
Scalable	RDMA	RPC	on	Reliable	Connection	
with	Efficient	Resource	Sharing

Youmin	Chen,	Youyou	Lu,	Jiwu Shu

Tsinghua	University

http://storage.cs.tsinghua.edu.cn



Remote	Direct	Memory	Access	(RDMA)

n Device-Level	Networking
p Low latency	(<	1us)
p High bandwidth	

CX-3:	56Gbps,	CX-4/5:	100Gbps,	
CX-6:200Gbps

n One-sided	Verbs
p Bypassing remote	CPUs
p Directly	Read/Write/CAS
remote	memories

Source	Image	from	Mellanox&Chelsio
2



A	long	debate	of	whether	using	RC or	UD

UD RC

USENIX’13

Pilaf

NSDI’14

FaRM

SOSP’15

DrTM

More	… More	…

SIGCOMM’14

HERD	RPC

OSDI’16

FaSST

USENIX’16

Guidelines

3



A	long	debate	of	whether	using	RC or	UD
Reliable	Connection	(RC)

4

Unreliable	Datagram	(UD)
One-to-one	paradigm

QP
QP
QP

QP
QP
QP

QP
QP
QP
QP

One-to-many	paradigm

p Offloading	with	one-sided	verbs
p Higher	performance
p Reliable
p Flexible-sized	transferring
pHard	to	scale	(explain	latter)

p Unreliable	(risk	of	packet	loss,	out-
of-order,	etc.)

p Cannot	support	one-sided	verbs
p MTU	is	only	4KB
p Good	scalability



RC	hard	to	scale!

5

0

5

10

15

20

25

30

10 100 200 300 400 500 600 700 800

RC	Write UD	Send

Th
ro
ug
hp

ut
	(M

op
s/
s)

#.	of	clients

p MCX353A	ConnectX-3 FDR	HCA	(single	port)
p 1 server	node	send	verbs	to	11 client	nodes



Why	is	RC	hard	to	scale?

CPU
1

CPU CPU … MEM

Last	Level	Cache

2

Client

3

1 Memory-Mapped	I/O 2 PCIe DMA	Read 3 Packet	Sending

4 PCIe DMA	Write	(DDIO enabled) 5 CPU	Polls	Message

4

5

NIC	Cache
NIC

CPU CPU CPU…MEM

Last	Level	Cache

Server

NIC	Cache
NIC

6



Why	is	RC	hard	to	scale?

n NIC	Cache[1]

p Mapping	table
p QP	states
p Work	queue	elements

n CPU	Cache
p DDIO	writes	data	to	LLC
p Only	10%	reserved	for	DDIO

Two	types	of	Resource	Contention:

With RC, the size of cached data is proportional to the
number of clients!

…

…Server

Clients

Message	Pool

7



Our	goal:	how	to	make	RC	scalable
n Focus	on	RPC primitive	with	RC	write

p RPC	is	a	good	abstraction,	widely	used
p RC	write	(one-sided)	has	higher	throughput	(FaRM)

n Target	at	one-to-many data	transferring	paradigm
p e.g.,	MDS,	KV	store,	parameter	server,	etc.

n System-level	solution	
p Without	any	modifications	to	the	hardware

n Deployments
p Metadata	server	in	Octopus
p Distributed	transactional	system

8



p Grouping	the	connections

p Multiplexing	the	message	pool

p ScaleRPC:	Putting	it	all	together

p Evaluation

p Discussion	and	conclusion

Outline

9



Grouping	the	connections

S

C

C

CC

C

C

C

C

C

C

C

C

n Naïve	Approach	
pNIC	cache	thrashing	when	the	
number	of	clients	increases

p Frequent	swap	in/out
p Causing	higher	PCIe traffic

0

20

40

0 50 100 150 200

RC	Write	Verb

Th
ro
ug
hp

ut
	(M

op
s/
s)

#.	of	clients10



Grouping	the	connections

S

C

C

CC

C

C

C

C

C

C

C

C

n Connection	Grouping
p Serve	one	group	at	a	time	slice

Time

11



Grouping	the	connections

S

C

C

CC

C

C

C

C

C

C

C

C

Time

n Connection	Grouping
p Serve	one	group	at	a	time	slice
p Better	cache	locality:	recently	
accessed	metadata	is	more	likely	
be	used	again

12



Virtualized	Mapping
n Alleviate	the	contention	in	the	CPU	cache

p Reduce	memory	footprint	in	the	message	pool
n Observations:

p When	grouping	the	clients,	only	part of	the	message	pool	is	used

Server

Clients …

…

Message	Pool

Current	group Unusedmessage	buffers 13



Virtualized	Mapping
n We	don’t	need	to	assign	a	message	buffer	for	each	client	

p Virtualize a	single	physical	message	pool	to	be	shared among	
multiple	groups

p Without	extra	overhead	for	loading/saving	the	context

Server

Clients …

…

Message	Pool

14



Virtualized	Mapping

Server

Clients

…

Message	Pool

Switching	to	the	next	group

…

n We	don’t	need	to	assign	a	message	buffer	for	each	client	
p Virtualize a	single	physical	message	pool	to	be	shared among	
multiple	groups

p Without	extra	overhead	for	loading/saving	the	context

15



Challenges	&	solutions
n Static	grouping	is suboptimal	when clients	have

p Varying	requirements	for	the	tail	latency
p Varying	frequencies	of	the	posted	RPCs
p Varying	payload	sizes
p Varying	execution	times	for	different	handlers
Priority-based	scheduler:monitors	the	performance	of	each	clients	
and	dynamically	adjust	the	group	size	and	time	slice	length.

