RIO: Order-Preserving and CPU-Efficient
Remote Storage Access

Xiaojian Liao, Zhe Yang, Jiwu Shu

Tsinghua University

Agenda

* Background and Motivation

Hardware and software trend

Hardware performance boosts, software overhead increases

CPU N g,
(software) —‘S © é—© — = pa—
~ 500 MB/s ~ 5 GB/s ~ 10 GB/s
Storage m) “ = | = E
200 Gbps

100 Gbps

Network

Hardware and software trend

* Commodity RDMA NICs already offer a byte/memory interface
* Research SSDs offer a byte/memory interface to aid the design of system software

System Software System Software System Software

I Block ‘ I Blockl] I Byte ‘ I Blockl] I Byte
55D ssD

Byte-addressable S[:D Byte-addressable SSD
PCle BAR-based CXL-based*!
CMB, PMR

Standard SSD
NVMe block storage

System software design: storage order

* The system software design this paper focuses on: storage order
* What is storage order: the persistence order of a set of data blocks
* Why does storage order matter: storage reliability (crash consistency)

* How is storage order enforced: almost a synchronous fashion

I
=

System Software <+«—— Concurrent I/Os

+—— Storage order

<+—— NICs and SSDs with high concurrency
SSDS v

The overhead of keeping storage order

* Measured tool: FIO.Workloads: append writes + fsync

* Network: Mellanox CX-6, RDMA. Storage: Samsung PM981 flash SSD, Intel 905P Optane SSD
« Compared systems: Linux NVMe over Fabrics, HORAE [OSDI’20]"

200

Q A

o 10 A\

X

o 100

a torage order

2 storag

3 50 overhead

Z V
0 C O O O O

| 2 4 8 12
of threads

-®-Ordered NVMe-oF -@-HORAE Orderless NVMe-oF

Flash SSD (w/o PLP)

250
¥ 200 2
O
X |50
5
2 100
%
© 50
c
|_
0
| 2 4 8 12

of threads
-®-Ordered NVMe-oF -@-HORAE Orderless NVMe-oF

Optane SSD (w/ PLP)

Overhead analysis

* Linux’s approach to storage order

Block layer | NIC driver | Network transfer | SSD driver | PCle transfer FLUSH
1
~ ~ — 1| Next ordered req.
Low concurrency

* HORAFE’s approach to storage order

Store ordering metadata | Block layer | NIC driver | Network transfer | SSD driver | PCle transfer
~ v ~ | Block layer | NIC driver | Network transfer | SSD driver | PCle transfer

Low concurrency
> 4us in NVMe over RDMA Block layer | NIC driver | Network transfer | SSD driver || PCle transfer | FLUSH

N
~
-

s

Try to minimize or avoid synchronous processing!

Agenda

* RIO Design and Implementation

RIO’s design insight

* Key observation: the layered design of modern |/O stack is similar to
the pipeline.
* Each layer performs a single functionality, and can process multiple requests
concurrently (by the multi-queue interface).
* Ordered write requests on non-overlapping LBAs can be parallelized.

Per-core Multiple NIC Multiple NIC Multiple NVMe
Software Queue QPs QPs QPs

@ @ RDMA NVMe
Concurrent bio Send @ R/W
—

)))

requests
— @ request @ RDMA @ PCle @
RIW RIW

Block Layer Initiator Driver Target Driver NVMe Driver

vy

Wi,
YN

The storage order should not stall the concurrent requests

RIO’s design overview

* Key idea: I/O pipeline for ordered write requests

* Asynchronous processing: do not block, enables higher concurrency

* Track storage order: enforce necessary synchronization, handle crashes

* RIO’s approach: speculative, optimistic, higher concurrency, recovery needed

Do not
block!

Block layer

NIC driver

Network transfer

SSD driver:

PCle transfer I

I Block layer

NIC driver

Network transfer

SSD driver

Synchronize

PCle transfetjl if necessary

Block layer

NIC driver

Network transfer

SSD driver:

PCle transfer

FLUSH I

//

Track storage order on the fly

* Linux’s approach: sequential, pessimistic, lower concurrency, no recovery

Block layer

NIC driver

Network transfer

SSD driver

PCle transfer | FLUSH

Next ordered req.

10

RIO’s I/O path

* W1 must be durable before W2

Initiator Server

Block Layer

Initiator Driver

Target Driver

NVMe SSDs

Target Server

Linux

6 K

Initiator Server

Ordering Layer

Block Layer

Initiator Driver

Initiator Server

RIO Sequencer

Block Layer

Initiator Driver

Target Driver

NVMe SSDs

Target Server

Target Driver

NVMe SSDs

HORAE

Target Server

RIO

Tracking storage order in RIO

* Embed ordering attr. (describe the storage order) in each request
* Store ordering attr. to SSDs via MMIOs powered by the NVMe PMR feature

PR Y G-

Target | Target 2

~
o O O

- NN W A U1 O
o O O

CPU UTILIZATION %
o o

The motivation of RIO’s I/O scheduling

* Ordered write requests in RIO can be scheduled and merged

* Request merging reduces the overall CPU overhead of remote storage
access, although merging itself requires some CPU cycles

