
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Cognitive SSD: A Deep Learning Engine
for In-Storage Data Retrieval

Shengwen Liang and Ying Wang, State Key Laboratory of Computer Architecture, Institute of
Computing Technology, Chinese Academy of Sciences, Beijing; University of Chinese Academy

of Sciences; Youyou Lu and Zhe Yang, Tsinghua University; Huawei Li and Xiaowei Li,
State Key Laboratory of Computer Architecture, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing; University of Chinese Academy of Sciences

https://www.usenix.org/conference/atc19/presentation/liang

Cognitive SSD: A Deep Learning Engine for In-Storage Data Retrieval

Shengwen Liang†,*, Ying Wang†,*,1, Youyou Lu‡, Zhe Yang‡, Huawei Li†,*,1, Xiaowei Li†,*

State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing†,

University of Chinese Academy of Sciences*, Tsinghua University‡

Abstract
Data analysis and retrieval is a widely-used component in
existing artificial intelligence systems. However, each request
has to go through each layer across the I/O stack, which
moves tremendous irrelevant data between secondary storage,
DRAM, and the on-chip cache. This leads to high response
latency and rising energy consumption. To address this is-
sue, we propose Cognitive SSD, an energy-efficient engine
for deep learning based unstructured data retrieval. In Cog-
nitive SSD, a flash-accessing accelerator named DLG-x is
placed by the side of flash memory to achieve near-data deep
learning and graph search. Such functions of in-SSD deep
learning and graph search are exposed to the users as library
APIs via NVMe command extension. Experimental results on
the FPGA-based prototype reveal that the proposed Cognitive
SSD reduces latency by 69.9% on average in comparison with
CPU based solutions on conventional SSDs, and it reduces
the overall system power consumption by up to 34.4% and
63.0% respectively when compared to CPU and GPU based
solutions that deliver comparable performance.

1 Introduction
Unstructured data, especially unlabeled videos and images,
etc., have grown explosively in recent years. It is reported
that the unstructured data occupies up to 80% of storage ca-
pacity in commercial datacenters [10]. Once being stored
and managed in the cloud machines, the massive amount of
unstructured data leads to intensive retrieval requests issued
by users, which pose significant challenge to the processing
throughput and power consumption of a datacenter [19]. Con-
sequently, it is critical to support fast and energy-efficient data
retrieval in the cloud service infrastructure to reduce the total
cost of ownership (TCO) of datacenters.

Unfortunately, conventional content-based multimedia data
retrieval systems suffer from the issues of inaccuracy, power
inefficiency, and high cost especially for large-scale unstruc-
tured data. Fig. 1(a) briefly depicts a typical content-based

1Corresponding authors are Ying Wang and Huawei Li.

DRAM

I/O Interface

(a) Traditional architecture

Hard Disk

Application

VFS/File system

Block IO layer

I/O scheduler

SCSI stack

Device Driver

Storage Device

Requests

Internet

DLG-x

L1-Cache

ALU
Registers

C
P
U

Cognitive
SSD

HOST

Requests Results

CPU

(b) Cognitive SSD

L2-Cache
L3-Cache

DRAM

Offload

Fig. 1. Traditional architecture (a) vs. Cognitive SSD (b).

data retrieval system composed of CPU/GPU and conven-
tional storage devices based on a compute-centric architec-
ture [14]. When a data retrieval request arrives from the inter-
net or the central server, the CPU has to reload massive poten-
tial data from disk into the temporary DRAM [14] and match
the features of the query with those of the loaded unstructured
data to find the relevant targets. This compute-centric archi-
tecture is confronted with several critical sources of overhead
and inefficiency. (1) The current I/O software stack signifi-
cantly burdens the data retrieval system when it simply fetches
data from the storage devices on retrieval requests [60], as
shown in Fig. 1(a). The situation is even worse since it is
reported the performance bottleneck has migrated from hard-
ware (75∼50us [11]) to software (60.8us [48]) as traditional
HDDs are replaced by non-volatile memory [41,48]. (2) Mas-
sive data movement incurs energy and latency overhead in the
conventional memory hierarchy. This issue becomes severe
as the scale of data under query increases because the relevant
data at the low-level storage must travel across a slow I/O
interface (e.g., SATA), main memory and multi-level caches
before reaching the compute units of CPU or GPUs [24],
which is depicted in Fig. 1(a).

