
Crash Consistent
Non-Volatile Memory Express

Xiaojian Liao, Youyou Lu, Zhe Yang, Jiwu Shu

1

Tsinghua University

2

Agenda

• Background and Motivation

• ccNVMe Design and Implementation

• Evaluation

• Conclusion

Background: crash consistency

Atomicity (“all” or “nothing”) of a single operation that
updates multiple blocks despite a sudden system crash

3

D M

Storage

Host case 2: “nothing”

M

D
recovery

M

recovery: discard “M”

D M

case 1: “all”

nothing to do
after a crash

Background: storage order

Persistence order of multiple individual operations
(transactions) despite a sudden system crash

4

TX1

Storage

Host

TX2

TX1 TX1 TX2

valid storage states after a crash recovery

TX1 must be persisted before TX2

Transaction and journaling

5

Most existing storage systems use journaling (or write-
ahead log) to achieve crash consistency and storage order.

D JM JCJHHost

Storage

volatile
buffer

persistent
medium

… TXN

TX1

journal area

Workload: create and write a new file, data journaling mode

D data JM metadata JC commit recordJH journal description barrier

Transaction and journaling

6

Most existing storage systems use journaling (or write-
ahead log) to achieve crash consistency and storage order.

D JM JCJHHost

Storage

volatile
buffer

persistent
medium

Workload: create and write a new file, data journaling mode

D data JM metadata JC commit recordJH journal description barrier

journal area

… TXN

TX1

Transaction and journaling

7

Most existing storage systems use journaling (or write-
ahead log) to achieve crash consistency and storage order.

D JM JCJH

Host

Storage

volatile
buffer

persistent
medium

journal areacheckpoint

Workload: create and write a new file, data journaling mode

D data JM metadata JC commit recordJH journal description barrier

Motivation: issues of journaling

8

D JM JCJH Time

submission Block I/O DMA completion Barrier (e.g., FLUSH)

…

the same procedure

…

Motivation: issues of journaling

9

D JM JCJH Time

submission Block I/O DMA completion Barrier (e.g., FLUSH)

…

the same procedure

• Issue 1: extra storage/PCIe traffic
• extra MMIOs of submission and completion due to per-request doorbells

• irrelevant blocks incurred by the device-wide FLUSH

• extra commit record (JC) generated by journaling to ensure atomicity

…

Motivation: issues of journaling

10

D JM JCJH Time

submission Block I/O DMA completion Barrier (e.g., FLUSH)

…

the same procedure

• Issue 1: extra storage/PCIe traffic
• extra MMIOs of submission and completion due to per-request doorbells

• irrelevant blocks incurred by the device-wide FLUSH

• extra commit record (JC) generated by journaling to ensure atomicity

• Issue 2: serialization of ordered transactions
• pose long latency to each transaction, worsening issue 1

• conflate atomicity and storage order with durability

…

Our solution: ccNVMe

11

D JMJH Time

Generic storage protocol that provides crash consistency,
per-hardware-queue storage order and high performance.

• Advantage 1: reduce unnecessary storage/PCIe traffic
• remove commit record (JC)

• remove one expensive device-wide FLUSH

• reduce MMIOs via transaction-aware MMIOs and doorbells

• Advantage 2: parallelize atomic and ordered transactions
• separate atomicity from durability

TX1:

TX2:

JC

fatomic: crash consistency and ordering with only two MMIOs over PCIe!

12

Agenda

• Background and Motivation

• ccNVMe Design and Implementation

• Evaluation

• Conclusion

ccNVMe design overview

13

ccNVMe is designed as an extension of NVMe (Non-Volatile Memory
Express) atop PMR (persistent memory reigon)-enabled SSDs.

buffer

Chip Chip Chip

SSD

Block4KB

NVMe Driver

Journaling-based
storage software

NVMe storage stack

Chip Chip Chip

SSD

Block4KB

ccNVMe Driver

ccNVMe storage stack

buffer

Host

Storage

Byte (CPU load/store, MMIO)

PMR • Capacitor-backed DRAM
• 3D Xpoint (e.g., Optane SSD)
• Other persistent memory

Multi-queue
file system

Applications
Applications

fsync
fatomic

ccNVMe
atomic ops.

ccNVMe key insights from NVMe

14

Key observation: the SQ and doorbells naturally track the life
cycle (e.g., submitted or completed) of each request!

Host

Storage

SQ

SQ
doorbell

CQ
doorbell

CQ
D
①

②

D data payload D NVMe command SQ/CQ: submission/completion queue MMIO DMA

fetch
command ③

transfer
data ④

D

complete ⑤ ⑥

interrupt

(e.g., MSI-X)

⑦
complete

“nothing”: the request is about

to (but not yet) be processed!

“all”: the request is completed!

ccNVMe work flow

15

Key idea: let crash consistency and storage order take the free
rides of data dissemination mechanism of the original NVMe.