—¢-initiator w/ merging -M-target w/ merging —e-initiator w/ merging Mtarget w/ merging
initiator w/o merging ><target w/o merging initiator w/o merging -><target w/o merging
— 100
CPU saved @ & 80 :\\
l: |
3 60 CPU saved @
—
— 40
>
D 20
o
O
0
I 2 4 8 16 I 2 4 8 16
BATCH SIZE BATCH SIZE

Flash SSD Optane SSD

13

RIO’s I/O scheduling

* Separate ordered requests
from the orderless via the

ORDER queue

* Merge consecutive ordered
requests in the ORDER
queue without sacrificing the
storage order

* Introduce the stream notion
(a sequence of ordered write
requests) for better scalability

* Align each stream to each
NIC QP to exploit the in-
order delivery of the network

Core 0 Core N

*get stream ' rio_submit

N @ “ Sz

sequencer

Block ORDER 1
Layer queue 0

Initiator NIC send 1
Driver queue 0

Target Receive l
Driver queue 0

ORDER
queue N

NIC send

queue N
In-order delivery

(optional) Receive

queue N

Reorganizing journaling with RIO

* Concurrent JD,JM and |C, no barrier needed
* Perfile journal, each journal uses a dedicated stream

stream | (file B)
stream O (file A)

/dev/vdal
s =S §& =
-_— -_— -_— -_—

/dev/invmeOn| /dev/nvmelnl /dev/nvme2nl| /dev/invme3nl
Target O Target | Target 2 Target 3

RIO’s Crash Recovery

* More details in the paper
* Basic cases: out-of-place updates
* Other cases: in-place updates
* Data consistency and version consistency support

* Recovery overhead: 180 ms in the worst case (4 SSDs, 3 servers,
200Gbps RDMA)

Agenda

 Evaluation

Evaluation setup

3 Servers: | Initiator server and 2 target servers
CPUs: each server 2 Intel Xeon Gold 5220, I8 cores, 2.2

GHZ

Initiator

SSDs: Intel 905P(Optane), Intel P4800X(Optane), 2 * 200 Gbps

Samsung PM98I (Flash)
Network: NVIDIA ConnectX-6,200 Gbps, RDMA

200 Gbps
OS: Ubuntu 18.04 LTS

Compared Systems: Linux NVMe over RDMA from NVIDIA,
an NVMe-oF version of HORAE[OSDI'20], RIO based on the
same codebase of Linux NVMe over RDMA

200 Gbps

Microbenchmark: ordered writes

1.5 Overall performance
Qo
o
z | 7x
5
o
c
tg"o.s | I '
=
|_
0
of threads
B ordered Linux m HORAE
mRIO orderless Linux

Workloads: multiple threads concurrently append
4 KB data blocks with storage ordering guarantee
CPU efficiency: throughput / CPU utilization,
normalized to the orderless Linux.

RIO = orderless Linux

CPU efficiency
o
(Oa]

o

Initiator

I 2 8 12

of threads
Target

II| II| II| II| l||
| 2 8 12

of threads

Evaluation: file systems

* Workloads: FIO 4KB append writes with fsync
 HORAEFS: the original HORAE + perfile journal; RIOFS: RIO + Ext4 + perfile journal

Throughput - average Latency 00 Throughput — P99 Latency
m 5
=2 400
> 400
% 300 300
100 eo-e—o— o0 ® 100 ,/0/‘/
0 0
0 50 100 150 0 50 100 150
Throughput (KIOPS) Throughput (KIOPS)
®Ext4 @ HORAEFS @RIOFS ®Ext4 - HORAEFS @-RIOFS

RIO achieves higher throughput, lower and more stable latency. 20

500

- N W
o O O o
o O O o

Throughput (KIOPS)

o

Evaluation:Varmail & RocksDB

* Varmail: Filebench default settings, create, unlink and fsync intensive

* RockDB: compaction intensive, | 6B keys, 1024B values

Varmail RocksDB fillsync
2 4 8 12 16 20 24 28 32 36 12 16 20 24 28 32 36
of threads # of threads
-0-Ext4 --HORAEFS -@-RIOFS -®-Ext4 -@-HORAEFS -@-RIOFS

RIO achieves higher throughput with less CPU cores

21

Agenda

e Conclusion

22

Conclusion

* RIO: Order-Preserving and CPU-Efficient Remote Storage Access
* Problem: Storage order overhead. Root cause: synchronization.
* Solution: RIO’s I/O pipeline = asynchronous processing + tracking
storage order + recovery.
* Result: higher CPU and I/O efficiency compared to existing systems.

* Takeaways:
* Asynchronous processing (even in a synchronous interface) is the key to
unleash the performance of fast storage and network hardware.
* The byte interface is well suited for storing the temporary yet persistent
metadata or control information of the storage systems.

23

Q&A

Thank You!

RIO: Order-Preserving and CPU-Efficient
Remote Storage Access

Xiaojian Liao, Zhe Yang, Jiwu Shu

Tsinghua University

e .-
Q Yo [P

liaoxiaojian@tsinghua.edu.cn
http://storage.cs.tsinghua.edu.cn/~Ixj

24

