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Abstract—Erasure coding has been extensively employed for data availability protection in production storage systems by maintaining

a low degree of data redundancy. However, how to mitigate the parity update overhead of partial stripe writes in erasure-coded storage

systems is still a critical concern. In this paper, we study this problem from two new perspectives: data correlation and stripe

organization. We propose CASO, a correlation-aware stripe organization algorithm, which captures data correlation of a data access

stream and uses the data correlation characteristics for stripe organization. It packs correlated data into a small number of stripes to

reduce the incurred I/Os in partial stripe writes, and further organizes uncorrelated data into stripes to leverage the spatial locality in

later access. We implement CASO over Reed-Solomon codes and Azure’s Local Reconstruction Codes, and show via extensive trace-

driven evaluation that CASO reduces up to 29.8 percent of parity updates and reduces the write time by up to 46.7 percent.

Index Terms—Correlation, stripe organization, partial stripe writes, erasure code
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1 INTRODUCTION

TODAY’S distributed storage systems continuously expand
in scale to cope with the ever-increasing volume of data

storage. In the meantime, failures also become more preva-
lent due to various reasons, such as disk crashes, sector
errors, or server outages [3], [4], [5]. To achieve data avail-
ability, keeping additional redundancy in data storage is a
commonly used approach to enable data recovery once fail-
ures occur. Two representatives of redundancy mechanisms
are replication and erasure coding. Replication distributes iden-
tical replicas of each data copy across storage devices, yet it
significantly incurs substantial storage overhead, especially
in the face of massive amounts of data being handled nowa-
days. On the other hand, erasure coding introduces much
less storage redundancy via encoding computations, while
reaching the same degree of fault tolerance as replication [6].
At a high level, erasure coding performs encoding by taking
a group of original pieces of information (called data chunks)
as input and generating a small number of redundant pieces
of information (called parity chunks), such that if any data or
parity chunk fails, we can still use a subset of available

chunks to recover the lost chunk. The collection of data and
parity chunks that are encoded together forms a stripe, and a
storage system stores multiple stripes of data and parity
chunks for large-scale storage. Because of the high storage
efficiency and reliability, erasure coding has been widely
deployed in current production storage systems, such as
Windows Azure Storage [2] and Facebook’s HadoopDistrib-
uted File System [7].

However, while providing fault tolerance with low redun-
dancy, erasure coding introduces additional performance
overhead as it needs to maintain the consistency of parity
chunks to ensure the correctness of data reconstruction. One
typical operation is partial stripe writes [8], in which a subset of
data chunks of a stripe are updated. In this case, the parity
chunks of the same stripe also need to be renewed accordingly
for consistency. In storage workloads that are dominated by
small writes [9], [10], partial stripe writes will trigger frequent
accesses and updates to parity chunks, thereby amplifying
I/O overhead and extending the time of write operation.
Partial stripe writes also raise concerns for system reliability,
as different kinds of failures (e.g., system crashes and network
failures) may occur during parity renewals and finally result
in the incorrectness of data recovery. Thus, making partial
stripe writes efficient is critical for improving not only perfor-
mance, but also reliability, in erasure-coded storage systems.

Our insight is that we can exploit data correlation [11] to
improve the performance of partial stripe writes. Data
chunks in a storage system are said to be correlated if they
have similar semantic or access characteristics. In particular,
correlated data chunks tend to be accessed within a short
period of time with large probability [11]. By extracting data
correlations from an accessed stream of data chunks, we can
organize correlated data chunks (which are likely to be
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accessed simultaneously) into the same stripe, so as to reduce
the number of parity chunks that need to be updated.

To this end, we propose CASO, a correlation-aware
stripe organization algorithm. CASO carefully identifies
correlated data chunks by examining the access characteris-
tics of an access stream. It then accordingly classifies data
chunks into either correlated or uncorrelated data chunks.
For correlated data chunks, CASO constructs a correlation
graph to evaluate their degrees of correlation and formu-
lates the stripe organization as a graph partition problem.
For uncorrelated data chunks, CASO arranges them into
stripes by leveraging the spatial locality in future access.

CASO is applicable for general erasure codes, such as the
classical Reed-Solomon (RS) codes [12], XOR-based codes
[13], [14], [15], [16], [17], [18], and Azure’s Local Reconstruc-
tion Codes (LRC) [2]. In addition, CASO complements pre-
vious approaches that optimize the performance of partial
stripe writes at coding level [10], [17], [18] or system level
[9], [19], and can be deployed on top of these approaches for
further performance gains. To the best of our knowledge,
CASO is the first work to exploit data correlation from real
system workloads to facilitate stripe organization in era-
sure-coded storage, so as to mitigate the parity update over-
head of partial stripe writes.

In summary, we make the following contributions.

� We carefully examine existing studies on optimizing
partial stripe writes and identify the remaining open
issues.

� We propose CASO to leverage data correlation in
stripe organization for erasure-coded storage systems.

� We implement CASO over RS codes and Azure’s
LRCwith different configurations and conduct exten-
sive trace-driven testbed experiments. We show that
CASO reduces up to 29.8 percent of parity updates
and up to 46.7 percent of the average write time com-
pared to the baseline stripe organization technique.
Also, we show that CASO preserves the performance
of degraded reads [20], which are critical recovery
operations in erasure-coded storage. Furthermore,
we show thatCASO introduces only slight additional
time overhead in stripe organization.

The source code of CASO is now available at http://adslab.
cse.cuhk.edu.hk/software/caso.

The rest of this paper proceeds as follows. Section 2
presents the basics of erasure coding and reviews related
work. Section 3 motivates our problem. Section 4 presents
the detailed design of CASO. Section 5 evaluates CASO
using trace-driven testbed experiments. Section 6 concludes
the paper. In the digital supplementary file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2018.2890635,
we also present the complexity analysis, the addressing issue
of the trace replay in our experiments, and the future work.

