RIO: Order-Preserving and CPU-Efficient
Remote Storage Access

Xiaojian Liao, Zhe Yang, Jiwu Shu

Tsinghua University




Agenda

* Background and Motivation



Hardware and software trend

Hardware performance boosts, software overhead increases
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Hardware and software trend

* Commodity RDMA NICs already offer a byte/memory interface
* Research SSDs offer a byte/memory interface to aid the design of system software
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System software design: storage order

* The system software design this paper focuses on: storage order
* What is storage order: the persistence order of a set of data blocks
* Why does storage order matter: storage reliability (crash consistency)

* How is storage order enforced: almost a synchronous fashion
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The overhead of keeping storage order

* Measured tool: FIO.Workloads: append writes + fsync

* Network: Mellanox CX-6, RDMA. Storage: Samsung PM981 flash SSD, Intel 905P Optane SSD
« Compared systems: Linux NVMe over Fabrics, HORAE [OSDI’20]"
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Overhead analysis

* Linux’s approach to storage order

Block layer | NIC driver | Network transfer | SSD driver | PCle transfer FLUSH
1
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* HORAFE’s approach to storage order

Store ordering metadata | Block layer | NIC driver | Network transfer | SSD driver | PCle transfer
~ v ~ | Block layer | NIC driver | Network transfer | SSD driver | PCle transfer

Low concurrency
> 4us in NVMe over RDMA Block layer | NIC driver | Network transfer | SSD driver || PCle transfer | FLUSH
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Try to minimize or avoid synchronous processing!
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RIO’s design insight

* Key observation: the layered design of modern |/O stack is similar to
the pipeline.
* Each layer performs a single functionality, and can process multiple requests
concurrently (by the multi-queue interface).
* Ordered write requests on non-overlapping LBAs can be parallelized.
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The storage order should not stall the concurrent requests




RIO’s design overview

* Key idea: I/O pipeline for ordered write requests

* Asynchronous processing: do not block, enables higher concurrency

* Track storage order: enforce necessary synchronization, handle crashes

* RIO’s approach: speculative, optimistic, higher concurrency, recovery needed
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Track storage order on the fly

* Linux’s approach: sequential, pessimistic, lower concurrency, no recovery
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RIO’s I/O path

* W1 must be durable before W2
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Tracking storage order in RIO

* Embed ordering attr. (describe the storage order) in each request
* Store ordering attr. to SSDs via MMIOs powered by the NVMe PMR feature
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The motivation of RIO’s I/O scheduling

* Ordered write requests in RIO can be scheduled and merged

* Request merging reduces the overall CPU overhead of remote storage
access, although merging itself requires some CPU cycles
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RIO’s I/O scheduling

* Separate ordered requests
from the orderless via the

ORDER queue

* Merge consecutive ordered
requests in the ORDER
queue without sacrificing the
storage order

* Introduce the stream notion
(a sequence of ordered write
requests) for better scalability

* Align each stream to each
NIC QP to exploit the in-
order delivery of the network
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Reorganizing journaling with RIO

* Concurrent JD,JM and |C, no barrier needed
* Perfile journal, each journal uses a dedicated stream
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RIO’s Crash Recovery

* More details in the paper
* Basic cases: out-of-place updates
* Other cases: in-place updates
* Data consistency and version consistency support

* Recovery overhead: 180 ms in the worst case (4 SSDs, 3 servers,
200Gbps RDMA)
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Evaluation setup

3 Servers: | Initiator server and 2 target servers
CPUs: each server 2 Intel Xeon Gold 5220, I8 cores, 2.2

GHZ

Initiator

SSDs: Intel 905P(Optane), Intel P4800X(Optane), 2 * 200 Gbps

Samsung PM98I (Flash)
Network: NVIDIA ConnectX-6,200 Gbps, RDMA

200 Gbps
OS: Ubuntu 18.04 LTS

Compared Systems: Linux NVMe over RDMA from NVIDIA,
an NVMe-oF version of HORAE[OSDI'20], RIO based on the
same codebase of Linux NVMe over RDMA

200 Gbps




Microbenchmark: ordered writes
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Evaluation: file systems

* Workloads: FIO 4KB append writes with fsync
 HORAEFS: the original HORAE + perfile journal; RIOFS: RIO + Ext4 + perfile journal
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RIO achieves higher throughput, lower and more stable latency. 20
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Evaluation:Varmail & RocksDB

* Varmail: Filebench default settings, create, unlink and fsync intensive

* RockDB: compaction intensive, | 6B keys, 1024B values
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RIO achieves higher throughput with less CPU cores

21



Agenda

e Conclusion

22



Conclusion

* RIO: Order-Preserving and CPU-Efficient Remote Storage Access
* Problem: Storage order overhead. Root cause: synchronization.
* Solution: RIO’s I/O pipeline = asynchronous processing + tracking
storage order + recovery.
* Result: higher CPU and I/O efficiency compared to existing systems.

* Takeaways:
* Asynchronous processing (even in a synchronous interface) is the key to
unleash the performance of fast storage and network hardware.
* The byte interface is well suited for storing the temporary yet persistent
metadata or control information of the storage systems.
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Q&A

Thank You!
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