
24

TH-DPMS: Design and Implementation of an RDMA-enabled

Distributed Persistent Memory Storage System

JIWU SHU, YOUMIN CHEN, QING WANG, BOHONG ZHU, JUNRU LI, and

YOUYOU LU, Tsinghua University

The rapidly increasing data in recent years requires the datacenter infrastructure to store and process data

with extremely high throughput and low latency. Fortunately, persistent memory (PM) and RDMA technolo-

gies bring new opportunities towards this goal. Both of them are capable of delivering more than 10 GB/s

of bandwidth and sub-microsecond latency. However, our past experiences and recent studies show that it

is non-trivial to build an efficient and distributed storage system with such new hardware. In this article,

we design and implement TH-DPMS (TsingHua Distributed Persistent Memory System) based on persistent

memory and RDMA, which unifies the memory, file system, and key-value interface in a single system. TH-

DPMS is designed based on a unified distributed persistent memory abstract, pDSM. pDSM acts as a generic

layer to connect the PMs of different storage nodes via high-speed RDMA network and organizes them into

a global shared address space. It provides the fundamental functionalities, including global address man-

agement, space management, fault tolerance, and crash consistency guarantees. Applications are enabled to

access pDSM with a group of flexible and easy-to-use APIs by using either raw read/write interfaces or the

transactional ones with ACID guarantees. Based on pDSM, we implement a distributed file system and a key-

value store named pDFS and pDKVS, respectively. Together, they uphold TH-DPMS with high-performance,

low-latency, and fault-tolerant data storage. We evaluate TH-DPMS with both micro-benchmarks and real-

world memory-intensive workloads. Experimental results show that TH-DPMS is capable of delivering an

aggregated bandwidth of 120 GB/s with 6 nodes. When processing memory-intensive workloads such as

YCSB and Graph500, TH-DPMS improves the performance by one order of magnitude compared to existing

systems and keeps consistent high efficiency when the workload size grows to multiple terabytes.

CCS Concepts: • Computer systems organization → Embedded systems; Redundancy; Robotics; • Net-

works → Network reliability;

Additional Key Words and Phrases: Storage system, distributed system, remote direct memory access, per-

sistent memory

ACM Reference format:

Jiwu Shu, Youmin Chen, Qing Wang, Bohong Zhu, Junru Li, and Youyou Lu. 2020. TH-DPMS: Design and

Implementation of an RDMA-enabled Distributed Persistent Memory Storage System. ACM Trans. Storage

16, 4, Article 24 (October 2020), 31 pages.

https://doi.org/10.1145/3412852

This work is supported by National Key Research and Development Program of China (Grant No. 2018YFB1003301), the

National Natural Science Foundation of China (Grant No. 61772300, 61832011), and Huawei.

Authors’ address: J. Shu, Y. Chen, Q. Wang, B. Zhu, J. Li, and Y. Lu (corresponding author), Department of Computer

Science and Technology, Tsinghua University, 30 Shuangqing Road, 201 East Main Building, Beijing, 100084, China; emails:

shujw@tsinghua.edu.cn, {chenym16, q-wang18, zhubh18, lijr19}@mails.tsinghua.edu.cn, luyouyou@tsinghua.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1553-3077/2020/10-ART24 $15.00

https://doi.org/10.1145/3412852

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

https://doi.org/10.1145/3412852
mailto:permissions@acm.org
https://doi.org/10.1145/3412852

24:2 J. Shu et al.

1 INTRODUCTION

From 2013 to 2020, the digital universe grew by a factor of 10, from 4.4T gigabytes to 44T,
which more than doubles every two years [5]. Today, there are 30B connected devices generating
unprecedented amounts of data, which requires the datacenter infrastructure to collect, process,
store, and analyze data with extremely high throughput. Meanwhile, emerging datacenter appli-
cations, such as e-commerce, autopilot, and financial trading, are rapidly evolving from simple
data-serving tasks to sophisticated analytics in response to real-time queries [65], which brings
great challenges to the storage system design.

To minimize the response latency and maximize the processing throughput, a number of recent
projects are proposed to keep the data directly in DRAM (e.g., Spark [90], SAP-HANA [31], and
Redis [11]). Compared to external devices (e.g., SSD/HDD), DRAM delivers orders of magnitude
lower latency (∼60 ns) and much higher bandwidth (∼100 GB/s). However, DRAM has its own
limitations: (1) Low capacity – a single DRAM DIMM only has up to 128 GB of space; (2) High power

consumption – DRAM consumes as much as half of the total system power in a computer [33];
(3) Expensive – 1 GB of DRAM costs $7.6, which is 20× higher than that of NAND Flash and 200×
higher than hard disks; (4) Volatile – DRAM requires power to maintain the stored information, so
when the power is interrupted, the stored data are quickly lost; and (5) Unstable performance due to
the background refreshing. What’s more, today’s datacenters are built on top of monotonic servers
connected with commodity networking technology; node-to-node communication delay can be as
high as 100 μs. Therefore, deploying distributed in-memory storage in datacenters is less attractive:
moving the data from disk to DRAM yields a 100,000× reduction in latency, but distributing the
memory through commodity network eliminates 1000× of such benefit [65]. These shortcomings
have hindered its large-scale deployment in the industry.

Emerging non-volatile memory (NVM) technologies, such as PCM [49, 72, 94], ReRAM [14], and
3D XPoint [4], are capable of providing data persistency while achieving close performance and
much higher density than DRAM (see Table 1 for details). By attaching directly to the memory bus,
NVMs can be accessed via byte-addressable Load/Store instructions. Hence, such NVMs are also
called as persistent memory (PM). Intel Optane DC Persistent Memory Modules (DCPMM), as the
only available PM device in the market, began shipping in 2019. Moreover, remote direct memory
access (RDMA) reduces latency by directly accessing the remote memory at user-level without the
involvement of remote CPUs and offloading network processing to the adapter. Recent ConnectX-
6 adapters are capable of delivering 200 Gbps of bandwidth and sub-microsecond latency [1].
These attractive features make them promising to build large-capacity, high-performance, and
low-latency memory storage system.

Over the past decade, a large number of works designed file systems [19, 22, 23, 25, 27, 30, 44, 48,
67, 69, 77, 82, 84, 85, 91, 93], data-structures [18, 35, 50, 62, 70, 76, 83, 89, 95], and new programming
models [9, 24, 36, 55, 57–59, 78] for NVMs, and tried to use RDMA in distributed systems to improve
their performance [20, 28, 29, 40–42, 51, 52, 61, 65, 71, 71, 79, 80]. However, it is non-trivial to build
large memory storage system using persistent memory and RDMA simultaneously:

• Lack of abstraction. Different persistent systems include similar functions. For instance,
both key-value stores and file systems require functions such as memory allocation, crash
consistency, and fault tolerance. However, these functions are independently designed in
different systems, which are redundant. Meanwhile, different applications in a data center
prefer different interfaces, including file systems, key-values, or even memory interface.
Therefore, an abstraction is necessary for different systems to coexist efficiently.

• Remote persistence. To ensure data persistence and crash consistency, storage systems
typically use hardware instructions (e.g., clwb/clflushopt) to flush the modified data from

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

TH-DPMS 24:3

Table 1. Comparison of Different Storage Technologies [13, 30, 34, 78]

Optane DCPMM DRAM NVDIMM Optane SSD† NAND FLASH‡ HDD

Capacity∗ Up to 512 GB Up to 128 GB 100s of GBs Up to 1 TB Up to 4 TB Up to 14 TB

Read Lat. 300 ns 10 - 20 ns 50 ns 9 μs 35 μs 10 ms

Write Lat. 150 ns 10 - 20 ns 150 ns 30 μs 68 μs 10 ms

Price $4/GB $7.6/GB $3-13/GB $1.30/GB $0.38/GB $0.03/GB

Addressability Byte Byte Byte/Block Block Block Block

Volatility Non-volatile Volatile Non-volatile Non-volatile Non-volatile Non-volatile

∗Per module; †Intel Optane SSD 905P Series (960 GB) (AIC PCIe ×4 3D XPoint).
†Samsung 960 Pro 1 TB M.2 SSD with 48-layer 3D NAND (Source: Wikibon).

volatile CPU cache to PM. However, it is challenging to ensure such guarantee when PM
space is exported to remote servers via RDMA, since local CPUs are unaware of such remote
write events.

• Microsecond-scale software design. Developing storage systems with such fast hard-
ware devices requires refined software design. First, CPU, which was not supposed to be
the bottleneck, becomes overloaded when accessing to PM or transferring data via RDMA;
thus, any waste of CPU resources, i.e., OS thread schedule, will block potential of fast hard-
ware devices from unleashing. Second, since latency of RDMA and PM is microsecond-scale,
any subtle operations such as cross-NUMA access can bring unacceptable latency. Hence,
mechanisms such as user-level polling, coroutine-based task handling, and NUMA-aware
policies could be applied in the system design to improve efficiency.

In this article, we introduce a generic layer to abstract the distributed persistent memory layer.
On top of this layer, we build traditional storage systems with legacy APIs (e.g., file, key-value)
to support existing applications; meanwhile, some emerging applications can interact with it di-
rectly by leveraging the memory interface. With this, we design and implement TH-DPMS. The
generic layer named pDSM (persistent distributed shared memory) connects the persistent mem-
ory of different nodes via high-speed RDMA NIC. pDSM differs from traditional DSM systems [17,
47, 53] in that it is far more than just a global address manager. Instead, it is a full-fledged abstrac-
tion of distributed persistent memory with high efficiency, crash consistency, fault tolerance, and
comprehensive interfaces. Specifically, pDSM consists of six major subsystems:

(1) iRDMA. It is an efficient and flexible RDMA-based network primitive that supports
RDMA-based RPC, light-weight remote copying, and remote persistence.

(2) Global shared address management. Similar to traditional DSM systems, pDSM organizes
the distributed PM into a global address space for unified accessing, but it adopts a 2-GB-
grained paging mechanism to reduce the overhead of address management.

(3) Centralized monitor is responsible for managing a global view (e.g., global segment table
management, handover when configuration changes).

(4) Space management. We use two approaches to manage the 2 GB segments, including a
persistent allocator (i.e., PAllocator) for fine-grained space allocation (e.g., metadata) and
an object store to store large data chunks.

(5) Replication system. The 2 GB segment is the minimal unit used in TH-DPMS for replica-
tion. It differs from the traditional approach in that it replicates small-sized metadata via
an operation log [16], so the networking overhead can be amortized by batching.

(6) Distributed transactional system. As the main contribution, pDSM enables the applica-
tions to access distributed PM spaces through transactional interfaces. Our concurrency

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

24:4 J. Shu et al.

control protocol is based on FaRM [29], despite that crash consistency is the main consid-
eration in our implementation.

Based on the above subsystems, pDSM abstracts a bunch of flexible and easy-to-use APIs, en-
abling applications to access distributed PM either by directly using raw read/write interfaces or
through transactional interfaces with ACID guarantees. As two examples, we implement a dis-
tributed persistent memory file system (pDFS) and a distributed key-value store (pDKVS) based
on pDSM. The existence of pDSM layer significantly enhances productivity when we implement
these two storage systems. Meanwhile, our evaluation also shows that both pDFS and pDKVS
are capable of delivering bandwidth and latency approaching the hardware performance. When
running large-scale and memory-intensive workloads such as YCSB and Graph500, TH-DPMS im-
proves the performance by one order of magnitude. It also keeps consistent and high efficiency as
the workload size grows to multiple terabytes.

