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Blurred Persistence: Efficient Transactions in Persistent Memory

YOUYOU LU, JIWU SHU, and LONG SUN, Tsinghua University

Persistent memory provides data durability in main memory and enables memory-level storage systems. To
ensure consistency of such storage systems, memory writes need to be transactional and are carefully moved
across the boundary between the volatile CPU cache and the persistent main memory. Unfortunately, cache
management in the CPU cache is hardware-controlled. Legacy transaction mechanisms, which are designed
for disk-based storage systems, are inefficient in ordered data persistence of transactions in persistent
memory. In this article, we propose the Blurred Persistence mechanism to reduce the transaction overhead
of persistent memory by blurring the volatility-persistence boundary. Blurred Persistence consists of two
techniques. First, Execution in Log executes a transaction in the log to eliminate duplicated data copies for
execution. It allows persistence of the volatile uncommitted data, which are detectable with reorganized log
structure. Second, Volatile Checkpoint with Bulk Persistence allows the committed data to aggressively stay
volatile by leveraging the data durability in the log, as long as the commit order across threads is kept. By
doing so, it reduces the frequency of forced persistence and improves cache efficiency. Evaluations show that
our mechanism improves system performance by 56.3% to 143.7% for a variety of workloads.
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1. INTRODUCTION

Persistent memory is a promising technology to provide data durability at the main-
memory level, which recently has been advanced by emerging nonvolatile memories
(NVMs), such as Phase Change Memory (PCM), Spin-Transfer Torque RAM (STT-
RAM) and Resistive RAM (RRAM). In persistent memory, data durability is ensured in
main memory. This makes it possible to build persistent storage systems in the main
memory rather than in the secondary storage [Condit et al. 2009; Venkataraman et al.
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Fig. 1. Volatility-persistence boundary in disk-based storage systems and persistent memory.

2011; Volos et al. 2011; Coburn et al. 2011; Wu and Reddy 2011; Meza et al. 2013;
Dulloor et al. 2014].

In persistent memory, the volatility-persistence boundary (e.g., the boundary be-
tween the volatile and the persistent storage media) has moved to the interface between
the volatile CPU cache and the persistent main memory1 [Condit et al. 2009; Zhao et al.
2013; Lu et al. 2014a], as shown in Figure 1. Storage consistency, which ensures that
storage systems can recover from unexpected failures, needs to be provided at the mem-
ory level in persistent memory. To provide storage consistency, persistence operations,
which write back data from volatile media (the CPU cache) to persistent media (the
persistent main memory), need to be performed in correct order. This write ordering
leads to frequent I/O halts, thus significantly degrades system performance [Frost et al.
2007; Nightingale et al. 2006; Prabhakaran et al. 2008; Lu et al. 2013a, 2015a].

Persistence overhead due to storage consistency gets even higher in persistent mem-
ory than in disk-based storage systems. As shown in Figure 1, buffer management in
main memory is a white box for disk-based storage systems, while that in the CPU
cache is a black box for persistent memory. Pages in main memory are managed by
the operating system, and programs can know the status and perform the persistence
operation on each page. In persistent memory, the CPU cache is hardware controlled,
and programs find it cumbersome to track the status or perform the persistence op-
eration for each cached block. As a consequence, programs either keep the status of
each page in the software, leading to extremely high tracking overhead, or flush the
whole cache using cache flush commands (e.g., clflush and mfence). Since storage con-
sistency requires frequent persistence operations, system performance dramatically
degrades [Condit et al. 2009; Lu et al. 2014a; Moraru et al. 2011; Pelley et al. 2014;
Volos et al. 2011].

Recent research has proposed extending the CPU hardware to mitigate the perfor-
mance degradation. Approaches of this kind can be divided into two categories. One
is to reduce persistence overhead by making the CPU cache nonvolatile [Narayanan
and Hodson 2012; Zhao et al. 2013]. The other is to reduce ordering overhead by al-
lowing asynchronous or reordered persistence of transactions [Condit et al. 2009; Lu
et al. 2014a; Moraru et al. 2011; Pelley et al. 2014]. While these approaches effectively

1In this article, we refer to the NVM media of main memory as persistent main memory, while referring to
the persistent storage system in main memory as persistent memory.

ACM Transactions on Storage, Vol. 12, No. 1, Article 3, Publication date: January 2016.



Blurred Persistence: Efficient Transactions in Persistent Memory 3:3

improve transaction performance in transactional persistent memory, they require
hardware modifications inside CPUs.

In this article, our goal is to design a software-based approach to mitigate the per-
formance degradation in transactional persistent memory. We do so by relaxing the
persistence requirements and blurring the volatility-persistence boundary, which we
call Blurred Persistence. We have two key observations on the uncommitted data (i.e.,
data blocks that should stay volatile) and the to-be-persisted data (i.e., data blocks that
need to be persisted).

Observation 1. Volatile data can be persisted if they do not damage the persistent
data and are detectable after system crashes. Volatile data should be prevented from
being written back to persistent main memory for two reasons. First, the uncommitted
data that have not been committed can corrupt the persistent data when they are writ-
ten back due to cache eviction. In persistent memory, cache management in the CPU
cache is hardware controlled, and the mappings between data blocks in the CPU cache
and those in persistent main memory are opaque to the programs. To keep uncom-
mitted data in the CPU cache in order not to be written back and overwrite/damage
the memory data, dividing memory into different areas for uncommitted and to-be-
persisted data is an effective approach [Volos et al. 2011; Dulloor et al. 2014]. When
uncommitted data are isolated from to-be-persisted data using different memory ar-
eas, the writeback of uncommitted data does not damage the persistent data. However,
the isolated memory area brings duplicated data copies among them. Second, the un-
committed data, which are not committed but have been evicted to persistent main
memory, need to be detected after system crashes. Otherwise, the storage systems in
persistent main memory have partially updated data, which leads to inconsistent state.
The two problems, however, can be solved by carefully organizing the data structures
in persistent main memory.

Observation 2. To-be-persisted data may stay volatile if they have persistent copies
in other areas. Tracking and forcing persistence of to-be-persisted data also incur high
overhead in programs. To make sure that the to-be-persisted data are persisted in
time, programs have to record the addresses of these data blocks. When the persistence
ordering is required, programs iterate each address and call cache flush commands to
force them into being written back to persistent main memory. The tracking and forced
persistence operations lead to poor cache efficiency. However, if the to-be-persisted
data have copies elsewhere, which have already been persisted, these do not need to
be written back immediately.

Based on these two observations, we conclude that there are opportunities to re-
lax the volatility or persistence requirements of the uncommitted and to-be-persisted
data. Tracking and placing data blocks between the volatile CPU cache and the persis-
tent main memory can be relaxed to improve transaction performance. Our proposed
blurred persistence mechanism has two key ideas. First, Execution in Log (XIL) al-
lows transactions to be executed in the log area and removes duplicated copies in
the execution area. Volatile data are allowed to be persisted in the log area. To en-
able this, XIL reorganizes the log structure to make the uncommitted data detectable
in the log. During recovery, the detected uncommitted data can be cleaned from the
log while leaving only committed transactions. Second, Volatile Checkpoint with Bulk
Persistence (VCBP) allows delayed persistence of committed transaction data in each
transaction execution and avoids the tracking of to-be-persisted data. This is achieved
by making the corresponding log data persistent and maintaining the commit order of
checkpointed data across threads. It also aggressively flushes all data blocks from the
CPU cache to memory using bulk persistence, with the reorganized memory areas and
structures. By doing so, VCBP enables more cache evictions and less forced writebacks,
thus improves cache efficiency.
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Major contributions of our article are summarized as follows:

—We identify a major cause of performance degradation while providing storage con-
sistency for persistent memory tracking and separating uncommitted and to-be-
persisted data blocks with a strict boundary.

—We propose Execution in Log (XIL), which enables transaction execution in allocated
log area, to allow uncommitted data to be persisted by making them detectable using
redesigned log organization.

—We propose Volatile Checkpoint with Bulk Persistence (VCBP) to delay the persistence
and remove the tracking of data blocks that need to be persisted. This technique
allows these to-be-persisted data to stay volatile before log truncation.