To address these issues, as shown in Fig. 1(b), this work
aims to tailor a unified data storing and retrieval system within
the compact storage device, and eliminate the major IO and
data moving bottleneck. In this system, retrieval requests are
directly sent to the storage devices, and the target data analysis
and indexing are completely performed where the unstruc-

USENIX Association 2019 USENIX Annual Technical Conference 395

tured data resides. Building such a data retrieval system based
on the proposed Cognitive SSD bears the following design
goals: (1) providing a high accuracy, low latency, and energy
efficient query mechanism affordable in a compact SSD, (2)
exploiting the internal bandwidth of flash devices in an SSD
for energy-efficient deep learning based data processing, and
(3) enabling developers to customize the data retrieval system
for different dataset. These points are stated in detail below.

First, instead of relying on the general-purpose CPU or
GPU devices in Fig. 1(a), we must have a highly computation-
efficient yet accurate data retrieval architecture in consider-
ation of the SSD form factor and cost. A conventional data
retrieval framework is inaccurate or too computationally ex-
pensive to be implemented within a resource-constrained SSD.
In this work, we are the first to propose a holistic data retrieval
mechanism by combining the deep learning and graph search
algorithm (DLG), where the former could extract the seman-
tic features of unstructured data and the latter could improve
database search efficiency. The DLG solution achieves much
higher data retrieval accuracy and enables user-definable com-
putation complexity through deep learning model customiza-
tion, making it possible to implement a flexible and efficient
end-to-end unstructured data retrieval system in the SSD.

Second, although DLG is a simple and flexible end-to-end
data retrieval solution, embedding it into SSDs still takes con-
siderable effort. We designed a specific hardware accelerator
that supports deep hashing and graph search simultaneously,
DLG-x, to construct the target Cognitive SSD without using
power-unsustainable CPU or GPU solutions. However, the
limited DRAM inside an SSD is mostly used to cache the
metadata for flash management, leaving no free space for
the deep learning applications. Fortunately, we have proved
that the bandwidth of internal flash interface surpasses that
of external IO interface in a typical SSD, which matches the
bandwidth demand of the DLG-x with proper data layout map-
ping. By rebuilding the data path in the SSD and deliberately
optimizing the data-layout related to deep learning models
and graphs on NAND flash, the DLG-x could fully exploit
internal parallelism and directly access data from NAND flash
bypassing the on-board DRAM.

Finally, as we introduce deep learning technology into the
SSD, we must expose the software abstraction of Cognitive
SSD to users and developers to process different data struc-
tures with different deep learning models. Thus, we abstract
the underlying deep learning mechanism, feature analysis,
and data structure indexing mechanism as user-visible calls
by utilizing the NVMe protocol [6] for command extension.
Not only can users’ requests trigger the DLG-x accelerator
to search the target dataset for query-relevant structures, but
also system developers can freely configure the deep hashing
architecture with different representation power and overhead
for different dataset and performance requirement. In contrast
to conventional ad-hoc solutions, Cognitive SSD allows sys-
tem developers to adjust the retrieval accuracy as well as the

real-time performance of the data retrieval service through
provided APIs. Meanwhile, Cognitive SSD also supports the
flexible combination of special commands to achieve different
data retrieval related tasks, like in-storage data categorization
and hashing-only functions. In summary, we make the follow-
ing novel contributions:

1 We propose Cognitive SSD, to enable within-SSD deep
learning and graph search by integrating a specialized deep
learning and graph search accelerator (DLG-x). The DLG-
x directly accesses data from NAND flash without crossing
multiple memory hierarchies to decrease data movement
path and power consumption. To the best of our knowledge,
this work is the first to combine the deep learning and graph
search methods for fast and accurate data retrieval in SSD.

2 We employ Cognitive SSD to build a serverless data re-
trieval system, which completely abandons the conven-
tional data query mechanism in orthodox compute-centric
systems. It can independently respond to data retrieval re-
quests at real-time speed and low energy cost. It can also
scale to a multi-SSD system and significantly reduces the
hardware and power overhead of large-scale storage nodes
in data centers.

3 We build a prototype of Cognitive SSD on the Cosmos
plus OpenSSD platform [7] and use it to implement a data
retrieval system. Our evaluation results demonstrate that
Cognitive SSD is more energy-efficient than a multime-
dia retrieval system implemented on CPU and GPU, and
reduces latency by 69.9% on average compared to the
implementation with CPU. We also show that it outper-
forms conventional computing and storage node used in
the data center when Cognitive SSD scales out to form
smart lightweight storage nodes that include connected
Cognitive SSD array.

