements
for the size of the disk array, which needs to be a prime number. Thus, there is a
need for a novel RAID-6 code to combine the advantages of horizontal and vertical
codes in order to obtain low computational complexity for the arbitrary size of the disk
array.

In this article, we provide a novel efficient RAID-6 code for arbitrary size of disk
array, termed “generalized X-code.” We move the redundant elements along their cal-
culation diagonals in X-code onto two specific disks and change two data elements
into redundant elements to realize our new code. The new code achieves optimal en-
coding and updating complexity as well as low decoding complexity; in addition, it
has the ability to adapt to arbitrary size of the disk array. What’s more, we provide
a method for generalizing horizontal code to achieve optimal encoding and updat-
ing complexity while keeping its original ability to adapt to arbitrary size of disk
array.

The rest of this article is organized as follows. We will review related works in the
next section and provide our motivation in Section 3. In Section 4, we will introduce
our generalized X-code, including its encoding algorithm and a complete decoding anal-
ysis. In addition, we will discuss the generalized X-code’s performance and properties
in Section 5. A series of generalized horizontal code will also be given in Section 5.
Finally, we will present our conclusions and directions for future work in the last
section.
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Fig. 1. EVENODD code.

2. RELATED WORK

In the study of RAID architectures and algorithms, nearly all researchers use the term
“stripe” to represent a maximal set of data and redundant elements that are depen-
dently linked by redundancy relations. “This is synonymous with ‘algorithm instance’
in that it is a complete instantiation of an erasure algorithm and is independent of
any other instantiation” [Hafner et al. 2004]. In our article, we use the same descrip-
tion, discussing the RAID architecture and its corresponding algorithm in one stripe;
however, in practice, disk arrays may contain many stripes.

In addition, all the redundant elements may be logically stored in the same disks,
but in practice, the redundant elements can be rotated from stripe to stripe, avoiding
bottlenecks when repeated write operations are performed. In the following approach
of this article, all the RAID architectures will use the same rotation method from stripe
to stripe.

Many RAID-6 codes have been proposed in the literature, but to date, there is no
code considered to be the standard for RAID-6 because each code has its limitations.
According to the distribution of data and redundant elements, RAID-6 code can be
divided into two categories: horizontal code and vertical code.

2.1. Horizontal Code

Horizontal code is a class of code in which the data elements and the redundant
elements are stored on different disks within a stripe; examples are EVENODD code
[Blaum et al. 1995], RDP code [Corbett et al. 2004], and EEO code [Feng et al. 2010].
EVENODD code is regarded as the grandfather of horizontal code; we use it as the
introductory example.

As shown in Figure 1, EVENODD specifies a storage system with p + 2 disks, where
p should logically be a prime number. In this code, the first p disks are data disks while
the last two are redundant disks. In coding theory, an element represents a chunk of
data or redundant information, which is the basic building block in RAID architecture.
Furthermore, a column represents a disk in the figure, so a disk failure means a column
of elements cannot be accessed. In EVENODD, each disk contains p — 1 elements in a
stripe.

As shown in Figure 1, the redundant elements in the first redundant disk are cal-
culated by the XOR (exclusive-OR) sum of all the data elements in its row. Before
producing the second redundant disk, the intermediate value, S, needs to be calcu-
lated, which represents the XOR sum of the data elements on the rightmost diagonal
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(the diagonal that contains the top-right element) of slope —1 on the data disk array.
The value of each redundant element in the second redundant disk is then equal to the
XOR sum of S and the data elements on its corresponding diagonal of slope —1. For a
clearer depiction of this process, see Figure 1.

