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ABSTRACT

Emerging non-volatile memory (NVRAM) technologies,
like phase change memory, envision persistent memory
architectures. In case of power failure, operations on
persistent memory should be in transactional semantics by
adopting techniques such as WAL. To ensure consistency
and atomicity, persist barriers are widely adopted, to
prevent persistent memory controller from scheduling writes
and exploiting bank-level parallelism of NVRAM devices.
Besides, unified retention time for persistent writes, i.e.,
log and data writes, further reduces the performance of
persistent memory system, while retention time for log
writes does not need to be so long due to periodic truncation.
In this paper, we study how NVRAM write latency affects
the system throughput and propose DP 2, which consists
of two main techniques: differential persistency and dual
persistency. Differential persistency distinguishes log writes
from data writes, and enhances the NVRAM memory
controller to schedule log writes across persist barriers to
fully utilize bank level parallelism. Dual persistency relaxes
the retention time of log writes to reduce write latency and
the iterations per write, which in turn enhances lifetime
of NVRAM devices. Evaluation results show that our
proposed techniques improve system throughput up by 43%
on average and extend lifetime up by 47%, with 104-s
retention time for log writes.
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1. INTRODUCTION
Recently, byte-addressable non-volatile memory (NVRAM),

a.k.a storage class memory (SCM), has been widely studied.
In particular, phase-change memory (PCM), a kind of
NVRAM, has many promising characteristics such as po-
tential large capacity and low power consumption, while suf-
fering from long write latency and limited write endurance.
In addition, several multi-level cell (MLC) techniques have
been studied to store two or four bits of data [12].

Computer architecture evolves with the adoption of
NVRAM [5]. A lot of researchers rethink the traditional
computer systems or design new storage architectures to
take advantage of NVRAM. These designs can be classified
into three categories. The first kind of work target NVRAM
as primary storage, for the fast access speed compared to
conventional persistent storage, such as [21, 2]. The second
kind of work envision NVRAM as the drop-in replacement of
DRAM, utilizing the byte-addressability and potential large
density, including [21, 29, 12]. The third kind of work focus
on building hybrid main memory. There are two design
choices of this class. One alternative is using NVRAM as
primary main memory, together with small volume DRAM
serving as cache, such as [4, 23]. The other is to place
NVRAM and DRAM on the same level, providing a uniform
address space to operating system, including [3, 26, 6, 18,
11].

In addition to architectural design, several programming
models about NVRAM have been proposed. BPFS [4] and
PMFS [5] both are file systems that provide system API
to applications to use underlying NVRAM hardware. NV-
Heaps [3] and Mnemosyne [26] both are built as libraries
that programmers can programming with NVRAM memory
using special malloc/free functions. CDDS [24] allows
programmers to safely exploit the low-latency and non-
volatile aspects of new memory technologies, showing the
performance gain on how data structures such as CDDS B-
tree can take advantage of NVRAM.

When using NVRAM as persistent storage, consistency
and atomicity must be maintained. To ensure consistency
and atomicity, writes to NVRAM must be in linearizable
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System Architecture

order. However, most of the compilers and modern
CPUs will reorder writes to improve performance, which
is transparent to the operating system and applications.
Thus, several special instructions must be used to prevent
compilers and CPUs from reordering writes, such as clflush,
mfence and so on. Several recent works [26, 5, 12] have
noted that, those instructions are not enough to ensure the
write ordering, because they do not guarantee that modified
data actually reached the durability point; i.e., to persistent
memory or some intermediate power-fail safe buffer [5].
Thus there must be architectural support for persist barriers
[4, 21, 5]. Techniques to enhance atomicity include shadow-
paging (SP) [8, 24, 4] and write ahead log (WAL) [16, 3,
26, 21, 6, 11, 5]. In this paper, we focus on the latter. WAL
records redo or/and undo logs to provide atomicity, which
results in additional writes to NVRAM. Logs must also be
written to persistent memory and committed before in-place
updates of persistent data structures. Both additional log
writes and ordering constraints of WAL reduce the NVRAM
system performance significantly.

