Kraken @

Memory-Efficient Continual Learning
for Large-Scale Real-Time Recommendations

Minhui Xie*, Kai Ren*, Youyou Lu, Guangxu Yang, Qingxing Xu,
Bihai Wu, Jiazhen Lin, Hongbo Ao, Wanhong Xu, and Jiwu Shu

Tsinghua University Kuaishou Inc.

Recommendation System in Kuaishou

- WA 58

Recommendations

Large-Scale Continual Learning Scenario

Large-Scale Learning Continual Learning & Real-Time Serving

N2 P

m
&
Recommendations
> 700 million users m

10 million fresh UGC per day
2 million new training samples per second

The backend model contains Never end learning.
tens of billions of parameters.
3

Recommendation
System

Training Servers

wE
=y u

>

Inference Servers

Over 20 billion videos in the warehouse

Typical DNN Model Architecture for Recommendation (1)

Continuous Features :
Age # videos watched

Numeric columns -

(User Embedding Table
[u;] User Embedding Vector

Categorical Features

T,

Sparse lists of ids with

extreme high dimensions I I
9 [vz, U4] Vldeo Embedding Table

\
Like Video Embedding Vector

Embedding Lookup

“ _I Vector

Embedding Table (or embedding for short)

U

Typical DNN Model Architecture for Recommendation (Il)

Continuous
Features

Categorical
Features

<

(
[us]

| v,

Fully-Connected

Pooling

Embedding

Tables

Fully-Connected

videos

User Embedding

| el

Video Embedding Tb

1 [V2, V4]

|

Like Video
IDs

Continuous Features Categorical Features

Our Models

Label @ ©

Dense Part

< 10°
.
Sparse Part

Embedding

>1010 | Tables

1 [u,] 1 [V2, V4]

Hash trick & Hash collision (I)

ID space >> embedding tb size Hash collision

Video ID1 Video ID2

¥

Collision

Hash trick

Hash(id) % M 1' O

Vg, U e Upg_
oo, 1 o vy] [Vo, 1 vl

Hash(VID1) = Hash(VID2) mod M

Hash trick & Hash collision (Il)

—
Constant feature ID stream

[Vg, V1 o Up—1]

Hash trick & Hash collision (lll)

A naive approach: Increase M

—
Constant feature ID stream

Hash trick & Hash collision (1V)

Too Small M

I I I O e e
B I e e
I I I
———————————————————————————-

Constant feature ID stream

Collision hurts model performance.
Too Large M -

—
Constant feature ID stream

Low memory utilization.

Facing the Large-Scale Continual-Learning Challenge

11

- Our server resources are always limited.

- Extremely high memory pressure to both the training systems
and inference systems

- Huge models g}» EP =
. ah b
Gy =

- Existing systems (e.g. TensorFlow)

. Constant streams of data

- Low memory utilization under the circumstance of large-scale
continual learning.

- Can't train and serve real-time with giant rec-models.

Problem

12

How to make large-scale continual learning memory-efficient?

!

Kraken: Memory Efficient Continual Learning for Large-Scale m
Real-Time Recommendations I

Kraken Overview

13

- For both training and serving

- Global Shared Embedding Table (GSET).

- For training

- Sparsity-aware training framework.

- For serving

. Efficient continuous deployment and real-time serving.

Global Shared Embedding Table (GSET)

Label m

[]
[]
User Embedding Tb Video Embedding Tb
I [uz] 1 [Vz: V4]

Age # videos watched m Like Video IDs

Continuous Features Categorical Features

Global Shared Embedding Table (GSET)

_ Pooling Pooling
. e e | i
. E Global Shared Embedding Table

[V2, V4]

videos watched m Like Video IDs

Continuous Features Categorical Features

15

Global Shared Embedding Table (GSET)

Label E

4

Fully-Connected

Fully-Connected

Fully-Connected

Fully-Connected

|

Pooling

Pooling

Core idea: share memory across all features

» Unify all parameters as Key-Values
» One ID maps to one embedding independently
» Manage embedding life-cycle with smart algorithms

Elastic
Scaling « '

Global Shared Embedding Table i i .

1 [u;]

videos
o

Continuous Features

16

N [V2, V4]

Like Video
IDs

Categorical Features

» Remove hash collisions

» Each embedding table can resize
elastically during the continual learning
process

GSET: Smart Entry Replacement Algorithms

17

- Based on our observations of production, Kraken supports different
policies for ML engineers to customize with their domain knowledge:

—

Feature admission Low-Freq ID

Probability-Based Admission Policy

GSET

Embedding High Score

Feature eviction

Feature Score Eviction Policy

Duration Based Eviction Policy Embedding High Score

Embedding Low Score

--_-_-_-_-_-_-_-‘

Priority Based Eviction Policy

MORE INFO IN PAPER

l‘

GSET

Embedding High Score
Embedding High Score

Kraken Overview

18

._Eorboth traini I :
—Glebal- Shared Embedding Fable (GSET-
- For training
- Sparsity-aware training framework.
- For serving

. Efficient continuous deployment and real-time serving.