—We implement a transactional persistent memory system, Blurred-Persistence Per-
sistent Memory (BPPM), and evaluate it using a variety of workloads. Results show
that BPPM gains performance improvement ranging from 56.3% to 143.7%.

The rest of this article is organized as follows. Section 2 gives the background of
NVM and transaction recovery. Section 3 describes the Blurred Persistence mechanism,
including the XIL and VCBP techniques. Section 4 presents our persistent memory
implementation, BPPM, using the Blurred Persistence mechanism. Section 5 evaluates
BPPM. Section 6 presents related work, and Section 7 contains our conclusions.

2. BACKGROUND

2.1. Nonvolatile Memory

Byte-addressable NVMs are able to provide data access latency in the order of tens to
hundreds of nanoseconds. PCM [Lee et al. 2009; Qureshi et al. 2009; Zhou et al. 2009] is
reported to have a read latency of 85ns and a write latency of 100ns to 500ns [Qureshi
et al. 2011]. STT-RAM [Kultursay et al. 2013] is reported to have read and write
latencies of less than 20ns [Qureshi et al. 2011]. These NVMs not only provide access
latency close to that of DRAM, but also show better technology scalability than DRAM.
This makes them promising to be used in main memory [Kultursay et al. 2013; Lee
et al. 2009; Qureshi et al. 2009; Zhou et al. 2009]. In addition, the nonvolatility of these
NVMs naturally provides data persistence at the memory level, which enables storage
systems at the main-memory level [Coburn et al. 2011; Condit et al. 2009; Dulloor et al.
2014; Meza et al. 2013; Venkataraman et al. 2011; Volos et al. 2011; Wu and Reddy
2011].

Nonvolatile Dual Inline Memory Modules (NVDIMM) is another form of byte-
addressable NVM [Wikipedia 2015]. It is proposed to attach flash memory to the
memory bus using a byte-addressable interface emulated with DRAM. Data in DRAM
are kept persistent using a Battery Backed Up (BBU) or a capacitor when the system
crashes. NVDIMM provides good performance with data persistence at the memory
level.

2.2. Transaction Recovery

The concept of transaction management originates from database management sys-
tems (DBMSs) [Ramakrishnan and Gehrke 2000], which introduces transactions to
provide ACID properties: atomicity (A), consistency (C), isolation (I), and durability
(D). Transaction management has two components to ensure the four properties: con-
currency control to allow multiple transactions to be executed concurrently and trans-
action recovery to enable the system to recover from unexpected failures. Concurrency
control aims to provide execution consistency, which requires each transaction to be
atomically executed (i.e., all or no transactional operations are performed) and the
concurrently executed transactions are isolated properly. Transaction recovery aims to

ACM Transactions on Storage, Vol. 12, No. 1, Article 3, Publication date: January 2016.



Blurred Persistence: Efficient Transactions in Persistent Memory 3:5

provide persistence consistency, which requires data in persistent storage to be updated
atomically and durably. The two components are used together to make sure that the
concurrently executed transactions are performed correctly to survive system failures,
ensuring the ACID properties.

Transactional memory [Herlihy and Moss 1993; Harris et al. 2010; Felber et al.
2008] borrows the idea of concurrency control to support program concurrency, which
requires ACI properties. Recent NVMs provide data persistence (durability) at the
main-memory level. This leads to opportunities of data recovery at the main-memory
level. Thus, transaction recovery is proposed to be incorporated into transactional mem-
ory, which is called transactional persistent memory, to provide ACID properties, as in
database transactions [Volos et al. 2011; Wang et al. 2014]. Transactional persistent
memory provides both concurrency control and transaction recovery. In this article, we
focus on the efficient transaction recovery part in transactional persistent memory.

2.3. Transaction Phases

To support transaction recovery, a transaction needs to keep at least one complete
version in persistent main memory. To ensure this property, writes need to be persisted
from the CPU cache to the persistent main memory in correct order; this forms the
transaction phases, to be discussed next.

A transaction has three phases in general: execution, logging, and checkpointing2.
There are three memory or storage areas for each phase: the execution area, log area,
and data area. To keep at least one complete persistent version of transaction data
at any time, both the data area and log area must be allocated in persistent storage.
In the execution phase, transaction data are updated in the execution area with the
execution of program instructions. In this phase, transaction data are prevented from
overwriting the old-version data in the data area, to keep the persistent old-version
data complete. When a transaction is committed, it enters the logging phase. In this
phase, transaction data are first persisted to the log area. At this time, transaction
data cannot be written to the data area, in order to keep the persistent old-version
data complete. Only after the data have been completely written to the persistent log
area are they checkpointed (i.e., written back from the log area to the data area) to
the persistent data area. This phase is called the checkpointing phase. In this phase, it
is ensured that the persistent new-version data (in the log area) is complete. As such,
transaction data are atomically and durably updated to a consistent state with the
three phases.

Figure 2(a) illustrates the transaction phases in disk-based storage systems, in which
the secondary storage is persistent and the main memory is volatile. The volatility-
persistence boundary lies between the main memory and the secondary storage. Since
the data cache in the main memory is managed by the software (e.g., the operating
system), data persistence can be accurately controlled in the software. A transaction is
executed following the steps shown in Figure 2(a). In Step 1, the transaction reads data
blocks from the disks to the main memory. The memory area for the transaction data is
the execution area; the transaction updates data in the execution area. The operating
system prevents the updated data from damaging data blocks in the persistent data
area. After the execution finishes, data pages that need persistence are copied to the
operating system page cache, as shown in Step 2. Before these data pages are written
to the data area, they are first written to the log area, as shown in Step 3. Only
when these data pages are completely persisted in the log area are they checkpointed
to the data area, as shown in Step 4. The operating system tracks the statuses of

2Transaction mechanisms have different designs. For simplicity, we use the commonly used write-ahead
logging (WAL, i.e., journaling in file systems) as the example.
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Fig. 2. Transaction phases in disk-based storage systems and conventional persistent memory.

transaction data and performs persistence operations in Steps 3 and 4. Due to the
software-controlled cache management in main memory, transaction overhead in disk-
based storage systems is relatively lower than that in persistent memory.

Figure 2(b) shows the transaction phases in conventional persistent memory using
write-ahead logging, such as Mnemosyne [Volos et al. 2011]. In persistent memory,
the volatility-persistence boundary has moved to the line between the volatile CPU
cache and the persistent main memory. Since cache management in the CPU cache is
hardware-controlled, programs have to divide memory spaces into different memory
areas to isolate transaction data in different phases, as shown in Figure 2(b). In a
transaction, data are first read from the data area to the CPU cache (Step 1), and are
copied to the execution area to be executed (Step 2). If the execution area shares data
copies with the data area, some updated data blocks may be evicted to the main memory
due to cache eviction, while the others are not. This makes the persistent old-version
data in the data area incomplete, violating the atomicity property of transactions.When
the transaction is committing, the executed data are copied to the log area (Step 3) for
log persistence (Step 4). After the log blocks have been persisted, the committed data
are checkpointed to the data area (Step 5) for checkpoint persistence (Step 6). In
persistent memory, transaction data are copied multiple times, because the (software)
programs not only are not aware of the cache eviction, but also are not able to control
the data eviction. For this reason, transaction overhead is relatively high in persistent
memory.

In conclusion, the high transaction overhead in persistent memory comes from the
strict data persistence control across the volatility-persistence boundary. Our goal
in this article is to lower transaction overhead by blurring the volatility-persistence
boundary. We thus propose the Blurred Persistence mechanism for transactional per-
sistent memory, as discussed in Section 3.

3. BLURRED PERSISTENCE

In this section, we propose the Blurred Persistence mechanism, which blurs the
volatility-persistence boundary in transactional persistent memory, to improve sys-
tem performance while providing storage consistency. This mechanism consists of two
techniques:
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Fig. 3. Transaction phases in Blurred-Persistence Persistent Memory (BPPM).