The number of disks, p, in EVENODD, must be a prime number logically to guaran-
tee recoverability in an arbitrary two-disk failure situation. However, because of the
construction of horizontal code, data elements and redundant elements are stored on
different disks, meaning the data disks do not contain any redundant elements. We
can fill some of the data disks with all zeros logically, then drop these disks into a real
storage system. This will not affect the rest of the code since there are no redundant
elements on these disks. Under this method, the horizontal code could get rid of the
limitation of requiring a prime number as the size of the disk array. For an arbitrary
size of disk array, n, is needed; we can find the smallest prime number p that is not
smaller than n; then logically set the number of disks as p and fill p —n data disks with
zero elements. By ignoring these disks in a real storage system, we can create a code
that has the ability to adapt to the size of disk array, n. A disk array of size n can be
regarded as shortened from a disk array of size p, so we mark this method the shorten
method. Thus, horizontal code has the ability to adapt to an arbitrary size of disk array
in real storage systems.

Due to the special use of the intermediate value S in the calculation of the second disk
in EVENODD, when we update any data element on the calculation diagonal of S, we
should first modify its corresponding redundant element on the first redundant disk,
then modify all the redundant elements on the second redundant disk, so the updating
complexity of the data elements on the diagonal of S is p, while the updating complexity
of other data elements is two. So the average updating complexity in EVENODD code
is larger than two.

Unfortunately, Blaum et al. [1996] and Blaum and Roth [1999] prove that standard
horizontal code cannot attain an updating complexity of two. Liberation code [Plank
2008] combines with Liber8tion code [Plank 2009] and Blaum-Roth code [Blaum and
Roth 1999] to form a class of RAID-6 codes called the “minimal density codes,” achiev-
ing an optimal updating complexity for horizontal code, but it is still larger than
two. Clearly, computational complexity is the most obvious shortcoming of horizontal
code.

2.2. Vertical Code

In vertical code, redundant elements are not necessarily separated from data elements.
Redundant elements and data elements within a stripe can be stored on any disk;
examples are X-code [Xu and Bruck 1999], B-code [Xu et al. 1999], P-code [Jin et al.
2009], and WEAVER code [Hafner 2005]. Among them, X-code [Xu and Bruck 1999] is
the most popular. We will use X-code as an example to discuss the properties of vertical
code.

As is shown in Figure 2, X-code contains p disks, and each disk contains p elements,
where p must be a prime number. On each disk, the first p — 2 elements are data
elements while the last two are redundant elements.

Figure 2(a) illustrates the calculation relationship for the first redundant row. Each
redundant element in this row is calculated by the XOR sum of all the data elements on
its diagonal of slope —1. Figure 2(b) shows that each redundant element in the second
redundant row equals the XOR sum of all the data elements on its upper elements’
diagonal of slope 1.

Each data element in X-code is protected by exactly two redundant elements, and
all of the redundant elements depend only on data elements, but not on each other. As
a result, the average updating complexity of X-code is exactly two (when we update a
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Fig. 2. X-code.

single data element in X-code, we need to modify its corresponding redundant element
in the last two rows, each row with exactly one redundant element). This is the the-
oretically optimal updating complexity for erasure code with a fault tolerance of two.
Moreover, the encoding and decoding complexity of X-code also attain the theoretical
optimality.

The number of disks, p, in X-code should be a prime number, and other vertical
codes in the literature all have similar limitations. However, the redundant elements
in vertical code are spread across all the disks and they need to be consistent with
their calculation diagonals; thus they cannot be set as zeros artificially. As a result,
we cannot use the same “shorten” method as in horizontal code to make vertical code
adapt to an arbitrary size of disk array. Furthermore, vertical code is difficult to extend
to a higher fault tolerance code, since the redundant elements are allocated throughout
all the disks.

3. MOTIVATION

In this section, we will compare the two categories of RAID-6 code and point out the
properties that our novel code needs to provide.

In mathematics, erasure code with a fault tolerance of two has a theoretical optimal
updating complexity of two. Many vertical codes could attain this bound, but Blaum
et al. [1996] and Blaum and Roth [1999] have proved that horizontal code cannot
attain it. Since intensive I/Os are provided in large storage systems, data elements are
frequently updated; the lack of encoding and updating efficiencies creates a bottleneck,
preventing the implementation of horizontal code.