2 BACKGROUND AND RELATED WORK

2.1 Basics of Erasure Coding

We first elaborate the background details of erasure coding
following our discussion in Section 1. An erasure code is
typically constructed by two configurable parameters,

namely k and m. A ðk;mÞ erasure code transforms the origi-
nal data into k equal-size pieces of data information called
data chunks and produces additional m equal-size pieces of
redundant information called parity chunks, such that these
kþm data and parity chunks collectively form a stripe. A
storage system comprises multiple stripes, each of which is
independently encoded and distributed across kþm stor-
age devices (e.g., nodes or disks). We say that a ðk;mÞ code
is Maximum Distance Separable (MDS) if it ensures that any k
out of kþm chunks of a stripe can sufficiently reconstruct
the original k data chunks, while incurring the minimum
amount of storage redundancy among all possible erasure
code constructions; that is, it can tolerate any loss of at most
m chunks with optimal storage efficiency.

Reed-Solomon codes [12] are one well-known family of
MDS erasure codes that perform encoding operations based
on Galois Field arithmetic [21]. RS codes support general
parameters of k and m, and have been widely deployed
in production storage systems, such as Google [5] and
Facebook [22]. In this paper, we denote the RS codes config-
ured by the parameters k and m as RSðk;mÞ. Fig. 1 illus-
trates a stripe of RSð6; 3Þ, in which there are six data chunks
(i.e.,D1 � D6) and three parity chunks (i.e., P1, P2, and P3).

XOR-based codes are a special family of MDS codes that
perform encoding using XOR operations only. Examples of
XOR-based codes include RDP Code [13], X-Code [14],
STAR Code [15], HDP Code [16], H-Code [17], and HV-
Code [18]. XOR-based codes have higher computational
efficiency than RS codes, but they often put restrictions on
the parameters k and m. For example, RDP Code and X-
Code requirem ¼ 2 and can only tolerate double chunk fail-
ures. XOR-based codes are usually used in local storage
systems, such as EMC Symmetrix DMX [23] and NetApp
RAID-DP [24].

Some recent studies (e.g., [2], [7]) focus on non-MDS codes
that trade slight additional storage redundancy for repair
efficiency. Local Reconstruction Codes [2] are one represen-
tative family of non-MDS codes deployed in Microsoft
Azure. LRC keeps two types of parity chunks. In addition to
the m parity chunks (called the global parity chunks in LRC)
derived from the k data chunks, LRC further divides the k
data chunks of a stripe into l local groups and maintains a
parity chunk (called a local parity chunk) for each local group.
By collectively keeping these two types of parity chunks,
LRC is shown to significantly reduce I/Os in failure repair
operations. In this paper, we denote the LRC configured by
the parameters k, l, and m as LRCðk; l;mÞ. Fig. 2 presents a
stripe of LRCð6; 2; 3Þ, in which the six data chunks will be
partitioned into two local groups (i.e., fD1; D2; D3g and

Fig. 1. Encoding of RSð6; 3Þ for a stripe, in which there are six data
chunks and three parity chunks. If one of the data or parity chunks is
lost, any six surviving chunks within the stripe can be used to reconstruct
the lost chunk. Each line connects a parity chunk and its dependent data
chunks in the encoding operation. For example, the first line connects
the parity chunk P1 with all six data chunks, meaning that P1 is formed
by the encoding of all the six data chunks.
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fD4; D5;D6g). Each local group generates a local parity
chunk (i.e., L1 and L2 for the first and second local groups,
respectively), and a stripe will maintain another three global
parity chunks (i.e., P1, P2, and P3). Suppose that the data
chunk D1 is corrupted. LRCð6; 2; 3Þ can simply read the sur-
viving three chunks (i.e., D2, D3, and L1) from the first local
group to repair D1, thereby causing less repair traffic than
the RS code in Fig. 1. Our work is applicable for RS codes,
XOR-based codes, andAzure’s LRC.

2.2 Partial Stripe Writes

Maintaining consistency between data and parity chunks is
necessary during writes. Writes in erasure-coded storage
systems can be classified into full stripe writes and partial
stripe writes according to the write size. A full stripe write
updates all data chunks of a stripe, so it generates all parity
chunks from the new data chunks and overwrites the entire
stripe in a single write operation. In contrast, a partial stripe
write only updates a subset of data chunks of a stripe, and it
must read existing chunks of a stripe from storage to com-
pute the new parity chunks. Depending on the write size,
partial stripe writes can be further classified into read-
modify-writes for small writes and reconstruct-writes for large
writes [25]. Since small writes dominate in real-world stor-
age workloads [9], [10], we focus on read-modify-write
mode, which performs the following steps when new data
chunks are written: (i) reads both existing data chunks and
existing parity chunks to be updated, (ii) computes the new
parity chunks from the existing data chunks, new data
chunks, and existing parity chunks via the linear algebra of
erasure codes [9], and (iii) writes all the new data chunks
and new parity chunks to storage. Clearly, the parity
updates incur extra I/O overhead.

Extensive studies in the literature propose to mitigate
parity update overhead. For example, H-Code [17] and HV
Code [18] are new erasure code constructions that associate
sequential data with the same parity information, so as to
favor sequential access. Shen et al. [10] develop a new data
placement that attempts to arrange sequential data with the
same parity information for any given XOR-based code.
Some approaches are based on parity logging [9], [19],
which store parity deltas instead of updating parity chunks
in place, so as to avoid reading existing parity chunks as in
original read-modify-write mode.

2.3 Open Issues

When we examine existing studies on optimizing partial
stripe writes, there remain two limitations.

Negligence of Data Correlation. Data correlation exists in
real-world storage workloads [11]. Existing studies do not
consider data correlation in erasure-coded storage systems,

so they cannot fully mitigate parity update overhead.
Specifically, if correlated data chunks are dispersed across
many different stripes, then a write operation to those
chunks will update all the parity chunks in multiple stripes.
Note that some studies [10], [17], [18] favor sequential
access, yet correlated data chunks may not necessarily be
sequentially placed. Previous studies [11], [26], [27] exploit
data correlation mainly to improve pre-fetching perfor-
mance, but how to use this property to mitigate parity
update overhead remains an open issue.

Absence of an Optimization Technique for RS Codes and LRC.
Existing studies mainly focus on optimizing partial stripe
writes for XOR-based codes [10], [17], [18]. Nevertheless,
XOR-based codes often put specific restrictions on the cod-
ing parameters, while today’s production storage systems
often deploy RS codes or LRC for general fault tolerance
(see Section 2.1). Thus, optimizing partial stripe writes for
RS codes and LRC is still an imperative need.

