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Abstract—Disk additions to a RAID-4 storage system can increase the I/O parallelism and expand the storage capacity

simultaneously. To regain load balance among all disks including old and new, RAID-4 scaling requires moving certain data blocks onto

newly added disks. Existing data redistribution approaches to RAID-4 scaling, restricted by preserving a round-robin data distribution,

require migrating all the data, which results in an expensive cost for RAID-4 scaling. In this paper, we propose McPod—a new data

redistribution approach to accelerating RAID-4 scaling. McPod minimizes the number of data blocks to be moved while maintaining a

uniform data distribution across all data disks. McPod also optimizes data migration with four techniques. First, it coalesces multiple

accesses to physically successive blocks into a single I/O. Second, it piggybacks parity updates during data migration to reduce the

cost of maintaining consistent parities. Third, it outsources all parity updates brought by RAID scaling to a surrogate disk. Fourth, it

delays recording data migration on disks to minimize the number of metadata writes without compromising data reliability. We

implement McPod in Linux Kernel 2.6.32.9, and evaluate its performance by replaying three real-system traces. The results

demonstrate that McPod outperforms the existing “moving-everything” approach by 67.78-79.64 percent in redistribution time and

by 14.24-27.16 percent in user response time. The experiments also illustrate that the performance of the RAID scaled using McPod is

almost identical to that of the round-robin RAID.

Index Terms—Access coalescing, data migration, I/O parallelism, metadata update, parity update, RAID-4 scaling
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1 INTRODUCTION

1.1 Motivation

RAID [1], [2] achieves high performance, large capacity,
and fault tolerance via disk striping and rotated par-

ity. When the capacity or the bandwidth of a RAID sys-
tem is insufficient [3], [4], more disks may be added. In
order to regain load balance, data need to be redistributed
among all disks. In today’s server environments where
applications access data constantly, the cost of downtime
is extremely high [5]. Therefore, data redistribution needs
to be performed online. Such disk addition is termed
RAID scaling.

Standard RAID levels related to this paper include 0, 4, 5,
and 6. These RAID levels have obviously different data lay-
outs. Therefore, those efficient scaling approaches, devel-
oped for RAID-0 [6], [7], RAID-5 [8], [9], and RAID-6 [10],
are not suitable for RAID-4. An efficient scaling approach
should be designed based on the characteristics of RAID 4.
RAID-4 tolerates single disk failures by maintaining parity
on its dedicated parity disk. While the parity disk tends to
become a write performance bottleneck, read performance
is potentially fast because data can be read in parallel.

A solution like this might be ideal for applications that are
read intensive. Video-on-demand is a good example of such
a situation. Furthermore, the NetAppWAFL file system [11]
works with RAID-4, where the write performance bottle-
neck is alleviated by buffering writes in memory and then
writing full RAID stripes.

Existing approaches [12], [13], [14] to RAID-4 scaling are
restricted by preserving a round-robin data distribution.
One of the obvious advantages is that load balance among
all the disks can be regained due to the uniform data distri-
bution. However, 100 percent of data blocks have to be
migrated, which will incur a very large cost of RAID-4 scal-
ing. This cost includes data migration, and metadata
updates for keeping track of such data migration. During
RAID scaling, data redistribution and foreground applica-
tions share and even contend for I/O resources in the sys-
tem. The expensive cost for RAID-4 scaling means that
either data redistribution will be completed in a long time,
or the impact of data redistribution on application perfor-
mance will be significant. There are some efforts [12], [14]
concentrating on optimization of data migration for RAID
scaling. They can be used to improve the performance of
RAID-4 scaling to certain extent, but cannot completely
solve the problem of large data migration.

1.2 Technical Challenges

Zheng and Zhang [6], [7] proposed the FastScale approach
to accelerate RAID-0 scaling by minimizing data migration.
FastScale provides a good starting point for efficient scaling
of RAID-4 arrays. However, optimizing data redistribution
for RAID-4 scaling will be more difficult, due to maintaining
consistent data parities.

First, write operations are indispensable for data redis-
tribution. The parity disk tends to become a performance
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bottleneck. How to eliminate this performance bottleneck
during RAID-4 scaling is a new technical challenge. Second,
optimization of metadata updates in FastScale only needs
to guarantee data consistency. During RAID-4 scaling, it is
still required to maintain the competence of tolerating one
disk failure. How to optimize metadata updates, without
loss of data consistency and data reliability, is a new techni-
cal challenge.