2 BACKGROUND

2.1 Optane DCPMM

Intel Optane DC Persistent Memory Module (Optane DCPMM), the first PM product, was released
in April 2019. It is attached to the memory bus and can be accessed via CPU Load/Store instructions.
Optane DCPMM has asymmetric read/write performance: With six Optane DIMMs, the overall
read bandwidth can reach 37.6 GB/s, while the write bandwidth peaks only at 13.2 GB/s. Besides,
Optane DCPMM shows higher read latency (∼300 ns), which is much higher than that of DRAM.
Programming in PM is also quite different. CPU issues writes to PM in 8-byte failure-atomic unit,
which is smaller than that of HDDs or SSDs (which are 512-B sectors or 4-KB pages). This requires
extra techniques (e.g., redo/undo logs) to achieve atomicity. In PMs, these writes are first cached in
the volatile CPU cache and are then written back to the PM in an arbitrary order. Guaranteeing the
consistency of data requires us to order the writes. Such ordering is ensured from the following
two aspects: (1) flushing the cache line via clflush, clwb, or clflushopt instructions, to ensure
that the order of writes is consistent with the actual order when they reach the PM controller;
(2) issuing a mfence after each write, to ensure that the current write becomes visible before any
other following writes. The small-sized failure-atomic unit and the ordering constraints make it
more challenging to design consistent system software.

2.2 Remote Direct Memory Access

RDMA, as its name implies, can directly access remote memories without the involvement of re-
mote CPUs. It reduces end-to-end latency by enabling data transfers over InfiniBand and Con-
verged Ethernet fabrics. RDMA can be configured into three types of connections, which are reli-
able connection (RC), unreliable connection (UC), and unreliable datagram (UD). Among them, RC
and UC only support one-to-one communication paradigm, so they need to create separate queue
pairs (QP) for different connections. Instead, UD supports one-to-many data transferring, but it
has limited MTU size, which is only 4 KB. RDMA supports two types of verbs, which are one-
sided (a.k.a., memory semantic) and two-sized (a.k.a., message semantic). One-sided verbs (e.g.,
read, write, atomic) can directly access remote memory, while two-sided verbs (e.g., send/recv)
require both sides to get involved. write-with-imm, as a special verb, shares the characteristics of
both one- and two-sided verbs: It can write remote memory directly like one-sided verb does, but
requires the remote server CPU to post a recv verb beforehand, to receive the 32-bit immediate
value. As shown in Table 2, different kinds of verbs are supported differently in each connection
mode.

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

TH-DPMS 24:5

Table 2. RDMA Verbs and MTU Sizes in

Different Connection Modes

Type Send/Recv Write[-imm] Read/Atomic MTU
RC ✔ ✔ ✔ 2 GB
UC ✔ ✔ ✗ 2 GB
UD ✔ ✗ ✗ 4 KB

Fig. 1. Hardware configuration of TH-DPMS (❶: TH-DPMS PM servers; ❷: RDMA-enabled high-speed

switch; ❸: Global monitor; ❹: Client nodes that run applications.)

3 THE DESIGN OF THE TH-DPMS

TH-DPMS is a high-performance, low-latency, and crash-consistent distributed memory storage
system. It achieves these goals by leveraging the RDMA-capable networks and persistent memory
with redesigned system software. It proposes a novel component named persistent Distributed

Shared Memory (pDSM) with global consistent address space. pDSM abstracts the common fea-
tures that a storage system must provide (e.g., space management, failure-atomic update protocol,
replication) to reduce redundant data copy and simplify the software stack.

3.1 Hardware Configuration

Figure 1 illustrates the hardware configuration of TH-DPMS. TH-DPMS consists of four parts,
which are ❶ the TH-DPMS PM servers, ❷ the RDMA-capable high-speed switches, ❸ the central-
ized monitor that does coarse-grained coordination out of the critical path, and ❹ the client nodes
running applications.

The TH-DPMS PM servers, also the key parts of the TH-DPMS system, are depicted in detail
at the right part of Figure 1. The PM servers are equipped with the actual persistent memory—
Intel Optane DC Persistent Memory [4]—and second-generation Xeon Scalable processors. Optane
DCPMMs are configured in 100% App Direct mode [38], so TH-DPMS has direct byte-addressable
access to the PM. Recent work [88] points out that NUMA effects for Optane are much larger
than they are for DRAM, so designers should work even harder to avoid cross-socket memory
traffic. Regarding this, each PM server is equipped with two Mellanox 100 Gbps network adapters
to reduce the overhead of cross-NUMA data transferring. Other parts (centralized monitor and
client nodes) only have one adapter, since the network is not the bottleneck. Table 3 reports the
relevant details of each PM server. Note that TH-DPMS can work perfectly with arbitrary number

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

24:6 J. Shu et al.

Table 3. Configuration Details of the PM Server Node and the RDMA Switch

CPU

Type 2× Intel Xeon Gold 6240M
of physical cores 36 in total

Frequency 3.3 GHz

Caches
L1: 32 KB Icache, 32 KB Dcache

L2: 1 MB, L3: 25 MB (shared)

MEM

PM Capacity 1.5 TB (256 GB/DIMM)
PM Read Latency 302 ns (random 8-byte read)

PM Write Bw 13.2 GB/s (4 KB sequential)
DRAM Capacity 192 GB (32 GB/DIMM)

OS
Release Version Ubuntu 18.04.3 LTS

Kernel Linux 4.15.0
NIC 2×Mellanox MCX555A-ECAT 100 Gbps, single port

Switch Mellanox MSB7790-ES2F 100 Gbps, 36 ports

of network interfaces, we choose to deploy two network interfaces only to eliminate the cross-
NUMA effects.

The centralized monitor is responsible for maintaining a global view of the cluster. The clients,
which run the actual applications, access the TH-DPMS with the given APIs. The TH-DPMS PM
servers, the monitor, and the clients are connected via an RDMA-capable 100 Gbps switch.

3.2 Overview of TH-DPMS

Figure 2 describes the software architecture of TH-DPMS. The key component, pDSM, is high-
lighted with gray color. It connects the PM devices of different PM servers via the RDMA network
and organizes them into a globally consistent address space. In this way, the clients can trans-
parently access remote persistent memory via pDSM. Based on the global address space, pDSM
abstracts the common components that most storage systems rely on (e.g., naive heap, replica-
tion, transaction, and object), and provides a bunch of flexible APIs to fulfill the requirements of
different storage systems (e.g., file system, key-value store, database).

From the bottom up, pDSM first incorporates an RDMA-based communication primitive named
iRDMA. Since the storage systems transfer data in different ways and impose different per-
formance requirements to the network, iRDMA is designed with the following considerations:
(1) zero-copy data transferring with high bandwidth; (2) low latency message passing by imple-
menting a customized RPC, which is required when sending light-weight command messages or
accessing metadata with small payloads; (3) providing remote persistence primitive to enable per-
sistence of updates to remote byte-addressable persistent memory, since the visibility of RDMA
updates on the remote server is not the same as persistence of those updates [46]. With iRDMA,
pDSM can organize the PM devices of different PM servers into a unified address space, just as the
traditional DSM system does. Similar to existing virtual memory management in the operating
system, TH-DPMS uses segment to organize the address space, but at much coarser granularity
(i.e., 2 GB in our implementation). It also assigns each segment extra permission bits to enforce
fine-grained access control.

The pDSM space is managed in two ways: One is the naive heap, which uses the global address
from the bottom up; the other is the object space that uses the address in the opposite way. We
use address size of 128-bit, so the two spaces are less likely to overlap with each other. The naive

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

TH-DPMS 24:7

Fig. 2. Software architecture of TH-DPMS.

heap space is managed with a persistent and consistent allocator to serve those fine-grained space
allocation requests (e.g., allocate space for metadata and other small-sized items); the object space,
instead, stores coarse-grained data (e.g., file data). To improve the reliability and fault tolerance,
both the naive heap and the object space are replicated via the replication system. It replicates the
naive heap and objects in different ways: The small-sized items in the heap space are synchro-
nized to the remote nodes via an operation log [16], so the networking overhead can be amortized
by batching among multiple accesses; the objects, which have larger sizes, are mirrored to other
replicas by the clients directly via a primary-backup replication protocol. Finally, pDSM incorpo-
rates the distributed transactional system, so applications can update data with ACID guarantees
by using the transactional interfaces.

Note that the standalone monitor is introduced to maintain a global view of the cluster. Such
global view includes the membership status, global address mapping table, mappings of replica, as
well as load information, and so on. As the view change events happen infrequently and most of
the actions can be done out of the critical path, such centralized design does not hurt the overall
performance too much (see Section 4.1.3).

With pDSM, upper-layer storage systems are capable of selecting the most suitable interfaces
(or functional components) to implement their internal mechanisms. For instance, a distributed
file system can use the naive heap with the transactional interface to manage its metadata and put
the file data in the object store and replicate them to remote servers via the replication system.
Similarly, a key-value store typically consists of an index structure (e.g., hash table or a b-tree) and
the actual key-value items. Therefore, the index items, as well as the small-sized key-value items,

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

24:8 J. Shu et al.

can be put in the naive heap directly, and large key-value items are stored separately by the object
store.

The insight behind the design of TH-DPMS lies in the following aspects:

(1) High performance. With the abstraction of the pDSM layer, the clients are capable of
directly pushing/pulling data to/from the storage system without redundant data copy
overhead as in traditional network/storage stacks. It also adopts different mechanisms to
process small and large data items, in terms of space management and replication.

(2) Simplified software stack. The common components, such as the space management,
failure-atomic update protocol, fault tolerance, networking, and so on, are required by
most storage systems. TH-DPMS incorporates the pDSM layer to manage the above func-
tionalities, and upper layer software can directly use its APIs. Therefore, the software
redundancy is eliminated.

(3) Flexible APIs. TH-DPMS provides a bunch of APIs. Applications can choose different
interfaces based on their own requirements. An application can directly access the naive
heap without any crash consistency guarantees. One can also use high-level APIs (e.g.,
transactional interfaces) to avoid the burden of implementing them from scratch.

(4) Failure isolation. External storage devices (e.g., SSD/HDD) are managed by the kernel,
and any accesses to them are carefully authenticated. Persistent memory, instead, can
be accessed arbitrarily by applications in user space arbitrarily. So, a buggy process may
corrupt other applications by introducing stray writes to the PM. TH-DPMS avoids this
by managing all the PM space from the cluster, and any accesses to PMs are authenticated
by pDSM (by checking their permissions).

4 IMPLEMENTATION

For performance considerations, TH-DPMS is implemented from scratch without the help of pre-
vious tools like PMDK [9]. In this part, we describe how TH-DPMS is implemented and illustrate
the key techniques it introduces.

4.1 pDSM: Persistent Distributed Shared Memory

pDSM, as the key component in TH-DPMS, mainly consists of six parts, which are the network-

ing, global address management, centralized monitor, space management, replication system, and
distributed transaction. In this section, we describe the implementation of pDSM by introducing
the above six subsystems.

4.1.1 iRDMA: Flexible and Efficient RDMA-based Network Primitive. TH-DPMS uses Reliable
Connection (RC) for inter-node communications, as RC supports reliable and variable-sized data
transferring [20]. The connections (i.e., queue pairs) are established in the following way: (1) Each
PM server assigns its cores with unique ID starting from zero. Each core creates QPs with the cores
on remote servers that own the similar ID (with non-uniform machines in cluster, the connection is
made by using mod operations for the core numbers for mapping). In TH-DPMS, communications
between PM servers occur only between cores with the same ID. (2) A client creates a QP with
each PM server by randomly selecting a server core based on a manifest pre-aquired from the
monitor. (3) Each PM server core and each client create a QP with the monitor. Such coreID-to-
coreID connection mapping is based on tradeoffs made between QP connection scalability and
CPU races. Furthermore, for the RDMA RC QP scalability, we use ConnectX-5 IB NICs, which
supports 60K connections with less than 10% performance drop. When using coreID-to-coreID
connection mapping, it could support up to 2K servers for 36-core servers.