Sparsity-Aware Training Framework

19

- Embedding compress techniques like hash trick save memory at the
cost of accuracy. Kraken sets its sights on the optimizer state

parameters (OSPs).

- Different optimizers require different amount of OSPs.

Memory
Requirement Adaptive?
(OSPs)

SGD 0x X

AdaGrad 1% \
Adam 2X \

Motivation for Sparsity-Aware Training Framework ()

" 8% Dense

Parameters

>10TB

Motivation for Sparsity-Aware Training Framework (1)

AdaGrad 1x

Yes we can store
more parameters

Parameters
>10TB

Sparsity-Aware Training Framework

22

- For the sparse part [>10TB]
- Adaptive optimizers with fewer OSPs
- The closer you get to zero,
the more memory you save
- For the dense part [<100MB]
- Adam for better performance

- ltis tolerable in spite of 2x OSPs

Label @ ©

Dense Part

< 1Q°
-
Sparse Part

> 1010

Motivation for Sparsity-Aware Training Framework (l1l)

Parameters
>10TB

Adaptive Optimizers Make Better

24

-

ATy
a7 A

AN
NEZH

Small learning rate.

A T [e
N IR 2R, o
.' [T 7 1R

7

L

Big learning rate.

Adam for the Dense Part
AdaGrad for the Sparse Part

25

" 8 ¥ Dense Adam 2x

Sparse

Sparse
AdaGrad 1x

Parameters
>10TB

Is that the limit?

Can we save more memory resources?

Sparsity-Aware Training Framework

26

- rAdaGrad
- An adaptive optimizer extremely suitable for sparse parameters.

. Storing only one float for each embedding (usually 32-64 floats).

gt
Z'tczl“gt“i 1

Wir1 = W — &

MORE INFO IN PAPER

Adam for the Dense Part
rAdaGrad for the Sparse Part

27

" ¥ % Dense Adam 2x

Sparse OSP
~ 0.03x

Sparse Sparse

Parameters
> 10TB rAdaGrad 0.03x

SGD-like memory resources, but great performance

Kraken Overview

28

- For serving

. Efficient continuous deployment and real-time serving.

A Naive Method: Co-Located Deployment

Drawbacks:

Model Updates > Introduce High CapEx because every

Sparse inference server requires high capability
- DRAM to store a part of sparse parameters

Inference r Inference
Shar Shar

Serve Server
d 1 d2
O O

Waste NIC bandwidth & CPU for constant
model updates

29

Non-Colocated Deployment: Efficient for Real-Time Serving

Core idea:

Model Updates

Dense Sparse » Decouple the storage of sparse
Updates | RUISGEIES embeddings and the computation of
E!!!!!!!!!!!!!.!!!.!!E prediCtiOn.
PO E;ig::gfe'; N gredictif" N Eredictif") i» Adopt different updating policies to
: arameiter arameter .
Server Server Server perform incremental model updates.
Shard 1 Shard 2 Shard 3
Ereed Ered EJ EJ o EJ EJ Ereed Ered Y
aEEEEEEEEEESR ‘m - smsEmEEEEEES N 4
, Fetch needed params /\
Inference Inference Inference Inference S
Server Server Server Server > Non-Colocated Deployment allows
(o)cry ﬁ o= ﬁ O ﬁ O the two services to scale up

separately using different hardware
f ___________ f _________________________ t _____________ R PC or REST resources.

: > On the cost-efficiency, Kraken
Apps Apps Apps APPS Apps|| outperforms up to 2.1x than baseline.

__

Evaluation

31

Dataset
Datasets " SIII))asrse # Samples # Parameters
- 3 public & 2 production datasets o Criteo Ad 33M Y 03B
| | | Da‘iaseis MovieLens 0.3M 25M oM
- Learn in an online learning manner Avazu CTR | 45M 40M 0.88
Production | Explore Feed 45M SOM 0.5B
Four industrial models Datasets Follow Feed 1.3B 10B 50B

- DNN. Wide and Deep. DeepFM_, Deep Cross Network

Metric: AUC & Group AUC (GAUC)*

Baseline: TensorFlow with default embedding tables and Adam optimizer

Kraken: with GSET and sparsity-aware training optimizer

*H. Zhu, J. Jin, C. Tan, F. Pan, Y. Zeng, H. Li, and K. Gai, “Optimized cost per click in taobao display advertising,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser.