Figure 1 shows a typical system architecture which archi-
tects DRAM and NVRAM to build hybrid main memory
and provides applications with accessibility to NVRAM
through libraries (i.e., Non-volatile Heaps). NVRAM li-
braries implement software transactional memory (STM) [9]
to maintain consistency and atomicity. In this model,
system performance is limited from several aspects. First,
the performance of NVRAM is limited due to long write
latency. Second, as persist barriers are widely adopted,
NVRAM memory controller must respect every persist
barrier to maintain ordering constraints, which prevents
scheduling any writes across barriers. However, log writes
and data writes are inherently different, and scheduling
rules can be adopted by differentiating them. Third,
STM introduces additional write loads (i.e., log writes) to
NVRAM. Log writes add additional write latency beyond
data writes and accelerate the wear-out speed of NVRAM
devices. However, because log records are truncated
periodically, retention time of logs needn’t as long as that
of data. Thus some sort of Retention Relaxation [12]
techniques can be used to both speedup log writes and
reduce average iterations for one write.

In this paper, we target PCM-DRAM hybrid main

memory system in which DRAM serves as working memory
and PCM serves as persistent in memory store. However,
our proposed techniques apply to other NVRAM devices, as
illustated in Section 2.2. We will analyse how PCM’s long
write latency and additional writes (i.e., log writes) to PCM
will affect system performance. And then we propose DP 2,
which consists of two techniques as follows:

(1) Differential persistency, distinguishes log writes from
normal data writes and enhances the memory controller to
adopt two rules to schedule log writes. With differential
persistency, memory controller can fully utilize the bank
level parallelism of PCM chips, while still respecting each
of the persist barriers.

(2) Dual persistency, performs log writes and data writes
on PCM devices with different retention guarantees. With
dual persistency, log writes can be performed faster and need
less iterations per write to PCM cells.

Evaluation results show that DP 2 can improve system
throughput up by 43% on average and enhance lifetime up
by 47%, with 104-s retention time for log writes.

The rest of the paper is organized as follows. We present
the background and motivation of this paper in Section
2. Then, in Section 3, we introduce DP 2, including the
proposed scheduling rules, optimizations on dual retention
mode to reduce write latency and several design details.
In Section 4, evaluations are performed to justify the
effectiveness of our proposed techniques. And finally, we
present related work in Section 5 and conclude the paper in
Section 6.

2. BACKGROUND AND MOTIVATION

2.1 Non-volatile Heaps
In this paper, we focus on the library programming

model, i.e., non-volatile heaps, with which programmers
can manage NVRAM main memory through calls, i.e.,
pmalloc/pfree. There are two main designs in literature,
NV-heaps [3] and Mnemosyne [26], both of which are
built on hybrid main memory. Although the design
and implementation details of them differ, the basic idea
that constructing user level library with STM to exploit
NVRAM, is the same. We take Mnemosyne as an example,
and illustrate its design rules and some implementation
details.

STM is a software method that provides concurrency
control and supports transactional programming of syn-
chronization operations on memory. Mnemosyne takes
TinySTM [7], a light weight time-based STM implementa-
tion, to provide concurrency control on word granularity and
to ensure consistent updates at all times. Mnemosyne imple-
ments lazy version management with write-ahead per-thread
redo log, and eager conflict detection with encounter-time
locking. To provide consistency and atomicity Mnemosyne
assumes the atomic 8 bytes write from architectural support
like BPFS [4] . In order to map consistency onto hardware,
Mnemosyne relies on three hardware primitives: write-
through stores (i.e., movnti), fences (i.e, mfence) and flushes
(i.e, clflush). If a programmer wants to build persistent data
structures, he needs to declare persistent variables, such as
pint, claim memory using pmalloc, annotate a segment of
codes with atomic, and compile the codes using compilers
with STM support.