RAID-4 scaling requires an efficient approach to
redistributing data online, satisfying the following six
requirements.

� After RAID-4 scaling, data are distributed evenly
across all data disks including old disks and new.

� During a scaling operation, the amount of data to be
migrated is minimal.

� The location of a block can be computed easily with-
out any lookup operation.

� Data consistency can be guaranteed even if the sys-
tem crashes during the scaling process.

� Data will not be lost even if one disk fails in the mid-
dle of scaling.

� The above five features can still be sustained after
multiple disk additions.

1.3 Our Contributions

In this paper, we propose McPod (Minimizing data migra-
tion, coalesced I/O operations, Piggyback parity updates,
Outsourcing parity updates, and Delayed metadata
updates)—a new data redistribution approach to acceler-
ating RAID-4 scaling. McPod moves data blocks from old
disks to new disks just enough to preserve the uniformity
of data distribution. The migration fraction of McPod
reaches the lower bound of the migration fraction, with
the restriction of maintaining a uniform data distribution.

McPod also optimizes online data migration with four
techniques. First, it coalesces multiple accesses to physi-
cally successive blocks into a single I/O. Second, it piggy-
backs parity updates during data migration to reduce the
numbers of additional XOR computations and disk I/Os.
Third, it outsources all parity updates brought by RAID
scaling to a surrogate disk. Fourth, it delays synchroniz-
ing the modified layout metadata onto disks to minimize
the number of metadata writes without compromising
data reliability.

McPod satisfies all the six requirements shown in Section
1.2. We implement the McPod approach in the software
RAID of Linux Kernel 2.6.32.9. The benchmark studies on
the three real-system workloads (i.e., Financial1, TPC-C,
and WebSearch2) show that McPod outperforms the exist-
ing “moving-everything” approach by 67.78-79.64 percent
in redistribution time and by 14.24-27.16 percent in user
response time. Our experiments also illustrate that the per-
formance of the RAID scaled using McPod is almost identi-
cal to that of the round-robin RAID.

2 RELATED WORK

Block-level RAID scaling approaches are divided into two
categories: optimizing the process of data migration and
reducing the amount of data to be moved.

2.1 Optimizing Data Migration for RAID Scaling

The conventional approaches to RAID scaling redistribute
data and preserve the round-robin order after adding disks.
Gonzalez and Cortes [12] proposed a gradual assimilation
approach (GA) to control the speed of RAID-5 scaling.
Brown designed a reshape toolkit in a Linux MD driver
(MD-Reshape) [13]. It writes layout metadata with a fixed-
sized data window. User requests to the data window have
to queue up until all data blocks within the window are
moved. Therefore, the window size cannot be too large.
Metadata updates are quite frequent.

The MDMmethod [15] eliminates the parity modification
cost of RAID-5 scaling by exchanging some data blocks
between original disks and new disks. However, it does not
guarantee an even data and parity distribution. Also, it does
not increase (just maintains) the data storage efficiency after
adding more disks.

A patent [16] presents a method to eliminate the need to
rewrite the original data blocks and parity blocks on origi-
nal disks. However, the obvious uneven distribution of par-
ity blocks will bring a penalty to write performance.

Franklin and Wong [17] proposed to use spare disks to
provide immediate access to new space. During data redis-
tribution, new data are mapped to spare disks. Upon com-
pletion of the redistribution, new data are copied to the set
of data disk drives. This kind of method requires spare
disks to be available.

Zhang et al. [14], [18] discovered that there is always a
reordering window during data redistribution for round-
robin RAID scaling. By leveraging this insight, they pro-
posed the ALV approach to improving the efficiency of
RAID-5 scaling. However, ALV still suffers from large data
migration.

2.2 Reducing Data Migration for RAID Scaling

With the development of object-based storage, randomized
RAID [19], [20], [21] is now gaining the spotlight in the data
placement area. Seo and Zimmermann [22] proposed an
approach to finding a sequence of disk additions and
removals for the disk replacement problem. The goal is to
minimize the data migration cost. RUSH [23], [24] and
CRUSH [25] are two algorithms for online placement and
reorganization of replicated data. They are probabilistically
optimal in distributing data evenly and minimizing data
movement when new storage is added to the system. The
random slicing strategy [26] keeps a small table with infor-
mation about previous insert and remove operations, signif-
icantly reducing the required amount of randomness while
delivering a uniform load distribution. These randomized
strategies are designed for object-based storage systems.
They only provide mapping from logical addresses to a set
of storage devices, while the data placement on a storage
device is resolved by additional software running on the
device itself.

