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Large-Scale Continual Learning Scenario

Large-Scale Learning Continual Learning & Real-Time Serving
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> 700 million users m

10 million fresh UGC per day
2 million new training samples per second

The backend model contains Never end learning.
tens of billions of parameters.
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Over 20 billion videos in the warehouse




Typical DNN Model Architecture for Recommendation (1)
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Typical DNN Model Architecture for Recommendation (Il)
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Our Models
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Hash trick & Hash collision (I)

ID space >> embedding tb size Hash collision

Video ID1 Video ID2
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Hash trick & Hash collision (Il)

—
Constant feature ID stream
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Hash trick & Hash collision (lll)

A naive approach: Increase M

—
Constant feature ID stream




Hash trick & Hash collision (1V)
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Constant feature ID stream

Collision hurts model performance.
Too Large M -

—
Constant feature ID stream

Low memory utilization.



Facing the Large-Scale Continual-Learning Challenge
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- Our server resources are always limited.

- Extremely high memory pressure to both the training systems
and inference systems

- Huge models g}» EP =
. ah b
Gy =

- Existing systems (e.g. TensorFlow)

. Constant streams of data

- Low memory utilization under the circumstance of large-scale
continual learning.

- Can't train and serve real-time with giant rec-models.



Problem

12

How to make large-scale continual learning memory-efficient?

!

Kraken: Memory Efficient Continual Learning for Large-Scale m
Real-Time Recommendations I




Kraken Overview
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- For both training and serving

- Global Shared Embedding Table (GSET).

- For training

- Sparsity-aware training framework.

- For serving

. Efficient continuous deployment and real-time serving.



Global Shared Embedding Table (GSET)
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Global Shared Embedding Table (GSET)
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Global Shared Embedding Table (GSET)
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Fully-Connected

Fully-Connected

Fully-Connected

Fully-Connected

|

Pooling

Pooling

Core idea: share memory across all features

» Unify all parameters as Key-Values
» One ID maps to one embedding independently
» Manage embedding life-cycle with smart algorithms

Elastic
Scaling « '

Global Shared Embedding Table i i .
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Continuous Features
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N [V2, V4]

Like Video
IDs

Categorical Features

» Remove hash collisions

» Each embedding table can resize
elastically during the continual learning
process



GSET: Smart Entry Replacement Algorithms
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- Based on our observations of production, Kraken supports different
policies for ML engineers to customize with their domain knowledge:

—

Feature admission Low-Freq ID

Probability-Based Admission Policy

GSET

Embedding  High Score

Feature eviction

Feature Score Eviction Policy

Duration Based Eviction Policy Embedding  High Score

Embedding Low Score

_-_-_-_-_-_-_-_-_-‘

Priority Based Eviction Policy

MORE INFO IN PAPER

l‘

GSET

Embedding  High Score
Embedding  High Score



Kraken Overview
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._Eorboth traini I :
—Glebal- Shared Embedding Fable (GSET-
- For training
- Sparsity-aware training framework.
- For serving

. Efficient continuous deployment and real-time serving.



Sparsity-Aware Training Framework
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- Embedding compress techniques like hash trick save memory at the
cost of accuracy. Kraken sets its sights on the optimizer state

parameters (OSPs).

- Different optimizers require different amount of OSPs.

Memory
Requirement Adaptive?
(OSPs)

SGD 0x X

AdaGrad 1% \
Adam 2X \



Motivation for Sparsity-Aware Training Framework ()
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Parameters
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Motivation for Sparsity-Aware Training Framework (1)

AdaGrad 1x

Yes we can store
more parameters

Parameters
>10TB

---------------------------------------------------------------------------------------------------------



Sparsity-Aware Training Framework
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- For the sparse part [>10TB]
- Adaptive optimizers with fewer OSPs
- The closer you get to zero,
the more memory you save
- For the dense part [<100MB]
- Adam for better performance

- ltis tolerable in spite of 2x OSPs
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Motivation for Sparsity-Aware Training Framework (l1l)

Parameters
>10TB




Adaptive Optimizers Make Better
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Adam for the Dense Part
AdaGrad for the Sparse Part
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" 8 ¥ Dense Adam 2x

Sparse

Sparse
AdaGrad 1x

Parameters
>10TB

Is that the limit?

Can we save more memory resources?



Sparsity-Aware Training Framework
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- rAdaGrad
- An adaptive optimizer extremely suitable for sparse parameters.

. Storing only one float for each embedding (usually 32-64 floats).
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MORE INFO IN PAPER




Adam for the Dense Part
rAdaGrad for the Sparse Part
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" ¥ % Dense Adam 2x

Sparse OSP
~ 0.03x

Sparse Sparse

Parameters
> 10TB rAdaGrad 0.03x

SGD-like memory resources, but great performance




Kraken Overview
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- For serving

. Efficient continuous deployment and real-time serving.



A Naive Method: Co-Located Deployment

Drawbacks:

Model Updates > Introduce High CapEx because every

Sparse inference server requires high capability
- DRAM to store a part of sparse parameters

Inference r Inference
Shar Shar

Serve Server
d 1 d2
O O

Waste NIC bandwidth & CPU for constant
model updates
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Non-Colocated Deployment: Efficient for Real-Time Serving

Core idea:

Model Updates

Dense Sparse » Decouple the storage of sparse
Updates | RUISGEIES embeddings and the computation of
E!!!!!!!!!!!!!.!!!.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!E prediCtiOn.
PO E;ig::gfe'; N gredictif" N Eredictif" ) i» Adopt different updating policies to
: arameiter arameter .
Server Server Server perform incremental model updates.
Shard 1 Shard 2 Shard 3
Ereed Ered EJ EJ o EJ EJ Ereed Ered Y
aEEEEEEEEEESR ‘m - smsEmEEEEEES N 4
, Fetch needed params /\
Inference Inference Inference Inference S
Server Server Server Server > Non-Colocated Deployment allows
# (o )cry ﬁ o= ﬁ O ﬁ O the two services to scale up

separately using different hardware
f ___________ f _________________________ t _____________ R PC or REST resources.