2 Background and Preliminaries
2.1 Unstructured Data Retrieval System

Content-based unstructured data retrieval systems aim to
search for certain data entries from the large-scale dataset by
analyzing their visual or audio content. Fig. 2 depicts a typical
content-based retrieval procedure consists of two main stages:
feature extraction, and database indexing. Feature extraction
generates the feature vector for the query data, and database
indexing searches for similar data structures in storage with
that feature vector encoded in a semantic space.
Feature Extraction and Deep Learning. The rise of deep
learning transfers the focus of researches to deep convolution
neural network (DCNN) [38] based features [61], as it pro-
vides better mid-level representations [37,40]. Fig. 2 depicts a
typical DCNN that contains four key types of network layers:
(1) convolution layer, which extracts visual feature from input
by moving and convolving multidimensional filters across
the input data organized into 3D tensors, (2) activation, the

396 2019 USENIX Annual Technical Conference USENIX Association

Content-based Unstructured Data Retrieval System

Requests
Data

Preprocessing
Results

Feature
Mapping

Feature
Matching Ranking

Convolution Pooling
Input

Fully
Connected

Hash
Layer

0
1
0
1
0
1

Layer Layer Layer

Hash
Code Graph Search

Deep Hashing -- (Hash-AlexNet) Query

Feature Extraction Database indexing

Fig. 2. Content-based multimedia data retrieval system.

nonlinear transformation that we do over the input signal, (3)
pooling layers, which down-sample the input channels for
scale and other types of invariance, and (4) fully connected
(FC) layer, which performs linear operations between the fea-
tures and the learned weights to predict the categorization
or other high level characteristics of input data. Such a neu-
ral network is flexible and can be designed to have different
hyper-parameters, like the number of the convolution and
pooling layers stacked together and the dimension and num-
ber of convolution filters. Changing these parameters will
impact the generalization ability and also computational over-
head of neural networks, which are usually customizable for
different dataset or application scenarios [47]. Some prior
work directly employs the high-dimension output vector of
the FC layer for data retrieval and is thought too expensive in
terms of memory footprint and computation complexity [39].
Thus, we adopt deep hashing [38] to achieve effective yet con-
densed data representation. Fig. 2 exemplifies a deep hashing
architecture, Hash-AlexNet, where a hash layer follows the
last layer of AlexNet [35] to project the data feature learned
from AlexNet into the hash space, and the generated hash
code can be directly used to index the relevant data structures
and get rid of the complex data preprocessing stage.

Database indexing: Graph-based approximate nearest neigh-
bor search(ANNS) methods named NSG [27], a complement
to deep hashing, achieves both accurate and fast data retrieval
results, as was proved in previous work [17, 26]. The main
idea of NSG is mapping the query hash code into a graph.
The vertex of the graph represents an instance, and the edge
stands for the similarities between entities, where the value of
the edge represents the strength of similarity. On top of that,
NSG can iteratively check neighbors’ neighbors in the graph
to find the true neighbors of the query based on the neighbor
of a neighbor is also likely to be a neighbor concept. In this
manner, the NSG could avoid unnecessary data checking to
reduce retrieval latency.

In summary, deep hashing followed by graph search can
perform low-latency and high-precision retrieval performance
compared to traditional solutions using brute-force search
or hash algorithms. Meanwhile, it also makes the retrieval
framework more compact and efficient because of the similar
compute patterns and data stream, so that they can fit into
compact and power-limited SSDs.

2.2 Near data processing & deep learning accelerator

For hardware-software co-design, there are two directions in
SSD research: open-channel SSD and near-data processing
(NDP). While open-channel SSD enables direct flash memory
access via system software [15, 42, 44, 59], near-data process-
ing (NDP) moves computation from the system’s main proces-
sors into memory or storage devices [16,18,25,46,50,51,56].