Wu and He [27] proposed the GSR approach to accel-
erating RAID-5 scaling. GSR moves the second section of
data onto the new disks, while keeping the first section
of data unmoved. Only the original disks serve accesses
to the first section of data. Only the new disks serve
accesses to the second section of data. GSR minimizes
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data migration and parity modification. The main limita-
tion of GSR is the performance of RAID systems after
scaling.

The FastScale approach to RAID-0 scaling [6], [7] mini-
mizes data migration while maintaining a uniform data dis-
tribution. FastScale provides a good starting point for
RAID-4 scaling. However, RAID-4 scaling is more challeng-
ing, as discussed in Section 1.2.

3 HOW MCPOD PERFORMS RAID SCALING

McPod accelerates RAID-4 scaling with five techniques,
i.e., minimizing data migration, coalesced data accesses,
piggyback and parallel parity updates, outsourcing parity
updates, and delayed metadata updates. The first two tech-
niques improve the migration efficiency of regular data.
The third and fourth techniques reduce the overhead of par-
ity updates during RAID scaling. The last one minimizes the
number of metadata updates without compromising data
reliability.

3.1 Minimizing Data Migration

During RAID-4 scaling, McPod moves a fraction of existing
data blocks from original disks to new disks. The goal is
that data migration is minimal while data distribution
across all the disks is uniform. RAID-4 scaling is over when
data migration is finished. After that, newly added capacity
is available, and new data can be filled into the RAID-4
gradually. This section focuses on an overview of how
McPod minimizes data migration for RAID-4 scaling. For
more details on data migration and data filling, see the
description in Section 4.1.

To understand how the McPod approach works and how
it minimizes data migration while maintaining uniform
data distribution across all the disks, we take the ith RAID
scaling operation from Ni�1 disks to Ni as an example. We
suppose each disk consists of s data blocks. Before this scal-
ing operation, there are ðNi�1 � 1Þ � s data blocks stored on
Ni�1 � 1 data disks. The s parity blocks on the parity disk
will keep unmoved.

As shown in Fig. 1, each Ni � 1 consecutive locations in
a data disk are grouped into a segment. For the Ni � 1 data
disks, Ni � 1 segments with the same physical address are
grouped into one region. Locations on all disks with the
same block number form a column or a stripe. In Fig. 1,
different regions are separated by wavy lines. For differ-
ent regions, the ways for data migration and data filling
are completely identical. Therefore, we will focus on one
region, and let s1 ¼ Ni � 1 be the number of data blocks
in one segment.

In a region, all data blocks within a parallelogram will be
moved. The base of the parallelogram is Ni �Ni�1, and the
height is Ni�1 � 1. In other words, Ni �Ni�1 data blocks are
selected from each old data disk and migrated to new disks.
The Ni �Ni�1 blocks are consecutive, and the start address
is the disk number disk_no. Fig. 1 depicts the moving trace
of each migrating block. For one moving data block, only its
physical disk number is changed while its physical block
number is unchanged.

For RAID-4 scaling, it is desirable to ensure an even
load distribution on all data disks and minimal block

movement. After data migration, each data disk, either
old or new, has Ni�1 � 1 data blocks. That is to say,
McPod regains a uniform data distribution. The total
number of data blocks to be moved is ðNi �Ni�1Þ�
ðNi�1 � 1Þ. This reaches the minimal number of moved
blocks in each region, i.e., ððNi�1 � 1Þ � s1Þ � ðNi �Ni�1Þ=
ðNi � 1Þ ¼ ðNi�1 � 1Þ � ðNi �Ni�1Þ. We can claim that the
RAID scaling using McPod minimizes data migration
while maintaining uniform data distribution across all
data disks.

After RAID-4 scaling, new data can be filled gradually.
As shown in Fig. 1, Ni �Ni�1 new data blocks are placed
into each stripe consecutively. These new blocks are distrib-
uted in a round-robin order.

3.2 Access Coalescing and Parallel I/O

McPod only moves data blocks from old disks to new disks,
while not migrating data among old disks. The data migra-
tion will not overwrite any valid data. As a result, data
blocks may be moved in an arbitrary order. Since disk I/O
performs much better for large sequential accesses, McPod
coalesces multiple accesses to physically successive blocks
into a single I/O.