(1) Execution in Log (XIL), which reorganizes the memory log structure and makes
the uncommitted data detectable, to allow the (volatile) uncommitted data to be
persisted to the persistent main memory.

(2) Volatile Checkpoint with Bulk Persistence (VCBP), which leverages the durability
of persistent data copies in the log area and maintains the correct overwrite order
of the volatile data, to allow the (to-be-persisted) checkpointed data to aggressively
stay volatile in the CPU cache.

In this section, we first present the design overview of blurred persistence. We then
describe the two techniques and the adaptive BPPM design. We conclude the section
by discussing the crash recovery.

3.1. Design Overview of Blurred Persistence

Figure 3 illustrates the transaction phases in persistent memory with the Blurred
Persistence mechanism. The fundamental idea behind Blurred Persistence is blurring
the volatility-persistence boundary, in other words, allowing uncommitted data to be
persisted in advance and committed data for delayed persistence. In different phases of
a transaction, Blurred Persistence uses different techniques to reduce the persistence
overhead of transactions. Blurred Persistence consists of two techniques, XIL and
VCBP. XIL redesigns the data persistence behaviors in the execution and log phases
(shown in Steps 1 to 3 in Figure 3), and VCBP redesigns the data persistence behaviors
in the checkpointing phase (shown in Steps 4 and 5 in Figure 3).

XIL removes the execution area in persistent memory and directly executes
transactions in the log area. It allows volatile uncommitted data to be persisted before
transaction commits. In conventional persistent memory, uncommitted data should
be prevented from being persisted (i.e., being written back from the CPU cache to the
persistent memory); Otherwise, the old-version data in the persistent main memory
might be overwritten and corrupted. Since cache replacement in the CPU cache is
hardware-controlled, software programs are unaware of the cache eviction and are
unable to keep the uncommitted data from being persisted. The common approach to
separate uncommitted and to-be-persisted data into different memory areas (as shown
in Figure 2(b)) is effective but inefficient due to duplicated data copies. The goal is to
prevent uncommitted data from being written back unconsciously and corrupting the
persistent data version. XIL breaks this limitation in the execution and logging phases
with the following guarantees: (1) the uncommitted data blocks do not overwrite the
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persistent data version in the data area; and (2) the uncommitted data blocks that
are written back to the log area in advance are detectable. As shown in Steps 1 to 3 of
Figure 3, a transaction reads data blocks from the data area and copies to the log area,
then directly updates data blocks in the log area. Before the transaction is commit-
ted, the uncommitted data blocks are allowed to be evicted to the persistent log area
due to the cache eviction of the CPU cache hardware. Details are given in Section 3.2.

While the XIL technique allows uncommitted data to be persisted, the VCBP tech-
nique is proposed to allow to-be-persisted data to stay volatile. The VCBP technique
consists of two steps: volatile checkpoint and bulk persistence. The volatile checkpoint
step checkpoints committed data blocks to the data area without forcing them to be
written back to persistent memory. It is performed for each transaction execution
(Step 4 in Figure 3). The bulk persistence aggressively delays the persistence of check-
pointed data until the persistent log area runs out of space. At this time, it forces all
data blocks in the CPU cache to be written back to the persistent main memory. Per-
sistence of checkpointed data (Step 5 in Figure 3) is removed during the execution of
each transaction. Details are given in Section 3.3.

XIL and VCBP are designed for different phases of a transaction. The two techniques
can be combined to form the Blurred Persistence mechanism. The combination of the
two techniques is discussed in Section 3.4.

Blurred Persistence vs. Steal/No-Force Policies. The similarity between Blurred Per-
sistence and the Steal/No-Force policies is that both improve the buffer management
efficiency for transactions. However, Blurred Persistence improves buffer management
of the CPU cache in persistent memory, while the Steal/No-Force policies improve buffer
management of main memory in traditional database management systems. Due to the
architectural difference of the two storage systems, they face different problems, thus
are designed differently. In Blurred Persistence, XIL allows uncommitted data to be
persisted to the log area before the transaction is committed, by redesigning the log
organization. The Steal policy also allows uncommitted data to be persisted before the
transaction is committed, but instead of to the log area, these uncommitted data are
allowed to be persisted to the data area by introducing the undo log. VCBP in Blurred
Persistence allows committed data to be lazily persisted. The No-Force policy has the
same intention. But the No-Force policy can easily track the to-be-persisted committed
data in the volatile main memory, while it is costly for programs to do such work in
persistent memory due to the hardware-controlled CPU cache. Therefore, VCBP is de-
signed in a more aggressive way, which periodically flushes the whole CPU cache while
ensuring the correctness. In conclusion, Blurred Persistence has the same design goal
in improving buffer management of transactions as the Steal/No-Force policies. Blurred
Persistence is designed for persistent memory, however, for which the Steal/No-Force
policies are not suitable.

3.2. Execution in Log

XIL revises the data persistence behaviors in the execution and log phases of a trans-
action in persistent memory. With the XIL technique, a transaction writes its new data
directly to the log area rather than to the execution area, no matter whether these
data are committed or not. Steps 1 to 3 in Figure 3 illustrate the dataflow of a trans-
action using the XIL technique in transactional persistent memory. As shown in the
figure, a transaction loads data from the persistent main memory and caches them in
the CPU cache (Step 1). During the transaction execution, the generated new-version
data blocks are allocated with memory space and are written directly in the log area
(Step 2). When a transaction commits, these data blocks are forced to be persistent in
the persistent log area (Step 3). After the data blocks are persisted in the log area, they
are checkpointed (i.e., copied back to their home locations) to the data area (Step 4).
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Fig. 4. An example of log holes.

Finally, these data blocks are forced to be written back to the persistent data area
(shown as Step 5).

The XIL technique eliminates data copies to and from the execution area (as il-
lustrated by comparing Figures 2(b) and 3). The challenge of the XIL technique is
how to detect and remove the uncommitted data blocks that have been written to the
persistent log area. As shown in Step 3 of Figure 3, data blocks from uncommitted
transactions may be written to the persistent log area, due to the cache eviction of the
CPU cache hardware. The XIL technique reorganizes the memory log area and makes
these uncommitted data detectable (discussed later), to make sure that the log area
can be used to correct data recovery.

The Log Holes. To support the XIL technique, data blocks from uncommitted
transactions should be detected and removed from the persistent log area. To make
the uncommitted data detectable in persistent main memory, XIL reorganizes the log
structure: (1) Data blocks in the log area are allocated in a log-structured way. Each
block has a unique address. With the determined address, an uncommitted block is
written to its own location. It neither overwrites any other block nor is overwritten.
(2) Uncommitted data blocks are identified using their transaction status metadata
in the log, which has associated metadata to indicate the transaction status. For
each transaction, there is a block to record these metadata, i.e., a commit record for
a committed transaction and an abort record for an aborted transaction. During the
normal execution, when a transaction is aborted, its volatile data blocks are discarded
without being written back to the persistent main memory. This leads to log holes in
the log area (i.e., the log blocks that have been allocated but not written to). Log holes
are those blocks allocated for uncommitted transactions, but have no data written to.

Figure 4 illustrates an example of the log holes. A transaction, which has four data
blocks, is aborted. Among the four blocks, one has been written to the persistent log
area due to cache eviction. The other three blocks are discarded in memory without
being written back to memory. They have been allocated with memory area in the log
area, however, which leads to hole blocks shown as X blocks in the figure. Following
the four data blocks, an abort record is written at the end to mark the transaction as
aborted.

In transactional persistent memory using XIL technique, each thread allocates and
manages its own persistent log area. The start address of each log is globally visible, so
that each log can be read during recovery. Each log consists of a series of 64b data and
metadata blocks. Since one thread executes one transaction at a time, data blocks for
each transaction are written to the log consecutively, followed by one metadata block at
the end. Details of the data and metadata block organization are discussed in Section 4.
The XIL technique removes the ordering between the persistence of the data blocks
and the commit record (i.e., the metadata block) using the torn-bit technique, which is
proposed in Mnemosyne [Volos et al. 2011]. It uses one bit in each data block to indicate
the status. Before each run of log writes, the torn bit is set to 0 (or 1). When these blocks
are written, they are set to 1 (or 0). This bit can be used to detect data blocks that have
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not been written, that is, the hole blocks. The XIL technique also avoids the use of log
head and tail pointers to eliminate the ordering before their updates. To achieve this,
the XIL technique has to check the log from the beginning and detects the end by itself
during recovery.

