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Contributions
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(I) An empirical study: high latency spikes of index structures, 
especially on persistent memory.

vFAST+FAIR exhibits a 99p-ile latency of 60 µs, 600× higher than PM latency.
v Internal structural refinement operations (SROs)
v Interference overhead between concurrent threads

(II) µTree: improve tail latencies of persistent b+-trees 
v Incorporates a shadow list layer underneath the b+-tree;

v Proposes the Coordinated concurrency control
v Achieves a 99p-ile latency that is one-order of magnitude lower, and 2.8 - 4.7x 

higher throughput.



Persistent memory data structures
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Throughput-related design goals
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Reduce persistence overhead Reduce consistency overhead



Tail latency matters for datacenter workloads

1% slow sheep

99% fast sheep

v User-perceived latency: determined by the slowest sheep (i.e., back-end node)

v Optimize tail latency from different layer of OS: queue mgmt., core scheduling, etc.
3



Tail latency problem in persistent b+-tree (I)
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v Highly optimized with lock-free designs 

and avoids the logging overhead.

v FF (DRAM): places data in DRAM and 
removes all flush ops.

v For a target load running at 3 Mops/s: 
FF(PM)’s 99p latency is almost 60µs ---
20x higher than that of FF(DRAM), 
600x higher than PM latency.3



Tail latency problem in persistent b+-tree (II)
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1 Threads

Structural Refinement Operations (SRO)
v Sort, split, merge operations

v SROs incur higher data movement overhead (i.e., 
higher latencies)

v SROs only occur in some of PUT/DEL operations

v PUT/DEL operations that contain SROs typically 
appear at the tail of the latency distribution

Sort

Merge



Tail latency problem in persistent b+-tree (III)
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Interference between concurrent threads
v per-node lock leads to higher delaying in PM when 

two locking ops conflict.

Update DRAM tree nodes
Update PM tree nodes
Blocking
Lock & Unlock
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Optane DC Persistent Memory Module
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Images are reshaped from “An Empirical Guide to the 
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Architecture of µTree
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Core idea: add a shadow list layer 
underneath the tree leaf nodes
v Leaf node: array layer + list layer 

v DRAM: Tree inner nodes & leaf-array nodes

v PM: Leaf-list nodes
v Examples: 

v PUT: list layer ⇒ array layer

v GET: array layer ⇒ list layer

v Insights are two-fold:
v Fast query with the volatile b+-tree: 

O(logn) & good cache locality

v Never perform SROs in PM: leaf-list layer 
does not require SROs



Coordinated Concurrency Control
Leaf-array Layer

(DRAM)

Leaf-list Layer
(PM)

T1 T2
FF (PM)

T1 T2
µTree (PM)

Put-Put Conflicts: atomic instructions to the list layer + update 
array layer via locks
v I. Link a list node in the list layer via atomic instructions (fine-grained CC);

v II. Acquire the lock & insert a slot in the array layer to point to the list 
node.

v Insight: 
v PM update operations are moved out of the locking path 
v Reduce interference overhead Lock & Unlock

Update PM list nodes

Update PM tree nodes
Blocking

Update DRAM tree nodes



Coordinated Concurrency Control
Leaf-array Layer

(DRAM)

Leaf-list Layer
(PM)

Put-Get Conflicts: embed a version bit in the next pointer of the list layer.

v I. Put operation: toggle the Version bit before actually updating an item;

v II. Get operations are executed in the opposite direction:
v Locate a key-value pair by first find the slot in the array layer, and get the target list node with the pointer

v Get: array layer ➔ list layer       ⟺ Put: list layer ➔ array layer

v Guarantee:Visible items are always persisted (avoid dirty reads)

key size valuenext

List node layout:

Version NextDeleted



More design details: Check our paper

Anomalies in coordinated concurrency control:
v CAS failures & Put-Del conflicts.

Range queries
v Probe in the list layer directly.

Memory allocation consistency
v µTree adopts an epoch-based approach.

Recovery of the volatile tree layer
v A multi-threaded recovery mechanism is used for fast recovery.
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Experimental Setup

Hardware Platform
CPU 2 Xeon Gold 6240m CPUs (36 physical cores)

DRAM 192 GB (32GB/DIMM)

PM 6 Optane DCPMMs (1.5 TB, 256 GB/DIMM),

Operating System Ubuntu 18.04.3 LTS, Linux 4.15.0

Compared Systems
FPTree Non-leaf nodes are placed in DRAM; HTM + Locking for CC

FAST&FAIR All nodes are placed in PM; lock-free reads; no logging overhead.

Workloads
v YCSB (varying r/w ratio, item size, skewness, etc.)

v Redis (a multi-threaded version)
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Micro-benchmark: YCSB

v For a target load running at 2 Mops/s, µTree delivers one order magnitude 
lower 99th percentile latency;

v For a target tail latency of 20 µs, µTree achieves 5.8x higher throughput.
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v Recent work implement PM-aware data structures by improving their 
throughput-related performance. Scant attention has been paid to tail 
latency.
v Overhead of structural refinement operations (SROs);
v Overhead of cross-thread interference.

vWe propose µTree that takes tail latency into consideration.

v Key insight: a shadow list layer to (1) avoid SRO overheads in PM, and (2) 
support fine-grained concurrency control

vµTree achieves a 99p-ile latency that is one order magnitude lower, and 
improves throughput by 1.8 – 3.7 times.
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Summary & Conclusion
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