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Nap: Persistent Memory Indexes for NUMA Architectures
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We present Nap, a black-box approach that converts concurrent persistent memory (PM) indexes into non-

uniform memory access (NUMA)-aware counterparts. Based on the observation that real-world workloads

always feature skewed access patterns, Nap introduces a NUMA-aware layer (NAL) on the top of existing

concurrent PM indexes, and steers accesses to hot items to this layer. The NAL maintains (1) per-node partial

views in PM for serving insert/update/delete operations with failure atomicity and (2) a global view in DRAM

for serving lookup operations. The NAL eliminates remote PM accesses to hot items without inducing extra

local PM accesses. Moreover, to handle dynamic workloads, Nap adopts a fast NAL switch mechanism. We

convert five state-of-the-art PM indexes using Nap. Evaluation on a four-node machine with Optane DC

Persistent Memory shows that Nap can improve the throughput by up to 2.3× and 1.56× under write-intensive

and read-intensive workloads, respectively.
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1 INTRODUCTION

We consider the problem of making persistent memory (PM) indexes NUMA-aware. Although
there has been a wealth of prior research designing high-performance PM indexes [19, 20, 23, 24,
43, 54, 55, 58, 61, 65–67, 74, 80, 83, 84], the impacts of non-uniform memory access (NUMA)
architecture to PM indexes have not been deeply explored. Due to limited DIMM slots and cores in a
single CPU, NUMA architecture is a necessity for providing massive bandwidth and capacity of PM
along with enormous computational power. In a NUMA machine, the CPU cores and DRAM/PM
DIMMs are grouped into nodes, which connect each other via inter-node links, e.g., Intel Ultra

Path Interconnect (UPI).
The NUMA problem on PM indexes is unique. First, PM suffers from more severe impacts of

NUMA than DRAM. Specifically, for Intel Optane DC Persistent Memory (i.e., Optane DIMM), the
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first PM product, compared with local PM write, the peak bandwidth of remote ones is decreased
to 59%; worse, highly concurrent remote PM writes (i.e., more than eight threads) experience a
bandwidth cliff (Section 2.2). Second, to guarantee failure atomicity (i.e., the system can recover
to a correct state upon system crashes), a PM index should issue flush instructions for explicitly
evicting data from CPU caches to PM. For data that resides on remote nodes, these flush instruc-
tions expose remote PM writes on the critical path, degrading the performance. Third, PM has
limited bandwidth (1/6 and 1/3 of DRAM in terms of writes and reads, respectively [79]), mak-
ing replication-based approaches impractical. Existing NUMA-aware DRAM indexes always (par-
tially) replicate indexes across NUMA nodes and synchronize these replicas via compact operation
logs [15, 63]. Replication effectively reduces remote accesses; yet, since every update operation is
executed at every node, the number of local accesses is amplified significantly. Although this ampli-
fication is not a problem for DRAM due to its extremely high local bandwidth, it is fatal for PM
with low local bandwidth.

In this article, we propose NUMA-Aware Persistent Memory Indexes (Nap), a black-box
approach that converts concurrent PM indexes into NUMA-aware counterparts. Nap is based on
a common observation: Real-world workloads always feature skewed access patterns [13, 16, 18,
42, 81], where a small portion of hot items receive extremely frequent accesses. The key idea of
Nap is making hot accesses NUMA-aware. Nap introduces a general NUMA-aware layer (NAL),
which can be placed on the top of any existing concurrent PM index. The NAL absorbs accesses to
hot items, while the underlying PM index handles accesses to other items. Specifically, NAL main-
tains per-node partial and crash-consistent views (PC-views) in PM, which serve insert/up-
date/delete operations from local threads with failure atomicity. NAL does not synchronize states
between PC-views, to avoid remote PM accesses without inducing extra local PM accesses. Such a
synchronization-less approach brings two challenges: (1) serving lookup operations to hot items;
(2) identifying the latest values from multiple PC-views upon recovery. For (1), NAL maintains
an additional global view of hot items in DRAM. For (2), NAL adopts a version-based mechanism
to order insert/update/delete operations to the same items, along with low-overhead methods of
failure atomicity.

Upon workloads change, Nap can identify the new set of hot items and then switch to a new
NAL quickly. The hot set identification is achieved by a combination of accurate and efficient
streaming algorithms (e.g., count-min sketch [26]). To mitigate blocking of foreground index oper-
ations during NAL switch, Nap introduces a three-phase switch. This mechanism detects the states
of access threads via a lightweight grace-period-based method. By leveraging these states, Nap
divides the switch into three phases, and carefully splits tasks (e.g., initializing new NAL, flushing,
and recycling old NAL) into different phases. As a result, only a small portion of index operations
during a small interval are blocked.

Nap approach offers several advantages. First, it is general and efficient; we convert five state-of-
the-art concurrent PM indexes using Nap, and the Nap-converted counterparts boost the through-
put significantly on a four-node machine. Second, since the set of hot items is always small, the
extra memory consumption and recovery time induced by Nap is bounded. Our evaluation on a
four-node machine running 72 threads shows that, when maintaining 100 K hot items in the NAL,
Nap uses less than 70 MB extra DRAM/PM space, and the recovery time is less than 1 second.

Nap has some limitations. First, it targets skewed workloads but not uniform workloads, which
appear relatively rarely in the real world. Second, Nap-converted PM indexes may be outperformed
by a crafted NUMA-aware PM index. However, when designing and evaluating Nap, we conclude
some guidelines that may benefit future specialized NUMA-aware PM indexes, among which the
most remarkable is that a NUMA-aware PM index should reduce remote PM accesses without con-

suming extra local PM bandwidth.
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Fig. 1. Architecture of a two-node NUMA server equipped with Optane DIMMs.

In summary, this article makes the following contributions:

— Nap, a black-box and practical approach that converts concurrent PM indexes into NUMA-
aware counterparts.

— A set of techniques that enables Nap’s fast reaction to workloads change.
— Experimental evidence showing the efficiency of Nap.

2 BACKGROUND AND MOTIVATION

In this section, we firstly introduce PM architecture (Section 2.1). Then, we show that access to
remote PM suffers from low performance (Section 2.2), and how it cripples PM indexes (Section 2.3).
Finally, we analyze why existing approaches for DRAM indexes are inefficient when applied to PM
(Section 2.4).

2.1 PM Architecture

PM is a new memory technology that enjoys the benefits of both storage and memory: it provides
byte-addressable storage with DRAM-comparable performance and high density. With the release
of Optane DIMMs, the first PM product, the system community is actively redesigning storage
systems to gain full exploitation of its potential [12, 21, 22, 34, 39, 40, 45, 52, 55, 61, 64, 71, 82].
Figure 1 presents the architecture of a two-node NUMA server equipped with Optane DIMMs.
Optane DIMMs are installed on DIMM slots and thus can handle requests from the memory con-
troller. Different NUMA nodes are connected via Intel UPI. In the current configuration, a PM
DIMM must operate side-by-side with a DRAM DIMM [38], so every PM server contains DRAM
resources, forming a PM/DRAM hybrid system.

Data persistence. The memory controller is protected by the asynchronous DRAM refresh

(ADR) domain, which ensures store instructions reaching the memory controller can survive
power failures. Since the CPU cache is volatile, to enforce persistence, CPUs have to adopt one
of the following two methods: ❶ issuing flush instructions, including clflush, clflushopt, and
clwb for explicitly writing back data from the cache to the ADR domain, or ❷ using non-temporal

stores (ntstore) to bypass the cache and write directly to the ADR domain. Above instructions
except clflush are non-blocking, so we always need to issue fence instructions (i.e., sfence) to
wait for the completeness of persistence.

2.2 NUMA Impacts on PM

A NUMA machine with numerous CPU cores and Optane DIMMs should be an ideal architecture
for fast and large-volume storage; however, this is not true, due to slow remote PM accesses (i.e.,
accessing PM on remote NUMA nodes).
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Fig. 2. Bandwidth of three 128 GB Optane DIMMs with varying threads. local access: threads access Optane

DIMMs that are local to them; remote access: threads access Optane DIMMs installed on another NUMA node.

We use ntstore instructions for PM write. UPI uses directory-based cache coherence protocol.

Fig. 3. NUMA impacts on PM indexes, using CCEH as an example. We use source code from [5], which relies

on PMDK [4] for PM allocation and supports variable-length keys. (a) An insert operation. Access threads reside

on node 2, while the directory and the targeted segment are on node 1. This insertion needs 2 remote reads

(❶❸) and 3 remote writes (❷❺❻). (b) Throughput of CCEH. Each thread allocates PM space from its local node.

Vertical lines show the boundaries between NUMA nodes.

Figure 2 reports the local/remote bandwidth of Optane DIMMs (3 Optane DIMMs and 18 CPU
cores per NUMA node). Each thread performs sequential access to a 2 GB PM space. We use 32-byte
ntstore for PM write. The peak writes bandwidth of remote accesses (3.5 GB/s) is only 59% of that
of local accesses (5.9 GB/s). Worse, the bandwidth of remote write collapses (<250 MB/s) in case of
more than eight concurrent threads. For read operations, though Optane DIMMs have a relatively
smaller gap (16.9%) between local bandwidth and remote bandwidth, the extra access latency in-
duced by inter-node links, i.e., UPI, is considerable (∼100 ns), exacerbating the already high PM
read latency (∼300 ns, [79]). Based on these observations, we conclude that a high-performance
PM system should avoid accessing remote PM, especially for writes.