During recovery, the XIL technique needs to correctly process a persistent log area
with hole blocks. There are three issues to be addressed: (1) hole blocks should be
detectable; (2) uncommitted data blocks that have already been written should be de-
tectable; and (3) valid log blocks that follow the holes should be read and processed. For
the first issue, the torn-bit technique can be used to detect data blocks that have not
been written, including the hole blocks. For the second issue, XIL puts a backpointer
in the abort record to point to the commit record of the last committed transaction.
The backpointer serves as a bridge to straddle the uncommitted blocks (as shown in
Figure 4). For the third issue, XIL checks the length of each aborted transaction and
adds an aborted record for every 64 blocks (the number 64 is adjustable in implemen-
tation). During recovery, when an unwritten block is met, the recovery process reads
ahead by 64 blocks. Only if there is no aborted record in the 64 blocks is the end of the
log found. There is no valid log block following, and the log scan can be terminated.
In addition, as the torn bits in those log holes are not set, they are required to be set
during log truncation to ensure the correctness of the next run.

3.3. Volatile Checkpoint with Bulk Persistence

VCBP redesigns the data persistence behaviors in the checkpointing phase of a trans-
action in persistent memory. The VCBP technique improves transaction performance
without compromising the functionality of the checkpoint operation. The functionality
of the checkpointing operation, which makes committed data visible and durable, is
still guaranteed in transactional persistent memory using the VCBP technique. The
visibility of committed data is provided with volatile checkpoint by copying the commit-
ted data to the data area, even though these data blocks are not forced to be persistent.
The durability of committed data is ensured with the persistent log area, which is not
truncated until the bulk persistence.

Transaction performance is improved in transactional persistent memory using the
VCBP technique. This technique not only removes the persistence of checkpointed
data from each transaction execution, but also frees programs from tracking (i.e.,
bookkeeping) of those checkpointed data blocks. It flushes all data blocks, including
both the volatile and to-be-persisted data, from the CPU cache to the memory.

The correctness issue of the VCBP technique is raised from the problem that volatile
data blocks, including uncommitted ones, may be written to the persistent main mem-
ory in both steps, volatile checkpoint and bulk persistence, of VCBP. In the volatile
checkpoint step, the volatile checkpointed data blocks may have been written to per-
sistent main memory due to cache eviction. In the bulk persistence step, uncommitted
data that do not need persistence are flushed to persistent main memory due to the
bulk persistence operation. To ensure the correctness of VCBP due to the blurred
volatility-persistence boundary, two properties are required to be maintained.

Property 1. Transaction correctness maintains, even if part of its checkpointed data
blocks are persisted in advance due to cache eviction.

Checkpointed data blocks are those blocks that are copied to the data area only after
their transactions are committed. In other words, these data blocks and all others in
their transactions have been completely persisted in the log area. Even if some (not all)
checkpointed data blocks are written back due to cache eviction and system crashes,
all other data blocks in their transactions can be recovered using the persistent log.
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Fig. 5. An example of the overwrite order problem.

Thus, the writeback of checkpointed data blocks before bulk persistence does not
hurt the completeness of their transactions. Instead, VCBP takes more advantage of
the writebacks due to cache eviction. It allows the CPU cache to buffer data blocks
and write them back on cache conflicts. Cache efficiency is improved compared to the
forced writebacks in conventional persistent memory.

Property 2. Persistent data are protected, even if uncommitted data are forced to be
written back due to bulk persistence.

In the bulk persistence operation, uncommitted data are also forced to be written
back to memory, as the data blocks that need persistence are not tracked. Since all
data in the checkpointing phase are committed data, those uncommitted data include:
(1) uncommitted data in the execution phase, and (2) uncommitted data in the logging
phase. For uncommitted data in the execution phase, they can be written only to the
execution area without hurting any persistent data, which reside in the persistent log
and data areas. For uncommitted data in the logging phase, they can be data blocks
from uncommitted transactions. They can be detected as discussed in Section 3.2. For
volatile data in the checkpointing phase, since they are committed, they also do not
hurt data in the persistent data area, as discussed for Property 1.

In all, VCBP improves cache efficiency by removing forced persistence of check-
pointed data from each transaction, and frees programs from the complexity of tracking
blocks that need persistence.

Overwrite Order of Concurrently Updated Blocks. With the VCBP technique, a data
block may have different versions that are committed in different transactions. Since
the persistence of checkpointed data blocks is delayed, different versions of a data
block should be written back in correct commit order. Otherwise, a newer version
may be overwritten by an earlier one, which leads to inconsistency. Figure 5 shows
an example of the overwrite order problem. As shown in the figure, one transaction
T1 commits and checkpoints block A and B (as shown in the left private cache), and
another transaction T2 writes block B and C (as shown in the right private cache).
T2 commits after T1. Both have volatile copies in their own private cache. The VCBP
technique needs to make sure that the data blocks are overwritten in correct commit
order, even if a later committed transaction is flushed to memory first. In the illustrated
example, it is required that B1 does not overwrite B2.

During normal execution of a transaction, the overwrite order is correctly achieved by
the cache coherence protocols. When B2 is checkpointed, it invalidates B1. For any per-
sistence sequence, only B2 can be written back. The completeness of the checkpointed
data persistence in each transaction is discussed in Property 1 earlier. To ensure the
correct overwrite order during recovery, the commit sequence between transactions is
kept. The VCBP technique keeps a global ID as the transaction identifier (TxID), and
stores it in the commit record (as discussed in Section 4). The global ID is used to
determine the replay sequence of committed transactions during recovery. In this way,
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Fig. 6. Mode switch in adaptive BPPM (BPPM-A).

the overwrite order of the committed transactions is kept, even if their persistence is
delayed.

Bulk Persistence vs. Asynchronous Log Truncation. Both of these techniques move
persistence of checkpointed data and log truncation from the critical transaction exe-
cution path. Asynchronous log truncation forks a thread in the background to check the
persistence of checkpointed data blocks in each transaction and truncate the log once
the checkpointed data blocks are persistent [Volos et al. 2011]. The difference is that
asynchronous log truncation still iterates the checks and truncation for transaction one
by one while bulk persistence removes the tracking and flushes the whole CPU cache
without iterating each transaction. Bulk persistence also increases the opportunity of
(1) write coalescing of data blocks across transactions in the CPU cache, and (2) better
cache efficiency with less forced writebacks (but more cache eviction writebacks). Com-
paratively, bulk persistence improves cache efficiency and, thereby, the transaction
performance.

3.4. Adaptive BPPM

The XIL and VCBP techniques are designed for different phases of a transaction. XIL is
designed for the execution and logging phases, while the VCBP is for the checkpointing
phase. Thus, the two techniques can be simply combined to form the Blurred Persis-
tence mechanism. We refer to the persistent memory that uses both XIL and VCBP as
the Blurred-Persistence Persistent Memory (BPPM), and the persistent memory that
uses only XIL and only VCBP as BP(XIL) and BP(VCBP), respectively.

While XIL and VCBP can be combined easily, the two techniques may have a negative
impact on each other when the memory latency is high (see Figure 16 for evaluated
results). Compared to the conventional persistent memory Mnemosyne [Volos et al.
2011], which leverages the write combing command to improve the log performance,
XIL writes the data in the CPU cache. The bulk persistence step in VCBP forces all
data blocks in the CPU cache to be written back to the main memory, including the
data blocks that are written in XIL. For this reason, the benefits of XIL may be eaten
by the cost to write the XIL data blocks to persistent main memory, when memory
latency is high. To solve this problem, we propose adaptive BPPM, named BPPM-A,
which runs BPPM in an adaptive way. When memory latency is low, BPPM is run in
the normal mode, with both XIL and VCBP used. When memory latency is high, BPPM
is degraded to the VCBP mode, in which BPPM uses only the VCBP technique but no
XIL. Figure 6 illustrates the mode switch between the two modes. To support BPPM-A,
it has to decide when and how to switch between the BPPM and VCBP modes.