Take a RAID-4 scaling from four disks to six as an exam-
ple, shown in Fig. 2. Let us focus on the first region. McPod
issues the first I/O request to read blocks 0 and 3, the sec-
ond request to read blocks 4 and 7, and the third request to
read blocks 8 and 11, simultaneously. This means that to
read all these blocks, McPod requires only three I/Os,
instead of six.

When all the six blocks have been read into a memory
buffer, McPod issues the first I/O request to write blocks 0,
3, and 7, and the second I/O request to write blocks 4, 8,
and 11, simultaneously (see Fig. 3). In this way, only two

Fig. 1. RAID-4 scaling from four disks to six using McPod.
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large sequential write requests are issued as opposed to six
small writes.

For RAID-4 scaling from Ni�1 disks to Ni disks, Ni�1 � 1
reads and Ni �Ni�1 writes are required to migrate all the
data in a region, i.e., ðNi�1 � 1Þ � ðNi �Ni�1Þ data blocks.
Furthermore, all these large-size data reads (or writes) are
on different disks. They can be done in parallel, further
increasing I/O rate.

Access aggregation converts sequences of small requests
into fewer, larger requests. As a result, seek cost is miti-
gated over multiple blocks. Moreover, a typical choice of
the optimal block size for RAID is 32 KB or 64 KB [13], [28],
[29]. Thus, accessing multiple successive blocks via a single
I/O enables McPod to have a larger throughput. Since data
densities in disks increase at a much faster rate than
improvements in seek times and rotational speeds, access
aggregation benefits more as technology advances.

3.3 Piggyback and Parallel Parity Updates

RAID-4 arrays can tolerate one member drive failure by
maintaining the parity information as the XOR sum of all
the data blocks within a stripe. Copying some blocks within
a stripe, as McPod does, changes the total contents of the
stripe, and therefore requires a parity update. McPod piggy-
backs parity updates during data migration to minimize the
numbers of additional XOR computations and disk I/Os.

To consider how one parity block is updated, we divide
data stripes in the RAID into two categories. In a stripe of
the first category, no data migration is required. As shown
in Fig. 4, stripe 4 in the first region is in this category. In this
case, McPod does not change any content of the stripe, and
therefore does not require a parity update. Therefore, no
additional XOR computation and disk I/O is needed.

In a stripe of the second category, data migration is
required. As shown in Fig. 4, stripes 0, 1, 2, 3 in the first
region are in this category. Without loss of generality, we
assume that blocks in a stripe are B0, B1, B2, and P before

scaling. After data migration, blocks in this stripe are B0,
B1, B2, B1, B2, and P 0. Since P ¼ B0 �B1 �B2, we have
P 0 ¼ B0 �B1 �B2 �B1 �B2 ¼ P �B1 �B2. Since B1 and
B2 need to be moved, they will be in the memory buffer and
available for computing parity. As a result, to maintain a
consistent parity, only a parity read and a parity write are
added. In addition, all these three reads are on three disks,
and therefore can be done in parallel. Similarly, the three
writes can also be done in parallel. This parallelism will fur-
ther reduce the cost of parity updates.

3.4 Outsourcing Parity Updates

Piggyback and parallel parity updates succeed in reducing
the cost of maintaining a consistent parity during RAID-4
scaling. However, the parity disk is read and written fre-
quently during scaling, which tends to become a perfor-
mance bottleneck. McPod effectively outsources all parity
updates brought by RAID scaling to a surrogate disk during
RAID scaling.

In the process of RAID scaling, original parity blocks are
read from the parity disk. The new parity blocks are calcu-
lated and written into the surrogate disk. Fig. 5 illustrates a
state in the scaling process. In this state, parity accesses are

Fig. 4. Parity changes across data migration. Copying some blocks
within a stripe changes the total contents of the stripe, and therefore
requires a parity update.

Fig. 3. Coalesced writes for RAID-4 scaling from four disks to six. Multi-
ple successive blocks are written via a single I/O.

Fig. 5. All parity updates brought by RAID scaling are outsourced to a
surrogate disk, Ds.

Fig. 2. Coalesced reads for RAID-4 scaling from four disks to six. Multi-
ple successive blocks are read via a single I/O.
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redirected to the surrogate disk, Ds, if data in the target
stripe have been migrated. Otherwise, parity accesses are
performed on the parity disk, Dp. In this manner, the surro-
gate disk also offloads a proportion of parity accesses
brought by user writes. As the scaling operation progresses,
the surrogate disk holds more parity blocks. Accordingly,
the surrogate disk offloads increasingly much I/Oworkload
from the parity disk, thus reducing the response times of the
I/O requests served by the RAID set under scaling. When
the RAID scaling is finished, the surrogate disk will become
the new parity disk, and the original parity disk will be
released from this RAID set.