Our experimental result is consistent with recent studies [22, 27, 50, 69, 76, 79]. We attribute the
low performance of remote PM writes to two reasons. First, ntstore instructions may behave like
cache line read-modify-write instructions, reducing the available PM bandwidth [27]. Second, due
to the read-modify-write behavior, remote writes may trigger multi-socket cache coherence events,
which induces extra PM writes [8]. Now, we explain why multi-socket cache coherence generates
PM writes. Intel UPI uses a directory-based protocol to guarantee cache coherence between NUMA
nodes [10]. The directory protocol records coherence metadata (e.g., cache lines’ distribution) for
cache invalidation. The coherence metadata is stored in Optane DIMMs, as shown in Figure 1. Thus,
when triggering a cache coherence event, the directory protocol modifies the coherence metadata,
which generates PM writes and further consumes limited PM write bandwidth.
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Fig. 4. Two existing DRAM-oriented approaches that support NUMA-aware indexes.

2.3 NUMA Impacts on PM Indexes

By leveraging the persistence and byte-addressability of PM, PM indexes can recover instantly
in the presence of power outages. Although there has been an influx of PM indexes designed
for Optane DIMMs, most of them are evaluated in a single NUMA node environment [23, 55, 58,
60, 64, 83]. Here, we investigate the NUMA impacts on PM indexes by analyzing CCEH [65], a
variant of extendible hashing optimized for PM. CCEH manages a set of segments, which are
pointed by a global directory. As shown in Figure 3(a), when performing an insertion, a thread
may trigger multiple times (up to 2 remote reads and 3 remote writes) of remote PM accesses.
Such remote accesses can significantly degrade the performance of PM indexes. We measure the
performance of CCEH under the multi-node environment with a synthetic workload, where the
ratio of lookup to insert/update is 1:1 and keys follow the Zipfian distribution with parameter 0.99.
We use 15-byte keys and 8-byte values. Our platform is comprised of four Intel Xeon Gold 6240 M
CPUs (18 cores per CPU), each with three 128 GB Optane DIMMs (1.5 TB in total). More details of
hardware configurations are shown in Section 6. Figure 3(b) shows the result. CCEH scales well
within a single NUMA node. However, the growth rate of throughput slows down significantly
when the thread number increases from 18 to 36; the main cause is remote PM accesses. When more
NUMA nodes are added, i.e., thread number increases from 36 to 72, the throughput fluctuates: it
increases first and then decreases. This is because that a newly added NUMA node brings extra
PM bandwidth resources, boosting the throughput, but soon, slow PM remote accesses become
the key performance determinant, degrading the throughput.

2.4 Limitations of DRAM-oriented Approaches

A natural question now arises: are existing NUMA-aware approaches for DRAM indexes still effi-
cient when applied to PM? We give a negative answer to this question by examining two existing
approaches to NUMA-aware DRAM indexes.

Node Replication (NR). NR [15] is a state-of-the-art black-box approach that obtains NUMA-
aware DRAM indexes from single-thread indexes. As shown in Figure 4(a), NR maintains a global
operation log and per-node replicas of DRAM indexes. Using flat combining [41] within nodes,
threads record their operations into the log, and execute the log entries to make their local replicas
consistent between nodes. Three main limitations leave NR ill-suited for PM indexes.

First, obviously, NR does not consider failure atomicity, which is indispensable for PM indexes.
Second, NR experiences severe space overhead: For a machine with n NUMA nodes, NR consumes
n times more PM due to replication. As important storage system components, PM indexes always
occupy a large portion of PM space; hence, such consumption is unacceptable. Third, the perfor-
mance of insert/update/delete operations is limited by PM write bandwidth of a single NUMA
node. To maintain consistent replicas between nodes, each node must execute the same series
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Table 1. A Comparison of Different Approaches to NUMA-aware

PM Indexes

NR [15] PNR [28, 63] Nap

Black-Box ✓ ✗ ✓

Failure Atomicity ✗ ✗ ✓

Extra Local Accesses High High None

Memory Consumption High Medium Low

Fig. 5. Access ratio of hot items (Zipfian 0.99).

of operations, which wastes precious local PM write bandwidth (only 1/6 of DRAM) and further
bottlenecks the overall throughput.

Partial Node Replication (PNR). To mitigate memory consumption of NR, several works [28, 63]
adopt an approach we call Partial Node Replication (PNR). As shown in Figure 4(b), PNR de-
composes an index structure into two-layer, namely, data layer and search layer. The data layer
stores data items; the search layer is responsible for locating items in the data layer, so the search
layer always stores a subset of keys. PNR replicates the search layer across NUMA nodes using
operation logs like NR, while different NUMA nodes access the data layer in a shared manner.
Compared with NR, PNR trades remote accesses for memory consumption: PNR does not repli-
cate the data layer at the cost of accessing items residing in remote nodes. PNR also suffers from
write amplification of local accesses due to replication. Moreover, PNR is not a general (black-box)
approach since not all indexes can be divided into a data layer and a search layer (e.g., B Tree).

Different from the above two replication-based approaches, only using a small additional PM
and DRAM space, Nap reduces remote PM accesses for any concurrent PM indexes, while not
squandering extra local PM bandwidth. Table 1 shows a comparison of these approaches.

3 KEY IDEAS

(1) Making hot accesses NUMA-aware. Real-world workloads often feature Zipfian popularity
distribution [13, 16, 18, 42, 81], where a small portion of hot items receive extremely frequent ac-
cesses. A recent study from Twitter [81] shows that their in-memory cache workloads are usually
even more skewed than YCSB [25]. We design Nap to target these skewed workloads by making
accesses to hot items NUMA-aware. To show the potential benefits of such a design, we run a
simulation to present the access ratio of hot items. The key popularity follows the Zipfian distri-
bution with parameter 0.99. From Figure 5, we observe that under a wide range of keyspace (from
10 M to 2000 M), the top 10 K/100 K/1000 K hottest items receive more than 39%/50%/61% accesses.
Hence, if we can absorb accesses to hot items (e.g., top 100 K) in a NUMA-aware way, a significant
percentage of remote PM accesses are avoided.

Nap introduces a NAL to absorb accesses to these hot items. In addition to reducing remote
PM accesses, the NAL features two advantages. First, since the set of hot items is always small
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Fig. 6. Nap’s architecture and interactions.

(e.g., 100 K), different from replication-based approaches (e.g., NR [15]), the DRAM/PM space used
by the NAL is limited. Second, upon system crashes, the small-sized NAL can be recovered fast,
bounding the recovery time.

(2) Black-box approach. Nap exploits hotness of items to handle the NUMA problem, which
enables a black-box approach for converting existing concurrent PM indexes into NUMA-aware
ones. Specifically, in Nap, the NAL absorbs accesses to hot items, and an underlying PM index
accommodates a large number of cold items. Nap requires no inner knowledge of the underlying
PM index. Any existing PM index that is crash-consistent and thread-safe can be used; thus, Nap
takes advantage of the mature, well-tested codes of PM indexes, which are usually implemented
via myriad engineering efforts.

(3) Minimizing state synchronization between PM nodes. The NAL records updates to hot
items into the local PM and does not synchronize PM-resident states between different NUMA
nodes; thus, in addition to reducing consumption of remote PM bandwidth, no extra local PM
bandwidth is consumed in Nap. To enable efficient lookup operations in such a synchronization-
less approach, the NAL maintains the latest values of hot items in the DRAM.

(4) Fast reaction to handle hotspot shift. Hotspots change over time, so Nap adopts several
techniques to enable fast reaction. Specifically, Nap maintains the current hot items in real time.
Upon detecting a new set of hot items, Nap generates a new NAL and installs it into the system in
an atomic manner.

4 DESIGN

4.1 Overview

This article proposes Nap, an approach that converts concurrent PM indexes into NUMA-aware
ones. Figure 6 presents the architecture and interactions of Nap. Nap consists of two main com-
ponents: a raw PM index and a NUMA-aware layer.

— Raw PM index. The raw PM index can be an arbitrary existing concurrent PM index (e.g.,
CCEH [65], FAST_FAIR [43]), regardless of its concurrency control mechanism (lock-based
or lock-free) and structure (tree-based, hashtable-based or hybrid). The raw PM index spans
multiple NUMA nodes; it manages cold items (◆ in Figure 6), which account for an extremely
huge proportion of the total dataset.

ACM Transactions on Storage, Vol. 18, No. 1, Article 2. Publication date: January 2022.
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Fig. 7. Structures of the GV-view and PC-views.

— NUMA-aware layer (NAL). Nap steers accesses to hot items to the NAL, which contains two
parts: a global andvolatile view (i.e., GV-view, Section 4.2) and per-node partial and crash-

consistent views (i.e., PC-views, Section 4.3). GV-view resides in DRAM, and maintains the
latest values of hot items to serve lookup requests (★ in Figure 6). Per-node PC-views reside
in PM. When a thread issues an insert/update/delete operation to a hot item, the PC-view in
the same NUMA node absorbs the operation, and persists the operation’s effect in a crash-
consistent manner (❶). Then, the corresponding value in GV-view is updated (❷), to ensure
the GV-view always owns the latest values of hot items. To eliminate remote PM accesses and
avoid extra local PM accesses, we do not synchronize states between different PC-views, and
thus each PC-view only has partial latest values of hot items. In case of hotspot shift, Nap can
timely identify the new set of hot items (Section 4.4) and switch to a new version of NAL (Sec-
tion 4.5); meanwhile, hot items in the old NAL are flushed to the underlying raw PM index.

4.2 Global & Volatile View (GV-View)

Design goals. In addition to serving lookup for hot items, the DRAM-resident GV-view is also
responsible for (1) controlling concurrent accesses to the NAL, and (2) checking an item whether
belongs to the hot set.1 Thus, the design of GV-view must be lightweight and efficient.