There are two strategies to decide when to switch between the two modes. One is
the static strategy, which configures the running mode during program compilation. In
this strategy, there is a memory latency threshold. BPPM-A is run in the BPPM mode
when the memory latency is less than the threshold, and in the VCBP mode when the
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memory latency is higher than the threshold. The other is the dynamic way, which
enables mode switching during program execution. In this strategy, the program runs
the two modes respectively for a small set of the transactions, then chooses the better
mode.

The dynamic strategy has to decide how to switch between the two modes, while
the static one can choose one mode during compilation. The main difference between
BPPM and VCBP is the log organization in addition to the log write way (cache write
with clflush vs. write combing). To support mode switching between the two modes,
the log has to support the two kinds of log organizations. Since BPPM is run in only
one of the two modes at one time and the log data blocks are sequentially appended,
it needs to keep only the address of the log block that starts the mode switch. This
information can be stored in a metadata block at the beginning of the log area. During
the mode switch, the log writes are synchronized in order not to incur inconsistency
between the two modes. As such, the adaptive BPPM can switch to the mode with
better performance.

3.5. Recovery

In persistent memory using the Blurred Persistence mechanism, programs cannot tell
the exact location (in the CPU cache or in the persistent main memory) of a data block.
After unexpected system crashes, uncommitted data blocks may have been written to
persistent main memory, and checkpointed data may get lost. Therefore, there are two
tasks during recovery: (1) finding all uncommitted data that have been persisted, and
(2) recovering all checkpointed data that have not been persisted in the data area.

Recovery steps are as follows.

(1) Detection of Uncommitted Data Blocks. Each log is scanned independently in the
first step. Each type of log record (i.e., data record, commit record, or abort record)
is determined using the metadata in the log record. Since an abort record stores a
backpointer to the commit record of the last committed transaction, all data blocks
between the commit record and the abort record belong to an uncommitted trans-
action. As such, the data blocks from uncommitted transactions in the persistent
log area are detected.

(2) Commit Sequence Sorting. In the second step, all committed transactions from
different log areas are sorted by the commit sequence, recorded as TxID in each
commit record. With the identified commit records from the first step, the recovery
process sorts these transactions by the TxID using sort algorithms. After this step,
each committed transaction has its global commit sequence.

(3) Replay of Committed Transactions. In the final step, the committed transactions
are replayed by checkpointing their data blocks from the persistent log area to
the data area, following the global commit sequence as sorted in the second step.
Once these committed data are replayed, the data areas are recovered to the latest
committed data version.

After all these steps, all the data blocks in the data area are committed and brought
to the newest version. All data blocks are committed, because only data blocks from
committed transactions are checkpointed during normal execution and only committed
transactions have their data blocks replayed to the data area during recovery. All data
blocks are newest, because all data blocks are checkpointed using volatile checkpoint,
once a transaction is committed during normal execution, and all committed transac-
tions in the log are replayed in the global sequence during recovery. As such, the data
area is guaranteed to be consistent.
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4. IMPLEMENTATION

In this section, we describe the implementation of our persistent memory system that
uses the Blurred Persistence mechanism, which we call Blurred-Persistence Persistent
Memory (BPPM).

4.1. Overview of BPPM

We implement BPPM based on a software transactional memory implementation,
TinySTM [Felber et al. 2008]. To leverage BPPM for ACID properties support, a pro-
gram needs to be inserted only with transaction primitives, which is a lightweight
revision. BPPM uses an Intel STM compiler [Intel 2014] to compile programs with
transactional annotation using the inserted transaction primitives. The Intel STM
compiler compiles the programs and generates transactions. Then, each transaction is
ensured with ACID properties in BPPM.

To provide ACID properties for storage consistency, BPPM extends the transactional
memory system with persistence support to make the system recoverable. First, ver-
sions are kept atomic and durable in persistent main memory instead of in the volatile
CPU cache. To achieve this, data blocks in the volatile CPU cache are persisted to the
log area in persistent main memory when a transaction commits, and are not trun-
cated until they are checkpointed and persisted to the data area in persistent main
memory. As shown in Figure 3, when a transaction commits, data blocks are persisted
(as in Step 3) using clflush and mfence commands. For a checkpoint operation in a
transaction, persistence of these data blocks (originally shown as Step 5) is delayed
but ensured using the bulk persistence operation of the VCBP technique. In BPPM,
persistence of checkpointed data blocks is performed for multiple transactions rather
than for each transaction. Data blocks in the log area are not truncated until the bulk
persistence operation. Second, the allocated log area is globally visible. Even though
each thread allocates its own log area, the address of the log area is fixed in the persis-
tent main memory. After a system crashes, these log areas can be located and scanned
for recovery. Third, a global sequence for transactions in all log areas is required, so
that the commit sequence of transactions across threads can be determined. For trans-
actions with overlapping writes (i.e., two transactions write to the same data block),
only when the commit sequence is determined can they be recovered correctly during
recovery.

To support adaptive mode switching, BPPM-A chooses the dynamic strategy to decide
when to check the mode switch. BPPM-A introduces a warm-up phase at the beginning
of program execution. In the warm-up phase, BPPM-A runs both BPPM and VCBP
modes, and compares their performance to choose a better one. After that, BPPM-A is
run in the better mode. This warm-up phase can also be periodically performed in the
long program runs to adaptively switch to the better one with workload changes.

4.2. Log Organization

4.2.1. XIL Support. Each thread allocates its own log area. Each log area consists of a
series of log records. A log record has a 64b data block (as shown in Figure 7) and a 64b
metadata block (as shown in Figure 8).

In Figure 7, there are 8B data, with one bit named TailBit borrowed from the meta-
data block, and one TornBit flag. The TornBit flag is used to check whether the data
block has been written. In persistent memory, a write of a 64b block can be an atomic
operation [Condit et al. 2009; AMD 2011; Intel 2013]. By setting and checking the Torn-
Bit flag before and after each log run, the unwritten blocks are found (as discussed in
Section 3.2). In this way, the atomicity of a block write is detectable. Since the TornBit
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Fig. 7. Data block format in a log record.

Fig. 8. Metadata block format in a log record.

flag consumes one bit in the data block, one bit from the metadata block (TailBit as
shown in Figure 8) is borrowed to form a 64b space for the 8B data.

In addition to the TornBit and TailBit, there are several flags in the metadata block
(as shown in Figure 8) that are used to describe the data block. The MASK is a bitmap
to indicate which bytes in the data block are valid. It has 8b, and each bit corresponds
to each byte in the data block. The FLG_DC is a flag to indicate whether the data block
is a commit/abort record or a data block. The FLG_CA is further used to differentiate
the commit record from the abort record. In a data record, its data block keeps the real
data value. In a commit record, its data block keeps the transactional identifier, TxID,
which is a global ID to determine the commit sequence, as discussed in Section 4.1. In
an abort record, its data block keeps the backpointer to straddle the aborted records,
as discussed in Section 3.2. Besides the four reserved bits, RESV, there is a 48b ADDR
to keep the home location address of the data block.

4.2.2. Adaptive BPPM Support. To support BPPM-A, one 64b metadata block is added in
the head of each log area. This metadata block keeps a 48b address and a 1b mode flag,
while the other 15 bits are reserved. The 48b address is the memory address inside
the log that the log organization is changed with the mode switch in BPPM-A. The log
records before the address are invalid and can be recycled, and the log records after
the address are valid. The mode flag is used to indicate which mode (VCBP or BPPM)
has the valid log records. During the recovery, this metadata block in the head of each
log can be used to determine the running mode of BPPM-A and to locate the valid log
records.
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4.3. Command Support in the CPU Cache

To persist data from the CPU cache to the persistent main memory in software, several
commands in the CPU cache need to be enhanced. We use the clflush command to force
a data block with a specific address in each level of the CPU cache to be written back
to the memory, and the mfence to prevent the reordering, similar to Venkataraman
et al. [2011] and Wu and Reddy [2011]. We also use the wbinvd command to flush
all data blocks in the CPU cache to be written back [AMD 2011; Intel 2013]. The
wbinvd command is used for bulk persistence, in which we ensure that there is no
side effect on correctness (as discussed in Section 3.3). It has been pointed out that
clflush and mfence commands do not guarantee durability due to the buffer queues in
the memory controller. Simple enhancement can be made easily to the CPU cache to
ensure durability [Dulloor et al. 2014]. We believe that the enhancement could also be
generalized to the wbinvd command for durability. In this implementation, we assume
that the clflush and wbinvd commands guarantee data durability.