3 MOTIVATION

Many storage systems [28], [29] first keep new data in
replication form and then encode the data after a period
of time to maintain high storage efficiency. Since the pop-
ularity of the data being accessed tends to be stable in
long term (e.g., hours or days) [30], we propose to capture
the access correlations when the data is stored in replica-
tion form and improve the write efficiency when the data
is later encoded by organizing the correlated data in the
same stripe. Thus, for the applications with stationary
access patterns, our proposed stripe organization remains
effective in the long run. We pose the following question:
Given an access stream, how can we organize the data chunks
into stripes based on data correlation, so as to optimize partial
stripe writes? In this section, we motivate our problem via
trace analysis and an example.

3.1 Trace Analysis

We infer data correlation by a black-box approach, which
finds correlated data chunks through analyzing a data
access stream without requiring any modification to the
underlying storage system [11]. We use two parameters to
identify data correlation: time distance and access threshold.
We say that two data chunks are correlated if the number of times
when they are accessed within a specific time distance reaches a
given access threshold.

To validate the significant impact of correlated data
chunks in data accesses, we select several real-world block-
level workloads from the MSR Cambridge Traces [31] (see
Section 5 for details about the traces). Each trace includes a
sequence of access requests, each of which describes the
timestamp of a request (in terms of Windows filetime), the
access type (i.e., read or write), the starting address of
the request, and the size of the accessed data.

In this paper, we focus on improving the write efficiency.
We assume that two data chunks are said to be correlated if
both of them are written by requests with the same timestamp
value at least twice. Note that the timestamp recorded in
MSR Cambridge Traces is represented in units of ticks that
correspond to 100-nanosecond intervals, yet the timestamp
values in this analysis are rounded to the nearest 1,000. In

Fig. 2. Encoding of LRCð6; 2; 3Þ for a stripe, in which there are six data
chunks, two local parity chunks, and three global parity chunks. If one of
the data chunks is corrupted, LRC can read the three surviving chunks
within the same local group for data reconstruction.
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other words, we set the time distance as 100 microseconds
and the access threshold as two.

Let nc denote the number of correlated data chunks that
we infer in aworkload and let fc be the number of timeswrit-
ten to these nc correlated data chunks over the entire work-
load. Suppose that na denotes the number of all the distinct
data chunks written in a workload, and fa represents the
number of times written to these na chunks in total. We con-
sider the ratio of the correlated data chunks (denoted by nc

na
) and

the write frequency ratio of correlated data chunks (denoted by
fc
fa
). We measure these two metrics in several selected work-

loads of the MSR Cambridge Traces, and the results are
shown in Fig. 3.Wemake two observations.

� The ratios of correlated data chunks vary across work-
loads. For example, the ratio of correlated data
chunks in wdev_2 is 99.9 percent and the ratio in
wdev_1 is only 3.3 percent.

� Correlated data chunks receive a number of writes. For
example, 70.5 percent of data writes are issued for
correlated data chunks in wdev_1, while in wdev_2

the write frequency ratio of correlated data chunks
reaches 99.9 percent.

In addition, previous work [32] reveals that most write
requests usually access write-only data chunks. As corre-
lated data chunks exhibit similar access characteristics, a
write-only data chunk is expected to be more correlated to
another data chunk that is also a write-only data chunk.

3.2 Motivating Example

Our trace analysis suggests that correlated data chunks
receive a significant number of data accesses, and they tend
to be accessed together. Thus, we propose to group corre-
lated data chunks into the same stripes, so as to mitigate par-
ity update overhead in partial stripewrites.We illustrate this
idea via a motivating example. Fig. 4 shows two different
stripe organization methods with RSð4; 2Þ. Note that the
placement of parity chunks is rotated across stripes to evenly
distribute parity updates across the whole storage space, as
commonly used in practical storage systems [33]. Thus, in
Stripe 1, the last two chunks are parity chunks, while in
Stripe 2, the parity chunks will be placed at the first and last
column. Now, suppose that D1 and D5 are write-only data
chunks and they are correlated. Fig. 4a shows a baseline stripe
organization (BSO) methodology, which is considered for RS
codes in the plugins of HDFS [34]. Specifically, BSO places
sequential data chunks across kþm storage devices in a
round-robin fashion [35]. Suppose that the storage system
caches the updates in the same time distance and flush them
in batch. As D1 and D5 are correlated (i.e., be updated in a
time distance), their updates are performed together. As
shown in Fig. 4a, BSO places D1 and D5 in two different

stripes. When D1 and D5 are updated, the associated four
parity chunks P1, P2, P3, and P4 also need to be updated. On
the other hand, by leveraging data correlation, the new stripe
organization method (named CASO) can arrangeD1 andD5

in the same stripe (shown in Fig. 4b). In this case, updating
both chunks only needs to renew two associated parity
chunks P1 and P2 once in the following ways: (i) read P1 and
P2; (ii) update them based on the deltas of D1 and D5; and
(iii) write back the new parity chunks P 0

1 and P 0
2.

In the encoding stage, both CASO and BSO need to
retrieve k data chunks of each stripe stripe and calculate the
m parity chunks for the stripe in RSðk;mÞ (or lþm local
and global parity chunks for the stripe in LRCðk; l;mÞ).
CASO does not change the number of stripes, and it intro-
duces the same amount of I/O and computation cost as
BSO in the encoding stage.

The address mapping information for stripe organization
in CASO can be maintained in the RAID controller for
RAID-based storage systems or in the master node that
tracks the metadata of data storage for networked clusters
(e.g., NameNode in HDFS [36]).

4 CORRELATION-AWARE STRIPE ORGANIZATION

We now present CASO, a correlation-aware stripe organization
algorithm. The main idea of CASO is to capture data corre-
lations by first carefully analyzing a short period of an
access stream and then separating the stripe organization
for correlated and uncorrelated data chunks.