Design details. Nap organizes the GV-view as a DRAM-resident index, which maintains the map-
ping from key to GV entry for every hot item. Figure 7(a) shows the GV-view’s structure. The
GV-view uses a hashtable by default; but if the raw PM index supports range query, it uses a tree-
based data structure. Since the hot set is fixed unless the NAL is switched (e.g., the hot set is {K1,

K2, K3, K4, and K5} in Figure 7), the GV-view’s index is constructed entirely during the NAL’s ini-
tialization and thereafter does not make any changes to its structure. As a result, any thread-unsafe

index with high performance is applicable (e.g., C++ unordered_map).
For each hot item, the associated GV entry maintains its runtime information. Figure 7(b) shows

the GV entry’s format, which consists of five fields: (1) a readers-writer lock to control concurrent
accesses to the hot item; (2) the latest value of the item; (3) a pointer indicating where to persist
the item in PC-views. (4) the version of this item, which is used for recoverability of PC-views
(Section 4.3); (5) an enumerated value that assists in NAL switch (Section 4.5).

1To simplify exposition, we term the set of hot items as hot set. Here, we assume the content of hot set is known in advance

(Obtaining the hot set is detailed in Section 4.4).
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Lookup operation. In case of no NAL switch, a lookup operation is performed as the following:

the access thread checks the GV-view for the targeted item; if the targeted item does not exist, the
lookup is redirected to the raw PM index; otherwise, the thread acquires read lock in corresponding
GV entry, copies the value, and finally releases the lock.

Range query operation. Nap complicates the range query, because items for a targeted range may

exist in the GV-view and raw PM index simultaneously. An access thread performs a range query as
the following: it searches the GV-view, getting the items in the targeted range (S1); then, it obtains
the S2 by invoking the range query interface of the raw PM index; finally, it merges S1 and S2 (if an
item exists in both S1 and S2, we leave the one in S1), returning the result. Like FAST_FAIR [43] and
P-Masstree [55], the range query operations in Nap are not atomic with a concurrent insert/up-
date/delete operations; if a system (e.g., database) atop Nap requires a higher isolation level (e.g.,
repeatable read), it needs to implement next-key locking or version mechanisms [73].

4.3 Partial and Crash-consistent View (PC-View)

Design goals. The per-node PM-resident PC-views absorb update/insert/delete operations and en-
sure the effects of these operations can survive power outages. PC-views have two design goals: (1)
Recoverability. The states between PC-views are inconsistent, and thus Nap must be able to identify
the latest values upon recovery. (2) Low-overhead failure atomicity. To guarantee failure atomicity,
we must explicitly persist data with flush instructions (e.g., clflush, clwb, and clflushopt) and
avoid store reordering with fence instructions (e.g., sfence). Minimizing the usage of these expen-
sive instructions is key for high performance.

Design details. Nap organizes each per-node PC-view into two PM-resident arrays: a read-only
key array and a writable value array (Figure 7(c)). The key array stores all the keys of the hot set.
The value array reserves a PC entry for each hot item to record values. A hot item’s PC entries are
specified via the pc_pos field of the corresponding GV entry; for example, in Figure 7, the 5th PC
entry in each PC-view belongs to K5. Note that each PC entry contains a pointer to the associated
key in the key array, to make the NAL recoverable.

Because two threads may update the same hot item but manipulate different PC-views, values
of hot items are inconsistent between PC-views. To identify the latest values upon recovery, we
adopt a simple version-based mechanism. Each hot item has a monotonically increasing 64-bit
version, which is recorded in the GV-view (version field in Figure 7). The most significant bit of
a version is the deletion marker.

Insert/Update operation. In case of no NAL switch, an insert/update operation is performed as fol-

lowing steps:

(1) The access thread searches the GV-view for the targeted item; if the targeted item does not
belong to the hot set, the operation is redirected to the raw PM index.

(2) The thread acquires the targeted item’s write lock in the GV-view, then obtains a new ver-
sion.

(3) The thread persists the version with the new value (i.e., 〈value, version〉 pair) atomically
into the targeted PC entry in the local NUMA node.

(4) The thread updates the volatile value in the GV-view (for future lookup operations), and
finally releases the lock.

Delete operation. A delete operation has the same process as an insert/update operation, except for

the above Step (3): the access thread sets the deletion marker of the obtained version and persists
it into its local PC-view.

ACM Transactions on Storage, Vol. 18, No. 1, Article 2. Publication date: January 2022.
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Fig. 8. The structure of two types of PC entry. key_ptr points to corresponding key in the key array and

key_size stands for the size of the key. (a) For variable-length values, we use copy-on-write for failure atomicity.

Each PC entry is 24-byte. The grey space of [version,val] is allocated from PM. (b) For fixed 8-byte values, we

adopt a lightweight two-incarnation toggle mechanism. Each PC entry is 49-byte (indicator is 1-byte, every

other field is 8-byte) and cache-line-aligned, and contains two incarnations of 〈value,version〉 pair.

Using the version-based mechanism, we can accurately identify the latest value for a hot item
from multiple PC-views: The value with maximal version (without deletion marker) is the latest;
if the deletion marker of the maximal version is set, the corresponding hot item has been deleted.
For example, in Figure 7(c), with the maximal version, ‘‘V-b’’ in the PC view of node 1 is the
latest value of K5.

Now we describe how to guarantee failure atomicity of update to 〈value,version〉 pair with low
overhead. Nap adopts two different mechanisms to efficiently support variable-length values and
fixed 8-byte values, respectively.

For variable-length values, we leverage copy-on-write (CoW) to update 〈value,version〉 pair;
Figure 8(a) shows the corresponding PC entry. The access thread firstly allocates free PM space
and copies 〈value,version〉 pair to it; then, the thread flushes the pair via clflushopt instructions
followed by a sfence (①); finally, the thread updates 8-byte pointer atomically to the address of
〈value,version〉 pair, flushes the pointer via a clwb, and issues sfence to ensure the persistence
is completed (②). We use clflushopt (which invalidates flushed cache lines) rather than clwb
(which does not perform cache invalidation) for 〈value,version〉 pair, so as to save CPU cache
space for other operations; this is because that values in PC-views are only read during recovery.

Nap designs a two-incarnation toggle mechanism for fixed 8-byte values, which is very common
in PM indexes [55] (8-byte value is usually a pointer indicating the location of real data). Figure 8(b)
shows the structure of the corresponding PC entry, which is 49-byte and cache-line-aligned. There
are two incarnations of 8-byte values and 8-byte versions, and an indicator pointing to the valid
incarnation. When writing a new 〈value,version〉 pair, the access thread first copies the pair into
the invalid incarnation (❶), which can be calculated according to the indicator (e.g., if the indicator
points to the first incarnation, the second one is invalid). Then, the thread toggles the indicator
(❷), letting it point to the updated incarnation. Finally, the thread issues a clwb to the PC entry
followed by a sfence (❸). Compared to the CoW, the two-incarnation toggle mechanism saves
a flush instruction and a fence instruction, enabling its efficiency. We do not need a fence before
toggling the indicator, because writes to the same cache line reach PM in program order under
total store order (TSO) architecture of Intel CPUs [24, 43, 82]. Of note, although each PC entry
takes up a 64-byte PM space to enforce cache line alignment, the PM consumption is limited; this
is because the hot set is small.

4.4 Hot Set Identification

Design goals. In real-world workloads, the hot set keeps changing over time [18]; thus, Nap
requires to identify the hot set in real-time. The design goals of identifying hot sets are
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Fig. 9. Hot set identification. Access threads publish accessed keys into record buffers with sampling. The switch

thread uses a count-min sketch to estimate frequency of keys and a min-heap to maintain the current hot set.

(1) minimizing interferences with foreground index operations, and (2) small memory footprint
in the face of infinite streams of index operations.

Design details. Nap uses a dedicated switch thread for hot set identification, to detach this process
from the critical path of index operations. Figure 9 shows how the switch thread interacts with
access threads and identifies the hot set.

Each access thread maintains a circular record buffer to publish its access patterns. To reduce in-
terferences caused by hot set identification, access threads use sampling and make writes to record
buffers coordination-free. Specifically, every several operations (e.g., 32), an access thread writes
a 〈timestamp,key〉 pair into the record buffer, where the timestamp is a 64-bit number generated
via rdtsc instructions and key is the key of the current index operation. The access thread blindly
appends 〈timestamp,key〉 pairs to the circular buffer, regardless of whether the overwritten data
has been consumed by the switch thread (i.e., no coordination with the switch thread).

With the help of a count-min sketch [26] and a min-heap, the switch thread digests record
buffers in following repeated three steps.

(1) The switch thread chooses a record buffer in a round-robin manner, and fetches a batch
(e.g., 8) of new 〈timestamp,key〉 pairs from it. Two types of 〈timestamp,key〉 pairs are con-
sidered invalid: (1) the timestamp is less than maximal timestamp that has been read from
corresponding record buffer, indicating we approach the tail of the record buffer; thus, the
fetch stops. (2) (current time − timestamp) is greater than a threshold value (e.g., 100 ms),
indicating this pair is too stale; thus, the pair is skipped. Note that although the timestamps
generated via rdstc instructions are not strictly synchronized between CPU cores [48, 57],
it has not caused any visible impacts for Nap.

(2) For each key fetched from record buffers, the switch thread leverages a count-min sketch to
update and estimate its access frequency. The count-min sketch is memory efficient, since
it only uses a few small arrays. Sampling used by access threads filters out most infrequent
keys, avoiding overflow of the sketch [44].