5. EVALUATION

To evaluate the benefits of BPPM, we are going to answer the following questions:

(1) How does BPPM benefit from the proposed techniques, XIL and VCBP?
(2) How is BPPM sensitive to the variation of the value size, transaction size, size of

the log area, and the transaction idle time?
(3) How is BPPM performed adaptively with different memory latencies?

In this section, we first describe the experimental setup before answering these
questions.

5.1. Experimental Setup

BPPM Settings. In the evaluation, we compare BPPM with a baseline (BASE) system,
the Mnemosyne (MNE) system, and a no-persistence (NP) system. The BASE sys-
tem is a conventional transactional persistent memory implementation, as shown in
Figure 2(b). The MNE system is an optimized implementation of the baseline system,
which uses the write-combing technique [AMD 2011; Intel 2013] to bypass the CPU
cache to provide faster log persistence [Volos et al. 2011]. The no-persistence (NP)
system is an ideal transactional persistent memory system that has no persistence
operations. The performance is an upper bound of all solutions of persistence optimiza-
tions in transactional persistent memory. To evaluate the benefits from different tech-
niques in BPPM, we also perform experiments for BPPM in different modes: BP(XIL),
BP(VCBP), and BPPM. BP(XIL) is referred to as BPPM with only the XIL technique
used. Similarly, BP(VCBP) is referred to as BPPM with only the VCBP technique used.
BPPM is referred to as BPPM with both techniques used.

All the evaluations are conducted on a server with a 2.4GHz quad-core AMD Opteron
Processor and a 16GB DRAM memory. We emulate the latency of NVM by adding extra
latency in each memory flush operation3. In the evaluation, the log size is set to 1MB,
and the memory latency is set to 150ns by default.

Workloads. Table I lists the workloads that are used in the evaluations, including
basic data structures and well-known key-value (KV) stores. We evaluate the perfor-
mance of transactional operations on basic data structures, such as random swaps in a
large data array, insert/delete operations in a hash table, and insert/delete operations
in a red-black tree, which are also used in previous transactional persistent memory

3While the simulated memory latencies introduced by software may not accurately reflect the actual latencies
when evicting cache lines to persistent main memory, we believe that the relative findings across multiple
solutions are likely to still hold.
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Table I. Evaluated Workloads

Workloads Description

SPS [Coburn et al. 2011] Random swaps of array entries
Hash [Coburn et al. 2011] Insert/delete entries in a hash table
RBTree [Coburn et al. 2011] Insert/delete nodes in a red-black tree
B+Tree [Lu et al. 2014a] Insert/delete nodes in a B+ tree
KVStore [FAL Lab 2014] Key-value operations on Tokyo Cabinet

Fig. 9. Transaction throughput in single-thread mode.

works [Coburn et al. 2011; Lu et al. 2014a; Zhao et al. 2013]. The size of all values in
these data structures is set to 64b by default in the evaluation. We also implement a
B+ tree with a node size of 4KB, and evaluate its transactional operations. Each node
in the B+ tree has 200 KV pairs, and each key or value has a size of 8B. A transac-
tion in the B+ tree evaluation consists of multiple KV insert or delete operations. In
addition, we also evaluate transaction performance of operations on a well-known KV
system, Tokyo Cabinet [FAL Lab 2014], to understand the benefits of BPPM in real
KV systems. In the evaluation, all the workloads are run 5,000ms for each setting. The
total number of transactions in each workload is in the order of millions.

5.2. Overall Performance

We evaluate the performance of BPPM in both single-thread mode and multithread
mode by comparing BPPM in different modes, including BP(XIL), BP(VCBP), and
BPPM, with the BASE, MNE, and NP systems.

5.2.1. Single-Thread Evaluation. To focus on the persistence effect, we first run all bench-
marks in a single thread to avoid the effects from the concurrency control.

Figure 9 shows the normalized transaction throughput of the aforementioned sys-
tems using different workloads. All transaction throughputs are normalized to that of
the BASE system. Two observations are in order.

(1) The Blurred Persistence mechanism (shown as the black bar in Figure 9) im-
proves system performance significantly over the BASE and MNE systems. For the
evaluated workloads, the performance improvement in BPPM ranges from 56.3% to
143.7% compared with the BASE system, with an average of 86.3%. Compared with
MNE, the performance improvement in BPPM also can be as high as 74.6%, on av-
erage. While the persistence support in persistent memory has a 62.1% performance
degradation (by comparing the BASE system to the NP system), BPPM almost halves
this overhead.
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Fig. 10. Transaction throughput in multithread mode.

(2) Both the XIL and VCBP techniques (shown as the third and fourth bars, re-
spectively in each cluster in Figure 9) improve the performance of persistent memory.
With the XIL technique, performance improvement of the evaluated workloads ranges
from 9.7% to 50.5%, with an average of 21.3%. With the VCBP technique, performance
improvement ranges from 52.2% to 84.8%, with an average of 63.5%. Both techniques
are effective in performance improvement of transactional persistent memory.

5.2.2. Multithread Evaluation. To evaluate the performance with both persistence and
concurrency control effects, we run benchmarks in multiple threads and vary the num-
ber of threads to 1, 2, 4, and 8. We show the multithread evaluation results for the
hash table and RBTree workloads; the others have similar patterns and are omitted.

Figure 10 shows the transaction throughputs and the corresponding abort ratios for
the hash table and RBTree workloads. The top half of the figure shows the transaction
throughputs of each workload with different numbers of threads. As shown at the top
left of Figure 10, the transaction throughput of each evaluated system increases when
the number of threads is increased from 1 to 4, but drops when the number of threads
is further increased to 8. The reason is that the abort ratio increases dramatically
from about 1% to over 50% when the number of threads goes from 4 to 8, as shown
at the bottom left of Figure 10. Even though the performance in all evaluated systems
drops, BPPM reduces persistence overhead constantly by about 40% in the hash table
workload. The right half of Figure 10 shows similar results for the RBTree workload.
In the RBTree workload, BPPM reduces persistence overhead by about 43% constantly
when the number of threads goes from 1 to 8. To conclude, concurrency control has no
side effect on blurred persistence, and BPPM can gain benefits in both single-thread
and multithread settings.

5.3. Sensitivity Analysis

We evaluate the sensitivity of BPPM to different settings, including the value size of
each data structure, the size of the log area, and the transaction idle time. In this
section, we vary the settings in the hash table workload for the sensitivity evaluation.
Since we focus on the persistence overhead that is added to persistent memory, we use
a single thread to run the benchmark for the following evaluations.

5.3.1. Sensitivity to the Value Size. We measure the transaction throughput of the hash
table workload by varying the value size in its data structure from 8B, 64B, 256B,
1024B to 4096B.
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Fig. 11. Sensitivity to the value size.

Fig. 12. Sensitivity to the transaction size.

Figure 11 shows the transaction throughput of the hash table workload with differ-
ent value sizes. From this figure, we have two observations. First, as the value size
increases, the transaction throughput (in terms of transactions per second) drops, but
the byte throughput (in terms of bytes per second) increases. The byte throughput is
calculated by multiplying the transaction throughput with the value size. The reason
for the increase of the byte throughput is that the amortized persistence overhead per
byte decreases. With larger value sizes, a transaction can execute larger bytes before
a persistence is required. When the persistence overhead is amortized to each byte,
the cost is lowered. Second, performance improvement in BPPM (in terms of transac-
tion overhead that is reduced in BPPM) drops smoothly from 39.7% with an 8B value
size to 23.0% with a 4096B value size. We conclude that BPPM gains more benefits in
workloads with smaller value sizes.