Table 1: Write speedup factors with different

retention guarantees and average iterations for write

operations

Non-Volatility(s) Write Speedup Average Iterations
( one 64B row)

107 Baseline 5.7

106 1.2 × 5.7 / 1.2

105 1.5 × 5.7 / 1.5

104 1.7 × 5.7 / 1.7

103 1.9 × 5.7 / 1.9

102 2.1 × 5.7 / 2.1

2.2 Retention Time vs. Write Latency
Retention time refers to the time period that during which

the data stays valid. Persistent store requires a minimum
retention time (e.g., of at least three months [12]). Generally
speaking, long retention time requires a proportional long
write latency. Previous works have presented the trade-off
between retention time and write speed, mainly on STT-
RAM-based caches and Retention Relaxation for NAND
flash-based solid state drives (SSDs), refering to NVM
Duet [12]. In contrast, NVM Duet focus on trading
off retention time and write performance in the manner
emphasized by Retention Relaxation, and quantify how
PCM’s non-volatility correlates with its write speed [12]. We
omit the details of PCMmodelling and refer to the modelling
results directly shown in Table 1.

The first column in Table 1 shows the desired retention
time, while the second column illustrates the potential
write speedup when relaxing retention time. 107-s is the
minimum threshold of durable retention and its write speed
serves as baseline. One obvious conclusion we can draw is
that NVRAM system can obtain a significant write latency
reduction by lowering the retention guarantee. For example,
the write speedup can achieve 1.7× for a PCM with 104-s
retention capability. In order to utilize this property, NVM
Duet differentiates writes of working memory from writes of
persistent store. The retention time for working memory
is relatively short, and can be kept valid through Smart
Refresh [12], thus achieving fast write speed.

2.3 Motivation
According to [5], write speed of PCM (i.e., 100MB/s)

is about 10× slower than DRAM (i.e., 1GB/s). Thus the
performance of update-intensive workloads can be reduced
by data persist operations significantly. We instrument
Mnemosyne to analyse how write latency affects perfor-
mance. We break down software stack into three parts: (1)
log operations, including log writes, memory fences, etc.; (2)
in-place updates, including write-backs of persistent data,
flushing cache lines into PCM, etc.; (3) others, including
STM instrumentation, application operations, etc. We
collect the time that each part executes using experimental
setup illustrated in Section 4.1 and show results in Figure 2.
Figure 2(a) shows write overhead of different workloads.
Persist overhead can reach 52.2%-66.2%, and log overhead
can reach 27.8%-44.3%. The average log overhead of all
workloads is 36.5%. Figure 2(b) shows the performance
overhead with varying value sizes. The average log overhead
of all value sizes is 38.4%. Based on the observations,
reducing log overhead can improve system performance

 

0%
20%
40%
60%
80%
100%

sps rbtree ht tc bpt

benches

log time inplace time other

0%
20%
40%
60%
80%
100%

8 64 256 512 1024 2048 4096

value sizes (bytes)

log time inplace time other

(a) (b) 

Figure 2: Persist overhead of both log writes and

data writes to PCM with different benchmarks and
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significantly.
When architecting PCM and DRAM as hybrid main

memory, writes arrive at PCM are log writes and normal
data writes, both of which use persist-barriers to maintain
ordering constraints. In order to maintain consistency
and atomicity, at the hardware level, memory controller
and other components must respect persist-barriers when
performing write requests [12]. We note that the retention
duration of log need not be as long as that of data, for logs
can be truncated synchronously or periodically. Thus by
differentiating log writes from data writes, system can gain
several benefits.

3. DP2 DESIGN

3.1 System Support
To distinguish log writes from data writes, DP 2 needs

support from system hardware and software. Recently
proposed NVM Duet [12] adds volatile AllocMap to memory
controller and augments an additional bit into each write
request. Bits in AllocMap indicating whether writes belong
to working memory or persistent store, are updated by OS,
and combined into write request before sent to write queue.
The intuitive method is using NVM Duet to implement
DP 2, by regarding log writes as working memory writes.
However, we can take advantage of the existing software and
hardware design without adding additional storage overhead
to memory controller. In hybrid memory architecture, PCM
is used to store both append-only log which needs small
capacity, and persistent data which needs large volume.
Thus the whole PCM space can be partitioned into log
portion and data portion logically, differentiating writes
to these two parts through specific address bits (e.g., the
address range can be used as indication of the write type).
We will show this in Section 3.3 later.