4.1 Stripe Organization for Correlated Data Chunks

Organizing correlated data chunks is a non-trivial task and is
subject to two key problems: (i) how to identify data correla-
tion and (ii) how to organize identified correlated data
chunks into stripes. How to capture data correlation has
been extensively studied, yet organizing the correlated data
chunks into stripes is not equivalent to simply finding the
longest frequent chunk sequence as in prior approaches such
as C-Miner [11] and CP-Miner [37]. In stripe organization,
we should select correlated data chunks that are predicted to
receive themostwrite operationswithin a stripe, and the lon-
gest chunk sequencemay not be the solutionwe expect.

4.1.1 Correlation Graph

To evaluate the correlation among data chunks, CASO con-
structs an undirected graph GðD; E; CÞ over correlated data
chunks, which we call the correlation graph.

Fig. 3. Analysis on the real workloads about data correlation.

Fig. 4. Motivation: Two stripe organization methods.

SHEN ET AL.: CORRELATION-AWARE STRIPE ORGANIZATION FOR EFFICIENT WRITES IN ERASURE-CODED STORAGE: ALGORITHMS... 1555



In the correlation graph GðD; E; CÞ, suppose that D
denotes the set of correlated data chunks that are identified,
nc is the number of correlated data chunks, and E is a set of
connections. If data chunks Di and Dj are correlated (see
Section 3.1 for the definition of correlation), then there exists
a connection EðDi;DjÞ 2 E. C is a correlation function that
maps E to a set of non-negative numbers. For the connection
EðDi;DjÞ 2 E, CðDi;DjÞ is called the correlation degree
between Di and Dj, which represents the number of times
that both of Di and Dj are requested within the same time
distance in an access stream.

Fig. 5 presents an access stream which is partitioned into
10 non-overlapped periods according to a given time dis-
tance. If the access threshold is set as 2, then we can derive a
set of correlated data chunks D ¼ fD1; D2; . . . ; D9g (i.e.,
nc ¼ 9) and accordingly construct a correlation graph. For
example, as the number of periods when both of D1 and D3

are requested is four, we set CðD1; D3Þ ¼ 4.
After establishing the correlation graph, the next step is

to organize the correlated chunks into stripes. Suppose
that there are nc correlated data chunks and the system
selects RSðk;mÞ for data encoding. Then the correlated data
chunks will be organized into � ¼ dnck e stripes, namely
fS1;S2; . . . ;S�g. Note that the last stripe S� may include
fewer than k correlated data chunks, and it can be padded
with dummy data chunks with all zeros.

Grouping the correlated data chunks will accordingly
partition the correlation graph G into � subgraphs termed
GiðDi; Ei; CÞ for 1 � i � �, where Di (1 � i � �) denotes the
set of data chunks in Gi. After graph partitioning, the corre-
lated data chunks in a subgraph are organized into the
same stripe. Suppose that Di ¼ fDi1 ; Di2 ; . . . ; Dikg, and let
Rð�Þ be a function to calculate the sum of the correlation
degrees of data chunks in a set. Then the sum of the correla-
tion degrees of the data chunks in Di is given by

RðDiÞ ¼
X

Dix ;Diy2Di;EðDix ;Diy Þ2E
CðDix ;DiyÞ: (1)

Let O be the set of all possible stripe organization meth-
ods. Then our objective is to find an organization method that
maximizes the sum of correlation degrees for the � correlation sub-
graphs, so that the most writes are predicted to be issued to
the data chunks within the same stripe. We formulate this
objective function as follows:

Max
X�

i¼1

RðDiÞ; for all possible methods in O: (2)

For example, we configure k ¼ 3 in erasure coding and
group the nine correlated data chunks in Fig. 5 into three

subgraphs as shown in Fig. 6. The data chunks grouped in
the same subgraph will be organized into the same stripe.
We can see that the sum of correlation degrees of the data
chunks in these three subgraphs is

P3
i¼1 RðDiÞ ¼ 14.

4.1.2 Correlation-Aware Stripe Organization Algorithm

Finding the organization method that maximizes the sum of
correlation degrees through enumeration is extremely time
consuming. It requires to iteratively choose k correlated data
chunks to construct a stripe from those that are unorganized
yet. Suppose that there are nc correlated data chunks. Then
the enumeration of all possible stripe organization methods

will need nc
k

� � � nc�k
k

� � � � � nc�ð��1Þk
k

� �
tests,1 where � ¼ dnck e. To

improve the search efficiency, we propose a greedy algorithm
(see Algorithm 1) to organize the correlated data chunks. The
main idea is that for each stripe, it first selects a pair of data
chunks with the maximum correlation degree among those
that are unorganized yet, and then iteratively chooses a data
chunk that has the maximum sum of correlation degrees with
those that have already been selected for the stripe.

Algorithm 1. Stripe Organization for Correlated Data
Chunks

Input: A correlation graph GðD; E; CÞ.
Output: The � subgraphs.

1 Set Di ¼ ; for 1 � i � �
2 for i ¼ 1 to �� 1 do
3 Select Di1 and Di2 with the maximum correlation

degree in GðD; E; CÞ
4 Update D ¼ D� fDi1 ; Di2g, Di ¼ fDi1 ; Di2g
5 repeat
6 forDx 2 D do
7 Calculate ux;i ¼ RðDi [ fDxgÞ �RðDiÞ
8 FindDy, where uy;i ¼ Maxfux;ijDx 2 Dg
9 Set D ¼ D� fDyg, Di ¼ Di [ fDyg
10 until Di includes k data chunks;
11 Remove the connections between the data chunks in Di

and those in D over GðD; E; CÞ
12 Organize the remaining correlated data chunks into D�

Fig. 5. An example of correlation graph constructed from an access
stream.

Fig. 6. An example of three correlation subgraphs (assuming that k ¼ 3).
There are three stripes, where D1 ¼ fD1; D2; D4g, D2 ¼ fD5; D7; D8g,
and D3 ¼ fD3; D6; D9g. Then the correlation degrees of the data chunks
in the three subgraphs are RðD1Þ ¼ 5, RðD2Þ ¼ 5, and RðD3Þ ¼ 4,
respectively.