The size of disk array in vertical code must be a prime number, which may poten-
tially waste space. Though horizontal code also has the limitation of requiring a prime
number of disks logically, we can get rid of this limitation in practice by the “shorten”
method to make it adapt to arbitrary size of disk array.

In addition, we can easily add disks to a horizontal code system. Since each data
disk contains only data elements, adding a data disk to the code system can be simply
regarded as an update for each data element on this disk. But for vertical code, adding
new disks requires changing all the diagonals, which means all the redundant elements
need to be recalculated.

Both categories of RAID-6 code have their own advantages and disadvantages. Com-
putational complexity is the main shortcoming for horizontal code, but it has the ability
to adapt to arbitrary size of disk array. In contrast, vertical code limits the size of disk

ACM Transactions on Storage, Vol. 8, No. 3, Article 10, Publication date: September 2012.



10:6 X. Luo and J. Shu

(a) (b)

Fig. 3. Code construction after moving the redundant elements along their calculation diagonals in X-
code.

array to be a prime number, but its computational complexity often achieves theoretical
optimality. Is there a code that could combine their advantages, that is, having both
low computational complexity and the ability to adapt to arbitrary size of disk array?
This is the motivation of our novel work.

4. GENERALIZED X-CODE

X-code achieves optimal encoding and updating complexity, so one method to realize
our proposed code is to change the arrangement of elements in X-code into horizontal
code form, while keeping the calculation diagonals unchanged, to ensure that encoding
and updating complexity do not rise.

In traditional horizontal code, redundant elements are allocated to two columns (two
disks), but in X-code, the redundant elements are allocated to the last two rows (across
all the disks). So we need to move the redundant elements in X-code onto two of the
columns to realize our idea. To keep the original calculation relationships, we just move
the redundant elements along their calculation diagonals. After these moves, the new
structure is as shown in Figure 3.

As shown in Figure 3(a), we move the redundant elements that were originally
in the first redundant row into the first column, to constitute the first redundant
disk. Specifically, the second element originally in the first redundant row is moved to
the left-down position since it is on the extension cords of its calculation diagonal of
slope —1.

In a similar fashion, we move the redundant elements originally in the second re-
dundant row into the last column to constitute the second redundant disk in Figure
3(b). We further move the originally last redundant element in the last column up to
the penult position and create a new redundant element in the last position of the
second redundant disk, which records the XOR sum of the elements on the calculation
diagonal of the previous penult element in the second redundant row in X-code.

In these movements, we do not break the basic calculation diagonals, keeping the
data elements in the first p — 2 rows with an updating complexity of two. However, a
new problem arises: the data elements in the last two rows only relate to one redundant
element, which means the failures of one of these data elements and its corresponding
redundant element will lead to data loss. That is to say, after these movements, the
code only provides a fault tolerance of one, but what we need is an erasure code that
could tolerate failures on any two disks.
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Fig. 4. Generalized X-code.

4.1. Encoding

Our novel code is based on the previously illustrated movements, but we make slight
modifications to the resulting code to bring it to a fault tolerance of two.

According to our analysis, each data element in the last two rows is related to only
one redundant element, so in order to enable our code to provide a fault tolerance of two,
we need other redundant elements to protect all these data elements. Unfortunately,
classic horizontal code cannot achieve an updating complexity of two, as is proven by
Blaum et al. [1996] and Blaum and Roth [1999], so adding new redundant elements
or changing the calculation equations of some redundant elements on the redundant
disks is useless. We must make some changes on the data disks.

An example of our novel code is proposed in Figure 4, where a column represents
a disk. As the elements marked with “sr” are shown in Figure 4, we replace a data
element with a redundant element in each of the last two rows. The value of this
redundant element is equal to the XOR sum of all the data elements in its row. We call
these two elements the “special-redundant” (sr) elements. In addition, since our novel
erasure code is generalized from X-code, we call it “generalized X-code.”