KDD ’17. New York, NY, USA: Association for Computing Machinery, 2017, p. 2191-2200. [Online]. Available: https://doi.org/10.1145/3097983.3098134

Overall Performance Improvement with the same memory

(enough to hold 60% of all IDs’ embeddings)

32

7.00%

6.00%

5.00%

4.00%

3.00%

2.00%

1.00%

0.00%

2.01%

1.54% 1.69%

I1.31%I
DNN

3.05%

2.95%

W&D

O 46%

0.74%

Models

3.39%

2.92%

1.64%

0 98%

4.47%

Kraken benefits performance consistently on different datasets and models

6.01%

‘ .89%

DeepFM

4.13%

Datasets

m Avazu (AUC)

= Criteo Ad (AUC)

®m MovieLens (AUC)

m Explore Feed (GAUC)

Conclusion

34

- An in-production continual learning system for large-scale

recommendation with
- A Memory-Efficient Design
- Share memory among traditional embedding tables
Distinguish the dense part and sparse part in continual training
- Enabling Real-Time Recommendation

Decouple the storage and computation of models for real-time
serving

Thank you!

%1% Runzx

Tsinghua University

35

Large models make better

36

«®= Facebook (Acc.)
= Baidu (AUC)
== Kraken (AUC)

T T R T TrY
10° 10° 10° 10"
Nonzero weights

(a)

o
o ©
. . N

Perf. IMP %

Online Model V.S. Stationary Model

37

== Stationary
0.60 (== Online Learning

0 20 40 60
Elapsed minutes

GSET under different memory budgets

38

. o N Memory Footprint
X 47 “QRS —
. NONN NN —
<D(, z(\jNN NP 60%
< 2-
=

P () 30%
0—— I I | I
DNN W&D DCN DeepFM

Fig. 8: The AUC improvement of four models in TensorFlow
and Kraken under several memory footprints on the Criteo
dataset. The percentage represents the corresponding propor-
tion of all original features that memory can hold at most.

Feature admission probabilities

39

o
<

=

features

0 samples °M p=03 06 1.0

(a) (b)

Fig. 9: With different probabilities of feature admission p, (a)
shows the relative GAUC of Kraken and (b) shows the number
of different frequency-levels of features in the last training-
hour. Level ¢ counts the number of features whose frequency
is between 2° to 2¢*1,

Different Eviction Policy

—

g E :] Avazu (AUC)
o o . () Explore Feed (GAUC)
2 . S _wlh 8o @ MovieLens (AUC)
e | & § § B SSmr F: Feature Score Policy
% = © 1 D: Duration Based Policy
—0 i P: Priority Based Policy

F

F+D F+P F+D+P

Fig. 10: Contribution of different eviction policies to the model
performance. The improved AUC over the raw LFU are shown.

40

Evaluation of Hybird Optimizer

41

| | Criteo MovieLens Avazu
Dense Opt , Sparse Opt Memory

| | | Usage | DNN W&D DeepFM DCN | DNN W&D DeepFM DCN | DNN W&D DeepFM DCN
Vanilla SGD 1x 0.7979 0.7896 0.7986 0.7908 | 0.7760 0.7760 0.7979 0.8019 | 0.7434 07436 0.7502 0.7573
Ontimizer AdaGrad 2x 0.8001 0.7899 0.8016 0.7992 | 0.8062 0.8062 0.8061 0.8062 | 0.7727 07795 0.7815 0.7799
P Adam 3x 0.8066 0.7893 0.7956 0.7955 | 0.8102 0.8112 0.8153 0.8147 | 07559 07623 0.7638 0.7631
| Adam AdaGrad | 3x | 0.8048 0.8005 0.8057 0.8044 | 0.8177 0.8184 0.8198 0.8191 | 0.7734 07786 0.7803 0.7807
ooybrie | Adam SGD ix |07974 07988 08038 08026 | 0.7974 08018 0.8045 08140 | 07487 07646 07665 0.7638
plimizer Adam rAdaGrad ix 0.8010 07907 0.8048 0.8048 | 0.8132 0.8132 0.8178 0.8153 | 0.7653 0.7779 0.7800 0.7772
AUC IMP % with the same memory 1x 0.38 1.17 0.78 1.77 4.79 4.79 2.49 1.67 2.95 4.61 3.97 2.63
w.r.t vanilla optimizer 2x 0.59 1.34 0.51 0.65 1.43 1.51 1.70 1.60 009 -0.12 -0.15 0.10

TABLE IV: Comparisons of Vanilla and Hybrid Optimizer performances on different datasets and models. The last two rows
listed here are to clarify the improved AUC of Hybrid Optimizer respect to Vanilla Optimizer with the same memory usage.

Non-Colocated Deployment

42

of servers Throughput ($T0:ilnl:::tth) Ratio
with / without (QPS) P
large memory AWS Alibaba AWS Alibaba
Baseline 400 /0 30,325 1,041,408 666,750 29.12 45.48
Kraken 16 / 384 35,726 802,529 372,512 37.79 95.91

TABLE V: Kraken (Non-Colocated Deployment) shows better cost-
effectiveness (around 1.3x to 2.1x) than baseline (Co-Located
Deployment). Ratio=1000*Throughput/Total Rent.