In NDP, Morpheus [52] provides a framework for moving
computation to the general-purpose embedded processors on
NVMe SSD. FAWN [13] uses low-power processors and flash
to handle data processing and focuses on a key-value storage
system. SmartSSD [34] introduces the Smart SSD model,
which pairs in-device processing with a powerful host system
capable of handling data-oriented tasks without modifying
the operating system. [53] supports fundamental database
operations including sort, scan, and list intersection by uti-
lizing Samsung SmartSSD. [23] investigates by simulation
the possibility of employing the embedded ARM processor
in SSDs to run SGDs, which is a key components of neural
network training. However, none of them can handle deep
learning processing due to the performance limit of the em-
bedded processor. Thereby, [22] presents intelligent solid-
state drives (iSSDs) that embed stream processors into the
flash memory controllers to handle linear regression and k-
means workloads. [43] integrates programmable logics into
SSDs to achieve energy-efficiency computation for web-scale
data analysis. Meanwhile, [32] also uses FPGAs to construct
BlueDBM that uses flash storage and in-store processing for
cost-effective analytics of large datasets, such as graph traver-
sal and string search. GraFBoost [33] focuses on the accelera-
tion of graph algorithms on an in-flash computing platform
instead of deep learning algorithms as this work.
Cognitive SSD Prior active disks are integrating either
general purpose processors incapable of handling high-
throughput data or specialized accelerators with only the sup-
port of simple functions like scanning and sorting. These
in-disk computation engines are unable to fulfill the require-
ment of high-throughput deep neural network (DNN) infer-
ence because computation-intensive DNNs generally rely on
power-consuming CPU or GPUs in the case of data analy-
sis and query tasks. To enable energy-efficient DNN, prior
work proposes a variety of energy-efficient deep learning
accelerators. For example, Diannao and C-Brain map large
DNNs onto a vectorized processing array and employ a data
tiling policy to exploit locality in neural parameters [20, 49].
Eyeriss applies the classic systolic array architecture to the
inference of CNN, and outperforms CPU and GPU in energy
efficiency dramatically [21]. However, these researches focus
on optimizing the internal structure of accelerator and relied
on large-capacity SRAM or DRAM instead of external non-
volatile memory. In contrast to these works and prior active
SSD designs, we propose Cognitive SSD, the first work that
enables the storage device to employ deep learning to conduct

USENIX Association 2019 USENIX Annual Technical Conference 397

Data Plane

Device Driver

Cognitive SSD
Runtime

DLG-x Accelerator
Deep Learning

Unit
NAND Flash Controller

U
se

r
S

p
ac

e
O

S
 k

er
n
el

C
o
g
n
it

iv
e

S
S

D

Cognitive SSD IO Path
Cognitive SSD Task Path
DLG-x Configure PathTask Plane

 I/O schedulerDLG task scheduler

 User Library

Graph Search
Engine

Host Server

 Basic Firmware

DLG_hashing

DLG_analysis

I/O interface

DLG-x Compiler

Caffe Users Application

NAND Flash Array

Instruction Parameter region

SSD_read
SSD_writeDLG_index

 Configuration Library

DLG Library

DLG configurator

DLG_config

Flash Translation Layer

Logical Block Mapping

Garbage

Collection

Bad Block

Management

 Basic Firmware

PHYECC Engine

NAND FLASH Controller
DRAM(meta data, cache)

NAND
FLASH

Request scheduler

Fig. 3. Overview of the Cognitive SSD system.
in-storage data query and analysis. It is designed to replace
the conventional data retrieval system and contains a flash-
accessing accelerator (DLG-x) for deep learning and graph
search. The DLG-x is deliberately reshaped to take advantage
of the large flash capacity and high internal bandwidth, and it
is also re-architected to enable graph search to target indexing.

3 Cognitive SSD System
Target Workload. As shown in Fig. 2, this work combines
the strengths of deep hashing and graph search technique
(DLG) to reduce the complexity of retrieval systems on the
premise of high accuracy, which makes it possible to offload
retrieval task from CPU/GPU into the resource-constraint
Cognitive SSD. Based on that, we build an end-to-end data
retrieval system that supports multimedia data retrieval such
as audio, video and text. For example, audio can be processed
by recurrent or convolutional neural network models on Cog-
nitive SSD to generate hash codes, which act as an index for
retrieving relevant audio data inside the SSD. In this paper,
image retrieval is used as a showcase. As shown in Fig. 3,
Cognitive SSD is designed to support the major components
in the framework of DLG, allowing developers to customize
and implement data retrieval solutions. Such a near-data re-
trieval system consists of two major components: the DLG
library running in lightweight server that manages user re-
quests, and the Cognitive SSD is plugged into the host server
via the PCIe interface. As shown in Table 1, as the interface
of Cognitive SSD system, the DLG library is established by
leveraging the Vendor Specific Commands in the I/O com-
mand set of the NVMe protocol. It contains a configuration
library and a user library. The configuration library enables
the administrator to choose and deploy different deep learning
models on the Cognitive SSD quickly according to applica-
tion demand. After the feature-extracting deep hashing model
has been deployed on the Cognitive SSD, a data processing
request arriving at the host server could send and establish a
query session to it by invoking the APIs provided by the user
library. Then, the runtime system on the embedded proces-
sor of the Cognitive SSD receives and parses the request to

activate the corresponding DLG-x module, which is associ-
ated with the user-created session. Next, we elaborate on the
software and hardware design details of Cognitive SSD.