We describe the systematic construction of generalized X-code in mathematical lan-
guage in the following.

We assume there are p disks in generalized X-code, where the 07 disk and the (p—1)*
disk are redundant disks containing only redundant elements. The other p — 2 disks,
indexed from 1 to p — 2, are data disks containing data elements and two “special-
redundant” elements. In addition, each disk contains p elements. More importantly,
p should be a prime number logically. This requirement is very important to ensure
recoverability in arbitrary two-disk failures. However, we could get rid of this limitation
in real storage systems, as will be discussed in Section 5.5.

Definition. Consider a p x p disk array, where p should be a prime number, we define
the element @; ; (0 <i < p,0 < j < p) as the j** element on the i disk in the disk
array.

In the following description, we use the standard mathematical notation (x), to
represent the remainder when x is divided by y. That is to say, (x), = z if and only if
x =2z (mod y) (0 < z < y). For example, (5)5 = 2 and (—1)5 = 4. In addition, we use the
mathematical notation € to represent the XOR operation.

In order to conveniently describe the calculation formulas of redundant elements
in the first redundant disk and the special-redundant element in the penult row, we
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use b; ; (0 <i < p—1,0 < j < p) to represent the j data element on the i** disks
in Figure 4(a). The special-redundant element in the penult row will be regarded as
zero in the array {b; ;}, and all the elements in the last row of data disks will also be
regarded as zeros in the array {b; ;}. That is,

bi,j=ai,j (O<i<p—1,0§j<p—2),
bip-2=0p2 (0<i<p—1i#2"),
2t p2 =0
bi,p_1=0 (0<i<p—1).

With {b; ;}, the calculation formula for the first redundant disk can be expressed as
follows.
p—2
ao;j =P bij-n, 0=<j<p.
i=1

The special-redundant in the penult row can be expressed as

p—2
Qe p2 = @ bi.p-2-
i=1

In a similar fashion, in order to conveniently describe the calculation formulas of
redundant elements in the second redundant disk and the special-redundant element
in the last row, we use ¢; j (0 <i < p—1,0 < j < p) to represent the j* data element
on the i** disks in Figure 4(b). The special-redundant element in the last row and all
the elements in the penult row of data disks will be regarded as zeros, finally, the last
two rows will exchange with each other in array {c; ;}. That is,

cij=0; O<i<p-10<j<p-2),
Cip—2 = @i p-1 (O<i<p—1,i;ép771),
CpT—lyp72:O,
Ci,p,1=O (0<i<p—1).

With {c; ;}, the formula for the second redundant disk can be expressed as follows.

p—2

ap-1,j = @Ci,<j+i+1>p 0=<j<p.
im1

In addition, the special-redundant in the last row can be expressed as

Ap-1

2l p-1 7 Ci,p—2-

4.2. Decoding

The generalized X-code defined in the preceding provides a fault tolerance of two, which
means this code could recover all the failed elements from arbitrary two-disk failures.
In this section, we will enumerate all of the possible failure situations and provide the
corresponding decoding strategies to verify this property.
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Without loss of generality, we assume the disks i and j (0 <i < j < p) fail. We have
three different failure situations to enumerate and verify their recoverability.

i =0and j = p— 1. This means the two failed disks are exactly the two redundant
disks; thus no data elements have been lost. We can simply use the encoding process
to reconstruct these failed disks.

i =0and 0 < j < p— 1. In this case, one redundant disk and one data disk fail. We
use the other intact redundant disk to help recover the lost elements.