The device overhead introduced by outsourcing parity
updates is only a surrogate disk. McPod is designed for use
in a large storage system consisting of multiple RAID sets
and a few hot spare disks. In such an environment, a hot
spare disk can act as a surrogate disk during RAID scaling.
After RAID scaling, the original parity disk will be released.
The numbers of hot spare disks are identical across a scaling
operation. Therefore, the device overhead of a surrogate
disk in McPod can be ignored.

3.5 Delayed Metadata Updates

While data migration is in progress, the RAID storage
serves user requests. Furthermore, the coming user I/Os
may be write requests to migrated data. As a result, if layout
metadata do not get updated until all blocks have been
moved, data consistency may be destroyed. Ordered opera-
tions [29] of copying a data block and updating the layout
metadata (a.k.a., checkpoint) can ensure data consistency.
However, ordered operations cause each block movement
to require one metadata write, which results in a large cost
of data migration. Because metadata are usually stored at
the beginning of all member disks, each metadata update
causes one long seek per disk. McPod delays metadata
updates to minimize the number of metadata writes with-
out compromising data consistency.

The foundation of delayed metadata updates is described
as follows. Since block copying does not overwrite any valid
data, both its new replica and original are valid after a data
block is copied. In the above example, we suppose that
blocks 0, 3, 4, 7, 8, and 11 have been copied to their new
locations and the layout metadata have not been updated
(see Fig. 6), when the system fails. The original replicas of
the six blocks will be used after the system reboots. As long
as blocks 0, 3, 4, 7, 8, and 11 have not been written since

they were copied, the data remain consistent. Generally
speaking, when the mapping information is not updated
immediately after a data block is copied, an unexpected sys-
tem failure only wastes some data accesses, but does not
sacrifice data reliability. The only threat is the incoming of
write operations to migrated data.

The key idea behind delayed metadata updates is that
data blocks are copied to new locations continuously, while
the modified layout metadata are not synchronized onto
disks until a threat to data consistency appears. We use
hiðxÞ to describe the geometry after the ith scaling opera-
tion, where Ni � 1 data disks serve user requests. Fig. 7
illustrates an overview of the migration process. Data in the
moving region is copied to new locations. When a user
request arrives, if its physical block address is above the
moving region, it is mapped with hi�1ðxÞ; if its physical
block address is below the moving region, it is mapped
with hiðxÞ. When all of the data in the current moving
region are moved, the next region becomes the moving
region. In this way, the newly added disks are gradually
available to serve user requests. Only when a user write
request arrives in the area where data have been moved
and the movement has not been checkpointed, are layout
metadata synchronized onto disks.

Since one write of metadata can store multiple layout
changes of data blocks, delayed updates can significantly
decrease the number of metadata updates, reducing the
cost of data migration. Furthermore, delayed metadata
updates can guarantee data consistency. Even if the system
fails unexpectedly, only some data accesses are wasted. It
should also be noted that the probability of a system fail-
ure is very low.

4 HOW MCPOD ADDRESSES DATA

In a RAID system, data addressing includes how to map
a logical address to its physical address and how to
map a physical address to its logical address. They are
termed a mapping algorithm and a demapping algo-
rithm respectively.

4.1 The Mapping Algorithm

Fig. 8 shows the mapping algorithm to minimize data
migration required by RAID scaling. An array N is used to
record the history of RAID scaling.N ½0� is the initial number
of disks in the RAID. After the ith scaling operation, the
RAID consists ofN ½i� disks.

Fig. 6. If data blocks are copied to their new locations and metadata are
not yet updated when the system fails, data consistency is still main-
tained, because the data in their original locations are valid and
available.

Fig. 7. Delayed updates of layout metadata. “C”: migrated and check-
pointed; “M”: migrated but not checkpointed; “U”: not migrated. Data
redistribution is checkpointed only when a user write request arrives in
the area “M”.
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When a RAID is constructed from scratch (i.e., t ¼ 0), it is
actually a round-robin RAID. The address of block x can be
calculated via one division and one modular operations
(lines 3-4).

Let us examine the tth scaling, where n disks are added
into a RAID made up of m disks (lines 7-8). For an original
block (line 9), McPod calculates its old address (d0, b0)
before the tth scaling (line 10). If the block (d0, b0) needs to
be moved during the tth scaling (line 12), McPod changes
the disk ordinal number via the Moving() function (line 13)
while keeps the block ordinal number unchanged (line 14).
For a new block (line 19), McPod places it via the Placing()
procedure (line 20).