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

TH-DPMS 24:9

To support efficient communications in TH-DPMS, we implement the following three network-
ing primitives:

• RDMA-based RPC. RPCs are used to transfer messages with small payloads (e.g., metadata
requests). We choose RDMA write-with-imm verb to send both request and response mes-
sages. write-with-imm allows us to encapsulate a 32-bit immediate value in the message to
notify the remote cores of the arrival of remote write access. We leverage the 32-bit imme-
diate field to store the address (i.e., offset) of the written data. Hence, a remote server core
does not need to scan the memory buffer repeatedly to discover new messages [56].

• Light-weight Remote Copy. RDMA supports zero-copy data transferring. However, we find
it is hard to achieve zero-copy between the application’s buffer and storage image: applica-
tion’s buffer is temporarily allocated without being registered to the NIC. Hence, we need to
register them before each time issuing the remote copy. However, the registration function
(ibv_reg_mr()) is time-consuming. Hence, we choose to build a buffer pool as an in-transit
area, which is registered beforehand to serve remote copy. To write data remotely, for ex-
ample, the data are first copied to the buffer pool and then transferred to remote node.

• Remote Persistence. Remote persistence is an important primitive in persistent memory
storage system. During an RDMA transferring, there are many volatile buffers between
the two hosts (NIC cache, LLC, memory controller, etc.). Hence, we need a way to ensure
that the transmitted data have been persistently stored on remote servers. In TH-DPMS, to
send data with persistence requirements, we directly use the RDMA write-with-imm verb.
This verb supports remote direct write and is capable of notifying remote side with a 32-bit
immediate value. Hence, the receiver can actively persist the newly written data once the
data have been transferred, and the remote persistence primitive is achieved with only
one network round-trip. However, the immediate field is too small to store the size and the
address of the written data. Fortunately, we observe that it is common in storage systems
for a client to post a RPC beforehand to find the metadata before actually accessing data.
Hence, remote server can record such information locally when it receives such RPCs and
use such information to find the written data when it is notified by the immediate value.
When the above condition cannot be met, remote persistence is achieved by legacy RPCs.

4.1.2 Global Address Management. TH-DPMS organizes the PM spaces in the cluster via a two-
layered paging mechanism. TH-DPMS first cuts the PM space of each PM server into 2 GB seg-
ments, which is the minimum granularity that global address manager (i.e., the monitor) manages.
Each segment also works as the minimum unit for replication, isolation, and recovery. Within each
2 GB segment, TH-DPMS utilizes the PAllocator (Section 4.1.4) and the object store (Section 4.1.5)
for finer space management.

As shown in Figure 3, the global address is formatted as < Descriptor, Segment No., In-
segment Offset > with 128 bits. Among them, the descriptor describes the internal attributes of a
2 GB segment, such as the permission bits, the number of replicas, and so on. Similar to existing
memory management in the operating system, the global address is indexed via a page table-like
structure, named mapping table in this article. The mapping table is persistently stored at the
monitor. The accessed mapping items are also cached at each PM server to reduce the network
round-trips when accessing the global address space. Each mapping item has the following format
(three replicas, for example): < Sd, Sno >➠ < (Ni, offi), (Nj, offj), (Nk, offk) >, which indicates that
a 2 GB segment with segment number of Sno and segment descriptor of sd are mapped to three PM
servers, with node ID of Ni, Nj, and Nk, respectively, at their corresponding offset of offi, offj, and
offk. The first node in the mapping item always indicates the primary replica, while the other two
represent the backup replicas.

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

24:10 J. Shu et al.

Fig. 3. Global Address Space management.

We choose 2 GB as the default segment size for two reasons: (1) it is big enough, so the map-
ping table will not grow extremely large. For example, the mapping table of a 1000s TB PM pool
consumes merely several megabytes of space, which can perfectly fit into last level cache; (2) the
2 GB segment is also small enough to support fine-grained access control and efficient replication.
Note that the size of a physical segment does not impact the overall performance directly, because
allocations on critical path are actually accomplished by PAllocator and object store.

To enable zero-copy data transferring, TH-DPMS needs to register the PM space to the NIC to
enable remote direct memory access. However, it is dangerous to register all the PM spaces and
export them to the clients, since a malicious client can easily corrupt the data by writing some
arbitrary data. In TH-DPMS, we cut the PM space into 2 GB segments and register each segment
separately to the NIC to generate different keys for them. These keys are stored along with the
mapping items, and the monitor is responsible for managing these keys. The monitor only assigns
the keys to the clients that have access permissions. In this way, a client cannot read/write the
segment that it does not have the access rights. Currently, we do not support revoking permission
on clients. Using contiguous 2 GB segments for replication also greatly simplifies the software
design: RDMA enables us to push the data to different replicas using one-sided verbs without the
involvement of remote CPUs (see Section 4.1.7).

4.1.3 Centralized Monitor. TH-DPMS relies on the centralized monitor for cluster-wide coor-
dination, which ensures that all the PM servers agree on a consistent global configuration. To
prevent the monitor from impacting the overall storage performance, we choose three standalone
servers to run the monitor instance, and they are synchronized using the Raft protocol [68]. One
of the servers is elected to work as the leader and accepts the requests from the PM servers. The
monitor is involved in the following procedures:

Mapping Table Management. Similar to existing virtual memory management, the global
address space is never mapped to any physical PM space when TH-DPMS is initialized. We describe
how such mapping is established by illustrating the case below: The client issues a global address
request, e.g., space allocation, to one of a PM server (e.g., Ni), TH-DPMS follows the steps below:

(i) Upon receiving the alloc request, the PM server first checks the permissions of this client
and finds the existing local 2 GB segments available for allocation. Since this is the first
start, the PM server reserves a 2 GB segment locally from its mapped PM space. It then
sends a request with node ID, offset, and registered key, to the monitor.

(ii) The monitor finds an available global address from the mapping table and assigns it to
this PM segment.

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

TH-DPMS 24:11

(iii) The monitor also sends request to some of the PM nodes to reserve the backup segments.
The backup nodes are randomly selected from those nodes other than the primary node.

(iv) The monitor inserts the mapping item to the mapping table and returns it to the PM
server.

(v) The PM server caches the mapping item locally when it receives the response message.
It then processes the request by allocating from the newly reserved segment and finally
returns back the allocated global address.

Configuration Changes and Client Cache Management. Once the membership changes,
e.g., a new PM server joins in, or one of the PM server crashes, the monitor is responsible to renew
the configurations, so TH-DPMS can consistently move to a new state with minimal effects to the
online services.

We deploy multiple monitor servers, which are synchronized by the Raft protocol, so they can
tolerate at most f node failure. Hence, we assume that the monitor service is always reliable. The
monitor uses heartbeat to check the liveness of each PM server. It maintains a global epochID,
which is increased each time the membership is changed. For example, when a PM server crashes,
the monitor increases the epochID first and generates a new version of mapping table, where all
the segments residing in the crashed server are remapped to the new places. After this, the monitor
broadcasts the new epochID to all the PM servers. The PM servers with new epochID then update
their configurations (mapping, etc.) and fetch the corresponding PM segments that remapped to
it from either primary or backup replicas. During the reconfiguration phase, all requests to the
remapped segments are blocked until they have been replicated to new places. Client cache can also
be managed by this global epochID; with such epochID embedded in cache, servers can determine
whether a request from client side is made based on expired cached information and reject it. Note
that there is a short window during which a node crashes but a new epochID is not generated
by the monitor yet. If a client posts requests (either RPCs or one-sided verbs) to the crashed node
during this window, these requests are aborted actively after a timeout.

Since the centralized monitor only performs coarse-grained management, it is not the bottle-
neck. For the mapping table management for 2 GB segments, only allocation or free requests to the
2 GB segments go to the monitor, so the requests are infrequent. For the configuration changes,
the requests are also infrequent due to infrequent configuration changes.

4.1.4 PAllocator. The naive heap described in Section 3.2 uses the lower address space with
increasing order. It is managed with a persistent allocator named PAllocator to serve those fine-
grained allocation requests.

As shown in Figure 4, PAllocator adopts a Hoard [15]-like layout. It first cuts the 2 GB segments
into 4 MB chunks. Further, the 4 MB chunks are cut into different classes of data blocks. Note
that the data blocks in the same chunk have the same size, and such cutting size is persistently
recorded at the head of each chunk when it is ready for allocation. A bitmap is also placed at
the head of each chunk to track the unused data blocks. To boost performance of allocation, we
introduce in-memory free-lists to track the unused data blocks of different classes. Hence, we can
get a free block by referring to the head of the free list, instead of scanning the bitmap linearly.
We also use a global allocation table to track the free lists of all the segments. Considering the
scalability issue, these 4 MB NVM chunks are partitioned to different server cores, and each server
core owns a global allocation table. After receiving an allocating request, PAllocator first chooses
a proper class of NVM chunk from its private allocation table and then allocates a free data block
by modifying the bitmap and the free list.

In each allocation, we do not need to flush the bitmap when it is modified, since they can al-
ways be recovered to a consistent one with our design: The starting address of each chunk is

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

24:12 J. Shu et al.

Fig. 4. Multi-class data format with PAllocator.

4-MB-aligned, and the allocation granularity of each chunk is specified at the head of it. Therefore,
the offset of an allocated NVM block in the chunk can be calculated directly with the global ad-
dress, enabling us to recover the bitmap even when they fail to be persisted before system crashes.
Besides, the latency of RDMA (∼ 1μs) is still much higher than local PM accesses. Hence, TH-DPMS
requires the PM server to always allocate spaces from local PM space, despite that we implement a
global address space. Remote allocation occurs only after the local space has been used up. When
a client allocates memory space from pDSM directly (e.g., the application running on the client
node needs to use the shared memory space), it chooses a PM node randomly and then sends the
allocation request to this node.

4.1.5 Object Store. The object store uses the higher address space with decreasing order, which
is introduced to manage the large data chunks (e.g., file data). A unique 128-bit ObjectID is assigned
to each object. In TH-DPMS, we use consistent hashing algorithm [45] to distribute the objects to
the PM servers. The virtual node in consistent hashing is called table in TH-DPMS, which manages
a group of objects and acts as the minimum unit for data migration. The objects in a table are stored
in one or multiple 2 GB segments, and each segment can only store the objects belonging to the
same table. We do not allow a table to span across multiple servers to avoid introducing distributed
data structures. Once we need to migrate data from one PM server to another, all the PM segments
related to this table are moved away.

Figure 5 shows how a table is formatted. The objects in the table are indexed via a hash table
(for simplicity, we choose the chained hash policy). The hash table is persistently stored in PM,
whose space (including both the table and the chained items) is allocated via the PAllocator. By
referring to the hash table, we can find the corresponding object with the given objectID. In TH-
DPMS, each object has a maximum size of 64 MB, consisting of a group of 4 KB pages. The object
uses a skip list as the mapping to its physical data pages. We choose skip list as the index metadata
of each object, because it has multiple layers of linked list-like data structure. Each higher layer
acts as an “express lane” for the lower list layer. The list-based organization enables O(logN) of
search complexity as well as atomic data update by performing pointer manipulations. Each node
in the skip list stores an extent, pointing to contiguous 4 KB data pages. Overwriting to an object
is processed in a copy-on-write way: We always redirect the modified data pages to new places
and then atomically update the skip list to point to new pages. Since old data pages are reclaimed
only after the modification is finished, the crash consistency is guaranteed.