As is shown in Figure 4(b), we can ignore disk 0. The data elements in the first p — 2
rows on disk j are obviously related to different redundant elements on disk p—1. That
is to say, each data element in the first p — 2 rows on disk j is the only failed element in
its corresponding calculation diagonal of slope 1, so we can recover it by calculating the
XOR sum of all the other elements on its corresponding calculation diagonal of slope
1 in Figure 4(b). Then, as all the other elements in the last two rows are available,
we can recover the last two elements in disk j by calculating the XOR sum of all the
other elements in each of the last two rows thanks to the calculation formulas of the
special-redundant elements, no matter they are the exact special-redundant elements
or other data elements. Finally, we can recover the elements on the first redundant
disk by their encoding formulas.

In the same light, this decoding strategy can also be applied to the failure situation
where0 <i<p—1land j=p-1.

0 <i < j < p— 1. This is the main situation. Both failed disks are data disks. In
Figure 4(a), each data disk has at most p — 1 elements affecting the first redundant
disk. The same is true for the second redundant disk in Figure 4(b). However, there are
p diagonals in each figure. As a result, for each data disk, there is at least one diagonal
that does not cross it. It is not hard to deduce that the (x — 1)** diagonal from the top
does not cross disk x in Figure 4(a) and the (x + 1) diagonal from bottom does not
cross disk x in Figure 4(b).

In Figure 4(a), since the (i — 1)"* diagonal of slope —1 does not cross disk i, there
is only one data element lost on the (; — 1) diagonal of —1, that is a; ;—;_1),, so this
data element can be easily recovered by the XOR sum of all the other elements on this
diagonal. After this data element has been recovered, there is only one data element on
its diagonal of slope 1 in Figure 4(b) left to be recovered, so we can recover a; (2 j)-1),
as well. We then return to Figure 4(a) and continue the recovery process, until the
row coordinate reaches p — 1 or p — 2 (there is no element on row p — 1 that crosses
any calculation diagonal in Figure 4(a) and no element on row p — 2 that crosses any
calculation diagonal in Figure 4(b)). Thus, we can get a recovery chain.

Similarly, in Figure 4(a), the (j — 1)** diagonal of slope —1 does not cross any element
on the (j—1)** disk. And in Figure 4(b), the (i +1)** diagonal of slope 1 does not cross any
element on the i* disk, nor does the (j + 1) diagonal of slope 1 for the j** disk. So, we
can get four recovery chains, and their corresponding recovery sets can be represented
as:

—

Ao =i, @ki—j)-1),»  Qj(@h-1)i—)-1),>
A1 =G (2r-1(-D)-1),0  Qj.@k(—D)—1),»
By = {ai r(j-i>-1),»  @j.(@k-1(j-)-1),>
By = {a; (2r-1)i—j)-1),» @, 2ki—j)—1),

e
DN NN
i

N
([ [ |

——

As is shown in Figure 5, we provide an example of decoding steps for better under-
standing of the retrieval chains. We assume disks 1 and 2 are failed in this example.
The recovery chains of sets Ayg and A; are shown in Figure 5(a), while those of sets
By and B; are shown in Figure 5(b). As is shown in Figure 5, combining these four
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(a) (b)

Fig. 5. An example of the recovery chains.

recovery chains, we can recover all the failed elements. In the following, we prove that
the four recovery chains always cover all the failed elements for any specific i and j.
We can easily combine the four recovery sets into two sets:

C = {ai ¢j-i»-1,}
and
D ={a; ¢(j--1,}-

Because there is only one calculation diagonal that crosses each element in the last
two rows, we start each recovery chain from row p — 1, and end it at row p — 2. Thus
the domain for ¢ in these two sets is determined by the following congruence equation,
which represents the situation in which the row coordinate reaches p — 2.

#j—i)—1=p—2 (mod p).

Because 0 <i < j < p—1,itis easy todeduce 0 < j—i < p— 1. Since ¢ can be either
negative or positive, it can be represented as

ti(j—i)=1 (mod p) (& > 0),
or
t(j—i)=p—1(mod p) (& > 0).
If we add the two congruence equations together, we will get
(t1 +t)(j —i) =0 (mod p).