The code of line 12 is used to decide whether a data
block (d0, b0) will be moved during a RAID scaling. As
shown in Fig. 1, there is a parallelogram in each region.
The base of the parallelogram is n, and the height is
m� 1. If and only if the data block is within a parallelo-
gram, it will be moved. One parallelogram mapped to
disk d0 is a line segment. Its beginning and ending col-
umns are d0 and d0 þ n� 1, respectively. If b1 is within
the line segment, block x is within the parallelogram, and
therefore it will be moved.

The Moving() function is depicted as follows. As shown
in Fig. 9, a migrating parallelogram is divided into three

parts: a head triangle, a body parallelogram, and a tail trian-
gle. How a data block moves depends on which part it lies
in. The head triangle and the tail triangle keep their shapes
unchanged. The head triangle will be moved by m� 1
disks, while the tail triangle will be moved by n disks. How-
ever, the body is sensitive to the relationship between m� 1
and n. The body is twisted from a parallelogram to a rectan-
gle when m� 1 � n, and from a rectangle to a parallelo-
gram when m� 1 < n. McPod keeps the relative locations
of all data blocks in the same column.

The Placing() procedure is used to address a block x that
is newly added after the last scaling. Each stripe holds n
new blocks. Suppose block x is the yth new block. We have
b ¼ y=n. The order of placing new blocks in each stripe is
shown in Fig. 1.

4.2 The Demapping Algorithm

In many cases, it is also required to map a physical address
to a logical address. McPod provides such a mapping with
the Demapping algorithm, shown in Fig. 10.

Let us examine the tth scaling, where n disks are added
into a RAID made up of m disks (lines 6-7). The logical
address of block ðd; bÞ can be calculated in a recursive
manner.

� If block ðd; bÞ is an original block and is not moved
(line 9), the logical address of block ðd; bÞ keeps
unchanged across the tth scaling (line 10).

� If block ðd; bÞ is an original block and is moved (line
12), McPod gets its original location ðd0; bÞ before the
tth scaling via the Demoving() function (line 13). It
should be remembered that McPod changes the disk
ordinal number while keeping the block ordinal
number unchanged. Then, McPod calculates the log-
ical address of block ðd0; bÞ before the tth scaling
(line 14).

� If block ðd; bÞ is a new block, McPod gets its logical
address via the Deplacing() function (line 16).

The code of line 9 is used to decide whether a data block
ðd; bÞ is an old block and is not moved during this scaling. If
and only if the data block is within a source parallelogram

Fig. 9. The variation of data layout involved in migration.

Fig. 8. The Mapping algorithm used in McPod.
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(see Fig. 1), it is moved. Likewise, the code of line 12 is used
to determine whether a data block ðd; bÞ is an old block and
has been moved during this scaling. If and only if the data
block is within a destination parallelogram, it has been
moved during the tth scaling.

5 PERFORMANCE EVALUATION

This section mainly presents results of a comprehensive
experimental evaluation comparing McPod with the exist-
ing “moving-everything” solution. This performance study
analyzes their performance in terms of user response time
and redistribution time.

5.1 Prototype and Evaluation Methodology

We implement McPod in the MD driver shipped with Linux
Kernel 2.6.32.9. MD is a software RAID system, which uses
MD-Reshape to scale RAID-4 volumes [13]. According to
the addressing algorithm, MD forwards incoming I/O
requests to corresponding disks. When RAID-4 scaling
begins, MD creates a kernel thread to perform data redistri-
bution. McPod cannot redistribute a new region until all the
I/O requests already issued to this region are completed.

We evaluate our design by running trace-driven experi-
ments over a real system. To replay I/O traces, we imple-
ment a block-level replay tool using Linux asynchronous I/
O. It opens a block device with the O_DIRECT option, and
issues an I/O request when appropriate according to trace

files. When an I/O request is completed, it gathers the corre-
sponding response time.

Our experiments use the following three real-system disk
I/O traces with different characteristics.

� Financial1 is from the storage performance council
(SPC). It was collected from OLTP applications run-
ning at a large financial institution [30]. The write
ratio is high.

� TPC-C traced disk accesses of the TPC-C database
benchmark with 20 warehouses [31]. It was collected
with one client running 20 iterations.

� WebSearch2 is also from SPC. It was collected from a
system running a web search engine. The read-domi-
nated WebSearch2 trace exhibits the strong locality
in its access pattern.