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

TH-DPMS 24:13

Fig. 5. Soft architecture of the object store.

Fig. 6. The transaction commit protocol, including one coordinator (i.e., C), three participants (i.e., P1, P2, P3),

and three backup nodes (i.e., B1,B2,B3). Different network primitives are used at different stages.

4.1.6 Distributed Transaction. We incorporate the FaRM [29] transaction protocol to provide
ACID properties in TH-DPMS. FaRM integrates the transaction and replication protocols to reduce
network messages, thus improving the performance. It exploits one-sided RDMA reads and writes
for CPU efficiency and low latency and uses primary-backup replication for simplicity. To further
reduce the network messages and simplify the transaction protocol, the coordinator in FaRM is
unreplicated and stateless. FaRM enables this by preparing a log area at each PM server for each
coordinator, and the coordinator writes all the related log states to remote participants. Hence, a
transaction still can be efficiently recovered and decided whether to commit or not, based on the
log state at each participant. FaRM uses optimistic concurrency control with read validation to
coordinate the concurrent transactions. We slightly modify FaRM’s protocol to support persistent
memory.

Figure 6 shows how a transaction with one write item and two read items is processed. For
simplicity, the figure only shows one backup (i.e., B1, B2, B3) for each data item.

(1) Exec phase. During the execution phase, the coordinator uses one-sided RDMA read to
fetch all the items referred to by this transaction.

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

24:14 J. Shu et al.

(2) Lock. After the transaction has been executed locally, the coordinator sends a lock request
to each participant of primary replica for any written items. The request encapsulates the
modified data items as well, which are durably stored in the log by the participants. The
participants then acquire the lock of these items and reply to the coordinator.

(3) Validation. When all the locks in the write set have been acquired, the coordinator then
uses RDMA read to check the versions of the items read by this transaction. The validation
fails if the version of any item has changed.

(4) Commit backup. Different from FaRM, committing the modified data to the backups is
completed via RPCs, instead of one-sided RDMA writes. FaRM assumes that all the data
are protected by backup batteries, so the data in the volatile cache can survive power
failure events. However, this is not the case in TH-DPMS, so we need to persist the log
synchronously before moving to the next step. Note that the proposed remote persistence

primitive is not used here, since it is asynchronous, which still requires an extra RPC to
confirm whether the data have been persisted or not.

(5) Commit primary. Finally, the coordinator sends the commit requests to the primary par-
ticipants in the write set to commit the transaction.

The coordinator sends requests in the Lock, Commit backup, and Commit primary by directly
writing them to remote log area, which is durably stored at each phase. Hence, the unfinished
transactions still can be recovered after system/power failures. As the coordinator is aware of the
state of each (un)committed transaction, it can truncate the remote logs without any coordination
with remote servers.

4.1.7 Replication. The 2 GB PM segments are the minimal unit for replication in TH-DPMS. As
described in Section 4.1.3, each primary segment can be configured to have zero to multiple backup
segments stored in other PM nodes. We use different ways to replicate data between primary and
backup segments. For fine-grained updates (e.g., update the heap area), we force the applications
to use the transactional interface. Our transactional system is designed to be closely coupled with
replication. The operations are synchronized to different replicas via the log information recorded
during the transaction execution. Coarse-grained updates (e.g., write a new object) are transferred
to backup segments directly via one-sided RDMA write verbs. Note that replicating data does not
require a consensus protocol: (1) In TH-DPMS, all the data are out-of-place updated, so old version
of data still keeps consistent when system crashes before a write finishes. (2) Only after the data
have been replicated, the corresponding metadata are updated by executing a transaction.

4.1.8 Interfaces. Table 4 summarizes the APIs that TH-DPMS provides. These interfaces are
classified according to the sub-components (i.e., global address space, PAllocator, object store, and
transactional system) they belong to. Among them, TH-DPMS provides two APIs to directly access
the global address space, which are read and write. These two raw interfaces deliver the hardware
performance to applications, but without any guarantee on crash consistency and atomicity. PAl-

locator is responsible for managing the global address space for those fine-grained accesses. It pro-
vides three APIs to allocate and free memory buffer from/to the persistent memory space. Applica-
tions access the object store via the put/get/del_obj interfaces when they need to update, read,
or delete objects. Finally, TH-DPMS enables transactional access to the pDSM. All the aforemen-
tioned APIs can be wrapped between the tx_begin() and tx_end() to deliver ACID properties.

4.2 pDFS: A Distributed File System

pDSM’s memory-oriented APIs fundamentally change the way that applications access the persis-
tent data. Applications are capable of directly manipulating the data in PM with memory format,

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

TH-DPMS 24:15

Table 4. Interface Set of pDSM

Components Interfaces Descriptionn

Global Address
Space Accessing

(§4.1.2)

bool read(addr_t p, void *buf, size_t
size)

Read data from global address p to user buffer
buf with size of size.

bool write(addr_t p, void *buf, size_t
size)

Write data from user buffer buf to global
address p with size of size.

PAllocator

(§4.1.4)

addr_t pallocate(size_t size)
Allocate a memory buffer with size of size

from the global address space.

addr_t pallocate(size_t size, addr_t
affi_addr)

Allocate a memory buffer from a physical node
that also maps to address affi_addr.

bool pfree(addr_t p) Free a memory buffer whose global address is p

Object Store

(§4.1.5)

bool put_obj(id_t id, val_t value)
Insert an object with ID of id, create a new one

if it does not exist.

val_t get_obj(id_t id) Read an object with ID of id.

bool del_obj(id_t id) Delete an object with ID of id.

Transactional

System (§4.1.6)

void tx_begin() Declare the start of a transaction.

void tx_end() Declare the end of a transaction.

void tx_commit() Commit a transaction.

void tx_abort() Actively abort a transaction.

Fig. 7. Software architecture of pDFS.

avoiding the overhead of (de)serialization between external devices such as HDD/SSD. However,
such APIs also require significant modification to most existing applications when deployed on
pDSM. For example, many popular database systems (e.g., LevelDB [32] and MySQL) and big data
processing systems (e.g., Hadoop and Spark) still organize data with files. To this end, TH-DPMS
incorporates a distributed file system named pDFS to provide file-based access. pDFS is based on
pDSM: it places the metadata and data in PAllocator and object store, respectively. We also bor-
row some key design principles from our past project (e.g., LocoFS [54] and Octopus [56]) when
implementing pDFS.

As shown in Figure 7, pDFS consists of four key components: object store, file metadata server,
directory metadata server, and pDFSLib. Each file consists of one or multiple objects, which are
stored in the object store. The file and directory metadata server are responsible for managing
the file system metadata and maintaining a hierarchical directory tree structure. The metadata are

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

24:16 J. Shu et al.

stored in pDSM via the PAllocator. pDFSLib runs at the client side and is linked to applications
when they access the file system. pDFS is responsible for interacting with the object store and
metadata server when processing the applications’ requests.

pDFS mainly incorporates two mechanisms to improve the performance of a distributed file
system. First, pDFS distributes the file system metadata according to the hash value of the
pathname. For instance, the metadata of file ‘‘/home/sjw/file’’ is stored on node N, where
N = hash(“/home/sjw/f ile”). In this way, pDFS delivers higher scalability for metadata perfor-
mance. It also reduces metadata accessing latency, since each metadata access operation can be
achieved with one network round-trip. However, hash-based distribution of metadata creates new
challenges when renaming a directory. It requires that all the sub-files/directories inside the to-be-
renamed directory be redirected to their new nodes, which causes significant overhead. To address
this issue, pDFS decouples the file system metadata, the same as LocoFS does. Specifically, the file
metadata are distributed among the file metadata servers (FMS) based on the hash value of the
pathname, while the directory metadata are stored in a globally shared directory metadata server
(DMS). The DMS maintains a directory tree and maps each directory to a global unique ID (i.e.,
GUID). GUID is never changed once a directory is created, even if it is renamed. The GUIDs of
each directory in the pathname are used to compute the hash value of a file. In this way, renam-
ing a directory does not need to move the metadata of all the sub-files, since the GUIDs of parent
directories are still unchanged.

Second, pDFS incorporates the Client-Active Data I/O in Octopus for efficient data accessing. In
traditional distributed file system, it is common to complete a data accessing request within one
network round-trip. Take a file read operation for example: The client first sends a read request
to the server, and then the server finds the corresponding data according to the file metadata, and
finally sends the data back to the client. Similarly, a write request can also complete with one
round-trip. We call such data-transferring paradigm as server-active data I/O. Such mode works
well for slow Ethernet and external devices (e.g., SSD/HDD), but we find that the server CPU is
always in high utilization and becomes a bottleneck when high-speed hardware is equipped.

Client-Active Data I/O is proposed to improve server CPU utilization by sacrificing the network
round-trips. It includes three steps: First, the client sends a read or write request to the server; then,
the server sends back the metadata information to the client, which describes where the accessed
data are in the global address space. The above two steps are executed using the RPC primitive in
iRDMA. Finally, the client reads or writes file data with the returned metadata information and
directly accesses remote data using RDMA read and write verbs. Since RDMA read and write are
one-sided operations, which access remote data without the involvement of remote CPUs, the
server CPU has higher processing capacity. By doing so, a rebalance is made between the server
and network overheads. With introduced extra network round-trips, server load is offloaded to
clients, resulting in higher throughput for concurrent requests.

4.3 pDKVS: A Distributed Key-value Store

We implement a distributed key-value store named pDKVS on top of pDSM. For simplicity, pDKVS
is based on consistent hashing (for load balancing) and Figure 8 shows the software architecture of
pDKVS. With a given key, pDKS finds the corresponding key-value item with the following steps:

(1) Calculate the virtual node (i.e., Vnode in the figure) according to the consistent hashing
algorithm. Each virtual node corresponds to a hash table, which is locally stored on one
of the physical PM nodes.

(2) Send a request to the monitor to find the physical PM node that stores the corresponding
hash table. The monitor maintains a global mapping table to record the location of each

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

TH-DPMS 24:17

Fig. 8. Software architecture of pDKVS (CCEH [62] is a persistent memory hash index with high efficiency

when resizing).

virtual node. To reduce the network round-trips, each client also keeps a local cache to
record the recently accessed mappings.

(3) The client accesses a hash table index by posting a request via iRDMA to the physical
node. Parameters such as the hash table ID and keys are encapsulated in the request as
well. We directly use CCEH [62] as our persistent hash index, since it is efficient and causes
low overhead when resizing. CCEH consists of two elements, including a global directory
(i.e., an array), and one or multiple segments, each of which contains multiple buckets.
We store CCEH in PM space allocated via PAllocator, CCEH itself is crash consistent, so
we do not need to use extra logging mechanism.

(4) The item in the hash index only stores a pointer, which points to the actual key-value item.
Key-value items are stored separately via PAllocator to support variable-length values.
Note that we still need to use transactions when updating the CCEH index and key-value
items to synchronize the modifications to backup segments.

5 EXPERIMENTS

In this section, we evaluate the overall performance of TH-DPMS with real-world applications and
analyze the internal components with micro-benchmarks.

5.1 Experimental Setup

The hardware configuration details of PM servers have already been shown in Table 3. Our cluster
consists of six such PM servers and 12 client nodes. Each client node has 128 GB of DRAM memory,
two 2.2 GHz Intel Xeon E5-2650 v4 CPUs (24 cores in total), one MCX555A-ECAT ConnectX-5 EDR
HCA (100 Gbps), and is installed with CentOS 7.4. All these servers are connected with a Mellanox
MSB7790-ES2F switch. Our evaluation is conducted to answer the following two questions:

Q1 Can TH-DPMS deliver comparable or even higher performance than those in-memory dis-

tributed storage systems whose data are completely placed in DRAM?