3.1 The Cognitive SSD Software: DLG Library

3.1.1 Configuration Library
Update Deep Learning Models: Because the choice of deep
learning models significantly impacts the data retrieval sys-
tem performance, the system administrator must be able to
customize a specific deep hashing model according to the
complexity and volume of database, and the quality of service
measured by response latency or request throughput. Thereby,
the configuration library provides a DLG-x compiler compat-
ible with popular deep learning frameworks (i.e., Caffe) to
allow the administrator to train the new deep learning model
and generate corresponding DLG-x instructions offline. Then,
the administrator can update the learning model running on
the Cognitive SSD by updating the DLG-x instructions. The
updated instructions are sent to the instruction area allocated
in the NAND flash and stay there until a model change com-
mand (DLG_config in Fig. 3) is issued. Meanwhile, the DLG-
x compiler also reorganizes the data layout of the DLG algo-
rithm to fully utilize the internal flash bandwidth according
to the structures of neural network model and graph, before
the parameters of deep learning model and graphs are written
to the NAND flash. The physical address of weight and graph
structure information is recorded in the DLG-x instruction.
In this manner, the DLG-x obtains the physical address of
required data directly at runtime, instead of adopting the ad-
dress translation or look-up operations that incur additional
overhead. More details about the data reorganization scheme
are introduced in § 4.
3.1.2 User Library
Data Plane: The data plane provides SSD_read and
SSD_write APIs for users to control data transmission be-
tween the host server and the Cognitive SSD. These two
commands operate directly on the physical address bypassing
the flash translation layer. Users can invoke these APIs to
inject data sent from users to the data cache region or the
NAND flash on the Cognitive SSD based on the parameter of
data address and data size. Afterwards, users can use those
addresses to direct the operands in other APIs.
Task Plane: To improve the scalability of the DLG-x accel-
erator that supports deep hashing neural networks and graph
search algorithms, we abstract the function of the DLG-x into
three APIs in the task plane of user library: DLG_hashing,
DLG_index, and DLG_analysis. These APIs are established
using the C0h, C1h, and C2h commands of NVMe I/O proto-
col, respectively. All of them possess two basic parameters
carried by NVMe protocol DWords: the data address indicat-
ing the data location in Cognitive SSD, and the data size in
bytes.

First, the DLG_hashing API is designed to extract the con-
densed feature of input data and map it into the hash or seman-

398 2019 USENIX Annual Technical Conference USENIX Association

Table 1: DLG Library APIs for Cognitive SSD

- API NVMe command DWord10 DWord11 DWord12 Description
Configuration

Library - DLG_config 0xC3 address size Instruction/model Update instruction and model on DLG-x

User Library

Task
Plane

DLG_hashing 0xC0 data address data size Hashcode length Extract the hashing feature of input data
DLG_index 0xC1 data address data size T Fast database indexing

DLG_analysis 0xC2 data address data size User-defined Analysis of input data
Data
Plane

SSD_read 0xC4 data address data size – Physical Address Read
SSD_write 0xC5 data address data size – Physical Address Write

tic space, which is fundamental in a data retrieval system and
useful for other analysis functions like image classification or
categorization. This command contains an extended param-
eter: hashcode length, which determines the capacity of the
carried information. For example, compared to the database
with 500 objects types, the database with 1000 objects needs
a longer hash code to avoid information loss. Second, the
DLG_index API is abstracted from the graph search function
of the DLG-x. It also includes an extended parameters: T, rep-
resents the number of search results configured by users based
on the applications scenarios. Finally, the DLG_analysis API
allows users to analyze the input data using the data analysis
and processing ability of deep neural networks and it also
possesses a reserved field for user-defined functions. These
task APIs are the abstraction of the key near-data processing
kernels provided by Cognitive SSD, and they can be invoked
independently or combinedly to develop different in-SSD data
processing functions. For instance, users could combine the
DLG_hashing and DLG_index APIs to accomplish data re-
trieval on a large-scale database, where DLG_hashing maps
the features of query data to a hash code and DLG_index uses
it to search for the top-T similar instances.