DP 2 needs the Dual-Retention PCM chips proposed by
NVM Duet to achieve dual retention guarantees. However,
we make some optimization for our particular use case,
which will be shown in Section 3.4. To maintain consistency,
several architectural support must be provided: (1) movntq,
a non-temporal hint, implemented by using write combining
memory [1]; (2) mfence, performing a serializing operation
to avoid reordering and ensure cache coherency [1]; (3) some
sort of persist barriers. We assume the pm wbarrier [5] to
be the basic system primitive and refer as barrier for short.

3.2 DP2 Architecture
DP 2 system architecture is shown in Figure 3, which is

based on a typical NVRAM-DRAM hybrid main memory
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architecture shown in Figure 1. Applications call pmal-
loc/pfree to utilize PCM to build persistent in memory data
structures. NVRAM Lib is implemented as non-volatile
heaps such as Mnemosyne to maintain consistency and
atomicity. System interfaces should be provided such as
mmap from traditional OS, or from the recently proposed
PMFS [5]. DP 2 modifies the memory controller for PCM by
adding two scheduling rules to differentiate log writes from
data writes, and enhances the controller to fully utilize bank-
level parallelism of PCM devices. We call this technique
as differential persistency. As to PCM devices, two sets of
retention parameters, i.e., the “normal” set and “short” set,
will be used to perform writes. The “normal” set is used for
data writes with long retention guarantee, while the “short”
set is used for log writes with short durability. We call this
technique as dual persistency. We will introduce these two
techniques in detail and analyse how they improve system
performance in the following sections.

3.3 Differential Persistency
Non-volatile heaps adopt STM to implement concurrency

control and to maintain consistency, which in turn rely
on some sort of WAL, such as redo log (both [3] and
[26]). Thus a segment of application codes operates on
PCM memory in transactional semantics. A transaction
begins by creating read-sets and write-sets. Writes are
redirected to write-sets after creating redo logs. Transaction
commits by flushing redo logs first followed by a barrier,
then flushing a commit record followed by a barrier, then
updates writes in-place, and finally truncates log. Currently
multi-threading programming is widely adopted to improve
transaction throughput. As shown in Figure 4, we illustrate
concurrent transactional write requests arriving at memory
controller. Figure 4(a) shows a common case of write request
sequence. All writes reaching persistent memory controller
are treated as persistent writes separated by four persistent
barriers. L0, C0 and D0 belong to transaction A, while L1,
L2, C1, D1 belong to transaction B. Memory controller must
respect every barrier in order to provide consistency. With
two memory banks (i.e., Bank 1 and Bank2), a baseline
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the proposed rule

scheduling is shown in Figure 4(b). Removing all persist
barriers results in the ideal case, which is shown in Figure
4(c).

We propose differential persistency, which distinguishes
log writes from data writes. Memory controller can
take advantage of the differential information to schedule
writes, to fully utilize bank-level parallelism. Differential
persistency groups persistent writes into three categories:
log records, commit records and persistent data, and adopts
two scheduling rules:

Rule 1: Writes of log records can be scheduled before the
persist barrier of its own commit record.

Most of the implementations of log are append-only,
although some studies propose in-place updates to utilize
byte-addressability of NVRAM (such as [11]). Thus, if only
log records are persisted before commit record of the same
transaction, consistency guarantee is obtained. In Figure
4(b), L2 can be scheduled to write concurrently with C0.

Rule 2: Writes of commit records can be performed one
step former the pre-commit barrier.

From Figure 4(b), we can observe that C1 doesn’t need
to wait for D0. Rule 2 relaxes this constraint. Note that,
commit records can’t be scheduled arbitrarily because they
must not persisted before any of log records of the same
transaction.

The proposed scheduling rules can improve the bank-
level parallelism utilization and don’t violate the consistency
guarantee. Figure 4(d) shows the potential performance
gain when the two scheduling rules are adopted. After all,
implementing this rule is simply adding the comparison logic
without additional storage overhead like NVM Duet (i.e.,
AllocMap and additional bit in write request).



