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Background: crash consistency

Atomicity ("all” or "nothing") of a single operation that
updates multiple blocks despite a sudden system crash

Host case 1: “all” case 2: "nothing”
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Background: storage order

Persistence order of multiple individual operations
(transactions) despite a sudden system crash

Host

@@ TX1 must be persisted before TX2




Transaction and journaling

Most existing storage systems use journaling (or write-
ahead log) to achieve crash consistency and storage order.
Workload: create and write a new file, data journaling mode

m data journal description JNILW metadata commit record “m barrier
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Transaction and journaling

Most existing storage systems use journaling (or write-
ahead log) to achieve crash consistency and storage order.
Workload: create and write a new file, data journaling mode

m data journal description JNILW metadata commit record “m barrier
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Motivation: issues of journaling

submission Block I/O DMA completion Barrier (e.g., FLUSH) the same procedure



Motivation: issues of journaling
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submission Block I/O DMA completion Barrier (e.g., FLUSH) the same procedure

» Issue 1: extra storage/PCIe traffic
« extra MMIOs of submission and completion due to per-request doorbells
« irrelevant blocks incurred by the device-wide FLUSH
« extra commit record (JC) generated by journaling to ensure atomicity



Motivation: issues of Journalmg

. Issue 1. extra sTor'age/ PCIe ’rr'afflc
« extra MMIOs of submission and completion due to per-request doorbells
« irrelevant blocks incurred by the device-wide FLUSH
« extra commit record (JC) generated by journaling to ensure atomicity

* Issue 2: serialization of ordered transactions
* pose long latency to each transaction, worsening issue 1
« conflate atomicity and storage order with durability
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Our solution: ccNVMe

Generic storage protocol that provides crash consistency,
per-hardware-queue storage order and high performance.

ﬂ it S i Time

fatomic: crash consistency and ordering with only two MMIOs over PCIel

 Advantage 1: reduce unnecessary storage/PCIe traffic
* remove commit record (JC)
* remove one expensive device-wide FLUSH
* reduce MMIOs via transaction-aware MMIOs and doorbells

 Advantage 2: parallelize atomic and ordered transactions
* separate atomicity from durability 11



Agenda

« ccNVMe Design and Implementation
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ccNVMe design overview

ccNVMe is designed as an extension of NVMe (Non-Volatile Memory
Express) atop PMR (persistent memory reigon)-enabled SSDs.

Applications
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ccNVMe key insights from NVMe

Key observation: the SQ and doorbells naturally track the life
cycle (e.g., submitted or completed) of each request!

, . . |
m data payload m NVMe command SQ/CQ: submission/completion queue . MMIO lDMA
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ccNVMe work flow

Key idea: let crash consistency and storage order take the free
rides of data dissemination mechanism of the original NVMe.

m data payload m NVMe command SQ/CQ: submission/completion queue l MMIO lDMA

m
TX-aware TX-aware TJH TX-aware
HOSt MMIO m doorbell E @ cQ doorbell
_____________ o o & 9
\ transfer : '
v complete ; SQ-head
sQ A SQ data @ P @ I @ cQ
Storage doorbell ' interrupt doorbell
(e.g., MSI-X)

PMR region
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TX-aware MMIO

Persistent MMIO write to PMR

store cache line flush PCIe read

[ CPU ]ﬂ{wc buffer]—@—{ ool ]—@{ PMR ]
TX-aware MMIO: batching MMIOs of each transaction
[ THYTM) I A\ AT\

[ D |
[ CPU HWC buffer'} { PMR }

step 1. store D; store JH; store JM step 2. flush (D, length of (D+JH+JM)); PCIe read
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TX-aware MMIO

Persistent MMIO write to PMR

store

cache line flush PCIe read
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TX-aware MMIO: batching MMIOs of each transaction

step 1. store D; store JH; st
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higher access efficiency
(details in paper)
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TX-aware doorbell

One SQ doorbell and CQ doorbell for each transaction; let the

requests of each transaction reach the same state.

{
SQ CQ !
°Q A doorbell SQ-head i
. CQ
PMR region doorbell
v  All requests (D, JH, JM) are about v' All requests (D, JH, JM) are
to be processed! ("nothing") completed! ("all")
v'Reduce the SQ doorbell MMIO v'Record the SQ head value
v'"Remove the commit record; SQ v'Reduce the CQ doorbell MMIO

doorbell as a commit point
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Crash recovery

ccNVMe provides non-atomic and out-of-order transactions to
upper layer systems; upper layer systems handle these
unfinished transactions, e.qg., discard all for data journaling.

SQ-head SQ-tail é’e" ‘ZC}I
| °orbel @ crash consistency: tx-aware

/>, Y7H,YIM Y D, WIH, WIm,) doorbell, transactions are

submitted and completed atomically.
SQ from PMR

Discard D,, TH, and JM, ®storage order: in-order doorbells,

doorbells of each hardware queue

are set in order.
journal area
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Multi-Queue File System

{ Core O ] .ee {Cor'e N]
| Multiqueuefilesystem [ S e
hardware queues
fsync or fatomic
Transaction

Per-hardware-queue storage order

Crash consistency
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Other details in paper

* Details of ccNVMe commands, compatible with the original
NVMe commands using reserved fields

* Metadata shadow paging to persist shard blocks in parallel
« Selective revocation to handle block reuse across multi-queue

* Implementation details
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Evaluation

CPU 2 Intel E5-2680 V3 CPUs, each with 12 cores, totally
24 physical CPU cores
SSD Intel 905P Optane, Intel P5800X Optane
Compared Linux vanilla kernel 4.18.20; classic journaling,

HORAE[OSDI'20]. Ext4, HORAEFS[OSDI'20], Ext4-
system NJ (no-journal setup of Ext4)

« Transaction performance;

Workloads - Application performance;
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Transaction performance

Tested SSD: Intel P5800X

Workload: each thread persists independent transactions
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Application performance

MQFS: no-journal file system atop ccNVMe, this work, provide crash consistency
and storage order.

Filebench Varmail RocksDB fillsync
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Conclusion

® ccNVMe: Crash Consistent Non-Volatile Memory Express
> Provide generic transaction abstraction, crash consistency and storage

order inside the standard storage protocol
» Separate atomicity from durability to fully exploit the high concurrency
(e.g., multiple deep queues) of modern high-performance NVMe SSDs

® MQFS: Multi-Queue File System
» Upper layer storage software should reduce the CPU overhead to

embrace the fast crash consistency and storage order of ccNVMe

Source code: https://github.com/thustorage/ccnvme
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https://github.com/thustorage/ccnvme
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