5.3.2. Sensitivity to Transaction Size. To understand the impact of the transaction size,
we measure the I/O throughput of the hash table workload by varying the transaction
size (i.e., the number of operations in a transaction). I/O throughput is calculated by
multiplying the transaction throughput with the transaction size.

Figure 12 shows the I/O throughput of the hash table workload with different trans-
action sizes. From the figure, we observe that the I/O throughput of the NP system
keeps almost constant while I/O throughputs of the others improve smoothly. The rea-
son why performance in the BASE, MNE and BPPM systems improves is similar to
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Fig. 13. Impact of log size on transaction throughput.

Fig. 14. Impact of log size on recovery time.

that given in the value size evaluation. When the transaction size increases, a transac-
tion executes more I/Os before a persistence is required. Due to the reduced amortized
overhead, the I/O throughput is improved smoothly. In contrast, persistence operations
are removed in the NP system. Therefore, performance in the NP system can be hardly
affected by the transaction size.

5.3.3. Sensitivity to Log Size. In BPPM, bulk persistence is triggered when the log area
runs out of space. For this reason, performance of BPPM can be affected by the size
of the log area. Meanwhile, different log sizes lead to different recovery times during
recovery, as BPPM has to scan the log area for the recovery. To study the impact of log
size, we vary the log size from 0.1MB to 2MB (log size is set to 1MB by default in other
evaluations) to measure its implications on transaction throughputs.

Figure 13 shows the transaction throughputs for all evaluated workloads under
different log size settings. As shown in the figure, the performance of each workload
changes slightly as the log size increases. With a larger log size, bulk persistence can
be performed less frequently. The frequency of forced writebacks is reduced, and the
cache efficiency is improved. As such, the increase of the log size brings more benefits
to the transaction performance to a certain degree.

Figure 14 shows the recovery time of BPPM for different log size settings. We show
only the results for one workload, because the recovery times in the evaluated work-
loads are close to each other. As shown in the figure, the recovery time increases almost
linearly from 3.2μs with a log size of 0.1 megabytes to 49.8μs with a log size of 2MB.
Even with the log size of 2MB, the recovery time is in the order of tens of microseconds,
which can be regarded as constant recovery.
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Fig. 15. Sensitivity to the transaction idle time.

We conclude that, with increased size of the log area, the performance in BPPM can
be slightly improved, while the recovery is still fast.

5.3.4. Sensitivity to Transaction Idle Time. Transaction idle time is the time when a pro-
gram does not execute instructions. It affects the performance of asynchronous oper-
ations in transactions. To study this effect, we set the value size to 1024B and vary
the percentage of transaction idle time from 90% to 0% (no idle time) to evaluate the
sensitivity. In addition to the BASE, BPPM, and NP systems, we also evaluate the
MNE system with synchronous and asynchronous log truncation methods [Volos et al.
2011], which are denoted as MNE-SYNC and MNE-ASYNC, respectively, in Figure 15.

Figure 15 depicts transaction throughputs of the evaluated systems with different
percentages of the idle time. As the percentage of the idle time goes down, which means
busier programs, the transaction throughput goes up. With lower idle time percentage,
MNE-ASYNC has poorer performance than MNE-SYNC, which is consistent with the
results reported in previous work [Volos et al. 2011]. This is because the background log
truncation thread competes with the foreground transaction execution threads. Com-
paratively, BPPM has consistently better performance than MNE with both SYNC
and ASYNC log truncation. The reason is that BPPM removes the bookkeeping of
to-be-persisted data blocks and has no background threads. Therefore, BPPM gains
consistent performance benefits with the optimization dimension of blurred persis-
tence.

5.4. Adaptive BPPM (BPPM-A) Evaluation

In this evaluation, we first study the impact on different systems of main memory
latencies, then evaluate the performance of BPPM-A under different workloads.

5.4.1. Sensitivity to Memory Latency. To study the impact from different NVM technolo-
gies that have different memory access latencies, we set the memory write latency
to 35ns, 95ns, 150ns, 1000ns, and 2000ns to measure its implication on transaction
throughputs. Since BPPM is implemented to run directly on real servers, we add the
latency to each memory flush operation. Note that the latency is not added to memory
writes due to cache eviction in the evaluation, because programs are not aware of the
cache eviction in the CPU cache hardware.

Figure 16 shows transaction throughputs of the hash table workload with different
memory latency settings. In this figure, we omit the performance for the NP system,

ACM Transactions on Storage, Vol. 12, No. 1, Article 3, Publication date: January 2016.



3:22 Y. Lu et al.

Fig. 16. Sensitivity to the memory latency.

Table II. Warm-Up Time (ms)

Memory Latency (ns) SPS Hash RBTree B+Tree KVStore

35 39 49 35 112 216
95 53 49 56 112 202
150 52 52 50 110 210
1000 62 51 60 126 229
2000 62 72 74 128 245

because the memory-write latency has little effect on the NP system. As the NP system
has no persistence operations, it is not sensitive to the memory latency. The figure
shows transaction throughputs of other systems, for which we have two observations.

(1) First, in general, these protocols have worse transaction throughputs when the
memory latency is higher. However, the BPPM system has poorer performance than
the BP(VCBP) system when memory latency is high. The reason is that the BPPM
system forces uncommitted data blocks to be written back to persistent main memory
and has higher persistence overhead. In BPPM, the XIL technique executes data in the
log area, which is allocated with memory space in the slow persistent main memory
rather than in the fast volatile memory (e.g., DRAM). The bulk persistence forces all
data blocks in the CPU cache, including these uncommitted data in the log area, to be
written back. The uncommitted data are forced to be written back to slow persistent
main memory instead of fast volatile memory (e.g., DRAM), which leads to degraded
performance.

(2) Second, the performance of persistent memory gets worse with higher memory
write latency, but the performance benefits from the blurred persistence mechanism
become higher. The BPPM system outperforms the baseline system by 74.1% when the
latency is 35ns, but triples the performance of the baseline system when the latency is
2000ns. The BP(VCBP) system, the BPPM system with only the VCBP technique used,
can even have nearly five times of the performance of the baseline system.

5.4.2. Performance of Adaptive BPPM (BPPM-A). To evaluate the performance of BPPM-A,
we measure the transaction throughputs of BP(VCBP), BPPM, and BPPM-A systems
for all evaluated workloads. In BPPM-A, the warm-up time is set to the time of running
10,000 transactions.

Table II lists the warm-up time for each workload setting. The warm-up time is
tens or hundreds of milliseconds. The overhead of the dynamic strategy in check
mode switch is small. Even with the small set, BPPM-A chooses the right mode in
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Fig. 17. Performance of adaptive BPPM (BPPM-A).

the warm-up phase. As shown in Figure 6, BPPM-A keeps the best performance in
the three systems. In contrast, the static strategy is not flexible. For instance, if the
threshold is chosen to be 200ns, the SPS workload cannot be run in the better mode
(i.e., the BPPM mode). In conclusion, the dynamic strategy is more accurate in choosing
the better mode in BPPM-A, and the overhead of the dynamic strategy is small and
acceptable.

Figure 17 shows the transaction throughputs for BP(VCBP), BPPM, and BPPM-A
for evaluated workloads. As shown in the figure, all workloads except the SPS work-
load have worse performance in BPPM than in BP(VCBP) when the memory latency is
1000ns or 2000ns. The reason is that the execution data in addition to the transaction
data in XIL are forced to be written to persistent main memory, which incurs extra
overhead (as discussed earlier). When the memory latency is high, even the SPS work-
load still has better performance in BPPM than in BP(VCBP), the performance gap
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becomes much smaller. There is no single rule to choose the right mode. We conclude
that BPPM-A is necessary and effective.