3.4 Dual Persistency
As illustrated in [12], PCM has several specific properties.

For example, its retention capability is related to the
width of target bands and shorter retention period leads
to faster write speed. While architecting PCM as a unified
main memory, writes can be classified into two categories:
working memory writes, which needs fast write speed and
no durability guarantee, and persistent store writes, which
take the durability guarantee at the first place. Thus, dual-
retention PCM chips (i.e., PCM chips include two sets of
resistance parameters) can be used to support two kinds of
write modes. In DRAM and PCM hybrid main memory,
DRAM serves for working memory while PCM serves for
persistent store. However, we note that persistent writes
(i.e., writes to PCM) can also be differentiated in non-
volatile heaps programming model, i.e., with differential
persistency. To provide consistency and atomicity, log
writes are necessary and they also need to be persisted
before being truncated. Another fact is that logs that
are stored in PCM do not live for a long time. Two log
truncation modes are widely adopted: synchronous mode
and asynchronous mode, to prevent the log from growing too
large. In synchronous mode, logs are truncated immediately
after data have been updated in-place. In asynchronous
mode, logs are periodically truncated to avoid wrap-around
because log buffer is usually small. In conclusion, the
retention time of logs don’t need to be the same as that
of persistent data. We propose dual persistency, and will
illustrate that performance improvement can be gained by
relaxing the retention guarantee for log writes.

Log region in PCM is relative small and will spread
across into memory banks evenly to fully utilize the bank-
level parallelism. Log region is separated from data region.
Dual persistency distinguishes log writes, including normal
log entries and abort/commit entries, from data writes
by comparing write address with pre-designated address
ranges. Memory controller maintains two sets of resistance
parameters: one set is “normal” (such as for 107-s retention
capability), the other set is “short” (such as for 104-s
retention capability), and uses “normal” set to perform
data writes while “short” set for log writes. How short
the retention time will be, is determined by what level
durability guarantee that system requires. We will show the
performance gain with different level durability guarantees
in Section 4. Because logs are periodically truncated, PCM
cells belong to log region are rewritten and invalidated
frequently. Thus, dual persistency doesn’t need DRAM-like
refresh mechanism such as Smart Refresh [12].

The proposed dual persistency can improve system per-
formance from many aspects. First, the amount of log
writes are typically larger than persistent data writes (i.e.,
at least 2× with raw word log). If retention guarantee
can be relaxed, log writes can be performed faster which
speedup transaction processing significantly. Second, dual
persistency doesn’t refresh both data region and log region,
avoiding extra energy consumption. Relaxed retention also
results in less iterations when performing writes to PCM
cells, thus reducing power consumption further. Third, the
address space of log region design spread across all memory
banks. System performance can be improved further by fully
utilizing bank-level parallelism.

4. EVALUATION

Table 2: Description of workloads

Workloads Description
SPS [3] Random swaps of array entries
RBTree [3] Insert/delete nodes in a red-black tree
HashTable [26] Insert/delete entries in a hash table
KVStore [26] Database benchmark on TokyoCabinet
B+Tree [15] Insert/delete nodes in a B+ tree

4.1 Experimental Setup
In this evaluation, we take Mnemosyne [26] as the baseline

system, and compare NVRAM-DP with it to show the
effectiveness of our proposed techniques. All experiments
are conducted on a server with a 2.4GHz Intel Xeon E5645
CPU and 64GB main memory. To emulate PCM’s writes,
we add additional latency to PCM writes. We use the same
parameters as in [12], i.e., 250 ns per iteration. The average
iterations to write a cell is listed in Table 1 and we take
107-s as the basic retention guarantee. The DRAM latency
is measured by Intel Memory Latency Checker [25] as 85ns.

Workloads. Our experiment evaluates several workloads
shown as Table 2. We evaluate several basic data structures
widely used both in real application and in literature [3,
26], such as random swap in a large data array (SPS), a
red-black tree and hashtable. We set the size of all keys
and values in those data structures to be 64 bits by default.
To evaluate the performance in real Key-Value systems, we
evaluate a well-known KV-store, Tokyo Cabinet [10]. B+
tree is widely used both in database management systems
and file systems. We implement a B+ tree, with a node size
of 4KB and each key or value of 8 bytes size.