(3) The min-heap maintains the current hot set in the form of 〈key, f requency〉 pairs that are
ordered by the f requency field. The size of the heap has an upper bound (e.g., 10,000), which
can be configured. For a key fetched from record buffers (we call it K, and call its estimated
frequency F), if it is already in the heap, the switch thread updates the corresponding fre-
quency field to F; otherwise, the switch thread inserts the 〈K, F〉 pair into the heap. If the

ACM Transactions on Storage, Vol. 18, No. 1, Article 2. Publication date: January 2022.



2:12 Q. Wang et al.

Fig. 10. Switching to a new NAL. Global pointers cur_NAL, pre_NAL and gc_NAL are stored in PM. Line 5 is

protected via a global seqlock to ensure access threads can get a snapshot of 〈cur_NAL, pre_NAL〉.

heap is full and F is greater than the frequency of heap root, the thread replaces the pair in
the heap root with the 〈K, F〉. Every time the heap is modified, we need to adjust its structure
to enforce its ordering property.

Periodically (e.g., per 1 s), the switch thread compares the heap with the hot set being used by
the current NAL. If there is a big difference between them, i.e., the proportion of different keys
exceeds 25%, the switch thread triggers a NAL switch (Section 4.5) with the new hot set (i.e., keys
in the heap). The process of comparison is simple. We implement the heap using an array (we call
it HeapArray here), and maintain the hot set used by the current NAL in a sorted array (we call it
HotArray here). We first sort the HeapArray then compare it with HotArray in an item-by-item
manner. The comparison can terminate in advance, once the number of different keys is enough.

All statistics data, including the count-min sketch and the min-heap, are cleared periodically.

Handling uniform workloads. Nap minimizes overhead induced by the NAL under uniform
workloads. Specifically, the switch thread detects uniform workloads, under which it initializes an
empty NAL (with 0-sized GV-view). For index operations, access threads check the size of GV-view
before searching it, which only incurs less than five CPU cycles. The switch thread can use two
signals to approximatively identify uniform workloads: ① items in the heap receive less than 10%
of all accesses; ② the hottest item in the heap receives comparable accesses (i.e., within 3×) to the
coldest.

4.5 NAL Switch

Design goals. Nap switches to a new NAL for handling dynamic workloads. The design goals
of the NAL switch lie in two aspects. First, Nap must minimize the blocking of foreground index
operations during the NAL switch, to avoid latency spikes. Second, the data races between the
switch thread and access threads should be addressed carefully, to guarantee the consistency of
the whole system.

Design details. Nap introduces a three-phase switch, which is fast and does not block most of
the foreground index operations. Its key idea is: The switch thread detects the states of access
threads via a grace-period-based method (inspired by epoch-based reclamation [36]), to ensure its
modifications are visible for all ongoing and future index operations.

Figure 10 shows the procedure of the NAL switch, which consists of three phases:
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Fig. 11. Different access threads see different system states. A, B, and C each stands for an exclusive set of

items. Types ❶ and ❷ threads are distinguished based on pre_NAL being null or not.

Fig. 12. Insert and lookup operations for type ❷ threads.

(1) Initialize a new NAL. The switch thread initializes the new NAL according to the new
hot set (line 4, NALnew ; we term the current NAL as NALold ). Specifically, the switch thread con-
structs the GV-view and per-node PC-views; the PC-views are persisted for failure atomicity. For
now, the GV-view of NALnew only records locations of values of hot items (i.e., in raw PM index
or in NALold ), rather than the values themselves, by setting the val_location field in GV entries
(Figure 7(b)). Such a lazy initialization is necessary for correctness: if we directly copy the latest
values to the GV-view of NALnew , the concurrent insert/update/delete operations to raw PM in-
dexes or NALold will make the value in NALnew stale, violating the correctness of future lookups
to NALnew .

Then, the switch thread makes NALnew visible to access threads, by setting global pointers
cur_NAL and pre_NAL to NALnew and cur_NAL, respectively (line 5). To ensure that access threads
always see the atomic effect of this operation, the line 5 is protected via a global seqlock [7]. Before
performing an index operation, the access thread saves a snapshot of 〈cur_NAL, pre_NAL〉 pair
under the protection of the global seqlock, and accesses NAL according to the snapshot (details
about the global seqlock are in Section 5).

At this time, the different ongoing index operations may have saved different snapshots of
〈cur_NAL, pre_NAL〉 pair, as shown in Figure 11: Type ❶ accesses threads only see the NALold

and do not realize the concurrent NAL switch; Type ❷ accesses threads see the both NALnew and
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Fig. 13. Wait a grace period. ACCESS_THREAD_CNT is the number of access threads. thread_meta is a global

array, which is updated by access threads and probed by the switch thread.

NALold . Specifically, types ❶ and ❷ threads are distinguished based on pre_NAL being null or not.
For type ❶ threads, they manipulate NALold and the workflow of index operations is the same as
in cases of no NAL switch (Sections 4.2 and 4.3). The index operations becomes a bit complicated
for type ❷ threads (as shown in Figure 12):

(1) For an insert/update/delete operation, if the targeted item belongs to NALnew (this item may
also be in NALold , e.g., range C in Figure 11), NALnew absorbs this operation like the case
of no NAL switch (Section 4.3); besides, the thread copies the value into the corresponding
GV entry, and updates the val_location field to 0 in order to indicate the value can be
served for future lookups. If the targeted item falls in NALold and not in NALnew (range B
in Figure 11), the operation is blocked until the global pointer pre_NAL becomes NULL (i.e.,
phase 3 of the three-phase switch, see below); then, the operation is retried. Otherwise, the
operation is redirected to the raw PM index.

(2) For a lookup operation, the thread checks GV-view of NALnew , GV-view of NALold , and
the raw PM index one by one. In the case that the targeted item falls in NALnew , the
thread checks the val_location field: if the value can not be served from the NALnew (i.e.,
val_location is not 0), the thread fetches the value from NALold (for range C in Figure 11)
or the raw PM index (for range A) according to the val_location field. Range query oper-
ations experience the same workflow: access threads search NALnew , NALold and the raw
PM index in order, then merge results.

(2) Flush NALold . In this phase, the switch thread first waits for a grace period to ensure all
access threads become type ❷ (line 8). Our grace period mechanism is simple: each access thread
publishes its states into a slot in a global array; a slot consists of two fields: a boolean running
and a 64-bit cnt. The access thread sets its running and increases cnt when starting an index
operation (before saving the snapshot of 〈cur_NAL, pre_NAL〉 pair), and resets the running when
completing the operation. The switch thread probes the global array until every access thread is
out of index operations (running is false) or has finished an index operation (cnt is changed), as
show in Figure 13. After this grace period, all the access threads realize the concurrent NAL switch
for ongoing and future index operations, i.e., they are type ❷ threads; hence, the NALold will never
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be modified (recall that insert/update/delete operations to NALold are blocked for type ❷ threads).
Now, the switch can flush the latest values in the GV-view of NALold to the raw PM index rapidly
(via invoking interfaces of the raw PM index) without considering any data race (line 9).

(3) Recycle NALold . Now, the NALnew and the raw PM index reflect complete and consistent
states of the system. The switch thread needs to recycle the DRAM/PM space occupied by NALold .
It first saves the NALold into a global pointer gc_NAL and sets the pre_NAL to NULL (line 12). Then,
the switch thread waits for a grace period to ensure no ongoing and future lookup operations are
performed on NALold (line 13). Finally, the DRAM and PM space used by NALold is released safely
(line 14), and gc_NAL is set to NULL (line 15). The access threads that realize the null pre_NAL are in
a normal condition without any blocking; for a lookup operation to NALnew , if the targeted value
is not in the GV-view, the access thread fetches the value from the raw PM index, saves it to the
GV-view, and updates corresponding val_location field to 0.

In the above three-phase switch, the insert/update/delete operations to a part of NALold (i.e.,
range B in Figure 11) are blocked during the phase 2. Such a blocking has only a small impact on
the system for two reasons. First, since the new hot set is maintained by NALnew , items in the
range B is cold, receiving a negligible percentage of accesses. Second, since the hot set is small and
flushing items from NALold to the raw PM index is data-race-free, the phase 2 is fast.

Failure atomicity. The switch thread guarantees failure atomicity of three global pointers:
cur_NAL, pre_NAL, and gc_NAL. These three pointers are allocated in PM and persisted when mod-
ified. The switch thread also maintains a small PM undo log. For lines 5 and 12 of Figure 10, the
switch thread records undo log entries for failure atomicity. For line 15, an 8-byte atomic write is
enough.

4.6 Recovery

In this section, we detail the recovery of Nap after a normal shutdown and system crash.

Recovery after a normal shutdown. Before a normal shutdown, Nap first flushes the hot items
from the NAL’s GV-View to the raw PM index. Then, it frees the PM space consumed by per-node
PC-views. In this way, during recovery, Nap only needs to initialize an empty NAL and restore the
underlying raw PM index.

Recovery after a system crash. In this case, the recovery is somewhat complicated. We divide
the recovery into four steps.

(1) Reconstruct the raw index. We invoke the recovery procedure of the underlying raw PM
index. Note that this step is necessary, even without Nap.

(2) Reconstruct NALs. Nap scans the undo log and global pointers (i.e., cur_NAL, pre_NAL and
gc_NAL), and constructs the valid version of these pointers. After that, if pointer pre_NAL is not
null, it means that the system crashes during the NAL switch.