1. i
j

� �
denotes the number of combinations of selecting j chunks

from i chunks, where j � i.
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In the initialization of Algorithm 1, D includes all the cor-
related data chunks. The set Di (1 � i � �), which is used to
include the data chunks in the stripe Si, is set as empty
(step 1). For the stripe Si (1 � i � �� 1), we first choose two
data chunks that have the maximum correlation degree in
GðD; E; CÞ from those that have not been organized yet
(step 3). These two data chunks will be excluded fromD and
added into Di (step 4). After that, we scan every remaining
data chunk Dx in D and calculate its sum of correlation
degrees with the data chunks in Di, which is denoted by
ux;i ¼ RðDi [ fDxgÞ �RðDiÞ (step 6�step 7). According to
the definition ofRð�Þ (see Equation (1)), we can deduce that

ux;i ¼
X

Dj2Di;EðDx;DjÞ2E
CðDx;DjÞ:

We then choose the one Dy that has the maximum sum of
correlation degreeswith the data chunks inDi, exclude it from
D, and append it toDi (step 8�step 9).We repeat the selection
of data chunks in Di until Di has included k data chunks
(step 10). Once these k data chunks in Di have been deter-
mined, the algorithm then removes the connections of the data
chunks inDi with those in D, and turns to the organization of
the next stripe (step 11). Finally, the storage system organizes
the remaining correlated data chunks intoD� (step 12).

Example. We show an example in Fig. 7 based on the corre-
lation graph in Fig. 5. In this example, we set k ¼ 3 and

thus � ¼ dnck e ¼ 3. At the beginning, D ¼ fD1; D2; . . . ; D9g
and Di ¼ ; for 1 � i � 3.

To determine the three data chunks in D1, we first
select the two data chunks D1 and D3, which we find

have the maximum correlation degree of CðD1; D3Þ ¼ 4
in GðD; E; CÞ. Then we update D ¼ fD2; D4; D5; . . . ; D9g
and set D1 ¼ fD1; D3g (see Fig. 7a). The algorithm then
scans the remaining data chunks in D. We first consider D2,
which connects both D1 and D3 and has the sum of correla-
tion degrees CðD2; D1Þ þ CðD2; D3Þ ¼ 6. We next turn to D4

in D, which only connects D1 and has the correlation degree
of CðD4; D1Þ ¼ 2. We repeat the test for all the remain-
ing data chunks in D, and finally select D2 that has the
maximum sum of correlation degrees with the data chunks
in D1. We update D ¼ fD4; D5; . . . ; D9g and D1 ¼ fD1; D2;
D3g. Once the number of data chunks in D1 equals k (i.e.,
3 in this example), we delete the edges connecting the data
chunks in D and those in D1 (i.e., EðD1; D4Þ, EðD1; D5Þ,
and EðD3; D6Þ), as shown in Fig. 7b. Following this
principle, we obtain D2 ¼ fD4; D5; D7g (see Fig. 7d)
and D3 ¼ fD6; D8; D9g (see Fig. 7f). We can see thatP3

i¼1 RðDiÞ ¼ 17.

Algorithm 2. Stripe Organization for Uncorrelated Data
Chunks

1 for each uncorrelated data chunkDi do
2 Find the number of correlated data chunks ni whose chunk

identities are smaller than i
3 Organize it into the ð�þ di�ni

k eÞ-th stripe
4 Store the k data and m parity chunks of each stripe on kþm

storage devices with only one chunk per device

4.2 Stripe Organization for Uncorrelated Data
Chunks

We also consider the organization of uncorrelated data
chunks. We have two observations.

1) Spatial locality can be utilized in stripe organization
to reduce the parity updates in partial stripe writes.
For example, if two sequential data chunks in the
same stripe are written, then we only need to update
their common parity chunks.

2) Uncorrelated data chunks still account for a large
proportion of all the accessed data chunks in many
workloads (e.g., wdev_1, rsrch_1, and web_2 in
Fig. 3).

Therefore, we propose to organize the uncorrelated data
chunks in a round-robin fashion [35]. Algorithm 2 gives the
main steps to organize uncorrelated data chunks.

Example. We set k ¼ 3 in erasure coding. Fig. 8 shows an
example based on the access stream in Fig. 5. From Fig. 5,
the correlated data chunks are fD1; D2; . . . ; D9g and are

Fig. 7. Example of organizing correlated data chunks in CASO.

Fig. 8. An example of stripe organization for uncorrelated data chunks.
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organized into � ¼ 3 stripes. We then identify the uncor-
related ones. To organize D10, it will be organized in the
4th stripe. Following this method, we can obtain the
stripes that preserve a high degree of data sequentiality
as shown in Fig. 8.

4.3 Extension for Local Reconstruction Codes

We will elaborate how to deploy CASO on top of Azure’s
LRC (see Section 2.1). As a non-MDS code, LRC keeps addi-
tional local parity chunks and hence suffers from more par-
ity update overhead. How to reduce the updates to both
global and local parity chunks is critical for improving the
write performance of LRC.

Algorithm 3. Local Group Organization for Correlated
Data Chunks

Input: (1) The k data chunks Di of the i-th stripe;
(2) The subgraph Gi constructed by Di

Output: l local groups of Di.
1 Set Di ¼ fDi1 ; Di2 ; . . . ; Dikg
2 Set Lj ¼ ; for 1 � j � l
3 for 1 � j � l do
4 Select Dj1 and Dj2 from Di with the maximum

correlation degree in Di

5 Update Lj ¼ fDj1 ; Dj2g, Di ¼ Di � fDj1 ; Dj2g
6 repeat
7 forDix 2 Di do
8 Calculate uix;j ¼ RðLj [ fDixgÞ �RðLjÞ
9 FindDiy , where uiy;j ¼ Maxfuix;jjDix 2 Dig
10 Set Lj ¼ Lj [ fDiyg, Di ¼ Di � fDiyg
11 until Lj includes k

l data chunks;
12 Remove the connections between the data chunks in

Lj and those in Di over Gi

In view of this, we extend CASO to organize the local
groups of LRC, with the objective of utilizing data correla-
tions for reducing updates to both global and local parity
chunks. For LRCðk; l;mÞ, the k data chunks of a stripe will be
organized into l local groups, namely fL1;L2; . . . ;Llg with k

l

data chunks per local group; for simplicity of our discussion,
we now assume that k is divisible by l. Algorithm 3 considers
the local group organization of a stripe, and Di denotes the
set of k data chunks in the i-th stripe. For each local group
say Lj (where 1 � j � l), CASO first selects two most corre-
lated data chunks among the recorded data chunks in Di,
which will be included in the local group Lj and evicted
from Di (steps 4�5). The algorithm then iteratively chooses
the data chunkDiy 2 Di that owns the maximum correlation
degree with those in Lj, and accordingly updates Lj and Di

(steps 7�10). As such chunk Diy 2 Di always exists in each

round of correlated chunk selection, we can repeatedly
increase the number of data chunks in Lj. When the number
of data chunks in Lj reaches

k
l , the algorithm then removes

the connections of the data chunks selected in Lj with those
in Di, and turns to the organization of next local group
(step 12). The algorithm terminates when all the k data
chunks are successfully organized into l local groups.