3.1.3 Cognitive SSD Runtime The Cognitive SSD runtime
deployed on the embedded processor inside the Cognitive
SSD is responsible for managing the incoming extended I/O
command via PCIe interface. It also converts the API-related
commands into machine instructions for the DLG-x acceler-
ator, as well as handles basic operations for NAND flash. It
includes a request scheduler and the basic firmware. The re-
quest scheduler contains three modules: the DLG task sched-
uler, the I/O scheduler, and the DLG configurator. The DLG
configurator receives DLG_config commands from the host
and updates the instructions generated by the compiler and
parameters of the specified deep learning model for Cognitive
SSD. The DLG task scheduler responds to users requests as
supported in the task plane and initiates the corresponding
task session in Cognitive SSD. The I/O scheduler dispatches
I/O requests to the basic firmware or the DLG-x. The basic
firmware includes the flash translation layer, for logical block
mapping, garbage collection, bad block management func-
tions, and communicates with the NAND flash controller for
general I/O requests.

Note that the DLG-x accelerator occupies a noticeable por-
tion of the flash bandwidth once activated, which perhaps
degrades the performance of normal I/O requests. To alleviate

this problem, instead of letting the task or I/O scheduler wait
until the request is completed (denoted as Method A), the DLG
task scheduler receives the NVMe command sent from host
with doorbell mechanism and actively polls the completion
status of the DLG-x periodically (denoted as Method B) to de-
cide if the next request is dispatchable. We tested the normal
read/write bandwidth of Cognitive SSD prototype described
in § 5.1 with the Flexible IO Tester (fio) benchmark [4], under
the worst-case influence where the DLG-x accelerator opera-
tions occupied all the Cognitive SSD channels. Experiments
(Table 2) demonstrate that adopting Method B only causes a
drop of 27%-44% in the normal I/O bandwidth whilst using
Method A decreases almost 91% of the read/write bandwidth
averagely when the DLG-x accelerator is busy dealing with
the over-committed retrieval tasks.

Table 2: The I/O Bandwidth of Cognitive SSD.

- I/O Bandwidth (MB/s) (I/O size = 128KB)

- Write Random
Write Read Random

Read
Method-A 79.79 76.19 72.30 81.13
Method-B 524.86 421.23 654.31 698.98

Peak-Bandwidth 886.58 761.90 903.79 901.41

3.2 Hardware Architecture: Cognitive SSD

Fig. 3 depicts the hardware architecture of Cognitive SSD.
It is composed of an embedded processor running the Cog-
nitive SSD runtime, a DLG-x accelerator and NAND flash
controllers connected to flash chips. Each NAND flash con-
troller connects one channel of NAND flash module and uses
an ECC engine for error correction. When the devices in each
channel operate in lock-step and are accessed in parallel, the
internal bandwidth surpasses the I/O interface. More impor-
tantly, though SSDs often have compact DRAM to cache data
or metadata, the internal DRAM capacity can hardly satisfy
the demand of the deep learning, which is notorious for its
numerous neural network parameters. Worse still, the basic
firmware like FTL and other components also occupy major
memory resources. Therefore, the NAND flash controller is
exposed to the DLG-x accelerator, which enables the DLG-
x to read and write the related working data directly from
NAND flash, bypassing the internal DRAM.

3.3 The Procedure of data retrieval in Cognitive SSD

Fig. 3 also depicts the overall process of Cognitive SSD when
users perform unstructured data retrieval task. First, assume
that the hardware instruction and parameters of Hash-AlexNet

USENIX Association 2019 USENIX Annual Technical Conference 399

Neural Processing Engine

Control Unit

Instruction
Queue

Data path
Control path

Channel 0

Weight

Buffer 0

Vertex
Detector

Unit

Graph Search EngineCounter

Vertex
Arbitrator

Unit

Buffer
Address

Generator

InOut

Buffer-0

others

B1

B

B2 B

B

0

11

Processing Element (PE)

PE

Pooling ActivationConvolution

PE PE PE PE PEWeight

Buffer 1
InOut

Buffer-1
Channel 1

Channel 7

Flash
Controller

Flash
Controller

Flash
Controller

FLASH

FLASH

FLASH

Fig. 4. The Architecture of DLG-x accelerator.

model have been generated and written to the corresponding
region by leveraging the DLG-x compiler and the DLG_config
command shown in Fig. 3. The Hash-AlexNet is the developer
designated neural network for feature extraction of input data.
Then, when the host DLG library captures a retrieval request,
it packages and writes the user input data from the designated
host memory space to Cognitive SSD through the SSD_write
API. Meanwhile, the DLG_hashing command carrying the
address of input data is sent to Cognitive SSD for hash code
generation. Receiving the command, the request scheduler
of the cognitive runtime parses it and notifies the DLG-x ac-
celerator to start a hashing feature extraction session. Then,
the DLG-x automatically fetches input query data from the
command-specified data address and then loads deep learning
parameters from NAND flash. Meanwhile, the other com-
mand, DLG_index, is sent and queued by the task scheduler.
After the hash code is produced, the DLG_index is dispatched
to invoke the graph search function in the DLG-x and uses the
hash result to search the data graphs for relevant data entries.
In this case, the DLG-x keeps fetching graph data from the
NAND flash and sends the final retrieval results to the host
memory once the task is finished.