Q2 How does TH-DPMS behave with large workload that cannot be placed directly in DRAM?

5.2 Overall Evaluation

Key-value Store. We emulate the ETC and SYS pools at Facebook [64] as the production workload
to evaluate the behavior of TH-DPMS. ETC has 5% SETs and 95% GETs. The key size is fixed at
16 bytes and 90% of the values are evenly distributed between 16 and 512 bytes. Differently, SYS is
SET-heavy, with 25% SET and 75% GET operations. 40% of the keys have length from 16 to 20 bytes,
and the rest range from 20 to 45 bytes. Values of size between 320 and 500 bytes take up 80% of the
entire data, 8% of them are smaller, and 12% sit between 500 and 10,000 bytes. Since no existing
key-value store is designed with support of RDMA and persistent memory simultaneously, we
directly compare with the RDMA-memcached [39], which is an open-sourced high-performance

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

24:18 J. Shu et al.

Fig. 9. The performance of pDKVS with varying workload size.

distributed memory object caching system designed for Infiniband network. The results are shown
in Figure 9, and we make the following observations:

(1) For the workload with data size smaller than 128 GB, TH-DPMS achieves throughput that
is 1.7× and 3.5× as much as that of RDMA-memcached in the ETC and SYS, respectively.
RDMA-memcached places all its data in DRAM, but still underperforms TH-DPMS for two
reasons: (i) A GET/PUT operation in RDMA-memcached needs multiple round-trips, while
the clients of TH-DPMS access the key-value store through the well-optimized zero-copy
RPC primitive in single round-trip. (ii) RDMA-memcached has scalability issues in terms of
memory allocation and maintaining LRU linked-list.

(2) When the total amount of data further increases, RDMA-memcached’s performance dropped
sharply to almost zero, while TH-DPMS’s throughput is almost unchanged. Each PM
server only has 192 GB of DRAM, which is not enough to accommodate the whole dataset.
Under this circumstance, RDMA-memcached has to move the cold data to the SWAP device,
and such data movements act as the performance killer.

Graph Processing. Graph processing is an increasingly popular yet challenging type of appli-
cation for datacenters. We use graph processing as a demonstration how TH-DPMS can fit per-
fectly in memory-intensive and memory-consuming circumstances. To not dwell on any graph
processing optimizing techniques, Graph500 is selected as benchmark for this experiment and
BFS (Breadth First Search) the algorithm. Dataset includes two large-scale graphs generated using
the graph generator of Graph500, the first one has a raw data size of 256 GB, contains 1B nodes
and 16B edges, the other one is twice larger than the first one, hence double in node number and
edge number. The experiment is conducted between two configurations, and the execution time
of BFS algorithm is taken as measurement: In one configuration, clients are equipped with swap
space backed by SSDs; in the other one, except for access to TH-DPMS, clients have no extra mem-
ory space but their own physical memory. To support large-scale graph processing given a limited
memory capacity, small modifications have to be made to Graph500’s code. Essentially, at any time,
we only keep a fixed percentage of the in-memory graph data structure in DRAM and keep the
rest of them in the TH-DPMS, for they account for most of the memory usage. “In-DRAM Ratio”
in Table 5 shows the fixed percentage of the in-memory graph data structure stays in DRAM. All
results are shown in Table 5.

Results show that graph processing can benefit from TH-DPMS. Even though parts of the in-
memory graph data structure are keeping at the other side of the cable instead of locally in SSD,
TH-DPMS still manages to achieve a speedup at almost 3.4×, and 9.7× for 512 GB sized graph,

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

TH-DPMS 24:19

Table 5. Total Runtime of BFS

System Graph Size (GB) # of Nodes # of Threads In-DRAM Ratio Runtime (s)

TH-DPMS
256 1 16 40% 1,291

512 2 32 40% 1,388

DRAM w/
SWAP

256 1 16 100% 4,500

512 2 32 100% 13,496

Fig. 10. Latency distribution of RDMA-based RPC.

giving credits to TH-DPMS’s light-weight software stack and the ability to harness hardware band-
width through its well-optimized RDMA-based RPC primitive.

5.3 Analysis of Individual Components

5.3.1 pDSM. We evaluate pDSM by analyzing the performance of RPC primitive, global address
accessing, and distributed transactional system.

Latency Distribution of the RPC primitive. The RDMA-based RPC primitive is the most im-
portant component in TH-DPMS, whose performance directly determines the efficiency of many
operations (e.g., metadata accessing, interaction with the monitors). We compare the RPC per-
formance of TH-DPMS against eRPC [43], a state-of-the-art RPC framework tailored for modern
network hardware. Figure 10 shows the throughput and the corresponding latencies (both median
and 99th percentile latencies are shown) with one PM server and a varying number of clients, and
we make the following observations:

(1) Our RPC primitive is capable of delivering a peak throughput of 76 Mops/s, while restrict-
ing its median latencies within 6 μs. Besides, its tail latencies are also low: For a target
load running at 60 Mops/s, the 99th percentile latency is only 7 μs. This is as expected:
Our RPC primitive is built directly on the write-with-imm verb, which directly reveals
the hardware performance.

(2) Our RPC primitive has higher peak throughput (1.2×) as well as lower corresponding
median latency (18%) and 99th percentile latency (47%) than eRPC. This is because eRPC
uses datagram packet I/O and implements congestion control, flow control, and packet
loss handling in software level, but for our RPC primitive, these functions are handled in
RDMA NIC by using reliable connection.

Read/Write Bandwidth of pDSM. We measure the total read/write bandwidth of pDSM with
an increasing number of PM nodes. All the 12 client nodes are launched for concurrent access; each
client thread allocates a 64 KB global memory block and accesses the block by issuing read/write

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

24:20 J. Shu et al.

Fig. 11. Read/write bandwidth of pDSM.

operations repeatedly. When evaluating the write bandwidth, we choose three modes, which are
(1) Write w/o persisting: the clients simply write data to remote PM servers with one-sided write
verb and the server CPUs are unaware of such write events; (2) Write w/ persisting: the clients write
data via remote persistence primitive; and (3) Write w/ Replicas: the clients write data to both
the primary and the backup nodes (without persisting them). The results are shown in Figure 11,
and we make the following observations:

(1) The bandwidths of Read and Write w/o Persisting operations are almost the same (both are
23.5 GB/s with one PM server), which are mainly restricted by the network bandwidth
(200 Gbps with two NICs, Read Ideal in the figure). Notably, the bandwidth of Write w/o

Persisting exceeds the raw write bandwidth of persistent memory (i.e., about 13 GB/s with
one PM server), since the last level cache absorbs a large amount of write traffic by lever-
aging Intel’s DDIO technology [7].

(2) Both read and write bandwidths scale linearly as the number of PM servers increases. By
caching the frequently accessed address mapping table at client side, the clients do not
need to interact with the monitor each time they access a global shared address. Hence,
the centralized design of the monitor in TH-DPMS is not a bottleneck.

(3) Write w/Persisting and Write w/Replicas decreases the bandwidth by half. Write w/Persisting

requires the involvement of remote CPUs to actively persist data via clwb, and its band-
width is limited by the raw write bandwidth of persistent memory (i.e., Read Ideal in the
figure); Write w/Replicas sends 2× as much data as that of Write w/o Persisting. These fac-
tors impact the overall bandwidth dramatically.

Transactional System. YCSB [26] is a widely used benchmark for key-value store evaluation.
It is also commonly used in transactional database evaluation by accessing multiple records in
a single transaction. In this part, we choose YCSB workloads with different read and write set
sizes to evaluate our transactional system. As shown in Figure 12, both read-only and read-write
transactions are evaluated. For the read-write transactions, we set the write ratio to 25% with both
uniform (i.e., 25%-Write) and skew (i.e., 25%-Write with parameter of 0.99) access pattern. Among
them, read-only transactions achieve the highest throughput (7.2 Mtxn/s with 6 PM servers). This
is as expected, since there is no conflict between read-only transactions. Besides, we adopt OCC
as the concurrency control protocol in our transactional system. Unlike 2PL, OCC does not make
any modifications for read-only transactions and avoids all the false conflicts. The throughput of
25%-Write also scales linearly. When accessing the records uniformly, it is less likely to happen for
two transactions to conflict, so most of the transactions can be executed in parallel. Non-uniform
accessing (i.e., zipfan in 25%-Write (0.99)) exhibits the worst performance and is hard to scale,

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

TH-DPMS 24:21

Fig. 12. Transaction throughput with YCSB workloads.

Fig. 13. Metadata performance in pDFS.

as the number of PM nodes varies. Since most of the transactions access a small portion of the
records, transaction aborts happen frequently, which wastes most of the CPU cycles and reduces
the performance.

5.3.2 Distributed File System. In this section, both metadata and data performance in pDFS are
evaluated. We compare results with two distributed filesystems: memGlusterFS [3] and NVFS [37].
In memGlusterFS, all clients and servers in GlusterFS can communicate with each other using
RDMA networks. NVFS is a version of HDFS that is specially optimized for NVM and RDMA
networks. Both NVFS and memGlusterFS require running on top of a local filesystem; in this eval-
uation, we run both of them on Ext4 with DAX feature enabled. In all file system evaluations, we
only utilize one NUMA-side NVM out of two NVMs in one machine and one network interface
out of two (NVFS can not support double RDMA network interface gracefully yet), which means
only 768 GB size of NVM is utilized.

Metadata Operations. Figure 13 shows the file systems’ performance in terms of metadata
IOPS. We measure the performance of different metadata operations by varying the number of

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

24:22 J. Shu et al.

Fig. 14. Read/write bandwidth of pDFS.

PM servers. From the figure, we make two observations: (1) all the file metadata operations (e.g.,
creat, unlink, stat) show high scalability. In pDFS, we adopt the techniques in LocoFS [54]
to organize the file system metadata. Specifically, we distribute the file metadata to different PM
nodes according to the keyhash of the path name. Hence, multiple PM nodes can process these
requests concurrently. However, NVFS and memGlusterFS both suffer from the inefficient archi-
tecture design and cannot deliver comparable performance. (2) The performance of directory op-
erations (e.g., mkdir, rmdir) is almost unchanged, since we only introduce a single directory
metadata server, even though pDFS still outperforms other filesystems a lot. Note that such per-
formance can be further reasoned by: (1) In pDFS, a single directory metadata server is capable of
achieving a throughput of more than 0.5M OPS, which is far higher than existing distributed file
systems; (2) directory creation/deletion happens infrequently in real-world workloads [54]. For
directory operations, NVFS is configured with one metadata server as well, but the inefficiency of
the software layer hinders the performance it can deliver. We also notice that directory operations
performance of memGlusterFS exhibits extremely low; we believe that, in addition to the stacked
software architecture, the hash-based directory metadata management design is also to blame.

File Read/Write Bandwidth. Figure 14 shows the file system performance in terms of con-
current read/write bandwidth. We use multiple clients to access the file system with a varying
number of PM servers. The results are shown in Figure 14, and we observe that both pDFS’s read
and write bandwidths are scalable and can increase in line with the number of PM servers. In par-
ticular, the read bandwidth is much higher than that of write operations, which is almost close to
that of the Infiniband networks. Write bandwidth is much lower because of three reasons: (1) we
only utilize one NUMA-side NVM on each machine—the maximum bandwidth is lower than that
of networks; (2) pDFS has to update metadata after the file data are written, which causes extra
network round-trips; (3) The written data have to be persisted via hardware instructions (we use
the combination of clwb/mfence to flush data out of the CPU cache), which causes much higher
overhead. MemGlusterFS shows poorly in terms of both read and write performance, it seems that
data operations also fall victim of the inefficient software design. NVFS fails to scale further when
number of servers keeps rising in read operation, because the single metadata server may have
reached saturation.