The testbed used in these experiments is described as fol-
lows. Linux kernel 2.6.32.9 is installed on a machine with
Intel Xeon 5606 2.13 GHz quad-core processor and 8 GB of
memory. The file system used is EXT4. via a 6 GB/s SATA
expansion card, 12 Seagate ST500DM002 SATA disks are
connected to this machine.

5.2 The Scaling Efficiency

Each experiment lasts from the beginning to the end of data
redistribution for RAID scaling. We focus on comparing
redistribution times and user I/O latencies when different
scaling programs are running in background.

The purpose of our first experiment is to quantitatively
characterize the advantages of McPod through a compari-
son with MD-Reshape. We conduct a scaling operation of
adding one disk to a four-disk RAID. To perform experi-
ments in an acceptable time, we used disk partitions with a
capacity of 100 GB, instead of the whole disks, to construct
disk arrays. Each approach performs with the 64 KB chunk
size under a Financial1 workload.

A group of rate-control parameters means a tradeoff
between the redistribution time objective and the response
time objective. Furthermore, unless both redistribution
time and user response time using one approach are
respectively smaller than those using the other approach,
we do not know if we can predict that the former
approach outperforms the latter. Therefore, for ease of
comparison, we choose control parameters for the differ-
ent experiments. The parameters of “sync_speed_max”
and “sync_speed_min” in MD-Reshape are set 200,000
and 2,000 respectively. In McPod, they are set 200,000 and
8,000 respectively. This parameter setup acts as the base-
line for the latter experiments from which any change will
be stated explicitly.

We collect the latencies of all application I/Os. We
divide the I/O latency sequence into multiple sections
according to I/O issuing time. The time period of each
section is 1,000 seconds. Furthermore, we get a local aver-
age latency from each section. A local average latency is
the average of I/O latency in a section. Fig. 11 plots local
average latencies using the two approaches as the time
increases along the x-axis. It illustrates that McPod dem-
onstrates a noticeable improvement over MD-Reshape in
two metrics. First, the redistribution time using McPod is
significantly shorter than that using MD-Reshape. They

Fig. 10. The Demapping algorithm used in McPod.
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are 13,153 and 40,827 seconds, respectively. In other
words, McPod has a 67.78 percent shorter redistribution
time than MD-Reshape.

The main factor in McPod’s reducing the redistribution
time is the significant decline of the amount of the data to
be moved. When MD-Reshape is used, 100 percent of data
blocks have to be migrated. However, whenMcPod is used,
only 25 percent of data blocks need to be migrated. Another
factor is the effective exploitation of the other four optimi-
zation techniques. Coalesced data accesses improve the
migration efficiency of regular data. Piggyback parity
updates and outsourcing parity updates reduce the over-
head of parity updates during RAID scaling. Delayedmeta-
data updates minimizes the number of metadata updates
without compromising data reliability.

Second, local average latencies of MD-Reshape are lon-
ger than those of McPod. The global average latency using
MD-Reshape reaches 9.76 ms while that using McPod is
8.37 ms. In other words, McPod brings an improvement of
14.24 percent in user response time. Fig. 12 shows the
cumulative distribution (CD) of user response time during

data redistribution. To provide a fair comparison, I/Os
involved in statistics for MD-Reshape are only those issued
before 13,153 seconds. For any I/O latency smaller than
95.34 ms, the CD value of McPod is greater than that of MD-
Reshape noticeably and consistently. This indicates again
that McPod has smaller response time of user I/Os than
MD-Reshape.

The reason for the improvement in user response time is
explained as follows. During RAID scaling, data redistribu-
tion and foreground applications share and even contend
for I/O resources in the system. McPod decreases the
amount of the data to be moved significantly. Moreover,
McPod minimizes metadata writes via delayed metadata
updates. As a result, the RAID system has more time to
serve applications. It is also noteworthy that due to signifi-
cantly shorter data redistribution time, McPod has a
markedly lighter impact on the user I/O latencies than MD-
Reshape does.

A factor that might affect the benefits of McPod is the type
of workload under which data redistribution performs.
Under the TPC-C workload, we also measure the perfor-
mance of McPod andMD-Reshape in performing the “4þ 1”
scaling operation. The parameters of “sync_speed_max”
and “sync_speed_min” in MD-Reshape are set 200,000 and
2,000 respectively. In McPod, they are set 200,000 and 10,000
respectively.