4.2 Experimental Results

4.2.1 Differential Persistency

To evaluate the effectiveness of the scheduling rules under
differential persistency, we model a PCM memory controller
with 4 ranks of 8 banks each, with 32-entry write queue per
bank. We collect writes traces to PCM as well as persist
barriers. The PCM memory controller takes these write-
intensive traces to simulate write bandwidth under heavy
writing workloads, and it respects every persist barrier to
ensure consistency and atomicity. We implement the basic
algorithm with no schedules across barriers and take it as
baseline. And then we add rule 1 and rule 2 respectively.
Figure 5 shows the bandwidth speedup results of HashTable
with varying value sizes and different rules. In all cases,
schedules with proposed rules perform better than the
baseline. In particular, 1024 byte value size, rule 1 performs
41%, rule 2 performs 1% and rule 1+2 performs 44% better.

Figure 6 shows the effectiveness with differential per-
sistency with varying number of threads. When value
size is larger than 64 bytes, using the two rules can
improve performance increasingly with the adding number
of threads. Write sequences arriving at memory controller
are affected by both the value size of a transaction and the
number of threads of concurrent transactions. For example,
with 4096 bytes, performance improvement grows with
the number of threads, because the number of concurrent
transactions affect the write sequence mainly. In contrast,
with 8 byte, transaction size dominates the affection of
write sequences and thus differential persistency shows



0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

8 64 256 512 1024 2048 4096

Ba
nd

w
id
th
 S
pe

ed
up

Value Size (bytes)

Base Rule1 Rule2 Rule1+2

Figure 5: Bandwidth speedup with proposed

scheduling rules under Differential Persistency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

8 64 256 512 1024 2048 4096

Ba
nd

w
id
th
 S
pe

ed
up

Value Size (bytes)

Base 1thread 2threads 4threaeds 8threads 12threads

Figure 6: Bandwidth speedup with multithreads

using proposed scheduling rules under Differential

Persistency

unpredictable performance gains under multi-threads. In
conclusion, 33% performance gain can be achieved by
combining rule 1 and rule 2 on an average.

4.2.2 Dual Persistency

We take 107-s (i.e., three months) retention as the
baseline retention guarantee for both log writes and data
writes. Then we vary the retention guarantee for log
writes to show the potential throughput speedup with
dual persistency. Figure 7 shows the potential throughput
speedup of HashTable. We take 104-s (i.e., about 2.8 hours)
as an reasonable retention guarantee. Write speed of 104-s
is 1.7x than the baseline according to Table 1. On average,
dual persistency can improve 24% on throughput.

Differential persistency can benefit from dual persistency
as well. In both cases, i.e., baseline schedule and differential
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persistency schedule, there can be writes to log region
concurrently. Those concurrent writes will be performed
faster than normal data writes with dual persistency. Figure
8 shows the bandwidth speedup of differential persistency
with dual persistency support. The average improvement of
rule 1 is 50%. The average improvement of rule 2 is 35%.
And 53% improvement will be gained by combining the two
rules.

4.2.3 NVRAM-DP:Put Them Together

In this section, we will put the proposed techniques
together. We first show in Figure 9 the throughput speedup
trends using HashTable with varying value size. And then
we illustrate in Figure 10 the potential improvements
on different workloads with all the value size set to 8
byte. In these two figures, ETL-Base and ETL-Tornbit
represent the log techniques with unified write latency to
PCM. Differential-P is with differential persistency and
Dual-P is with dual persistency only. NVRAM-DP combines
differential persistency and dual persistency.

As shown in Figure 9, ETL-Tornbit performs better than
ETL-Base with small value size, i.e. 10% with 8 bytes and
14% with 64 bytes, because large value size will increment
the computing overhead on tornbits. Dual-P performs 24%
better than ETL-Base on average and still better than
ETL-Tornbit with all value sizes. On average ETL-Tornbit
improves 5% over ETL-Base and NVRAM-DP improves
43%.

Figure 10 illustrates the throughput speedup results of dif-
ferent workloads. We set the value size to 8 bytes. NVRAM-
DP performs best on SPS, because a SPS transaction is
simply swapping two values in an array and thus persistent
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Figure 10: Throughput speedup comparison of

different workloads with 8 byte value size, with basic

methods and NVRAM-DP

writes dominate the executing time. NVRAM-DP performs
better than both ETL-Base and ETL-Tornbit. On an
average, NVRAM-DP performs 20% better than ETL-Base.
Note that, more throughput improvement can be gained
by enlarging the modifed value size of each transaction as
analyzed before.