Because p is a prime number and 0 < j —i < p — 1, we can conclude that ¢ + %
should be a multiple of p.

In either set C or D, if two of the elements are equal to each other, there exist certain
g1 and gy that satisfy the following congruence equation.

¢1(j —i) —1=¢qo(j —i) — 1 (mod p).
Since 0 < j —i < p—1, and p is a prime number, we will get

q1 = g2 (mod p).
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From all of these analyses, we know that either C or D has p different elements,
which are:

C={a;y, 0<r<p}
and
D={a,, 0=<r<np}

From the mathematical analysis, these four recovery chains travel through all of the
elements in the two failed disks, so we can recover all the data elements on disk 7 and
disk .

When neither disk i nor disk j contains a special-redundant element, the decoding
process is finished. However, if one of them is exactly the (pT_l)th disk, we need to recover
the two special-redundant elements. Since all the data elements in the last two rows
are available after the previous recover process, it is an easy job to recover the two
special-redundant elements via their calculation formulas.

Single-disk failure. If the failed disk is one of the redundant disks, no data is lost
and we can recover it by its encoding formula. If the failed disk is one of the data
disks, since there is no diagonal that crosses the same disk twice, as seen in Figure 4(a)
or Figure 4(b), we can recover the first p — 2 elements in the failed disk by their
corresponding calculation diagonals in either Figure 4(a) or Figure 4(b). Then we can
use the calculation formulas for the special-redundant elements to recover the last two
elements in the failed disk.

By enumerating all the failure situations, we prove that we can always find a decoding
strategy for any of them. So we have proved that generalized X-code provide a fault
tolerance of two.

5. PERFORMANCE AND PROPERTY ANALYSIS
5.1. Evaluation Principles

We only provide the RAID-4-like [Chen et al. 1994] architecture of our generalized
X-code in a stripe in this article, but it is synonymous with the relationships between
RAID-4 and RAID-5, the mappings of logical disks to practical disks are rotated from
stripe to stripe in real storage systems.

Multiple stacks are implemented in real storage systems; each stack contains all
different possible mappings from logical disks to practical disks, which means the loss
of any two physical disks covers all combinations of failures of two logical disks in one
stripe. We can logically regard all the disks in RAID-6 as having the same opportunity
to be updated on their elements and the same possibility of failing. With these assump-
tions, we can do the measurements in the following evaluations by rigorous counting
and averaging on a single stripe [Hafner et al. 2004].

In the following figures, all the numbers are generated by rigorous mathematics
derivations; we use the same size of data disk array to compare generalized X-code
with other RAID-6 codes to ensure the fairness of comparisons in the performance
metrics.

We have different mappings from logical disks to practical disks in a stack, so the two
redundant logical disks in a stripe will be mapped to different practical disks with equal
possibilities. This rotation of the redundant elements in practice in RAID-6 naturally
avoids bottleneck effects when repeated write operations are performed; either in the
encoding or the updating process. Each disk has equal possibility that it contains the
elements to be modified and the corresponding redundant elements to be updated, so
we can naturally get load-balance.
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Fig. 6. Comparison of encoding complexity for RAID-6 codes.

5.2. Encoding Complexity

We use the average number of XORs in calculating a single redundant element as the
metric to measure the encoding complexity. This includes both the elements on the
redundant disks and the special-redundant elements.

Since the optimal number of XORs can be easily generated from a specific number
of data elements and redundant elements in RAID-6, we can normalize the results by
dividing the average number of XORs by its corresponding optimal number of XORs
to achieve a better metric for encoding complexity comparison. Obviously, through this
normalization, the optimal value becomes one. The factors over the optimal average
number of XORs for calculating a single redundant element are illustrated in Figure 6
to compare the encoding complexity of RAID-6 codes.