For the TPC-C workload, Fig. 13 shows local average
latency versus the redistribution time for MD-Reshape and
McPod. It shows once again the efficiency of McPod in
improving the redistribution time. The redistribution times
using MD-Reshape and McPod are 14.43 hours and
2.92 hours, respectively. That is to say, McPod has an
improvement of 79.64 percent in the redistribution time.
Likewise, local average latencies of McPod are also obvi-
ously shorter than those of MD-Reshape. The global average
latency using McPod is 1.77 ms while that using MD-
Reshape reaches 2.43 ms. In other words, McPod has an
improvement of 27.16 percent in user response time.

We can draw one conclusion from the above two
experiments. Under various workloads, McPod can con-
sistently outperform MD-Reshape by 67.78-79.64 percent

Fig. 12. Cumulative distribution of I/O latency during data redistribution
by the two approaches for the Financial1 workload.

Fig. 13. Performance comparison between McPod and MD-Reshape for
the TPC-C workload.

Fig. 11. Performance comparison between McPod and MD-Reshape for
the Financial1 workload.
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in redistribution time and by 14.24-27.16 percent in user
response time.

5.3 The Performance After Scaling

The above experiments show that McPod improves the scal-
ing efficiency of RAID-4 significantly. One of our concerns is
whether there is a penalty in the performance of the data
layout after scaling using McPod, compared with the
round-robin layout preserved by MD-Reshape.

We use the WebSearch2 workload to measure the perfor-
mance of the two RAIDs, scaled from the same RAID using
McPod and MD-Reshape. Each experiment lasts 30 minutes,
and records the latency of each I/O. Based on the issue time,
the I/O latency sequence is divided into 20 sections evenly.
Furthermore, we get a local average latency from each
section.

First, we compare the performance of two RAIDs, after
one scaling operation “4 þ 1” using the two scaling
approaches. Fig. 14 plots the local average latency of the
two RAIDs as the time increases along the x-axis. We can

find that the performance of the McPod RAID is almost
identical to that of the round-robin RAID. With regard to
the round-robin RAID, the average latency is 1.18 ms.
For the McPod RAID, the average latency is 1.16 ms.
Under the Financial1 and TPC-C workloads, we also
measure the performance of the two RAIDs. Fig. 15 com-
pares the average latencies of the two RAIDs. It illus-
trates that their performances are almost identical under
each workload.

Second, we compare the performance of two RAIDs,
after two scaling operations “4 þ 1 þ 1” using the two
approaches. Fig. 16 plots local average latencies of the
two RAIDs as the time increases along the x-axis. It
reveals the difference in the performance of the two
RAIDs. With regard to the round-robin RAID, the aver-
age latency is 1.13 ms. For the McPod RAID, the average
latency is 1.05 ms. Fig. 17 compares the average latencies
of the two RAIDs under different workloads. It again
shows that their performances are almost identical under
each workload.

Fig. 15. Performance comparison between McPod layout and round-
robin layout for different workloads after one scaling operation “4 þ 1.”

Fig. 16. Performance comparison between McPod layout and round-
robin layout for the WebSearch2 workload after two scaling operations
“4 þ 1 þ 1.”

Fig. 17. Performance comparison between McPod layout and round-
robin layout for different workloads after two scaling operations
“4 þ 1 þ 1.”

Fig. 14. Performance comparison between McPod layout and round-
robin layout for the WebSearch2 workload after one scaling opera-
tion “4 þ 1.”
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We can reach the conclusion that the performance of the
RAID scaled using McPod is almost identical to that of the
round-robin RAID scaled using MD-Reshape.

6 CONCLUSIONS

In order to regain load balance during RAID-4 scaling, it
is necessary to redistribute data across all the disks. This
paper presents McPod—a new data redistribution
approach to accelerating RAID-4 scaling. First, with a new
and elastic addressing function, McPod minimizes the
number of data blocks to be migrated without compromis-
ing the uniformity of data distribution. Second, McPod
optimizes online data migration with four unique techni-
ques, i.e., coalesced accesses and parallel I/O, piggyback
and parallel parity updates, outsourcing parity updates,
and delayed metadata updates.

Our results from detailed experiments using real-system
workloads show that, compared with MD-Reshape, a scal-
ing toolkit released in 2010, McPod can reduce redistribu-
tion time by up to 67.78-79.64 percent and reduce user
response time by 14.24-27.16 percent. The experiments also
illustrate that the performance of the RAID scaled using
McPod is almost identical to that of the round-robin RAID.
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