: > On the cost-efficiency, Kraken
Apps Apps Apps APPS Apps|| outperforms up to 2.1x than baseline.

________________________________________________________________



Evaluation
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Dataset
Datasets " SIII))asrse # Samples # Parameters
- 3 public & 2 production datasets o Criteo Ad 33M Y 03B
| | | Da‘iaseis MovieLens 0.3M 25M oM
- Learn in an online learning manner Avazu CTR | 45M 40M 0.88
Production | Explore Feed 45M SOM 0.5B
Four industrial models Datasets Follow Feed 1.3B 10B 50B

- DNN. Wide and Deep. DeepFM_, Deep Cross Network

Metric: AUC & Group AUC (GAUC)*

Baseline: TensorFlow with default embedding tables and Adam optimizer

Kraken: with GSET and sparsity-aware training optimizer

*H. Zhu, J. Jin, C. Tan, F. Pan, Y. Zeng, H. Li, and K. Gai, “Optimized cost per click in taobao display advertising,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser.

KDD ’17. New York, NY, USA: Association for Computing Machinery, 2017, p. 2191-2200. [Online]. Available: https://doi.org/10.1145/3097983.3098134



Overall Performance Improvement with the same memory

(enough to hold 60% of all IDs’ embeddings)
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Conclusion
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- An in-production continual learning system for large-scale

recommendation with
- A Memory-Efficient Design
- Share memory among traditional embedding tables
Distinguish the dense part and sparse part in continual training
- Enabling Real-Time Recommendation

Decouple the storage and computation of models for real-time
serving



Thank you!

%1% Runzx

Tsinghua University
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Large models make better
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«®= Facebook (Acc.)
= Baidu (AUC)
== Kraken (AUC)
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Online Model V.S. Stationary Model
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== Stationary
0.60 (== Online Learning

0 20 40 60
Elapsed minutes



GSET under different memory budgets
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Fig. 8: The AUC improvement of four models in TensorFlow
and Kraken under several memory footprints on the Criteo
dataset. The percentage represents the corresponding propor-
tion of all original features that memory can hold at most.



Feature admission probabilities
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Fig. 9: With different probabilities of feature admission p, (a)
shows the relative GAUC of Kraken and (b) shows the number
of different frequency-levels of features in the last training-
hour. Level ¢ counts the number of features whose frequency
is between 2° to 2¢*1,



Different Eviction Policy

—
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Fig. 10: Contribution of different eviction policies to the model
performance. The improved AUC over the raw LFU are shown.
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Evaluation of Hybird Optimizer
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| | Criteo MovieLens Avazu
Dense Opt , Sparse Opt Memory

| | | Usage | DNN W&D DeepFM DCN | DNN W&D DeepFM DCN | DNN W&D DeepFM  DCN
Vanilla SGD 1x 0.7979 0.7896  0.7986  0.7908 | 0.7760 0.7760  0.7979  0.8019 | 0.7434 07436  0.7502  0.7573
Ontimizer AdaGrad 2x 0.8001 0.7899  0.8016  0.7992 | 0.8062 0.8062  0.8061  0.8062 | 0.7727 07795  0.7815  0.7799
P Adam 3x 0.8066 0.7893  0.7956  0.7955 | 0.8102 0.8112  0.8153  0.8147 | 07559 07623  0.7638  0.7631
| Adam AdaGrad | 3x | 0.8048 0.8005  0.8057  0.8044 | 0.8177 0.8184  0.8198  0.8191 | 0.7734 07786  0.7803  0.7807
ooybrie | Adam SGD ix |07974 07988 08038 08026 | 0.7974 08018  0.8045 08140 | 07487 07646 07665  0.7638
plimizer Adam rAdaGrad ix 0.8010 07907  0.8048  0.8048 | 0.8132 0.8132  0.8178  0.8153 | 0.7653 0.7779  0.7800  0.7772
AUC IMP % with the same memory 1x 0.38 1.17 0.78 1.77 4.79 4.79 2.49 1.67 2.95 4.61 3.97 2.63
w.r.t vanilla optimizer 2x 0.59 1.34 0.51 0.65 1.43 1.51 1.70 1.60 009  -0.12 -0.15 0.10

TABLE IV: Comparisons of Vanilla and Hybrid Optimizer performances on different datasets and models. The last two rows
listed here are to clarify the improved AUC of Hybrid Optimizer respect to Vanilla Optimizer with the same memory usage.



Non-Colocated Deployment
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# of servers Throughput ($T0:ilnl:::tth) Ratio
with / without (QPS) P
large memory AWS Alibaba AWS  Alibaba
Baseline 400 /0 30,325 1,041,408 666,750  29.12 45.48
Kraken 16 / 384 35,726 802,529 372,512 37.79 95.91

TABLE V: Kraken (Non-Colocated Deployment) shows better cost-
effectiveness (around 1.3x to 2.1x) than baseline (Co-Located
Deployment). Ratio=1000*Throughput/Total Rent.