Generalized X-code achieves theoreticaly optimal encoding complexity for arbitrary
size of data disk array, as is shown in Figure 6. It is because each data element in
generalized X-code is related to exactly two redundant elements, and the redundant
elements depend only on data elements but not on each other. It is easy to see that,
besides generalized X-code, no other horizontal RAID-6 code achieves consistent opti-
mal encoding complexity in all possible sizes of data disk array, which is also proved by
Blaum et al. [1996] and Blaum and Roth [1999]. X-code, by contrast, achieves optimal
encoding complexity only in some specific size of disk array.

In large storage systems, intensive I/Os are required. So the encoding complexity
greatly affects the response time in large writes while updating complexity is the key
factor for the response time in small writes.

5.3. Updating Complexity

We measure the updating complexity as the average number of redundant elements
that need to be modified with the update of a single data element. The updating
complexities of different RAID-6 codes are illustrated in Figure 7 for comparison.

As is shown in Figure 7, the updating complexity in either EVENODD code [Blaum
et al. 1995] or RDP code [Corbett et al. 2004] increases with the size of disk array,
reaching its upper-bound at three. Liberation code, the optimal horizontal code [Plank
2008], greatly improves the updating complexity of RAID-6 horizontal code but it still
cannot reach two.
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Fig. 7. Comparison of updating complexity for RAID-6 codes.

Each data element in the first p — 2 rows in generalized X-code affects one redundant
element in the first redundant disk and one redundant element in the second redundant
disk. In addition, each data element in the penult row affects one redundant element
in the first redundant disk and the special-redundant element in the same row (i.e.:
ap p_2). Similarly, each data element in the last row is related to one redundant

element in the second redundant disk and the special-redundant element in this row
(le.a =) p72)' Moreover, all the redundant elements depend only on data elements, but

not on each other. All in all, the update of any single data element in generalized X-code
only requires two redundant elements to be modified; thus, the updating complexity of
generalized X-code is two, which achieves the theoretical optimality.

5.4. Decoding Complexity

In this section, we enumerate all the possible combinations of two disk failures to
analyze the decoding complexity. We use the average number of XORs needed to re-
cover a single element as the metric to evaluate the decoding complexity. As with
encoding, we can normalize the result by dividing it by its corresponding optimal
number of XORs to obtain a clearer metric for decoding complexity comparison. The
factors over the optimal average number of XORs needed to recover a single el-
ement are illustrated in Figure 8 to compare the decoding complexity for RAID-6
codes.

In general, RDP [Corbett et al. 2004] exhibits the best decoding complexity, and
generalized X-code performs better than EVENODD [Blaum et al. 1995]. In addition,
generalized X-code exhibits better decoding performance as the size of data disk array
increases, approaching optimality.

Based on the characteristics of generalized X-code, different shorten strategies affect
the decoding complexity. Since the special-redundant elements are not protected by
the redundant disks, the diagonals that cross the special-redundant elements contain
fewer elements than other diagonals; there are fewer XOR operations in the decoding
process if we use these diagonals. As a result, the best strategy is to fill up all zeros
to the data disks that are close to the middle disk (the disk that contains the special-
redundant elements), and drop them in practice.
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5.5. Ability to Adapt to Arbitrary Size of Disk Array

Vertical code also exhibits optimal performance on encoding, updating, and decoding
complexities, but generalized X-code provides an advantage over the limitation of re-
quiring a prime number size of disk array, which creates a bottleneck in vertical code.

In traditional vertical codes, redundant elements are spread across all the disks, so
code systems cannot drop any disk. As a result, the size of disk array in vertical code
must be a prime number to ensure recoverability in arbitrary two-disk failures.