4.4 Complexity Analysis

We present the complexity analysis for the three algorithms
in Section 1 of the supplementary file, available online.

5 PERFORMANCE EVALUATION

In this section, we carry out extensive testbed experiments
to evaluate the performance of CASO.

Selection of Codes and Traces. We mainly consider three RS
codes: RSð4; 2Þ, RSð6; 3Þ, and RSð8; 4Þ; note that RSð6; 3Þ is
also used in the Quancast File System [38] andHDFS Erasure
Coding [39]. Based on the above three RS codes, we generate
another three LRC variants by creating two local groups in a
stripe of each RS code. The resulting three LRC variants are
LRCð4; 2; 2Þ, LRCð6; 2; 3Þ, and LRCð8; 2; 4Þ, respectively.

Our evaluation is driven by real-world block-level traces
from MSR Cambridge Traces [31], which describe various
access characteristics of enterprise storage servers. The
traces are collected from 36 volumes that span 179 disks of
13 servers for one week. Each trace records the starting
position of the I/O request and the request size. As CASO
is proposed for optimizing partial stripe writes, our goal is
to systematically study the effect of CASO when being
deployed in the applications with different degrees of write
intensity.

To this end, we select eight traces for evaluation based on
a new metric called write ratio. The write ratio of a volume is
calculated by dividing the number of write requests to the
number of all the access requests to that volume. To select
the eight traces with significantly different write ratios, we
first sort the 36 volumes according to their write ratios and
classify them into three categories: (i) the top 12 volumes
with high write ratios, (ii) the next 12 volumes with medium
write ratios, and (iii) the last 12 volumes with low write
ratios. We then select four volumes with high write ratios
(i.e., wdev_1, wdev_2, wdev_3, and rsrch_1), two vol-
umeswithmediumwrite ratios (i.e., wdev_0 and rsrch_2),
and another two volumes with low write ratios (i.e., hm_1
and src2_1). These traces are collected from different appli-
cations. For example, the traces with prefixes wdev, rsrch,
src, and hm are collected from web applications, research
projects, source control, and hardware monitoring. We can
thus use these traces to evaluate the effectiveness of CASO
when it is deployed in different applications. Table 1 summa-
rizes the characteristics of the selected traces, including their
write ratios and averagewrite sizes.

We run our experiments on a machine connected with a
disk array, such that themachine simulates the functionalities

TABLE 1
Characteristics of Selected Traces

Trace Write ratio Num. of write requests Write size

High write ratios
wdev_1 1.000 1,055 5.13 KB
wdev_2 0.999 181,077 8.15 KB
rsrch_1 0.997 13,738 12.17 KB
wdev_3 0.984 671 4.35 KB

Medium write ratios

wdev_0 0.799 913,732 8.20 KB
rsrch_2 0.343 71,223 4.25 KB

Low write ratios

hm_1 0.047 28,415 19.96 KB
src2_1 0.021 14,104 13.37 KB
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of a RAID controller. Take RS(k;m) as an example.Wemanip-
ulate the experiments on kþm disks, where each disk exclu-
sively stores one chunk of a stripe. Each disk stores the data
sequentiallywith the increase of the stripe identity number.

When a block-level write request arrives, we first identify
the chunk identities included in this request by dividing the
access range to the chunk size. Thus, given a chunk identity,
we can pinpoint the stripe identity and the disk identity of
the chunk. For each stripe, we read the old data chunks, cal-
culate the new parity chunks, and finally write the new data
and parity chunks to the disks. The read and write opera-
tions in parity updates are realized by calling the POSIX
asynchronous I/O (AIO) interfaces, with the disk identities
and the logical offset (derived by multiplying the stripe
identities with the chunk size) as parameters. We elaborate
the addressing issue of the trace replay in Section 2 of the
supplementary file, available online.

Testbed. Like previous work [18], [20], we use a node
with a number of extended disks to study the performance
of CASO. Our evaluation is run on a Linux server with an
X5472 processor and 8GB memory. The operating system
is SUSE Linux Enterprise Server and the filesystem is
EXT3. The deployed disk array consists of 15 Seagate/
Savvio 10K.3 SAS disks, each of which has 300 GB storage
capability and 10,000 rpm. The machine and the disk array
are connected by a Fiber cable with the bandwidth of
800 MB/sec. The selected erasure codes are realized based
on Jerasure 1.2 [21].

Methodology. In the evaluation, the chunk size is set as 4
KB, which is consistent with the deployment of erasure
codes in real storage systems [9], [40]. For each trace, we
only select a small portion of write requests for correlation
analysis. To describe the ratio of write requests of a trace
that are analyzed in CASO, we first define the concept of
analysis ratio as follows. CASO first classifies all the write
requests into w non-overlapped time windows with a con-
stant time distance. In our test, we set the time distance as
1 millisecond. Suppose that CASO explores data correlation
for the write requests in the first w� time windows (where
0 � w� � w). Then the analysis ratio can be calculated by w�

w .
After correlation analysis, we first group the correlated

data chunks that are identified into stripes based on

Algorithm 1. For LRC, we further organize the correlated
data chunks of a stripe into local groups based on Algo-
rithm 3. For the remaining data chunks, we organize them
based on their logical chunk addresses (see Algorithm 2).
To fairly evaluate CASO, we replay the access requests
(including the read and write requests) that are not used in
the correlation analysis for each trace. We compare CASO
with baseline stripe organization (BSO) in the evaluation.

For the experiments related to time performance, we
repeat each experiment for five runs. We plot the average
results and the error bars indicating the maximum and the
minimum across the five runs.