4 DLG-x Accelerator

4.1 Architecture: Direct Flash Accessing

In contrast to a traditional hardware accelerator [20], the DLG-
x accelerator is designed to directly obtain the majority of
the working-set data from NAND flash. Fig. 4 illustrates the
high-level diagram. The DLG-x accelerator has two activa-
tion buffers (InOut Buffer) and double-banked weight buffers.
The intermediate results of each neural network layers are
temporarily stored in the activation buffers, while the weight
buffers act as a bridge buffer between the Neural Processing
Engine (NPE) and the flash, which stream out the large quan-
tity of neural parameters to the NPE. The NPE comprises a set
of processing engines (PEs), which can perform fixed-point
convolutions, pooling, and activation function operations. The
Graph Search Engine (GSE) cooperates with the NPE and is
responsible for graph search with the hash code generated by
NPE. Both the NPE and GSE are managed by the control unit
that fetches instructions from memory. Considering the I/O
operation granularity of NAND flash, we reorganize the data
layout of neural networks including both the static parameters
and the intermediate feature data, to exploit the high internal
flash bandwidth.

4.2 I/O Path in Cognitive SSD

Bandwidth Analysis: At first, we analyze and prove that the
internal bandwidth of NAND flash can satisfy the demand
of deep neural network running on the DLG-x accelerator.
Assuming that the DLG-x and flash controller runs on the
same frequency and the NPE unit of the DLG-x comprises
NPE PEs. The single channel bandwidth of NAND flash is
BWf lash. Thereby, the bandwidth of M channels equals to:

BW m
f lash = M×BWf lash (1)

Suppose that a convolution layer convolves a Ic× Ih× Iw input
feature map (IF) with a Kc × Kh × Kw convolution kernel
to produce a Oc ×Oh ×Ow output feature map (OF). The
subscript c, h, and w correspond to the channel, height, and
width respectively. The input/weight data uses an 8-bit fixed-
point representation. It is easy to derive that the computation
latency Lcompute and the data access latency Ldata from NAND
flash to produce one channel of feature map are:

Lcompute =
OPcompute

OPPE
=

2×Kc ×Kh ×Kw ×Oh ×Ow

2×NPE
(2)

Ldata =
Sparam

BW m
f lash

=
Kc ×Kh ×Kw

BW m
f lash

(3)

Where the OPcompute and Sparam is the operation number and
the parameters volume of a convolutional layer. OPPE gauges
the performance of the DLG-x measured in operations/cycle.
To avoid NPE stalls,we must have Lcompute >= Ldata, and Ow
is usually equal to Oh, so we have

Ow >=
√

NPE/BW m
f lash (4)

The above equation indicates that if only the width and
height of the output feature map is larger than or equal
to the right side of formula 4, which is four in our proto-
type with NPE = 256 and BW m

f lash = 16bytes/cycle, the NPE
will not stall. For example, in the Hash-AlexNet mentioned
in § 2.1, the minimum width of the output feature map in
convolution layers is 7, which already satisfies in inequal-
ity 4 design. However, in the FC layers, Lcompute is smaller
than Ldata, so the data transfer time becomes the bottleneck.
Thereby, the DLG-x accelerator only uses a column of PEs
to deal with a FC layer because our prototype hardware de-
sign only supports eight channels, which does not meet in-
equality 4 with M = 128 and consequently causes PE under-
utilization. Besides, the parameter-induced flash reads will be
minimized if the size of the weight buffer meets the condition:
Sbu f f er >= Max(Kc ×Kh ×Kw). The parameters exceeding
the size of weight buffer will be repetitively fetched from the
flash. To further improve the performance, we utilize ping-
pong weight buffers to overlap the data loading latency with
computation.
Data Layout in flash devices: Owing to the bandwidth anal-
ysis on the base of multi-channels data transmission, we pro-
pose flash-aware data layout to fully exploit flash bandwidth
with the advanced NAND flash command-read page cache

400 2019 USENIX Annual Technical Conference USENIX Association

1

2

3

N

Page 0
S /M

Channel 0Convolution
Kernel

DIE 0

DIE 1

DIE 2

DIE N

Plane 0

Plane N
Block 0

Block N

Channel M-1

DIE 0

DIE 1

DIE 2

DIE N

Cache
Register

Page
Register

Page N

NFC NFC

NFC Output

k

k

Page N

v

u

Channel 0
kSKernel Size

NAND FLASH
Controller

S /Mk

Fig. 5. The Data Layout in NAND flash.