Filebench Performance. Figure 15 shows the performance of the pDFS and other compara-
tive filesystems using filebench. All clients are launched from same client node, and the cluster is
configured with one data server. We choose four benchmarks from filebench, namely, fileserver,
webproxy, webserver, and varmail. Originally, filebench is compliant with POSIX-like interface,
both memGlusterFS and the pDFS can be seamlessly implemented, but the implementation for

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

TH-DPMS 24:23

Fig. 15. Filebench performance of pDFS in comparison to memGlusterFS and NVFS.

Fig. 16. Throughput of pDKVS in comparison with pmemkv for 95% and 50% read workloads.

NVFS needs extra efforts. We implement filebench for NVFS using hdfs library (i.e., libhdfs), how-
ever, as results show, such decision led to big software overheads. We believe such overhead comes
from two aspects: (1) the overhead caused by communicating with hdfs through JNI (Java Native
Interface); (2) the additional overhead caused when imitating POSIX-like behavior. Because of the
inconsistency of the semantics, one operation could end up with invoking two hdfs interfaces. As
shown in Figure 15, pDFS shows good performance under all four benchmarks and exceeds other
file systems far beyond, attributing to metadata design and client-active data I/O.

5.3.3 Key-value Store. We finally evaluate the performance of pDKVS against pmemkv [10] by
varying the item sizes, the number of PM servers, and the read-write ratio. Pmemkv is based on
PMDK [9], and we use our RPC primitive for client-server interaction and its cmap (i.e., concur-
rent hash map) storage engine. The key-value items are accessed uniformly to measure the peak
performance. Figure 16(a) plots the experiment results using tiny key-value items (8-byte keys and
8-byte values). Our key-value store achieves 48 Mops/s and 56 Mpos/s with 6 PM nodes in write-
intensive (50% PUT) and read-intensive (95% GET) workloads, respectively, which are 2.9× and
1.7× higher than that of pmemkv, respectively. This is because pmemkv needs complex logging to
guarantee crash consistency, but our key-value store is logless by using copy-on-write and atomic
write. Small (16-byte keys and 64-byte values) and Large (128-byte keys and 1,024-byte values)
key-value items show similar results in Figure 16(b) and (c).

5.4 Failure Recovery

To evaluate performance with failures, we ran the same benchmarks used in the pDKVS eval-
uation (i.e., 95%-Get, 64-byte values). We killed the process on one of the PM nodes to show a
timeline with the throughput of the surviving machines aggregated at 1 ms intervals. The results

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

24:24 J. Shu et al.

Fig. 17. pDKVS performance timeline with node failure.

are shown in Figure 17. It shows the time at which the failed machine’s heartbeat expired on the
monitor node (“Suspect”); the time at which the configuration file has been successfully updated
and synchronized to backup monitors (“Monitor commit”); the time at which the new configura-
tion was broadcast to all PM nodes (“Configuration broadcast”). We make two observations from
the figure.

First, the system data becomes active in less than 30 ms. TH-DPMS uses RDMA reads to de-
tect node failures; such one-sided verbs are issued by the centralized monitor at extremely high
frequency (i.e., 1 ms in our implementation) without impacting the foreground throughput, since
CPUs on the PM nodes are not involved when serving RDMA reads. Meanwhile, the configuration
file only contains several megabytes of data, which can be quickly updated to backup monitors
and other PM nodes.

Second, the system is back to peak throughput soon after the configuration has been broadcast
to PM nodes. Similar to FaRM, we limit the recovery rate to a threshold to prevent the recovery
load from impacting foreground operations. Specifically, each worker thread fetches 8 KB of data
from new primary nodes every 2 ms, indicating that a 2 GB segment can be recovered within
17 s. Note that the peak throughput drops by almost 17% compared to that before the node failure
occurs, since the active PM nodes reduce from 6 to 5.

6 RELATED WORKS

To process the unprecedented amounts of data, datacenter architects believe that a transforma-
tional change is required for both hardware and software designs.

Next-generation of hardware. The FireBox project [6] aims to develop a system architecture
for next-generation Warehouse-Scale Computers (WSCs). A single Firebox can be scaled to contain
up to 10K compute nodes and up to an Exabyte (260 bytes) of non-volatile memory connected via
a low-latency, high-bandwidth optical switch. Hewlett Packard Labs has a similar solution in The
Machine [8], which adopts emerging SoCs and memristors connected via photonics. The Machine
flattens complex data hierarchies and brings processing closer to the data.

Intel’s development tools for Optane memory. The Persistent Memory Development Kit
(PMDK) [9], formerly known as NVML, is a growing collection of libraries and tools that pro-
vides fine-grained persistent memory management and transaction support. However, TH-DPMS
is developed from scratch, instead of using PMDK to manage the PM space in each node. PMDK
has very complex transactional logic when maintaining its redo and undo log. As such, it often
causes multiple writes to PM even when serving a simple allocation request. PMDK also pro-
vides the librpmem tool that provides low-level support for remote access to persistent memory

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

TH-DPMS 24:25

utilizing RDMA-capable RNICs. However, it is still an experimental API. The Distributed Asyn-
chronous Object Storage (DAOS) [2] is a scale-out object store that provides high bandwidth and
low latency storage containers to HPC applications. It stores data on both storage-class memory
(via PMDK) and NVMe storage and presents a native key-array-value storage interface.

Distributed shared memory. Hotpot [74] is a kernel-level DSM system that directly exposes a
shared memory interface to applications. It improves data reliability and availability by introducing
an integrated distributed memory caching and data replication protocol. FileMR [87] argues that
the abstractions between NVM and RDMA are incompatible—an NVM-aware file system manages
persistent memory as files, whereas RDMA uses memory regions to organize remotely accessible
memory. As such, this article proposes the file memory region (FileMR), which combines memory
regions and files: A client can directly access a file backed by NVM file system through RDMA,
addressing its contents via file offsets. Remote region [12] is an abstraction for a process to export
its DRAM space to remote hosts and to access the memory exported by others via RDMA network.
Applications access remote regions through the usual file system operations (read, write, memory
map, etc.). FaRM [28, 29, 73] is a new main memory distributed computing platform that exposes
the memory of machines in the cluster as a shared address space and exploits RDMA to improve
both latency and throughput. FaRM transaction, replication, and recovery protocols are designed
from scratch leveraging the one-sided verbs of RDMA. FaRM is a main reference when we build
TH-DPMS, despite that they use DRAM as the main storage space. Mojim [92] is a first attempt
to build persistent memory storage system base on RDMA. It provides reliability and availability
by using a two-tier architecture for data mirroring/replication. Highly optimized replication pro-
tocols, software, and networking stacks are used to minimize replication costs. Grappa [63] is a
software-based DSM for in-memory data-intensive applications. It provides an easy-to-use pro-
gramming model that enables users to program a cluster as if it were a single, large, non-uniform
memory access (NUMA) machine. The core components in Grappa (i.e., tasking system and com-
munication layer) enable it to work more efficiently. However, it does not use native RDMA support
and places data directly in DRAM. Grappa works more like a computing framework, instead of a
storage system.

Distributed file system. Octopus [56] is a distributed file system based on RDMA and persis-
tent memory. It improves performance by abstracting a shared persistent memory pool, which
enables the clients to directly access file data in the memory pool. Worth mentioning, it is our
past experience of implementing Octopus that motivates us to further extend such design, and
thus forms the generic abstraction of pDSM in TH-DPMS. Ziggurat [93] is a tiered file system that
combines NVMM and slow disks to create a storage system with near-NVMM performance and
large capacity. It steers incoming writes to NVMM, DRAM, or disk, depending on application ac-
cess patterns, write size, and the likelihood that the application will stall until the write completes.
Orion [86] also builds the distributed file system on RDMA and NVM. It is compatible with ex-
isting POSIX semantics, since it is implemented at the kernel level. It improves fault tolerance by
adding Mojim-like mirroring for metadata and broadcast replication for file data. It also provides
different consistency levels to meet the needs of different apps.

Remote data structure. AsymNVM [60] is a generic framework for asymmetric disaggre-
gated non-volatile memories. It implements the fundamental primitives for building remote data
structures, including space management, concurrency control, crash consistency, and replication.
StoRM [66] is a fast transactional dataplane for remote data structures. It utilizes one-sided read
and write-based RPC primitives to implement remote data structures and thereby addresses the
challenges in RDMA (e.g., scalability, address translation, and pointer chasing). FlatStore [21] im-
proves the performance of key-value stores by proposing a log-structured storage engine on top
of Optane DCPMMs and RDMA. It leverages the mismatch between the persistence granularity

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

24:26 J. Shu et al.

of Optane itself and the access sizes of typical key-value items, and thus proposes the pipelined
horizontal batching mechanism to amortize the persistence overhead among multiple requests.

Unified Abstraction. pDSM acts as the building block in TH-DPMS by providing the funda-
mental primitives with a shared global address space. This is similar to the Ceph storage system, at
the core of which is the Reliable Autonomic Distributed Object Store (RADOS) service [81]. RADOS
is highly scalable and provides self-healing, self-managing, replicated object storage with strong
consistency. With RADOS service, Ceph provides three services: the RADOS Gateway (RGW), the
RADOS Block Device (RBD), and CephFS, a distributed file system with POSIX semantics. NodeK-
ernel [75] introduces a unified abstraction of file systems and key-values stores for temporary data,
based on the observation that the software architectures of file systems and key-value stores look
similar for temporary data. Different from NodeKernel, TH-DPMS is designed for persistent data
storage and uses a unified abstraction of pDSM. The file system interface and key-value interface
are designed on top of the pDSM abstraction.

7 CONCLUSION

High-speed NVM and RDMA hardware are promising technologies in the face of the increasing
needs of data storage and transfer. However, these hardware push back the software evolution.
In this article, we designed and implemented a distributed storage system based on RDMA and
persistent memory named TH-DPMS. We abstract a generic layer named pDSM, which connects
the PMs of different storage nodes via high-speed RDMA network, and organize them into a global
shared address space. pDSM supports efficient space management, replication, and transactions.
Based on pDSM, we further implement both a distributed file system and a key-value store. Eval-
uations show that TH-DPMS effectively explores hardware benefits.

ACKNOWLEDGMENTS

We thank the members of the Storage Research Lab at Tsinghua University, including Siyang Li,
Jing Wang, Minhui Xie, Wenhao Lv, Pei Chen, and Yifan Qiao, for their efforts in the system
prototyping.

REFERENCES

[1] Mellanox Technologies. 2019. ConnectX-6 VPI Card. Retrieved from https://www.mellanox.com/related-docs/prod_

adapter_cards/PB_ConnectX-6_VPI_Card.pdf.

[2] Intel Corporation. 2019. The Distributed Asynchronous Object Storage. Retrieved from https://daos-stack.github.io/.

[3] Red Hat. Inc. 2019. GlusterFS. Retrieved from https://www.gluster.org/.

[4] Intel Corporation. 2019. Intel Optane DC Persistent Memory. Retrieved from https://www.intel.com/content/www/

us/en/architecture-and-technology/optane-dc-persistent-memory.html.

[5] IDC. 2020. The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things.

Retrieved from https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm.

[6] Berkeley Architecture Research. 2020. The Firebox Project. Retrieved from https://bar.eecs.berkeley.edu/projects/

firebox.html.

[7] Intel Corporation. 2020. Intel Data Direct I/O Technology. Retrieved from https://www.intel.com/content/www/us/

en/io/data-direct-i-o-technology.html.