Experiment 1 (Impact of Different Erasure Codes on Parity
Updates). We first measure the number of parity updates
incurred in partial stripe writes for different erasure codes.
We set the analysis ratio as 0.5 and select the six erasure
codes with different parameters: RS(4,2), RS(6,3), RS(8,4),
LRCð4; 2; 2Þ, LRCð6; 2; 3Þ, and LRCð8; 2; 4Þ. The results are
shown in Fig. 9. We make two observations.

First, CASO can reduce 13.1 percent of parity updates on
average for different erasure codes under different real
traces. In particular, when using RSð8; 4Þ in the trace
wdev_3, CASO reduces 29.8 percent of parity updates com-
pared to BSO. The reason is that CASO arranges the corre-
lated data chunks together in a small number of stripes,
such that the partial stripe writes to them are centralized to
a few stripes and the number of parity chunks to be updated
is reduced.

Second, CASO reduces the least parity updates for the
traces with low write ratios. Specifically, CASO reduces 9.0
percent of parity updates on average for the traces with low
write ratios (i.e., hm_1 and src2_1), while the reduction
for the traces with high and medium write ratios (i.e.,
wdev_0�wdev_3, rsrch_1�rsrch_2) is 14.5 percent.
This observation indicates that with more write requests
taken into account, CASO can capture more correlation and
reduce the parity updates in next partial stripe writes.

Experiment 2 (Impact of Different Analysis Ratios on Parity
Updates). To study the impact of analysis ratios on parity
updates, we vary the analysis ratio from 0.1 to 0.7, and mea-
sure the number of resulting parity updates incurred in
RSð4; 2Þ and LRCð4; 2; 2Þ for CASO and BSO.

Fig. 9. Experiment 1 (Impact of different erasure codes on parity updates). The smaller value is better.
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Fig. 10 illustrates the results. We observe that CASO gen-
erally reduces 13.5 percent of parity updates on average for
different analysis ratios. Take the trace wdev_1 as an exam-
ple. CASO cuts down about 22.8 percent of parity updates
for LRCð4; 2; 2Þ when the analysis ratio is 0.1, and this
reduction increases to 23.0 percent when the analysis ratio
reaches 0.7.

In addition, as described above, the evaluation measures
the parity updates by using the remaining write requests
that are not used in correlation analysis for validating the
effectiveness of CASO. Therefore, fewer write requests can
be replayed when the analysis ratio is larger, and hence the
number of parity updates in both CASO and BSO drops
when the analysis ratio increases.

Experiment 3 (Average Write Time). We further measure
the average time for our testbed to complete a write request
in different traces. We set the analysis ratio as 0.5 and run
the tests for different RS codes and LRC. Fig. 11 illustrates
the average time to complete a write request. A write
request may update a single chunk or multiple chunks
within or across stripes, depending on the starting address
of the write request and the write size.

CASO reduces the write time by 14.6 percent on average
for all the traces and erasure codes. In particular, when
being applied to LRCð8; 2; 4Þ, CASO even reduces 46.7

percent of the write time for the trace wdev_2. The reason is
that CASO significantly decreases the number of parity
updates in partial stripe writes.

Experiment 4 (Additional I/Os in Degraded Reads). We also
evaluate the performance of degraded reads in CASO.
Degraded reads [2], [20], [41] usually appear when the stor-
age system suffers from transient failure (i.e., the stored data
chunks are temporarily unavailable). To serve degraded
reads, the storage system will retrieve additional data and
parity chunks to recover the lost chunk, and finally, the num-
ber of I/Os increases. To evaluate degraded reads when
CASO and BSO are respectively deployed atop of an erasure
code, we first construct the stripes of an erasure code by
using CASO and BSO, respectively. We then erase the data
on a disk, replay the read requests after the stripe organiza-
tion is established for each trace, and record the average
amount of data to be additionally read in one disk’s failure.
For each of RS codes and LRC, we repeat this procedure for
everymember disk’s failure in a stripe.

To show the degree of I/O increase introduced by CASO
in degraded reads, we define a new metric termed increase
ratio, which can be calculated by the following equation.

increase ratio ¼ num. of additional chunks read in CASO

num. of additional chunks read in BSO
:

Fig. 10. Experiment 2 (Impact of different analysis ratios on parity updates for RS(4,2) and LRC(4,2,2)).

Fig. 11. Experiment 3 (Average time per write request). The smaller value is better.
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As the trace wdev_1 does not have any read request, it
will not cause degraded read operations. Fig. 12 depicts the
increase ratios of other seven traces. We can see that CASO
only increases marginal I/O in degraded reads. More spe-
cifically, compared to BSO, CASO will read 1.1 percent
(resp. 0.2 percent) of additional chunks on average in
degraded reads for RS codes (resp. LRC). The reason is that
CASO is designed to identify the correlation of data chunks
in write requests and group those that have higher likeli-
hood to be written within the same time window in the
same stripe. This design may put the logically sequential
data chunks into different stripes. As a consequence, the
sequential data chunks requested in degraded reads will
trigger the recovery across different stripes, thereby retriev-
ing more additional data and parity chunks. However, we
argue that compared to the write performance gains
brought by CASO, this marginal cost is acceptable. In sum-
mary, it is more appropriate to deploy CASO in the applica-
tions with the access characteristics of intensive writes and
infrequent reads.

In addition, we can observe that the increase ratio has a
significant fluctuation for some traces, such as src2_1 and
hm_1. There is variety of causes of such fluctuation, such as
the read patterns and the number of data chunks in a stripe
(for RS codes) or in a local group (for LRC). Take the trace
hm_1 as an instance. When replaying the read requests to
the stripe of LRCð4; 2; 2Þ, we find that when CASO is
applied, about 43 percent of the read requests will be issued
to the correlated data chunks with the average read size of

2.3 chunks. In this case, as the average read size of these
requests is larger than the number of disks in a local group
of LRCð4; 2; 2Þ (i.e., k

l ¼ 2), the requested data chunks will
fall in the same local group with a large probability. There-
fore, if a data chunk is temporarily unavailable, the system
can first locate the local group where this unavailable data
chunk belongs to and then reuse the available data chunks
in the same local group that are requested for recovery.