(3) Merge NALs into the raw index. In this step, Nap first merges the NAL pointed by pre_NAL
(if not null) into the raw index; then, it merges the NAL pointed by cur_NAL in the same way. Merg-
ing a NAL needs to identify the latest committed items from the NAL’s PC-views, which relies on
the techniques we propose in Section 4.3. Specifically, ① Nap extracts committed items and asso-
ciated versions for each PC-view. For variable-length values, the committed 〈value,version〉 pairs
are indicated by 8-byte pointers in value arrays; for 8-byte values, the committed 〈value,version〉
pairs are specified by 1-byte indicators in value arrays (see Figure 8). The associated keys are ex-
tracted from the PC-views’ key arrays. ② Next, for each item that appears in multiple PC-views,
Nap identifies the value with maximal version as the latest one. ③ Finally, Nap inserts these latest
committed items into the raw PM index by invoking its interfaces.
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(4) Reclaim PM space. Nap frees the PM space of NALs that are pointed by cur_NAL, pre_NAL
and gc_NAL, to avoid the memory leak. The PM space includes two parts: (1) value arrays and key
arrays in PC-views and (2) 〈value,version〉 pairs, which are allocated in case of variable-length
values. Finally, Nap clears the undo log. At this point, Nap is in a consistent state.

4.7 Correctness

4.7.1 Definitions.

— IL_RAW: isolation level of the underlying raw PM index.
— IL_NAP: isolation level of the Nap-converted index.

4.7.2 Isolation Guarantee.

Theorem 1. For range queries, IL_NAP is equal to the lower level of one between IL_RAW and read

committed.

Proof. In Nap, a range query merges committed results from the NAL and raw PM index with-

out coordination, so it is not atomic with concurrent updates. Hence, range queries reach up to read
committed. �

Theorem 2. For point queries, IL_NAP is equal to IL_RAW.

Proof. For hot items managed by NALs (i.e., NALnew and NALold ), Nap enforces linearizability
for point queries to them. There are four cases for two conflicting operations.

— If two conflicting operations target the same NAL, readers-writer locks in the NAL’s GV-
view serialize them.

— If a thread updates an item in NALold , future lookups2 to NALnew can see the value due to
the lazy initialization.

— If a thread updates an item in NALnew , it means the NALnew has been installed. Hence, all
future lookups will see the NALnew and get the correct value.

— If two conflicting operations OP1 and OP2 perform updates on NALold and NALnew , respec-
tively, all future lookups will see OP2, which means OP1 happens before OP2 in the linearizable
history. This is legal since it is impossible that OP1 is invoked after OP2’s response. �

4.7.3 Failure Atomicity.

Theorem 3. Nap-converted indexes do not change failure atomicity semantic of raw PM indexes.

Proof. Nap ensures that lookups after recovery can find the latest committed updates to NALs.
First, in a single PC-view, Nap adopts the two-incarnation toggle mechanism and CoW for atomic
persistence. Second, among multiple PC-views in a NAL, Nap stores values along with increasing
versions, which are used for accurately identifying the latest values upon recovery. Third, changes
to the global PM pointers cur_NAL and pre_NAL are protected by undo logging; upon recovery, we
first flush the NAL pointed by pre_NAL and then the one pointed by cur_NAL, so as to ensure only
the latest values appear in the raw PM index. �

5 IMPLEMENTATION

We have implemented Nap in C++ (∼2,000 lines of code). Nap provides a template class in the form
of “template<T> class Nap”, where T is a wrapper class for a concurrent PM index with specific
index operation interfaces invoked by Nap. Our programming experience shows that converting
a PM index using Nap needs roughly 30 lines of wrapper class codes. We use C++ unordered_map

2For an operation, its future operations are operations that are invoked after its response.

ACM Transactions on Storage, Vol. 18, No. 1, Article 2. Publication date: January 2022.



Nap: Persistent Memory Indexes for NUMA Architectures 2:17

to organize the GV-view by default; if the underlying raw PM index supports range query (e.g., B+
tree), we use C++ map.

PM space management. We leverage PMDK [4] to manage PM space. Specifically, for each
NUMA node, we initialize a PMDK pool, from which Nap allocates PM space for PC-views. To
reduce expensive PMDK allocation upon CoW (Section 4.3), we adopt a simple customized alloca-
tor. Each thread requests 1 MB chunks from its local PMDK pool, and allocates PM for CoW using
classic slab mechanism. The addresses of chunks are recorded in the PM, and the allocator meta-
data is maintained in the DRAM. Upon recovery, after flushing the PC-views into the underlying
raw PM index, Nap frees these used chunks.

Mitigate cache coherence traffic. Since Nap uses fine-grained concurrency (e.g., three-phase
switch) for high performance, which inevitably induces communication between different threads,
we strive to mitigate cache coherence traffic to ensure Nap’s multi-core scalability. Specifically, to
reduce cache line movements between the switch thread and the access threads, the switch thread
digests each per-access-thread record buffer in a batched manner: it fetches and processes one
cache line (rather than one 〈timestamp,key〉 pair) at a time. In addition, to eliminate unneces-
sary cache coherence traffic between access threads, Nap leverages a global seqlock [7] to control
concurrent accesses to global pointers (i.e., cur_NAL and pre_NAL). Using global seqlock, access
threads detect concurrent writes (caused by the switch thread) by reading versions, and thus do not
trigger any memory writes when getting the snapshot of 〈cur_NAL, pre_NAL〉 pair (Line 5 in Fig-
ure 10). In this way, unlike a counter-based reader-writers lock, the global seqlock ensures that no
cache coherence traffic is generated between access threads when accessing these global pointers.

Data persietence. As described in Section 4.3, Nap carefully chooses different flush instructions
(i.e., clwb and clflushopt). However, we found that clwb can not reduce latency of future PM
reads. This is because in current hardware implementation, clwb invalidates cache lines (like
clflushopt) [46]. We hope that in next-generation CPUs supporting PM, clwb can retain flushed
data in the cache, so as to enable optimizations of choosing different flush instructions.

6 EVALUATION

In this section, we use a number of microbenchmarks and applications to evaluate Nap, seeking
to answer the following questions:

— How does Nap-converted PM indexes compare with original PM indexes? (Section 6.2)
— How does Nap perform when value size is variable? (Section 6.3)
— How does Nap react to dynamic workloads? (Section 6.4)
— How do the characteristics of workloads and NUMA configurations affect the performance

of Nap? (Section 6.5)
— How does the two-incarnation toggle mechanism improve Nap’s performance? (Section 6.6)
— Can Nap improve the performance of PM/DRAM hybrid indexes? (Section 6.7)
— How does Nap compare with Node Replication? (Section 6.8)
— What are the overheads incurred when using Nap? (Section 6.9)
— What is the benefit of Nap to real applications? (Section 6.10)
— How does Nap perform when UPI uses the snoop-based cache coherence protocol? (Sec-

tion 6.11)

6.1 Experimental Setup

The experiments are conducted on a 4-socket (NUMA node) machine, where UPI uses the directory-
based cache coherence protocol. Each NUMA node is populated with an 18-core Intel Xeon Gold
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6,240 M CPUs, three 128 GB Optane DIMMs and three 32 GB DDR4 DIMMs, resulting in a machine
with 72 CPU cores, 1.5 TB PM and 384 GB DRAM. Our machine runs Ubuntu 18.04 with Linux
kernel version 5.4.0.

Unless otherwise stated, for Nap, the size of the hot set is configured to 100 K, and the switch
thread tries to perform the NAL switch per 0.2 seconds. Each per-core record buffer is 300 KB.
The count-min sketch contains 3 counter arrays, each with 32-bit 850,000 counters. The sampling
interval is 32. The switch thread is enabled in all the experiments.

Workloads. We leverage a YCSB-like benchmark to evaluate the performance of PM indexes.
The benchmark contains five types of workloads: (1) write-intensive: 50% lookup and 50% up-
date/insert, (2) read-intensive: 95% lookup and 5% update/insert, (3) write-only: 100% update/insert,
(4) read-only: 100% lookup, and (5) scan-intensive: 95% range query and 5% update/insert. By de-
fault, the key space (i.e., the range of keys) is 200 million and the key popularity follows a Zipfian
distribution with parameter 0.99 (the default setting in YCSB [25]). For each experiment, we first
load 16 million items then perform the workloads, which contains 64 million index operations. The
ratio of insert operations to update operations is about 1:3. We use 15-byte keys and 8-byte values.

6.2 Real Indexes

Using Nap, we convert five state-of-the-art PM indexes:

— CCEH [65]. An extendible hashtable that is structured as a set of segments pointed by a
global directory. It uses readers-writer locks for concurrency control.

— Clevel [23]. A lock-free version of level hashing [84], which is organized as two bucket arrays.
— P-CLHT [55]. PM version of CLHT [30], which is a linked-list-based hashtable. It supports

lock-free lookups and uses bucket-grained locks for other operations.
— P-Masstree [55]. PM version of Masstree [62], a trie-like concatenation of B+ tree nodes. It

adopts lock-free lookups and lock-based writes.
— FAST_FAIR [43]. A PM B+ tree with lock-free lookups and lock-based writes.

For CCEH, Clevel, and P-CLHT, we use the source code from [5], which relies on PMDK for PM
allocation and supports variable-length keys. We modify the code to make each thread allocate
PM from its local PMDK pool. For CCEH, we replace the global directory lock with an in-DRAM
distributed readers-writer lock [2], avoiding its scalability issues. For P-Masstree and FAST_FAIR,
we use the source code from [3] and modify the code for allocation with PMDK; besides, we im-
prove range query implementations by making them return both keys and values. Of note, we do
not use our customized allocator (Section 5) for these indexes; this is because the customized allo-
cator cannot provide failure atomicity for each (de)allocation operation due to its DRAM-resident
metadata.