n Switching	between	the	groups	should	be	efficient
Warmup	pool:	before	being	served,	clients	from	the	next	group	put	
their	new	requests	in	the	warmup	pool	first

More:	check	our	paper!
16



ScaleRPC:	Putting	it	all	together	

Server

Clients …

Processing	Pool Warmup	Pool Meta	Zone
…

Thread	Pool

msgmsg msg msg

Scheduler
next group!

17



ScaleRPC:	Putting	it	all	together	

Server

Clients

Processing	PoolWarmup	Pool Meta	Zone
…

Thread	Pool
Scheduler

18

…



Evaluation
n Platform

p 2× 2.2GHz	Intel	Xeon	E5-2650	v4	CPUs	(24	cores	in	total)
p 128	GB	DRAM
p MCX353A	CX-3	FDR	HCAs	(56	Gbps IB	and	40	GbE)
p 12-node	cluster	connected	with	Mellanox	SX-1012	switch

nCompared	Systems

RPC Description
RawWrite RPC A	baseline	RPC	with all	the	optimizations	in	ScaleRPC disabled

HERD	RPC A	scalable	RPC	with	a	hybrid of	UC	write	and	UD	send	verbs

FaSST RPC A	scalable	RPC	based	on	UD	send	verbs
19



Evaluation
n Throughput

0

2

4

6

8

10

60 160 260 360

RawWrite HERD
FaSST ScaleRPC

Th
ro
ug
hp

ut
	(M

op
s/
s)

#.	of	clients	(Batch	=	1)

0
5
10
15
20
25

60 160 260 360

RawWrite HERD
FaSST ScaleRPC

#.	of	clients	(Batch	=	8)

Th
ro
ug
hp

ut
	(M

op
s/
s)

20



Evaluation
n Latency	distribution

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200

RawWrite HERD FaSST ScaleRPC

Latency	(us)

21



0

0.5

1

1.5

2

MKNOD RMNOD STAT READDIR

RawWrite ScaleRPC

Evaluation
n Metadata	Server	in	Octopus	(Distributed	File	System)

Th
ro
ug
hp

ut
	(o

ps
/s
)

80	clients

22



Thanks	&	QA

Tsinghua	University
http://storage.cs.tsinghua.edu.cn

Conclusions
n A	system-level	approach	to	improve	the	scalability	of	RC	RDMA
n Connection	grouping	and	virtualized	mapping	to	efficiently	share	the	
hardware	resources

23



Backups

24
Source	Image	from	eRPC[NSDI’19]



Discussions
Other	potential	approaches
n Dynamically	Connected	Transport	(DCT)

p Sharing	the	context	between	all	the	connections
p DCT	almost	doubles	the	number	of	packet
p Increases	latency	by	100ns	to	3us	on	RC	mode[1]

n Newer	generation	of	HCAs	(CX-4/5)
p eRPC reveals	that	with	CX-5,	the	throughput	drops	almost	by	half	
as	the	number	of	connections	increases	to	5K[2]

[1]	Hari	Subramoni,	Khaled	Hamidouche,	Akshey Venkatesh,	Sourav Chakraborty,	and	Dhabaleswar K	Panda.	2014.	
Designing	MPI	library	with	dynamic	connected	transport	(DCT)	of	InfiniBand:	early	experiences.	In	International	
Supercomputing	Conference.	Springer,	278–295.
[2]	Kalia,	Anuj,	Michael	Kaminsky,	and	David	G.	Andersen.	"Datacenter	RPCs	can	be	General	and	Fast." NSDI’19 (2019).

25



Discussions
n Deployment	Considerations

p ScaleRPC assumes	the	clients	execute	independently	and	there	is	
no	synchronization	among	them
Less	common	case

p The	RPC	server	and	clients	are	assumed	to	cooperate	together	to	
make	the	aforementioned	optimizations	work	properly
A	bunch	of	easy-to-use	APIs	(SyncCall,	AsyncCall,	PollCompletion)

p ScaleRPC improves	the	overall	throughput	and	shortens	the	
average	latency,	but	magnifies	the	tail	latency
Rely	on	the	priority-based	scheduler	to	share	the	resources

26



Evaluation
n with	TX

27



Evaluation
n with	TX

0

1000000

2000000

3000000

4000000

80 160

SmallBank

RawWrite HERD FaSST ScaleRPC

Th
ro
ug
hp

ut
	(o

ps
/s
)

#.	of	clients

28