4.2.4 Endurance Analysis

We assume the underlying wear-leveling mechanism is
ideal, and analyze the endurance enhancement with NVRAM-
DP by an informal inference. As shown in Equation 1, we
model endurance with three factors. NVRAM is divided into
two parts: LogPortion and DataPortion. The factor α is
the potential improvement on baseline by adopting different
techniques. In ETL-Base, the number of log bytes is two
folds of data bytes. Thus LogPortion is 2/3 and DataPortion
is 1/3. α parameter of NVRAM-DP is obtained from
former evaluation with 104-s retention guarantee for log
writes,i.e, α = 1.7. Dual-P can reduce the iterations per
write to a NVRAM cell, while Differential-P has no effect
on endurance. By taking Dual-P, NVRAM-DP can enhance
the lifetime of NVRAM devices up by 47%.

Endurance = LogPortion× α+DataPortion (1)

5. RELATED WORKS
Emerging non-volatile memory technologies have been

used to reduce consistency overhead in storage systems
based on flash memory [22, 19, 13, 14] and NVRAM [4,
5, 3, 26, 24]. We take a further step that optimize the log
operations in order to improve system performance using
NVRAM. Huang et. al. propose NVRAM-aware logging [11]
to speed up OLTP, which store logs on NVRAM and data
on disks. They give a cost-effective analysis about the
proposed hybrid storage. While our mechanism is proposed
based on hybrid memory where both log writes and normal
persistent writes are stored to NVRAM, we are confident
that with DP 2, logging optimization like [11] will achieve
more performance gain.

Several works have been proposed to relax the write
ordering or persist ordering to improve system throughput
[20, 15, 27, 17], while still maintaining consistency and
atomicity. Memory persistence[20] introduces three level of
persistency, each of which relaxes NVRAM write constraint
and allows high performance and currency data structures to
different degrees. Loose ordering persistency [15] depends on

modified cache structure and memory controller to provide
enhanced performance. Kiln[27] uses non-volatile last level
cache to removing the need of logging. The extreme design of
durable memory is WSP [17], which assumes that the whole
system hardware is non-volatile. Thus providing consistency
and atomicity is trivial with WSP. In contrast to [20] and
[15], our work investigates lower level ordering relaxation to
exploit the bank-level parallelism of NVRAM device.

To optimize the write performance or write endurance of
NVRAM systems, previous works have presented Retention
Relaxation for NVRAM. Liu et. al. introduce NVM Duet
in [12]. They differentiate working memory from persistent
store even the whole main memory is PCM. By doing
so, writes to working memory can be reordered to fully
utilize the bank-level parallelism. Another benefit is that
writes to working memory can be speedup by combing
short latency write and period refresh. In contrast, we
focus on improving system performance under hybrid main
memory. We distinguish log writes to normal persistent
writes, both of which arrive at NVRAM. According to the
level of availability of power supply, less refresh or even
no refresh is need. In addition, FIRM [28] maximizes
system performance and fairness by balanced scheduling
read and write requests of different types. We will exploit
the potential benefits by considering both reads and writes
in future work.

6. CONCLUSIONS
Byte-addressable NVRAM can be used to build hybrid

main memory with DRAM, while DRAM serves as working
memory and NVRAM as persistent store. In order to
maintain consistency and atomicity in case of power failure,
modification to NVRAM needs recovery techniques such as
WAL. However, long write latency of NVRAM compared
to DRAM results in expensive logging overhead. Besides
long write latency, persist barriers should be respected
by NVRAM memory controller to maintain consistency
and atomicity. To mitigate logging overhead and enhance
memory controller to schedule writes across persist barriers,
this paper take advantage of retention relaxation techniques,
which are used to improve write speed through relaxing
the retention guarantee, and propose DP 2 with two main
techniques: differential persistency and dual persistency.
Differential persistency distinguishes log writes from normal
data writes and schedules log writes with two rules to
fully utilize the bank level parallelism of NVRAM chips.
Dual persistency performs log writes and data writes with
different retention guarantees. Evaluation results show
that DP 2, which deploys differential persistency and dual
persistency, can improve system throughput up by 43% on
average and enhance lifetime up by 47%.
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