[8] HP Development Company. 2020. The Machine Project. Retrieved from https://www.hpl.hp.com/research/systems-

research/themachine.

[9] Intel Corporation. 2020. PMDK: Persistent Memory Development Kit. Retrieved from https://github.com/pmem/

pmdk.

[10] Intel Corporation. 2020. pmemkv. Retrieved from https://github.com/pmem/pmemkv/.

[11] Redis Labs. 2020. Redis. Retrieved from https://redis.io/.

[12] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Stanko Novaković, Arun

Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei.

2018. Remote regions: A simple abstraction for remote memory. In Proceedings of the USENIX Annual Technical

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

https://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-6_VPI_Card.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-6_VPI_Card.pdf
https://daos-stack.github.io/
https://www.gluster.org/
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
https://bar.eecs.berkeley.edu/projects/firebox.html
https://bar.eecs.berkeley.edu/projects/firebox.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.hpl.hp.com/research/systems-research/themachine
https://www.hpl.hp.com/research/systems-research/themachine
https://github.com/pmem/pmdk
https://github.com/pmem/pmdk
https://github.com/pmem/pmemkv/
https://redis.io/

TH-DPMS 24:27

Conference (USENIX ATC’18). USENIX Association, 775–787. Retrieved from https://www.usenix.org/conference/

atc18/presentation/aguilera.

[13] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. 2015. Let’s talk about storage & recovery methods for non-

volatile memory database systems. In Proceedings of the ACM SIGMOD International Conference on Management of

Data. ACM, 707–722.

[14] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, et al. 2004. Highly

scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In

Proceedings of the IEEE International Electron Devices Meeting. IEEE, 587–590.

[15] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. 2000. Hoard: A scalable memory

allocator for multithreaded applications. In Proceedings of the 9th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS’00). Association for Computing Machinery, New York,

NY, 117–128. DOI:https://doi.org/10.1145/378993.379232

[16] Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. 2014. OpLog: A library for scal-

ing update-heavy data structures. Retrieved from https://people.csail.mit.edu/nickolai/papers/boyd-wickizer-oplog-

tr.pdf.

[17] John B. Carter, John K. Bennett, and Willy Zwaenepoel. 1995. Techniques for reducing consistency-related commu-

nication in distributed shared-memory systems. ACM Trans. Comput. Syst. 13, 3 (1995), 205–243.

[18] Shimin Chen and Qin Jin. 2015. Persistent B+-trees in non-volatile main memory. Proc. VLDB Endow. 8, 7 (Feb. 2015),

786–797. DOI:https://doi.org/10.14778/2752939.2752947

[19] Youmin Chen, Youyou Lu, Pei Chen, and Jiwu Shu. 2019. Efficient and consistent NVMM cache for SSD-based file

system. IEEE Trans. Comput. 68, 8 (Aug. 2019), 1147–1158. DOI:https://doi.org/10.1109/TC.2018.2870137

[20] Youmin Chen, Youyou Lu, and Jiwu Shu. 2019. Scalable RDMA RPC on reliable connection with efficient resource

sharing. In Proceedings of the 14th EuroSys Conference 2019 (EuroSys’19). Association for Computing Machinery, New

York, NY. DOI:https://doi.org/10.1145/3302424.3303968

[21] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020. FlatStore: An efficient log-structured

key-value storage engine for persistent memory. In Proceedings of the 25th International Conference on Architectural

Support for Programming Languages and Operating Systems. ACM.

[22] Youmin Chen, Youyou Lu, Bohong Zhu, and Jiwu Shu. 2019. Kernel/User-level Collaborative Persistent Memory File

System with Efficiency and Protection. arxiv:cs.OS/1908.10740

[23] Youmin Chen, Jiwu Shu, Jiaxin Ou, and Youyou Lu. 2018. HiNFS: A persistent memory file system with both buffering

and direct-access. ACM Trans. Storage 14, 1 (Apr. 2018). DOI:https://doi.org/10.1145/3204454

[24] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson.

2011. NV-Heaps: Making persistent objects fast and safe with next-generation, non-volatile memories. In Proceed-

ings of the 16th International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS’11). ACM, New York, NY, 105–118. DOI:https://doi.org/10.1145/1950365.1950380

[25] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Derrick

Coetzee. 2009. Better I/O through byte-addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd Sym-

posium on Operating Systems Principles (SOSP’09). ACM, New York, NY, 133–146. DOI:https://doi.org/10.1145/1629575.

1629589

[26] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking cloud

serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC’10). Association for

Computing Machinery, New York, NY, 143–154. DOI:https://doi.org/10.1145/1807128.1807152

[27] Mingkai Dong, Heng Bu, Jiefei Yi, Benchao Dong, and Haibo Chen. 2019. Performance and protection in the ZoFS

user-space NVM file system. In Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP’19).

[28] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hodson. 2014. FaRM: Fast remote memory.

In Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI’14). 401–414.

[29] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew Renzelmann, Alex Shamis, Anirudh

Badam, and Miguel Castro. 2015. No compromises: Distributed transactions with consistency, availability, and per-

formance. In Proceedings of the 25th Symposium on Operating Systems Principles. ACM, 54–70.

[30] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff

Jackson. 2014. System software for persistent memory. In Proceedings of the 9th European Conference on Computer

Systems (EuroSys’14). ACM, New York, NY. DOI:https://doi.org/10.1145/2592798.2592814

[31] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg, and Wolfgang Lehner. 2012. SAP

HANA database: Data management for modern business applications. ACM SIGMOD Rec. 40, 4 (2012), 45–51.

[32] Sanjay Ghemawat and Jeff Dean. 2011. LevelDB. Retrieved from https://github.com/google/leveldb.

[33] Saugata Ghose, Abdullah Giray Yaglikçi, Raghav Gupta, Donghyuk Lee, Kais Kudrolli, William X. Liu, Hasan Hassan,

Kevin K. Chang, Niladrish Chatterjee, Aditya Agrawal, et al. 2018. What your DRAM power models are not telling

you: Lessons from a detailed experimental study. Proc. ACM Meas. Anal. Comput. Syst. 2, 3 (2018), 38.

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

https://www.usenix.org/conference/atc18/presentation/aguilera
https://www.usenix.org/conference/atc18/presentation/aguilera
https://doi.org/10.1145/378993.379232
https://people.csail.mit.edu/nickolai/papers/boyd-wickizer-oplog-tr.pdf
https://people.csail.mit.edu/nickolai/papers/boyd-wickizer-oplog-tr.pdf
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.1109/TC.2018.2870137
https://doi.org/10.1145/3302424.3303968
https://doi.org/10.1145/3204454
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/2592798.2592814
https://github.com/google/leveldb

24:28 J. Shu et al.

[34] Morteza Hoseinzadeh. 2019. A survey on tiering and caching in high-performance storage systems. arXiv preprint

arXiv:1904.11560 (2019).

[35] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018. Endurable transient inconsistency in

byte-addressable persistent B+-tree. In Proceedings of the 16th USENIX Conference on File and Storage Technologies

(FAST’18). 187.

[36] Taeho Hwang, Jaemin Jung, and Youjip Won. 2014. HEAPO: Heap-based persistent object store. ACM Trans. Storage

11, 1 (Dec. 2014). DOI:https://doi.org/10.1145/2629619

[37] Nusrat Sharmin Islam, Md. Wasi-ur Rahman, Xiaoyi Lu, and Dhabaleswar K. Panda. 2016. High performance design

for HDFS with byte-addressability of NVM and RDMA. In Proceedings of the International Conference on Supercom-

puting (ICS’16). Association for Computing Machinery, New York, NY. DOI:https://doi.org/10.1145/2925426.2926290

[38] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan Wang, Yi

Xu, Subramanya R. Dulloor, et al. 2019. Basic performance measurements of the Intel Optane DC persistent memory

module. arXiv preprint arXiv:1903.05714 (2019).

[39] Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md. Wasi-ur Rahman, Nusrat S. Islam, Xiangyong

Ouyang, Hao Wang, Sayantan Sur, and Dhabaleswar K. Panda. 2011. Memcached design on high performance RDMA

capable interconnects. In Proceedings of the International Conference on Parallel Processing (ICPP’11). IEEE Computer

Society, 743–752. DOI:https://doi.org/10.1109/ICPP.2011.37

[40] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2015. Using RDMA efficiently for key-value services. ACM

SIGCOMM Comput. Commun. Rev. 44, 4 (2015), 295–306.

[41] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design guidelines for high performance RDMA systems.

In Proceedings of the USENIX Annual Technical Conference (USENIX ATC’16). 437–450.

[42] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST: Fast, scalable and simple distributed transactions

with two-sided (RDMA) datagram RPCs. In Proceedings of the 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI’16). 185–201.

[43] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2019. Datacenter RPCs can be general and fast. In Proceedings

of the 16th USENIX Conference on Networked Systems Design and Implementation (NSDI’19). USENIX Association, 1–16.

[44] Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Yuangang Wang, Jun Xu, and Gopinath

Palani. 2018. Designing a true direct-access file system with DevFS. In Proceedings of the 16th USENIX Conference on

File and Storage Technologies. 241.

[45] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel Lewin. 1997. Consistent

hashing and random trees: Distributed caching protocols for relieving hot spots on the world wide web. In Proceedings

of the 29th ACM Symposium on Theory of Computing (STOC’97). Association for Computing Machinery, New York,

NY, 654–663. DOI:https://doi.org/10.1145/258533.258660

[46] Sanidhya Kashyap, Dai Qin, Steve Byan, Virendra J. Marathe, and Sanketh Nalli. 2019. Correct, fast remote persistence.

arXiv preprint arXiv:1909.02092 (2019).

[47] Peter J. Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. 1994. TreadMarks: Distributed shared

memory on standard workstations and operating systems. In Proceedings of the USENIX Winter Conference, Vol. 1994.

23–36.

[48] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, and Thomas Anderson. 2017. Strata: A

cross media file system. In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP’17). ACM, New

York, NY, 460–477. DOI:https://doi.org/10.1145/3132747.3132770

[49] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting phase change memory as a scalable

DRAM alternative. In Proceedings of the 36th International Symposium on Computer Architecture (ISCA’09). ACM, New

York, NY, 2–13.

[50] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chidambaram. 2019. Recipe: Converting

concurrent DRAM indexes to persistent-memory indexes. In Proceedings of the 27th ACM Symposium on Operating

Systems Principles. ACM, 462–477.

[51] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao Zhang. 2019. SocksDirect: Datacenter sockets can be fast and

compatible. In Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM’19). ACM, New York,

NY, 90–103. DOI:https://doi.org/10.1145/3341302.3342071

[52] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen, and Lintao

Zhang. 2017. KV-Direct: High-performance in-memory key-value store with programmable NIC. In Proceedings of

the 26th Symposium on Operating Systems Principles. ACM, 137–152.

[53] Kai Li. 1988. IVY: A shared virtual memory system for parallel computing. In Proceedings of the International Confer-

ence on Parallel Processing 2 88 (1988), 94.

[54] Siyang Li, Youyou Lu, Jiwu Shu, Yang Hu, and Tao Li. 2017. LocoFS: A loosely-coupled metadata service for distributed

file systems. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and

Analysis (SC’17). Association for Computing Machinery, New York, NY. DOI:https://doi.org/10.1145/3126908.3126928

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

https://doi.org/10.1145/2629619
https://doi.org/10.1145/2925426.2926290
https://doi.org/10.1109/ICPP.2011.37
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/3132747.3132770
https://doi.org/10.1145/3341302.3342071
https://doi.org/10.1145/3126908.3126928

TH-DPMS 24:29

[55] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin Zheng, and Jinglei Ren. 2017.