Throughput under write/read-intensive workloads. Figure 14 shows the throughput of these
PM indexes under write-intensive and read-intensive workloads, and we make the following
observations:

First, compared with the original indexes, Nap-converted indexes yield much better scalability
under both write-intensive and read-intensive workloads. Specifically, in four-node environment
(i.e., 72 threads), Nap improves the throughput by 1.26× (FAST_FAIR) to 2.3× (CCEH) for write-
intensive workloads and 1.18× (P-Masstree) to 1.56× (P-CLHT) for read-intensive workloads. This
is because the NAL of Nap absorbs plenty of operations, where the per-node PC-views eliminate
the remote PM writes and the GV-view eliminates the remote PM reads. Note that the global
GV-view induces remote DRAM accesses; yet, remote DRAM accesses exhibit much higher per-
formance than remote PM accesses: 5.7× higher throughput for writes (20 GB/s : 3.5 GB/s) and
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Fig. 14. Throughput under write/read-intensive workloads. WI: write-intensive workloads; RI: read-intensive

workloads. Vertical lines show the boundaries between NUMA nodes.

2× lower latency for reads (200 ns : 400 ns). Figure 15 reports the NAL’s hit ratio, which archives
45% ∼ 54%. There is a small gap between these hit ratios and the theoretical upper limit (i.e., 0.58).
This is because we use the probabilistic data structures (e.g., count-min sketch) and sampling to
capture the hot set, resulting in a small degree of inaccuracy.

Second, even within a single NUMA node, Nap-converted indexes outperform the original ones
(except P-CLHT in read-intensive workloads). This is mainly because (1) For lookup operations,
the GV-view avoids the latency of PM reads. (2) For insert/update operations, the two-incarnation
toggle mechanism of PC-views minimizes the overhead of PM writes. For P-CLHT, a highly opti-
mized hashtable for cache locality, most of lookup operations are met in CPU caches under read-
intensive workloads within a NUMA node, enabling its high performance. Hence, it outperforms
the Nap-converted version slightly, which induces overheads of searching the GV-view for every
lookup operations.

Third, compared with tree-based PM indexes, hashtable-based PM indexes are more vulnerable
to NUMA architectures (particularly for Clevel, Figure 14(c) and (d)). These hashtables always use
several continuous and large arrays for fast indexing (e.g., the global directory of CCEH, bucket
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Fig. 15. Hit ratio of the NAL (write-intensive workloads, 72 threads). The red dotted line represents the theoret-

ical upper limit of the hit ratio ( i.e., 0.58) for our experiments (the size of hot set is 100 K, the Zipfian parameter

is 0.99, the key space is 200 million).

arrays of Clevel, and P-CLHT). For threads that do not reside on the same NUMA nodes with these
arrays, almost all PM accesses to these arrays are remote, limiting the available PM bandwidth and
further deteriorating the performance. The worst one is Clevel, because it only uses two bucket
arrays for indexing; by contrast, in addition to global arrays, CCEH uses segments and P-CLHT
uses linked list, which can be allocated on different NUMA nodes, increasing the available PM
bandwidth of PM indexes.

Finally, compared with crafted PM indexes (i.e., CCEH, Clevel, and FAST_FAIR), Recipe-
converted PM indexes [55] (i.e., P-CLHT and P-Masstree) deliver much higher throughput (e.g.,
P-Masstree outperforms FAST_FAIR by more than 2×). The superior performance of Recipe stems
from two reasons. First, Recipe guarantees weaker consistency level, i.e., buffered durable lineariz-
ability [37, 53]. Second, Recipe can leverage mature concurrent DRAM indexes, rather than build-
ing PM indexes from the scratch. For example, since Masstree uses a trie-like structure to embed
keys in tree nodes for improving cache locality, when applied to PM using Recipe, P-Masstree can
reduce massive expensive PM reads compared with FAST_FAIR. Combining Nap with Recipe is
a promising approach for converting existing concurrent DRAM indexes into NUMA-aware PM
indexes.

Throughput under write/read-only workloads. Figure 16 shows the throughput under write-
only and read-only workloads. We make the following observations.

First, in case of 72 threads spanning four NUMA nodes, Nap boosts the throughput by
1.32× (FAST_FAIR) to 6.15× (CCEH) for write-only workloads and 1.15× (P-Masstree) to 1.55×
(FAST_FAIR) for read-only workloads. Such improvement results from the NAL, which handles
hot items in an efficient and NUMA-aware manner.

Second, under read-only workloads, Clevel and P-CLHT perform better than Nap-converted
counterparts when threads span one or two NUMA nodes (i.e., thread counts ≤36). This is because
in Nap, for items that are not maintained in the NAL, accesses to them need unnecessary searches
of the NAL. These overheads overshadow the benefits of absorbing accesses to hot items with
the NAL. Adopting a bloom filter (to check if an item belongs to the NAL) should mitigate the
overheads of searching the NAL.

Throughput under scan-intensive workloads. Figure 17 shows the range query performance of
P-Masstree and FAST_FAIR. We set the query range to 10. With 72 threads spanning four NUMA
nodes, Nap reduces the throughput of P-Masstree and FAST_FAIR by 3% and 14%, respectively. This
is because Nap needs to search both the GV-view and the raw PM index; yet, with the good locality
of the GV-view and low latency of DRAM, the extra overhead is bounded. Note that P-Masstree
has much better range query performance than FAST_FAIR. This is because when supporting
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Fig. 16. Throughput under write/read-only workloads. WO: write-only workloads; RO: read-only workloads.

Vertical lines show the boundaries between NUMA nodes.

Fig. 17. Throughput under scan-intensive workloads.

variable-length keys, FAST_FAIR suffers a large number of expensive PM reads, which results
from frequent references to keys [61].

Latency. Figure 18 depicts the latency distribution of P-CLHT under write-intensive workloads.
The number of access threads is 72. We omit other PM indexes that have similar results. Nap
decreases the median latency by 46% (from 3.77μs to 2.04μs) and the 99th percentile latency by
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Fig. 18. Latency distribution (P-CLHT, 72 threads, and write-intensive workloads). The 50th and 99th latencies

of the original index are 3.77μs and 49.95μs (not shown in the figure), respectively. The 50th and 99th latencies of

Nap-converted index are 2.04μs and 27.64μs, respectively.

Fig. 19. The amount of data via remote PM accesses (P-CLHT, write-intensive workloads). We run 18, 36, 54,

and 72 threads to measure results under different NUMA nodes.

45% (from 49.85μs to 27.64μs). The improvement is mainly from the per-node PC-views, which
eliminate remote PM writes for hot items, reducing the possibility of multiple threads within a
node access remote PM simultaneously (recall that when multiple threads write remote PM, the
bandwidth collapses, affecting the access latency, Figure 2).

Quantitative measurement of remote PM accesses. We use Intel’s PCM tools [6] to measure the
remote PM accesses. The pcm.x sub-tool provides the amount of data through UPI links and the
pcm-numa.x sub-tool monitors remote DRAM accesses. Leveraging the two sub-tools, we calculate
the remote PM accesses of P-CLHT under write-intensive workloads. Figure 19 reports the result.
Nap reduces remote PM accesses by 45%–51%, enabling its high performance.

6.3 Variable-length Values

This experiment tests variable-length values, which trigger CoW in Nap. We run P-CLHT and
randomly select the value size from 8 bytes to 256 bytes. We also evaluate a Nap invariant that
replaces our customized allocator with PMDK allocator. Figure 20 presents the result, from which
we make three observations. First, due to more flush and fence instructions in CoW, Nap’s through-
put degrades (compared with Figure 14(e) and (f)). Second, Nap-converted P-CLHT outperforms
P-CLHT by 1.36× and 1.39× under write-intensive and read-intensive workloads, respectively. This
is because Nap mitigates remote PM accesses and adopts low-overhead customized allocator for
CoW. Third, compared with PMDK allocator, our customized allocator brings 20% and 13% per-
formance gain under write-intensive and read-intensive workloads, respectively. This is because
the customized allocator maintains allocation metadata in DRAM, reducing persistency overhead.
Note that even with PMDK allocator, due to the NUMA-aware design, Nap-converted P-CLHT
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Fig. 20. Throughput of P-CLHT. The value size is randomly selected from 8 bytes to 256 bytes. Nap-PMDK uses

PMDK to allocate values in the NAL.

Fig. 21. Throughput over time with workloads change (P-Masstree, 71 threads, and write-intensive work-

loads).

still outperforms P-CLHT by 1.13× and 1.21× under write-intensive and read-intensive workloads,
respectively.

6.4 Dynamic Workloads

In this experiment, we evaluate Nap’s ability to react to dynamic workloads by changing the pop-
ularity of keys. We compare our three-phase switch mechanism with a conservative mechanism
that uses a global readers-writer lock: the switch is protected by the write lock, and every index
operation is protected by the read lock. To avoid the cache thrashing among access threads caused
by the centralized global lock, we apply per-core reader indicator [2]. We run Nap-converted P-
Masstree under write-intensive workloads with 71 threads. (One core is reserved to record total
throughput per 5 ms.) Figure 21 shows the throughput over time. The workload changes at time 4 s.
Since the NAL can not absorb the accesses to current hot set, the throughput drops. After about
200 ∼ 300 ms, Nap identifies the new hot set (recall that the switch period is 0.2 s, Section 6.1), and
triggers the NAL switch. In our three-phase switch, the throughput can be maintained more than
10 K ops/ms for about 130 ms, then drops to 4 K ∼ 8 K ops/ms for about 35 ms. This is because the
three-phase switch only blocks some insert/update operations to a part of old NAL during phase 2.
However, when using the global lock, the system is unavailable (i.e., throughput is 0) for about 195
ms. To sum up, using the three-phase switch, Nap is robust enough to react to dynamic workloads
quickly without sacrificing availability.
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Fig. 22. Sensitivity analysis (P-CLTH). All experiments except (c) use write-intensive workloads. (a) Varying the

size of hot set (72 threads). (b) Varying the Zipfian parameter (write-intensive workloads, 72 threads). (c) Varying

the Zipfian parameter (read-intensive workloads, 72 threads). (d) Varying the size of key space (72 threads).

