
µTree: a Persistent B+-Tree with Low Tail Latency

Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, Jiwu Shu

Tsinghua University

http://storage.cs.tsinghua.edu.cn

Contributions

2

(I) An empirical study: high latency spikes of index structures,
especially on persistent memory.

vFAST+FAIR exhibits a 99p-ile latency of 60 µs, 600× higher than PM latency.
v Internal structural refinement operations (SROs)
v Interference overhead between concurrent threads

(II) µTree: improve tail latencies of persistent b+-trees
v Incorporates a shadow list layer underneath the b+-tree;

v Proposes the Coordinated concurrency control
v Achieves a 99p-ile latency that is one-order of magnitude lower, and 2.8 - 4.7x

higher throughput.

Persistent memory data structures

3

Throughput-related design goals

FAST’11

CDDS	Tree

FAST’18

FAST+FAIR

SIGMOD’16

FPTree

More	… More	…

FAST’15

NV-Tree

VLDB’20

DPTree

VLDB’15

wB+-Tree

Reduce persistence overhead Reduce consistency overhead

Tail latency matters for datacenter workloads

1% slow sheep

99% fast sheep

v User-perceived latency: determined by the slowest sheep (i.e., back-end node)

v Optimize tail latency from different layer of OS: queue mgmt., core scheduling, etc.
3

Tail latency problem in persistent b+-tree (I)

5

0.0

20.0

40.0

60.0

80.0

0 2 4 6 8

99
p-

ile
 L

at
en

cy
 (

µs
)

Throughput (Mops/s)

FAST+FAIR (DRAM) FAST+FAIR (PM) FAST+FAIR
v Highly optimized with lock-free designs

and avoids the logging overhead.

v FF (DRAM): places data in DRAM and
removes all flush ops.

v For a target load running at 3 Mops/s:
FF(PM)’s 99p latency is almost 60µs ---
20x higher than that of FF(DRAM),
600x higher than PM latency.3

Tail latency problem in persistent b+-tree (II)

6

0
0.2
0.4
0.6
0.8

1

0 3 6 9 12 15

C
D

F

Latency (µs)

FF (DRAM) FF (PM)

(µs) Median 90p 99p

DRAM 1.4 2.4 4

PM 2.2 3.6 10.5

1 Threads

Structural Refinement Operations (SRO)
v Sort, split, merge operations

v SROs incur higher data movement overhead (i.e.,
higher latencies)

v SROs only occur in some of PUT/DEL operations

v PUT/DEL operations that contain SROs typically
appear at the tail of the latency distribution

Sort

Merge

Tail latency problem in persistent b+-tree (III)

7

0
0.2
0.4
0.6
0.8

1

0 20 40 60

C
D

F

Latency (µs)

FF (DRAM) FF (PM)

(µs) Median 90p 99p

DRAM 2.3 9 34.2

PM 5.9 22.9 63.1

36 Threads

T1 T2
T1 T2

FF (DRAM)
T1 T2
FF (PM)

Interference between concurrent threads
v per-node lock leads to higher delaying in PM when

two locking ops conflict.

Update DRAM tree nodes
Update PM tree nodes
Blocking
Lock & Unlock

v Introduction

v Optane DC Persistent Memory Module

v µTree: a Persistent B+-Tree with Low Tail Latency

v Results

v Summary & Conclusion

Outline

8

9

Optane DC Persistent Memory Module

Core 1

Core 2

La
st

 L
ev

el
 C

ac
he

iMC

iMC

Core N

XP DIMM

DRAM

XP DIMM

DRAM

XP DIMM

DRAM

D
R

A
M

D
R

A
M

D
R

A
M

X
P

D
IM

M

X
P

D
IM

M

X
P

D
IM

M

…

Memory Mode

AppDirect Mode

iMC

DDR-T Cacheline: 64 bytes

Core 1 Core 2 Core N…

XP DIMMDRAM Cache

3D-Xpoint Chip

XPLine: 256 bytes

Images are reshaped from “An Empirical Guide to the
Behavior and Use of Scalable Persistent Memory”, FAST’20

v Introduction

v Optane DC Persistent Memory Module

v µTree: a Persistent B+-Tree with Low Tail Latency

v Results

v Summary & Conclusion

Outline

10

11

Architecture of µTree
In

ne
r

N
od

es
Le

af
 N

od
es

DRAM

PM … …

…
Leaf-array

Layer

Leaf-list
Layer

Core idea: add a shadow list layer
underneath the tree leaf nodes
v Leaf node: array layer + list layer

v DRAM: Tree inner nodes & leaf-array nodes

v PM: Leaf-list nodes
v Examples:

v PUT: list layer ⇒ array layer

v GET: array layer ⇒ list layer

v Insights are two-fold:
v Fast query with the volatile b+-tree:

O(logn) & good cache locality

v Never perform SROs in PM: leaf-list layer
does not require SROs

Coordinated Concurrency Control
Leaf-array Layer

(DRAM)

Leaf-list Layer
(PM)

T1 T2
FF (PM)

T1 T2
µTree (PM)

Put-Put Conflicts: atomic instructions to the list layer + update
array layer via locks
v I. Link a list node in the list layer via atomic instructions (fine-grained CC);

v II. Acquire the lock & insert a slot in the array layer to point to the list
node.

v Insight:
v PM update operations are moved out of the locking path
v Reduce interference overhead Lock & Unlock

Update PM list nodes

Update PM tree nodes
Blocking

Update DRAM tree nodes

Coordinated Concurrency Control
Leaf-array Layer

(DRAM)

Leaf-list Layer
(PM)

Put-Get Conflicts: embed a version bit in the next pointer of the list layer.

v I. Put operation: toggle the Version bit before actually updating an item;

v II. Get operations are executed in the opposite direction:
v Locate a key-value pair by first find the slot in the array layer, and get the target list node with the pointer

v Get: array layer ➔ list layer ⟺ Put: list layer ➔ array layer

v Guarantee:Visible items are always persisted (avoid dirty reads)

key size valuenext

List node layout:

Version NextDeleted

More design details: Check our paper

Anomalies in coordinated concurrency control:
v CAS failures & Put-Del conflicts.

Range queries
v Probe in the list layer directly.

Memory allocation consistency
v µTree adopts an epoch-based approach.

Recovery of the volatile tree layer
v A multi-threaded recovery mechanism is used for fast recovery.

v Introduction

v Optane DC Persistent Memory Module

v µTree: a Persistent B+-Tree with Low Tail Latency

v Results

v Summary & Conclusion

Outline

15

16

Experimental Setup

Hardware Platform
CPU 2 Xeon Gold 6240m CPUs (36 physical cores)

DRAM 192 GB (32GB/DIMM)

PM 6 Optane DCPMMs (1.5 TB, 256 GB/DIMM),

Operating System Ubuntu 18.04.3 LTS, Linux 4.15.0

Compared Systems
FPTree Non-leaf nodes are placed in DRAM; HTM + Locking for CC

FAST&FAIR All nodes are placed in PM; lock-free reads; no logging overhead.

Workloads
v YCSB (varying r/w ratio, item size, skewness, etc.)

v Redis (a multi-threaded version)

17

Micro-benchmark: YCSB

v For a target load running at 2 Mops/s, µTree delivers one order magnitude
lower 99th percentile latency;

v For a target tail latency of 20 µs, µTree achieves 5.8x higher throughput.

0.0

20.0

40.0

60.0

80.0

100.0

0 1 2 3 4 5 6 7 8

99
p-

ile
 L

at
en

cy
 (

µs
)

Throughput (Mops/s)

FPTree

FAST&FAIR

µTree5.8×10×

2

20.0

v Recent work implement PM-aware data structures by improving their
throughput-related performance. Scant attention has been paid to tail
latency.
v Overhead of structural refinement operations (SROs);
v Overhead of cross-thread interference.

vWe propose µTree that takes tail latency into consideration.

v Key insight: a shadow list layer to (1) avoid SRO overheads in PM, and (2)
support fine-grained concurrency control

vµTree achieves a 99p-ile latency that is one order magnitude lower, and
improves throughput by 1.8 – 3.7 times.

18

Summary & Conclusion

Thanks & QA

Tsinghua University

http://storage.cs.tsinghua.edu.cn
19