Host

Storage SQ
SQ

doorbell
CQ

doorbell

CQ

①

D data payload D NVMe command SQ/CQ: submission/completion queue MMIO DMA

transfer
data ④

JM

complete ⑤ ⑥

interrupt

(e.g., MSI-X)

⑦

PMR region

JM

JH

D

TX-aware
MMIO

②

TX-aware
doorbell

JH

D

SQ-head

TX-aware
doorbell

TX-aware MMIO

16

Persistent MMIO write to PMR

CPU WC buffer
PCIe Root
Complex PMR

store

①
cache line flush

② ③

PCIe read

TX-aware MMIO: batching MMIOs of each transaction

CPU

JMJHD

WC buffer

step 1. store D; store JH; store JM

PMR

JMJHD

step 2. flush (D, length of (D+JH+JM)); PCIe read

TX-aware MMIO

17

Persistent MMIO write to PMR

CPU WC buffer
PCIe Root
Complex PMR

store

①
cache line flush

② ③

PCIe read

TX-aware MMIO: batching MMIOs of each transaction

CPU

JMJHD

WC buffer

step 1. store D; store JH; store JM

PMR

JMJHD

step 2. flush (D, length of (D+JH+JM)); PCIe read

larger persistent MMIO
higher access efficiency

(details in paper)

TX-aware doorbell

18

One SQ doorbell and CQ doorbell for each transaction; let the
requests of each transaction reach the same state.

SQ
SQ

doorbell

PMR region
JM

JH

D

✓All requests (D, JH, JM) are about

to be processed! (“nothing”)

✓Reduce the SQ doorbell MMIO

✓Remove the commit record; SQ

doorbell as a commit point

CQ
doorbell

SQ-head

CQ

JM

JH

D

✓All requests (D, JH, JM) are

completed! (“all”)

✓Record the SQ head value

✓Reduce the CQ doorbell MMIO

Crash recovery

19

ccNVMe provides non-atomic and out-of-order transactions to
upper layer systems; upper layer systems handle these
unfinished transactions, e.g., discard all for data journaling.

JM1JH1D1 JM2JH2D2

SQ from PMR

SQ-head SQ-tail
i.e., SQ

doorbell

D1 JH1 JM1 D2 JH2 JM2

journal area

Discard D2, JH2 and JM2

◆crash consistency: tx-aware
doorbell, transactions are
submitted and completed atomically.

◆storage order: in-order doorbells,
doorbells of each hardware queue
are set in order.

Multi-Queue File System

20

Core 0 Core N

Ordered

hardware

queue

Multi-queue file system

Transaction

Journal
area 0

Journal
area N

…

ccNVMe driver

Per-hardware-queue storage order

Crash consistency

Global storage order among

hardware queues

fsync or fatomic

• Details of ccNVMe commands, compatible with the original
NVMe commands using reserved fields

• Metadata shadow paging to persist shard blocks in parallel

• Selective revocation to handle block reuse across multi-queue

• Implementation details

Other details in paper

21

Evaluation

22

CPU 2 Intel E5-2680 V3 CPUs, each with 12 cores, totally
24 physical CPU cores

SSD Intel 905P Optane, Intel P5800X Optane

Compared
system

Linux vanilla kernel 4.18.20; classic journaling,
HORAE[OSDI’20]; Ext4, HORAEFS[OSDI’20], Ext4-
NJ (no-journal setup of Ext4)

Workloads

• Transaction performance;
• File system performance; (see paper)
• Application performance;
• Understanding the performance; (see paper)
• Crash consistency; (see paper)

Transaction performance

23

0

100

200

300

400

500

1 2 4 8 12

K
 T

PS

of threads

Multicore Throughput

Classic HORAE ccNVMe-Atomic ccNVMe

0

1000

2000

3000

4000

4 8 16 32 64

T
h
ro

ug
h
pu

t
(M

B
/s

)

Write size (KB)

Single-core Throughput

classic HORAE ccNVMe-Atomic ccNVMe

Tested SSD: Intel P5800X

Workload: each thread persists independent transactions

ccNVMe-Atomic = 2 x ccNVMe

= 2.2 x HORAE = 3 x Classic

ccNVMe-Atomic = 1.6 x ccNVMe

= 2.2 x HORAE = 2.6 x Classic

reduction of
PCIe traffic

(e.g., JC)

separation of
atomicity from

durability

Application performance

24

0

200

400

600

800

905p p5800x

K
 I

O
PS

Filebench Varmail

Ext4 HORAEFS Ext4-NJ MQFS

0

50

100

150

200

250

905p p5800x

K
 I

O
PS

RocksDB fillsync

Ext4 HORAEFS Ext4-NJ MQFS

MQFS: no-journal file system atop ccNVMe, this work, provide crash consistency
and storage order.

MQFS ≈ Ext4-NJ = 1.2/1.1 x HORAEFS
=2.4/2.6 x Ext4

MQFS = 1.4/1.3 x Ext4-NJ = 1.4/1.4
x HORAEFS = 1.9/1.7 x Ext4

Higher CPU and I/O efficiency
of MQFS/ccNVMe

Conclusion

25

⚫ ccNVMe: Crash Consistent Non-Volatile Memory Express

➢ Provide generic transaction abstraction, crash consistency and storage

order inside the standard storage protocol

➢ Separate atomicity from durability to fully exploit the high concurrency

(e.g., multiple deep queues) of modern high-performance NVMe SSDs

⚫MQFS: Multi-Queue File System

➢ Upper layer storage software should reduce the CPU overhead to

embrace the fast crash consistency and storage order of ccNVMe

Source code: https://github.com/thustorage/ccnvme

https://github.com/thustorage/ccnvme

Q&A

26

Crash Consistent Non-Volatile Memory Express

Xiaojian Liao, Youyou Lu, Zhe Yang, Jiwu Shu

Tsinghua University

liao-xj17@mails.tsinghua.edu.cn
greatliaoxiaojian@gmail.com

Thank You!