(e) Two Optane DIMMs per NUMA node. (f) Four Optane DIMMs per NUMA node.

6.5 Sensitivity Analysis

Size of hot set. Figure 22(a) shows how the configured hot set size affects the Nap’s performance.
As the size of hot set increases from 10 K to 1 M, the throughput grows by 1.33×, and the percentage
of operations absorbed by the NAL increases from 43% to 63%. Yet, using a large hot set consumes
more PM/DRAM space and prolongs the time of NAL switch and system recovery.

Skewness of workloads. We study how the skewness of workloads affects Nap’s performance.
Figure 22(b) shows the result under write-intensive workloads. We make three observations. First,
with increasing skewness, Nap’s improvement over original indexes grows. This is because the
NAL can absorb more index operations. For the medium skewness case (i.e., 0.9 Zipfian parameter),
Nap boosts the throughput by 1.27×. Second, under uniform workloads (i.e., 0 Zipfian parameter),
throughput of both indexes drops, since there are more insert operations in uniform workloads,
leading the P-CLHT to resize frequently. Third, the throughput of both indexes is comparable under
uniform workloads. This is because Nap handles uniform workloads by initializing an empty NAL,
which minimizes the overhead of searching the NAL.

Figure 19(c) shows the result under read-intensive workloads. Nap can obtain more performance
gain with higher skewness. This is because as skewness increases, more lookup operations are
served by the GV-view of the NAL, so the GV-view can translate more expensive PM reads into
fast DRAM reads, boosting the system throughput.

Through this experiment, we can also quantify the overhead of the switch thread. Specifically,
with uniform key distribution, Nap degrades throughput by 2.1% under write-intensive workloads
and 3.5% under read-intensive workloads. Since the empty NAL only incurs less than five CPU
cycles on every index operation, the performance degradation mainly results from interaction
with the switch thread: Index threads publish accessed keys into record buffers and may trigger
cache coherence traffic when the switch thread digests record buffers. In addition, record buffers,
the count-min sketch, and the min-heap occupy part of limited CPU cache space.
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Fig. 23. Performance impact of two-incarnation toggle mechanisms (72 threads).

Size of key space. Figure 22(d) presents the throughput of P-CLHT and its Nap-converted version
with varying key space. As the key space increases, the number of hot items increases, degrading
the throughput of Nap, which maintains a fixed-size hot set. Even for a very large key space, i.e.,
1,000 million, Nap can boost the throughput by 1.55×, which demonstrates that Nap can handle
large-scale workloads.

Different PM bandwidth configurations. Here, we change PM bandwidth configurations by
adding/removing Optane DIMMs, and show how the available PM bandwidth affects Nap. We get
two new PM bandwidth configurations: (1) 2 Optane DIMMs per node; (2) 4 Optane DIMMs per
node (only 3 nodes due to the total of 12 DIMMs). Figure 22(e) and (f) show the results of (1) and
(2), respectively. With 2 Optane DIMMs per node, the available PM bandwidth drops and remote
PM access suffers lower write bandwidth, degrading the throughput of PM indexes; yet, under
this configuration, by mitigating remote PM accesses, Nap boosts the throughput of the original
index by 1.76×, which is higher than improvement under default 3-DIMMs-per-node configuration
(1.66×, Figure 14(e)). Under 4-DIMMs-per-node configuration, Nap outperforms the original index
by 1.62×. Overall, Nap is efficient under different PM bandwidth configurations.

6.6 Effectiveness of Two-Incarnation Toggle Mechanism

To understand the effectiveness of our proposed two-incarnation toggle mechanism, we compare
it with CoW. Since the two-incarnation toggle mechanism is an optimization for write operations,
we only test write-intensive and write-only workloads here. We set the number of threads to 72.
Figure 23 shows results of different PM indexes. The two-incarnation toggle mechanism boosts
the throughput by 2.3% (Clevel) to 35.2% (FAST_FAIR) under write-intensive workloads and 4.2%
(Clevel) to 44.4% (FAST_FAIR) under write-only workloads. This is because compared with CoW,
for every write to the NAL, the two-incarnation toggle mechanism saves one fence instruction and
one flush instruction. In addition, it reduces a 256-byte PM media write (PM’s internal access gran-
ularity is 256-byte) for each update/insert operations absorbed by the NAL, saving PM’s limited
write bandwidth.

6.7 Integrating Nap to PM/DRAM Hybrid Indexes

Some tree-based PM indexes adopt a PM/DRAM hybrid approach: They place internal tree nodes
on the DRAM to reduce persistence overhead [20, 67]. During recovery, such PM/DRAM hybrid
indexes need to reconstruct internal tree nodes according to PM-resident leaf tree nodes. Since
these PM/DRAM hybrid indexes avoid remote PM accesses when traversing internal tree nodes,
they should have a better NUMA scalability than pure PM indexes. In this experiment, we mod-
ify FAST_FAIR to let it allocate DRAM for internal tree nodes (we term it FAST_FAIR-Hybrid),
and test its performance. We also integrate Nap to FAST_FAIR-Hybrid. We run write-intensive

ACM Transactions on Storage, Vol. 18, No. 1, Article 2. Publication date: January 2022.



2:26 Q. Wang et al.

Fig. 24. Performance of FAST_FAIR-Hybrid (write-intensive workloads, 72 threads).

Fig. 25. Performance of Nap and NR (P-CLHT).

workloads. Figure 24 shows the results. We make two observations. First, FAST_FAIR-Hybrid de-
livers much better performance and scalability than FAST_FAIR (see FAST_FAIR’s performance in
Figure 14(i)), e.g., FAST_FAIR-Hybrid outperforms FAST_FAIR by 2.35× in case of 72 threads. This
is because FAST_FAIR-Hybrid eliminates expensive PM read and persistence overhead in internal
tree nodes. Second, despite the adoption of PM/DRAM hybrid approach, using Nap can still im-
prove throughput when threads span multiple NUMA nodes. Specifically, in case of 72 threads, Nap
boosts FAST_FAIR-Hybrid by 1.27×. This is because in FAST_FAIR-Hybrid, accessing to leaf nodes
can induce remote PM writes and reads. In contrast, the NAL in the Nap-converted counterpart
absorbs accesses to hot items in a NUMA-aware manner.

6.8 Comparison with NR

We compare Nap with Node Replication (NR) [15] to present some key insights of designing
NUMA-aware PM indexes. We put the shared log of NR in the DRAM and disable log recycle.
Figure 25 shows the throughput of NUMA-aware P-CLHT converted by Nap and NR. Note that
NR-converted P-CLHT is not crash-consistent: upon crash, the shared log is lost and P-CLHT on
different NUMA nodes may be inconsistent. In case of 72 threads, Nap outperforms NR by 2.34×
and 1.69× under write-intensive and read-intensive workloads, respectively. The inefficiency of NR
on PM indexes stems from two reasons. First, by maintaining consistent replicas between NUMA
nodes, each insert/update operation consumes n times more PM bandwidth (n is the number of
NUMA nodes), limiting the throughput. Second, NR leverages flat combining [41] (a technique
that uses a combiner to execute a batch of collected updates) to handle updates within a node.
Flat combining can mitigate cache thrashing but restrict concurrency to a single thread; yet, the
single-thread performance of PM indexes is much lower than that of DRAM indexes, due to expen-
sive flush/fence instructions and high PM read latency. Combining previous experimental results
(Section 6.2), we can conclude that the most important performance determinant of NUMA-aware
PM indexes is precious PM bandwidth of both local and remote accesses (rather than cache
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Table 2. Consumption of DRAM and PM in Nap

DRAM PM

record
buffers

count-min
sketch

min-heap GV-view PC-views

21.1 MB 9.7 MB 4.2 MB 3.6 MB 30.1 MB

Altogether, 38.6 MB DRAM and 30.1 MB PM

We ignore some very small usage, such as the 64-byte persistent undo log

used by the switch thread.

Table 3. Recovery Time

Index Type CCEH Clevel P-CLHT P-Masstree FAST_FAIR

Time (ms) 477 522 432 306 963

thrashing); thus, like Nap, a high-performance NUMA-aware PM index should reduce remote PM
accesses without consuming extra local PM bandwidth.

6.9 Overheads of Nap

The overheads of Nap lie in two aspects: memory consumption and recovery time.

Memory consumption. Table 2 shows the memory consumption by Nap in our evaluation
(4 NUMA nodes and 72 threads), and the total memory consumption is less than 70 MB. Specifically,
since our NAL only maintains the hot set, the size of the min-heap, GV-view and PC-views are lim-
ited. Besides, by using sampling, the small-sized count-min sketch and per-core record buffers are
enough.

Recovery time. Table 3 reports the recovery time of Nap-converted PM indexes. Due to the limited
size of NAL, the recovery time is bounded, which is less than 1 s. FAST_FAIR has the longest
recovery time, since it has the worst performance of update/insert operations (see Figure 16).

6.10 Real Application

To show the benefits that a Nap-converted PM index can bring to real applications, we build a
networked PM-based key-value store. The key-value store uses eRPC [47] for network communi-
cation, P-CLHT for indexing and PMDK for allocation of key-value pairs. Such a key-value store
can be used for in-memory caching to reduce the total cost of ownership (comparing with DRAM-
based memcached) and alleviate the impact of failures [82].