In generalized X-code, we should keep the number of disks as a prime number
logically to ensure the recoverability in arbitrary two-disk failures. But it is quite
different from vertical code; the redundant elements in generalized X-code are only
allocated on three disks. Therefore, we can logically set some of the data disks to contain
data elements with only imaginary zeros, and drop them in real storage systems. This
will not affect the rest of the code system since there are no redundant elements on
these zero-disks. With this shorten method, generalized X-code has the ability to get
rid of the limitation of requiring a prime number as the size of the disk array. For any
disk array size, n, we can find the smallest prime number p that is not smaller than n,
then logically set the number of disks as p, and fill p — n data disks with all zeros. By
ignoring these disks in a real storage system, we can create a code system of size n. So
the generalized X-code has the ability to adapt to arbitrary size of disk array.

More specifically, we can not only conveniently shorten the size of disk array but
also easily add disks to the disk array. Adding a disk to the system can be regarded as
putting an all-zero data disk into use, where we can treat this addition as an update
to all the data elements on this disk, with just two extra XOR operations per element
(because each data element is related to exactly two redundant elements in generalized
X-code). This has a great advantage over vertical code, where adding new disks changes
all the diagonals, requiring recalculation of all the redundant elements.

5.6. Generalize Horizontal Code to Attain an Updating Complexity of Two
Generalized X-code is generalized from original vertical code to combine the advantages
of both horizontal and vertical code. Conversely, a natural question would be whether
we can modify some original horizontal codes to achieve the same effects.

The reason that EVENODD code [Blaum et al. 1995] cannot get an updating com-
plexity of two is the use of S. When updating the data elements on the diagonal of S, we
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Fig. 9. Generalized EVENODD code.

need to modify all the redundant elements in the second redundant disk, thus increas-
ing the average updating complexity. However, if we replace one of the data elements
on the diagonal of S with a redundant element, the situation will change. As shown
in Figure 9, we change the top-right data element into a redundant element to record
the XOR sum of other data elements on its diagonal of slope —1. In addition, we do not
include this element for the calculation of the first element in the first redundant disk.
Under this change, the value of each redundant element on the second redundant disk
is exactly equal to the XOR sum of the data elements on its corresponding diagonal of
slope —1, no longer including S.

With these modifications, the new generalized EVENODD code achieves optimal
encoding and updating complexity and keeps its original ability to adapt to arbitrary
size of disk array as well. The generalized EVENODD code’s ability to provide a fault
tolerance of two can be easily verified. This method of generalizing horizontal code
to achieve optimal encoding and updating complexity and simultaneously keep its
original ability to adapt to arbitrary size of disk array as well, can be used on most of
the horizontal codes, such as RDP code [Corbett et al. 2004].

6. CONCLUSIONS AND FUTURE WORK

In this article, we have proposed a novel efficient RAID-6 code, termed generalized
X-code, for arbitrary size of disk array. We move the redundant elements along their
calculation diagonals in X-code to keep their original calculation relationships and
change two data elements into redundant elements to ensure that the code provides
a fault tolerance of two. With these operations, we obtain our novel RAID-6 code,
generalized X-code. The new code achieves optimal encoding and updating complexity
and low decoding complexity, as well as the ability to adapt to arbitrary size of disk
array. We have further proposed a method to generalize horizontal code to achieve
optimal encoding and updating complexity while keeping its original ability to adapt
to arbitrary size of disk array.

The main deficiency of the generalized X-code is its storage efficiency. Generalized
X-code is not strict MDS (maximum distance separable) code, but since we have only
changed one (in generalized EVENODD code) or two (in generalized X-code code) data
elements into redundant elements from MDS code, there is little impact on storage
efficiency compared with MDS code. It has been previously proven that MDS horizontal
code cannot attain an updating complexity of two [Blaum et al. 1996; Blaum and Roth
1999]; however, it has not yet been proven whether MDS vertical code could break the
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limitation that the size of disk array must be a prime number. Therefore, future work
should focus on the possibility of an MDS vertical code that could both obtain the ability
to adapt to arbitrary size of disk array and retain optimal computational complexity.
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