Experiment 5 (Stripe Organization Time). In this experi-
ment, we select RSð4; 2Þ and LRCð4; 2; 2Þ, vary the analysis
ratio from 0.1 to 0.7, and measure the stripe organization
time for different traces. The stripe organization time
records the time to identify the correlated data chunks from
given write requests, construct the correlation graph, parti-
tion the graph, and determine the stripe that each data
chunk in a trace belongs to. Fig. 13 plots the average results.
We can make four observations.

First, the stripe organization time generally increases
with the analysis ratio. This is because CASOwill find more
correlated data chunks with a large probability when taking
more write requests into correlation analysis. For example,
when the analysis ratio is 0.1, it merely needs 0.27 seconds
for CASO to organize the data chunks of the trace rsrch_2
for RSð4; 2Þ. The stripe organization time will increase to
5.44 seconds when the analyze ratio is 0.7.

Second, the average stripe organization time of LRC is
merely 0.1 percent more than that of RS codes. This finding
indicates that the time for local group organization (see
Algorithm 3) is marginal.

Third, the trace with more access requests does not defi-
nitely require more time in the stripe organization. For
example, the trace wdev_2, though includes more access
requests than hm_1 (see Table 1), calls for less time in the
stripe organization. In the stripe organization, CASO identi-
fies the access correlations and partitions the correlated
graph. For the correlation identification, CASO needs to
analyze the chunks that are written in the same time dis-
tance and capture the correlated data chunks. Thus, the
number of time distances and the number of data chunks
written in a time distance contribute to the correlation iden-
tification time. Also, for the graph partition, the identified

Fig. 12. Experiment 4 (Additional I/Os in degraded reads).

Fig. 13. Experiment 5 (Stripe organization time for RS(4,2) and LRC(4,2,2)).
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correlated data chunks are organized into stripes by follow-
ing Algorithm 1 (see Section 4.1.2). Thus, the number of cor-
related data chunks, the number of data chunks in a stripe
(i.e., k), and the number of correlated stripes collectively
determine the graph partition time.

Finally, the stripe organization time in CASO is reason-
able and acceptable. For more than half of the traces, CASO
needs less than 10 seconds to organize the stripes. For the
traces wdev_0, the stripe organization time will not exceed
1,326 seconds. Stripe organization is usually triggered
before data is encoded, and rarely changed once being
established. Therefore, it can be treated as the one-time cost
in data storage. It is acceptable when given the performance
gains brought by CASO in future partial stripe writes.

Experiment 6 (Breakdown on the Stripe Organization). We
also give a further breakdown on the stripe organization
time. We select RSð4; 2Þ and set the analysis ratio as 0.5. The
stripe organization is partitioned into two stages: correlation
identification (CI) and graph partition (GP). CI will identify
the correlated data chunks and their correlation degrees
from a given batch of write requests. The correlated data
chunks can construct a correlation graph (see Section 4.1.1).
GP will further organize the correlated data chunks into
stripes by partitioning the correlation graph into subgraphs
based on the greedy selection (see Algorithm 1).

Fig. 14 plots the ratios of the time in CI and GP during the
stripe organization. We can observe that the ratio of GP
varies across different traces. For example, the time of GP
only occupies 0.5 percent of the stripe organization time for
the trace wdev_1 that only has 1,055 write requests. This
ratio increases to 93.4 percent for the trace wdev_0, which
includes 913,732 write requests.

Experiment 7 (Impact of Chunk Sizes on Parity Updates). We
further investigate the impact of chunk sizes on parity

updates. We vary the size of a chunk from 4 KB to 64 KB,
and calculate the reduction ratios of parity updates for RSð4; 2Þ
and LRCð4; 2; 2Þ. The analysis ratio is set as 0.5. Suppose
that the numbers of parity updates introduced in CASO
and BSO are t� and t, respectively. The reduction ratio of
parity updates can be derived as 1� t�

t .
Fig. 15 shows the results. First, CASO reduces 13.7, 7.0

and 7.3 percent of parity updates on average when the chunk
size is set as 4 KB, 16 KB and 64 KB, respectively. Second, the
performance gains introduced by CASO drop when the
chunk size increases. Recall that CASO aims to pack the cor-
related data chunks in the same stripe to reduce the parity
updates. As the average chunk size of the traces is no more
than 20 KB (see Table 1), the number of correlated chunks
decreases when the chunk size increases (e.g., 64 KB). Thus,
it is important to configure the appropriate chunk size, to
ensure that CASO can capture enough correlation for
improving thewrite efficiency.

Experiment 8 (Normal Read Time). We finally evaluate the
normal read time for bothCASO andBSOwhen all the disks
are healthy. As opposed to degraded reads, all the requested
data in normal reads are available and can be directly
retrieved from the underlying storage devices. In this experi-
ment, we set the size of a chunk as 4 KB, and configure the
analysis ratio as 0.5. As the trace wdev_1 does not have any
read request, we replay the remaining seven traces when
deployingCASO andBSO over RSð4; 2Þ and LRCð4; 2; 2Þ.

Fig. 16 shows the average time to complete a normal read
request. First, the normal read time in CASO differs by no
more than 0.5 percent with that in BSO, indicating that
CASO can significantly improve the write efficiency without
affecting the normal read efficiency. Second, as the traces
have different I/O sizes and read patterns, the average time
to complete a normal read request varies across the traces.

6 CONCLUSION

We study the optimization of partial stripe writes in era-
sure-coded storage from the perspectives of data correlation
and stripe organization. CASO is a correlation-aware stripe
organization algorithm that captures data correlations from a
small portion of data accesses. It groups the correlated data
chunks into stripes to centralize partial stripe writes, and
organizes the uncorrelated data chunks into stripes to make
use of the spatial locality. We show how CASO can be
applied to RS codes and Azure’s LRC. Experimental results
show that CASO can reduce up to 29.8 percent of parity
updates in partial stripe writes and reduce the write time
by up to 46.7 percent, while still preserving the read
performance.

Fig. 14. Experiment 6 (Breakdown on the stripe organization time).

Fig. 15. Experiment 7 (Impact of chunk sizes on parity updates).

Fig. 16. Experiment 8 (Normal read time). The smaller value is better.
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