In this experiment, we use our four-node machine as the server and the other five machines as
clients. Each machine is equipped with a Mellanox ConnectX-6 NIC (200 Gbps); due to the limited
bandwidth of PCIe 3.0 × 16, the available bandwidth of the NIC is about 13 GB/s. The key-value
size follows the Facebook ETC pool [13, 33]. The key popularity follows a Zipfian distribution with
parameter 0.99. We consider a write-intensive workload (50% PUT). Figure 26 shows the throughput
with varying clients threads. By using Nap, the throughput is improved by 1.1× under low loads
(i.e., 30 client threads) and 1.49× under high loads (i.e., 180 client threads), demonstrating practical
benefits of Nap.

6.11 Nap with Snoop-based Coherence

A recent work [51] demonstrates that in some servers, we can configure BIOS settings to change
the UPI cache coherence protocol to snoop-based one, so as to mitigate NUMA impacts on PM.
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Fig. 26. Throughput of a networked PM-based key-value store (write-intensive, Zipfian 0.99, and 72 threads

on the server). Key-value size follows Facebook ETC workloads.

Fig. 27. Nap under snoop-based coherence. (a) In case of 18 threads, local access has 1.39× higher write band-

width than remote access. (b) We use P-CLHT with write-intensive workloads.

In this experiment, we evaluate Nap under the snoop-based coherence protocol. Since our 4-node
server cannot change coherence protocols in BIOS settings, we use another 2-node server. In the
2-node server, each NUMA node is equipped with one Intel Xeon Gold 5220 CPU (18 cores) and
two 128 GB Optane DIMMs; UPI is configured to use the snoop-based cache coherence protocol.

Figure 27(a) reports the write bandwidth of local access and remote access in the 2-node
server. Each thread performs sequential 32-byte ntstore instructions. With snoop-based coher-
ence, NUMA penalty is mitigated significantly (recall Figure 2(a)): remote access can reach peak
PM write bandwidth with 2 ∼ 6 threads. Yet, when more threads concurrently access PM, remote
access is still much slow than local access. Specifically, in case of 18 threads, local access has 1.39×
higher write bandwidth than remote access. Such a result indicates that we also need to take
NUMA impacts into consideration when designing a high-performance PM system, even with
snoop-based coherence.

Next, we compare P-CLHT with the Nap-converted one under the 2-node server. In case of
36 threads, Nap boosts throughput by 30%. This improvement is lower than the 1 under the
directory-based coherence protocol (In Figure 14(e), Nap obtains 1.59× performance gain with
36 threads). This is because snoop-based coherence reduces PM write traffic upon remote access
compared with directory-based coherence, decreasing the benefits that Nap can bring.

7 DISCUSSION

Generality of the Nap approach. Even if microarchitectures of hardware (e.g., CPU) evolve
and remote PM write can deliver high bandwidth, Nap is still capable of boosting PM indexes
under multi-node servers for two reasons. First, since Nap reduces remote accesses significantly,
highly concurrent accesses to the same NUMA nodes can be avoided, mitigating contention in
the same memory controllers and Optane DIMM XPBuffers; it is well known that such contention
degrades the PM performance severely [8, 79]. Second, Nap lowers latency of index operations:
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for lookup operations, the GV-view eliminates remote PM reads (400 ns) by using less expensive
remote DRAM reads (200 ns); for other operations, per-node PC-views replace remote PM writes
with local ones.

Alternative designs. We discuss alternative designs to NUMA-aware PM indexes, and why we
do not adopt them.

(1) Use per-core logs. In this solution, each thread logs its updates into its local PM node and
builds a global DRAM-resident index for lookups. This solution has three issues. First, considering
the high bandwidth of PM, using a dedicated core for log recycle is insufficient to digest fast-
growing logs; thus, we must use foreground threads or multiple dedicated cores to do this task,
which has negative impact on CPU usages and performance. Second, to recycle logs, we must flush
items (include hot items) into the underlying PM index, inducing remote accesses. Third, the global
DRAM-resident index consumes large DRAM space.

(2) Abandon NAL switch and maintain per-node PM caches as PC-views. This solution adopts the
architecture of Nap but abandons NAL switch. Instead, it keeps the hot set in per-node PM caches
and evicts cold items at the runtime. This solution comes with three drawbacks. First, designing an
ideal replacement method is difficult: If we maintain a global hotness-list for cache replacement,
the multicore scalability issue happens; if we maintain a hotness-list for each set (set-associative
cache), a hot item may be evicted, inducing unnecessary remote accesses. Second, when evicting a
cold item from a PM cache (very common events), we must enforce failure atomicity of the cache,
yielding extra performance overhead. Third, to guarantee correct lookups and recovery, all items
in every PM cache should be presented in the GV-view, which complicates the execution logic. For
example, when removing an item from the GV-view, we need to clear corresponding items in all
PM caches.

Nap in eADR servers. Newer generations of Intel processors support eADR [9], where the data
in the CPU cache will be flushed to PM upon power failure. eADR can eliminate flush instructions,
so as to improve the performance of PM indexes. Yet, even with eADR, when lots of threads con-
currently access a large-scale PM index, massive data is evicted to PM and these eviction PM writes
limit throughput. Hence, reducing remote PM accesses is still important for high-performance PM
indexes; thus, we believe Nap can also boost the performance of PM indexes in eADR servers. The
benefits of two-incarnation toggle mechanism will drop with eADR, since we do not need to issue
flush instructions and fence instructions.

Takeaways. We present our main takeaways from this work.

(1) A fast NUMA-aware PM index must reduce remote PM accesses without consuming extra local

PM bandwidth. The limited PM bandwidth adds a new dimension to the NUMA problem, which
frustrates traditional replication-based approaches designed for DRAM indexes.

(2) We conjecture that we cannot design a NUMA-aware PM index that is optimal in ❶ minimizing

remote PM accesses, ❷ not inducing extra local PM accesses, and ❸ constant DRAM/PM consumption.

Nap achieves a sweet spot by leveraging the characteristics of common skewed workloads: it meets
❷ and ❸, and partially meets ❶ (the remote PM accesses to cold items cannot be reduced).

8 RELATED WORK

PM indexes. A large body of work exists for PM indexes with the ultimate goal of minimizing
overheads of failure atomicity and improving concurrency [19, 20, 23, 24, 43, 53–55, 58, 61, 64–67,
74, 80, 83, 84]. Among them, RECIPE [55], Pronto [64], and TIPS [53] propose general conversion
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methods. Specifically, RECIPE can convert concurrent DRAM indexes that meet a set of conditions
into PM indexes; Pronto persists DRAM data structures via asynchronous semantic logging; TIPS
can convert any concurrent DRAM index into PM index with durable linearizability guarantee. To
the best of our knowledge, Nap is the first work that addresses NUMA problems of PM indexes.

NUMA problems on PM. Several recent studies observe pronounced NUMA impacts on Optane
DIMMs [27, 69, 79]. Xu et al. [77] provide NUMA-aware interfaces to NOVA file system [78], which
can set the preferred NUMA node for a file. Wang et al. [75] alleviate the NUMA issues of PM file
systems by thread migration. Assise [12], a distributed PM file system, uses on-die DMA engines
for remote PM writes, to bypass hardware cache coherence. These approaches for file systems
cannot be easily applied to PM indexes, because PM indexes (1) use a set of fixed interfaces, (2) are
shared by numerous threads, and (3) generate lots of small-sized writes.

NUMA-aware systems. There has been also work migrating NUMA impacts for DRAM indexes,
locks, operating systems, and IO devices. NR [15] replicates data structures and synchronizes repli-
cas between NUMA nodes by a shared log. NrOS [14] improves NR’s scalability by allowing mul-
tiple shared logs and multiple per-node combiners. HydraList [63] and NUMASK [28] are crafted
DRAM indexes that replicate index search layer (exclude index data) across NUMA nodes; com-
pared with NR, these two indexes reduce memory consumption, but increase remote memory
accesses due to shared index data. Lots of NUMA-aware locks are proposed [17, 31, 32, 49, 70],
and most of them feature a hierarchical structure and try to keep the lock ownership within the
same node. Linux automatically migrates data pages across NUMA nodes to reduce remote data ac-
cess [1]. Besides, Carrefour [29] supports page replication, which can alleviate traffic hotspots and
eliminate remote accesses. Mitosis [11] transparently replicates and migrates page-tables across
NUMA nodes to accelerate page-table walks. Furthermore, vMitosis [68] considers the NUMA
problem of page-table walks in virtualized environments. IOctopus [72] addresses the NUMA ef-
fects on IO devices by unifying PCIe functions to a logic one. Different from the above systems, the
NUMA-aware PM indexes are unique for the limited PM bandwidth and requirements of failure
atomicity.

Hotness-aware systems. Hotspots can be seen everywhere in the real world. There are two
lines of work: (1) mitigating the effects of hotspots, and (2) leveraging hotspots to boost system
performance. In the aspect of the former, lots of systems mitigate the load imbalance across back-
end servers by using high-performance caches to handle lookup operations to hot items [35, 44,
56, 59]. In the aspect of the latter, HotRing [18] designs an in-memory hashtable that can move
pointers to make hot items be served with fewer memory accesses. Like HotRing, Nap regards
hotspots as an opportunity to boost system performance, but targets NUMA-aware PM indexes.

9 CONCLUSION

PM provides memory-level storage, making indexes survive power outages with DRAM-
comparable performance. However, PM indexes today do not scale well when spanning multiple
NUMA nodes. In this work, we have designed, implemented, and evaluated Nap, a black-box ap-
proach that converts concurrent PM indexes into NUMA-aware counterparts. Nap uses a NAL to
absorb accesses to hot items, which eliminates remote PM accesses without inducing extra local
PM accesses. To cope with constantly changing workloads, Nap incorporates a lightweight hot set
identification mechanism and a fast three-phase NAL switch technique. Nap significantly boosts
the performance of PM indexes on multi-node machines.
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