DudeTM: Building durable transactions with decoupling for persistent memory. In Proceedings of the 22nd Inter-

national Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’17). ACM,

New York, NY, 329–343. DOI:https://doi.org/10.1145/3037697.3037714

[56] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: An RDMA-enabled distributed persistent memory file

system. In Proceedings of the USENIX Conference on Usenix Annual Technical Conference (USENIX ATC’17). USENIX

Association, 773–785.

[57] Youyou Lu, Jiwu Shu, and Long Sun. 2015. Blurred persistence in transactional persistent memory. In Proceedings of

the 31st Symposium on Mass Storage Systems and Technologies (MSST’15). IEEE, 1–13.

[58] Youyou Lu, Jiwu Shu, and Long Sun. 2016. Blurred persistence: Efficient transactions in persistent memory. ACM

Trans. Storage 12, 1 (Jan. 2016). DOI:https://doi.org/10.1145/2851504

[59] Youyou Lu, Jiwu Shu, Long Sun, and Onur Mutlu. 2014. Loose-ordering consistency for persistent memory. In Pro-

ceedings of the IEEE 32nd International Conference on Computer Design (ICCD’14). IEEE, 216–223.

[60] Teng Ma, Mingxing Zhang, Kang Chen, Xuehai Qian, Zhuo Song, and Yongwei Wu. 2020. AsymNVM: An efficient

framework for implementing persistent data structures on asymmetric NVM architecture. In Proceedings of the 25th

International Conference on Architectural Support for Programming Languages and Operating Systems. ACM.

[61] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using one-sided RDMA reads to build a fast, CPU-efficient

key-value store. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC’13). 103–114.

[62] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H. Noh, and Beomseok Nam. 2019. Write-optimized dynamic hash-

ing for persistent memory. In Proceedings of the 17th USENIX Conference on File and Storage Technologies (FAST’19).

31–44.

[63] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon Kahan, and Mark Oskin. 2015. Latency-

tolerant software distributed shared memory. In Proceedings of the USENIX Annual Technical Conference (USENIX

ATC’15). USENIX Association, 291–305. Retrieved from https://www.usenix.org/conference/atc15/technical-session/

presentation/nelson.

[64] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy, Mike

Paleczny, Daniel Peek, Paul Saab, et al. 2013. Scaling memcache at Facebook. In Proceedings of the 10th USENIX

Conference on Networked Systems Design and Implementation (NSDI’13). USENIX Association, 385–398.

[65] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris Grot. 2014. Scale-out NUMA. ACM

SIGPLAN Not. 49, 4 (2014), 3–18.

[66] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli, Michael Cui, Yiying Zhang, Haggai Eran, Boris Pismenny, Liran

Liss, Michael Wei, Dan Tsafrir, and Marcos Aguilera. 2019. StoRM: A fast transactional dataplane for remote data

structures. In Proceedings of the 12th ACM International Conference on Systems and Storage (SYSTOR’19). Association

for Computing Machinery, New York, NY, 97–108. DOI:https://doi.org/10.1145/3319647.3325827

[67] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli, and Vijay Chidambara. 2019. SplitFS:

A file system that minimizes software overhead in file systems for persistent memory. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles (SOSP’19).

[68] Diego Ongaro and John Ousterhout. 2014. In search of an understandable consensus algorithm. In Proceedings of the

USENIX Annual Technical Conference (USENIX ATC’14). USENIX Association, 305–320.

[69] Jiaxin Ou, Jiwu Shu, and Youyou Lu. 2016. A high performance file system for non-volatile main memory. In

Proceedings of the 11th European Conference on Computer Systems (EuroSys’16). ACM, New York, NY. DOI:https://

doi.org/10.1145/2901318.2901324

[70] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang Lehner. 2016. FPTree: A hybrid SCM-

DRAM persistent and concurrent B-tree for storage class memory. In Proceedings of the International Conference on

Management of Data (SIGMOD’16). ACM, New York, NY, 371–386. DOI:https://doi.org/10.1145/2882903.2915251

[71] Marius Poke and Torsten Hoefler. 2015. DARE: High-performance state machine replication on RDMA networks.

In Proceedings of the 24th International Symposium on High-performance Parallel and Distributed Computing. ACM,

107–118.

[72] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. 2009. Scalable high performance main memory

system using phase-change memory technology. In Proceedings of the 36th International Symposium on Computer

Architecture (ISCA’09). ACM, New York, NY, 24–33.

[73] Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chatzopoulos, Aleksandar Dragojeviundefined,

Dushyanth Narayanan, and Miguel Castro. 2019. Fast general distributed transactions with opacity. In Proceedings of

the International Conference on Management of Data (SIGMOD’19). Association for Computing Machinery, New York,

NY, 433–448. DOI:https://doi.org/10.1145/3299869.3300069

[74] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed shared persistent memory. In Proceedings of

the Symposium on Cloud Computing (SoCC’17). Association for Computing Machinery, New York, NY, 323–337.

DOI:https://doi.org/10.1145/3127479.3128610

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

https://doi.org/10.1145/3037697.3037714
https://doi.org/10.1145/2851504
https://www.usenix.org/conference/atc15/technical-session/presentation/nelson
https://www.usenix.org/conference/atc15/technical-session/presentation/nelson
https://doi.org/10.1145/3319647.3325827
https://doi.org/10.1145/2901318.2901324
https://doi.org/10.1145/2901318.2901324
https://doi.org/10.1145/2882903.2915251
https://doi.org/10.1145/3299869.3300069
https://doi.org/10.1145/3127479.3128610

24:30 J. Shu et al.

[75] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana Klimovic, Adrian Schuepbach, and Bernard Metzler. 2019. Uni-

fication of temporary storage in the NodeKernel architecture. In Proceedings of the USENIX Annual Technical Con-

ference (USENIX ATC’19). USENIX Association, 767–782. Retrieved from https://www.usenix.org/conference/atc19/

presentation/stuedi.

[76] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H. Campbell. 2011. Consistent and durable

data structures for non-volatile byte-addressable memory. In Proceedings of the 9th USENIX Conference on File and

Storage Technologies (FAST’11). USENIX Association, 5–5. Retrieved from http://dl.acm.org/citation.cfm?id=1960475.

1960480.

[77] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam, Venkatanathan Varadarajan, Prashant Saxena, and Michael

M. Swift. 2014. Aerie: Flexible file-system interfaces to storage-class memory. In Proceedings of the 9th European

Conference on Computer Systems (EuroSys’14). ACM, New York, NY. DOI:https://doi.org/10.1145/2592798.2592810

[78] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Lightweight persistent memory. In Proceed-

ings of the 16th International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS’11). ACM, New York, NY, 91–104. DOI:https://doi.org/10.1145/1950365.1950379

[79] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Deconstructing RDMA-enabled distributed transac-

tions: Hybrid is better! In Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation

(OSDI’18). 233–251.

[80] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast in-memory transaction processing

using RDMA and HTM. In Proceedings of the 25th Symposium on Operating Systems Principles. ACM, 87–104.

[81] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and Carlos Maltzahn. 2007. Rados: A scalable, reliable storage service

for petabyte-scale storage clusters. In Proceedings of the 2nd International Workshop on Petascale Data Storage: Held

in Conjunction with Supercomputing’07. ACM, 35–44.

[82] Xiaojian Wu and A. L. Narasimha Reddy. 2011. SCMFS: A file system for storage class memory. In Proceedings of

International Conference for High Performance Computing, Networking, Storage and Analysis (SC’11). ACM, New York,

NY. DOI:https://doi.org/10.1145/2063384.2063436

[83] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A hybrid index key-value store for DRAM-NVM

memory systems. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC’17). 349–362.

[84] Jian Xu and Steven Swanson. 2016. NOVA: A log-structured file system for hybrid volatile/non-volatile main mem-

ories. In Proceedings of the 14th USENIX Conference on File and Storage Technologies (FAST’16). USENIX Association,

323–338. Retrieved from http://dl.acm.org/citation.cfm?id=2930583.2930608.

[85] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit Borase, Tamires Brito Da Silva, Steven

Swanson, and Andy Rudoff. 2017. NOVA-Fortis: A fault-tolerant non-volatile main memory file system. In Proceedings

of the 26th Symposium on Operating Systems Principles (SOSP’17). ACM, New York, NY, 478–496. DOI:https://doi.org/

10.1145/3132747.3132761

[86] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2019. Orion: A distributed file system for non-volatile main mem-

ory and RDMA-capable networks. In Proceedings of the 17th USENIX Conference on File and Storage Technologies

(FAST’19). USENIX Association, 221–234. Retrieved from https://www.usenix.org/conference/fast19/presentation/

yang.

[87] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2020. FileMR: Rethinking RDMA networking for scalable persistent

memory. In Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI’20).

USENIX Association, 111–125. Retrieved from https://www.usenix.org/conference/nsdi20/presentation/yang.

[88] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson. 2020. An empirical guide to

the behavior and use of scalable persistent memory. In Proceedings of the 18th USENIX Conference on File and Stor-

age Technologies (FAST’20). USENIX Association, 169–182. Retrieved from https://www.usenix.org/conference/fast20/

presentation/yang.

[89] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and Bingsheng He. 2015. NV-tree: Re-

ducing consistency cost for NVM-based single level systems. In Proceedings of the 13th USENIX Conference on File

and Storage Technologies (FAST’15). USENIX Association, Berkeley, CA, 167–181. Retrieved from http://dl.acm.org/

citation.cfm?id=2750482.2750495.

[90] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster comput-

ing with working sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud’10).

95.

[91] Kaisheng Zeng, Youyou Lu, Hu Wan, and Jiwu Shu. 2017. Efficient storage management for aged file systems on

persistent memory. In Proceedings of the Conference on Design, Automation & Test in Europe (DATE’17). European

Design and Automation Association, 1773–1778.

[92] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swanson. 2015. Mojim: A reliable and highly-

available non-volatile memory system. In Proceedings of the 20th International Conference on Architectural Support for

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

https://www.usenix.org/conference/atc19/presentation/stuedi
https://www.usenix.org/conference/atc19/presentation/stuedi
http://dl.acm.org/citation.cfm?id=1960475.1960480.
http://dl.acm.org/citation.cfm?id=1960475.1960480.
https://doi.org/10.1145/2592798.2592810
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/2063384.2063436
http://dl.acm.org/citation.cfm?id=2930583.2930608.
https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1145/3132747.3132761
https://www.usenix.org/conference/fast19/presentation/yang
https://www.usenix.org/conference/fast19/presentation/yang
https://www.usenix.org/conference/nsdi20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
http://dl.acm.org/citation.cfm?id=2750482.2750495.
http://dl.acm.org/citation.cfm?id=2750482.2750495.

TH-DPMS 24:31

Programming Languages and Operating Systems (ASPLOS’15). Association for Computing Machinery, New York, NY,

3–18. DOI:https://doi.org/10.1145/2694344.2694370

[93] Shengan Zheng, Morteza Hoseinzadeh, and Steven Swanson. 2019. Ziggurat: A tiered file system for non-volatile

main memories and disks. In Proceedings of the 17th USENIX Conference on File and Storage Technologies (FAST’19).

207–219.

[94] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and energy efficient main memory using phase

change memory technology. In Proceedings of the 36th International Symposium on Computer Architecture (ISCA’09).

ACM, New York, NY, 14–23.

[95] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-optimized and high-performance hashing index scheme for persistent

memory. In Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI’18).

461–476.

Received February 2020; revised May 2020; accepted July 2020

ACM Transactions on Storage, Vol. 16, No. 4, Article 24. Publication date: October 2020.

https://doi.org/10.1145/2694344.2694370