6. RELATED WORK

The transaction mechanism has been widely used to ensure storage consistency in both
database management systems [Gray et al. 1981; Mohan et al. 1992; Ramakrishnan
and Gehrke 2000] and file systems [Tweedie 1998; Seltzer et al. 2000]. The design of
the transaction mechanism has evolved as storage media methods move from magnetic
disks to emerging NVMs. Flash memory has the no-overwrite property, that is, a flash
page cannot be overwritten until it is erased. To hide the long latency of the erase
operation, page writes are redirected to new free pages in flash storage. With this out-
of-place update method, both the new and the old versions are kept in persistent flash
memory. Data versioning in transactions is naturally supported. This enables efficient
transaction protocols inside storage devices [Prabhakaran et al. 2008; Lu et al. 2013a,
2015a; Ouyang et al. 2011; Lu et al. 2014c, 2015b], which are designed directly on flash
memory to leverage their no-overwrite property and reduce transaction overhead by
removing the journal or log writes.

Emerging byte-addressable NVMs are further accelerating the architectural change
in transaction design. Transaction designs can be classified into three categories
when NVMs are used differently in a storage system. First, when NVMs are used in
secondary storage, the internal bandwidth inside a storage device (due to the internal
parallelism) is much higher than the device bandwidth. MARS is a transaction protocol
that is proposed to copy data for transactions inside devices to exploit the internal
bandwidth [Coburn et al. 2013]. Second, when NVMs are used as persistent cache
(at memory level) to secondary storage, the persistence at memory level provided
by NVMs can be used to persistently keep the transactional data to reduce the
transaction overhead in persisting data to the secondary storage [Lowell and Chen
1997; Satyanarayanan et al. 1994; Lee et al. 2013]. Third, when NVMs are used for
data storage at the memory level (i.e., persistent memory), the transaction mechanism
needs to be designed when the data are written back from the CPU cache to the
persistent main memory. Cache management in the CPU cache is quite different from
that in the main memory. Transaction design in persistent memory is a challenge, and
has been intensively researched [Condit et al. 2009; Venkataraman et al. 2011; Volos
et al. 2011; Coburn et al. 2011; Wu and Reddy 2011; Moraru et al. 2011; Narayanan
and Hodson 2012; Guerra et al. 2012; Zhao et al. 2013; Dulloor et al. 2014; Lu et al.
2014a; Wang et al. 2014; Sun et al. 2015]. Our proposed BPPM is used in persistent
memory, that is, the third category of the NVM usage.

In persistent memory, the high transaction overhead comes from not only the persis-
tence overhead that writes through multiple levels of the CPU cache, but also the or-
dering overhead that requires I/Os to be performed in strict order. Existing approaches
try to reduce the transaction overhead from both hardware and software efforts. Thus,
we classify existing approaches into different categories, as shown in Figure 18.

Hardware Approaches in Reducing Persistence Overhead (top right of Figure 18). In
persistent memory, data persistence is achieved by forcing data to be written back
to memory through multiple levels (e.g., L1, L2, and last-level cache (LLC)) of the
CPU cache. Making some or all of the levels nonvolatile can reduce persistence over-
head. Kiln [Zhao et al. 2013] is a recently proposed protocol to use fast NVM as the
LLC in the CPU cache to reduce persistence overhead. Whole System Persistence
(WSP) [Narayanan and Hodson 2012] takes this approach to an extreme. It makes
all levels of cache nonvolatile and uses backed battery to transfer data through data
buses safely, even on power failures. In contrast, our proposed BPPM does not require
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Fig. 18. Classifications of existing approaches in reducing transaction overhead in persistent memory.

new hardware; instead, it reduces persistence overhead by blurring the volatility-
persistence boundary.

In some NVMs, such as PCM, write operations can be performed faster with lower
retention and reliability requirements. Leveraging this property, DP2 [Sun et al. 2015]
differentially writes the log records and the data records, respectively, using different
write speeds. It also schedules differently for the two kinds of operations. The persistent
overhead of the log records is reduced. In contrast, our proposed BPPM is a software
approach, which does not rely on specific write properties of NVMs.

Hardware Approaches in Reducing Ordering Overhead (top left of Figure 18). Relax-
ing the ordering requirements is another approach to reducing transaction overhead
in persistent memory. Since the ordering is ensured at the boundary between the CPU
cache and the memory, keeping ordering inside the CPU cache hardware is an efficient
approach. BPFS [Condit et al. 2009] introduces the epoch semantic in the CPU cache.
Any I/O after the epoch is allowed to be performed only after all I/Os before the epoch
are complete. Ordering is kept using epoch in the hardware, which frees programs
from costly waiting in ordering keeping. Similarly, CLC [Moraru et al. 2011] keeps the
ordering in the CPU cache with status checking for programs.

Strand Persistency [Pelley et al. 2014] is a relaxed consistency model for persistent
memory. It splits I/O dependencies into concurrent threads using program semantics,
which allows reordering of I/Os that have no dependency.

LOC [Lu et al. 2014a] introduces speculative techniques to the CPU cache hardware
for I/O persistence. LOC allows reordering of I/Os to persistent main memory, but
makes the commit sequence visible in program order. PTM [Wang et al. 2014] takes a
similar approach to extend the CPU cache hardware for consistency issues.

BPPM differs from these techniques in two ways: (1) BPPM is a software approach,
while the other techniques need hardware support; (2) BPPM relaxes the persistence re-
quirement, eliminating unnecessary persistence operations, while the other techniques
relax the ordering requirement to allow the reordering of persistence operations.

Software Approaches in Reducing the Ordering Overhead (bottom left of Figure 18).
Ordering overhead in transactions has long been a design challenge in storage systems.
New commit protocols, using checksums [Prabhakaran et al. 2005], backpointers
[Chidambaram et al. 2012; Lu et al. 2014b], and counters [Lu et al. 2013b], have
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been proposed in traditional storage systems to remove the ordering of the commit
records, which forces waiting for the completeness of all log records. In traditional
storage systems, researchers have also studied the asynchronous ordering keeping
techniques, which only maintain update dependencies and delay the persistence of
update operations [Frost et al. 2007; Nightingale et al. 2006].

In persistent memory, NME [Volos et al. 2011] proposes two techniques, torn-bit
and asynchronous checkpoint, to reduce ordering overhead in persistent memory. The
torn-bit technique removes the use of commit record and thus the ordering overhead
before commit operations. This technique can be well incorporated and has also been
used in BPPM. The asynchronous checkpoint technique asynchronously writes the
checkpointed data to their home locations in the background, which benefits programs
with more idle time. This technique is not used in BPPM, due to high overhead in
tracking those checkpointed data and loss of cache-coalescing opportunities across
transactions. While NME uses asynchronous techniques to hide the write overhead
in transactions, our proposed BPPM achieves the same goal by avoiding unnecessary
persistence operations, that is, redundant persistence of duplicated copies that are
introduced by strict isolation of the uncommitted data from the to-be-persisted data.

In conclusion, Blurred Persistence uses a software approach to reduce the persistence
overhead. It falls into a new category in reducing transaction overhead of persistent
memory, as shown at the bottom right of Figure 18.

7. CONCLUSION

Persistent memory enables memory-level storage, but needs to ensure storage consis-
tency by carefully persisting data blocks to persistent memory in time and in correct
order. Strictly tracking and placing data blocks in the volatile CPU cache or in the per-
sistent main memory are costly, as the CPU cache is hardware-controlled and unaware
of data locations. Our proposed Blurred Persistence mechanism blurs the volatility-
persistence boundary to reduce this overhead. With this mechanism, uncommitted
data blocks (i.e., the volatile data) are allowed to be persisted, only if they are de-
tectable in persistent main memory. Checkpointed data (i.e., the to-be-persisted data)
are allowed to stay volatile leveraging the durable copies in the log, if they are ensured
to be persisted in the correct commit order across threads. The costly bookkeeping
of those blocks that need persistence is also eliminated with bulk persistence, due to
the allowance of persistence for uncommitted data. Evaluations of our BPPM imple-
mentation show that Blurred Persistence is an effective and efficient software-based
mechanism for transactional persistent memory.
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