command [11]. The read page cache sequential command
provided by NAND flash manufacturer can continuously load
the next page within a block into the data register (·) while
the previous page is being read to the buffer of the DLG-x or
the cache region of the SSD from the cache register(¶). Thus,
based on the NAND flash architecture with the provided page
cache command, we choose to split the convolution kernels
and store them into flash devices for parallel fetch. As shown
in Fig. 5, assuming there are Nk convolution kernels with
Sk kernel size, and M NAND flash channels are used by the
DLG-x accelerator, each convolution kernel is divided into
SK/M sub-blocks and all such sub-blocks are interleaved to
the flash channels. The convolution kernels exceeding the
size of a page are placed into continuous address space in the
NAND flash because the cache command reads out the next
page automatically without any extra address or operation.
Data Flow: Taking the Hash-AlexNet as an example, when a
request arrives at the DLG-x accelerator, the input data and
the first kernel of the first convolution layer is transferred in
parallel to the InOut buffer-0 and the weight buffer-0. After
that, the DLG-x accelerator begins to compute the output
feature map and stores them into the InOut buffer-1. When
the first kernel is processed, the second kernel is being trans-
ferred from the NAND flash to weight buffer-1, then followed
by the third and fourth kernel in sequence. Once the hash
code is generated, it is sent to the graph search registers of
NPE to locate the data structures similar to the query data if
the DLG task scheduler decodes and dispatches a following
DLG_index command.

4.3 Fusing Deep Learning and Graph Search

For fast and accurate database indexing, the DLG-x accelera-
tor fuses the deep learning and graph search mechanism into
unified hardware, and reuses the computation and memory re-
sources for higher efficiency. Once the hash code of the query
data has been generated, the DLG-x uses it to initially index
the corresponding data graphs and searches for the closest
data entries from graphs.

The graph search method originates from Navigating
Spreading-out Graph [27] (NSG), which well fits the lim-
ited memory space of the Cognitive SSD for the large-scale
multimedia data retrieval. The NSG algorithm includes an
offline stage and an online stage. In the offline phase, the

NSG method constructs a directed Knbors −NN graph for the
storage data structures to be retrieved. In a graph, a vertex
represents a data entry by keeping its ID and hash code. The
unique ID represents a file and the hash code is the feature
vector of this file, which could be obtained by invoking the
DLG_hashing API in advance. The bit-width of ID (Wid) and
hash code (Whash_code) are user-configurable parameters in the
API. In a graph, a vertex may be connected to many vertices,
which have different distances from each other. However, only
the top-Knbors closest vertices of a vertex could be defined as
its "neighbors", where Knbors is also a reconfigurable parame-
ter and enables users to pursue the trade-off between accuracy
and retrieval speed. The DLG-x accelerator only accelerates
the online retrieval stage and the database update occurs of-
fline because the latter task is infrequent. The database update
consists of hash code extraction stage and Knbors −NN graph
construction stage, where the former is accelerated by the
DLG-x accelerator and the latter is completed with the DLG
library on CPUs. At offline graph construction, it takes about
10∼100 seconds to update the Knbors −NN graph on million-
scale data on a server CPU. The hardware architecture for
online graph search is presented in Fig. 4.

The graph search function of the DLG-x starts from evalu-
ating the distance of random initial vertices in the graph and
walks the whole graph from vertex to vertex in the neighbor-
hood to find the closest results. As shown in Fig. 4, to max-
imize the utilization of on-chip memory, the weight buffer
and InOut buffer are reused to store the neighbors of vertices
and the search results of the graph search engine respectively.
Since the Hamming distance (H-distance) is an integer value,
the InOut buffer is divided into blocks according to the range
of H-distance. For instance, the first block of the InOut buffer
B0 only stores the vertices with zero Hamming distance away
from the query vertex, and the second block B1 corresponds
to the distance of one hop. The last area Bothers stores the ver-
tices with Hamming distance larger than the final value Vf inal ,
where the Vf inal is a re-definable parameter and calculated
with formula 5.

Vf inal =

⌊
Sbu f f er

Dblock ×Wid
−1
⌋

(5)

In the above equation, Sbu f f er is the on-chip buffer size of
the DLG-x accelerator and Dblock represents the number of
vertex IDs that can be stored in each block. Wid is usually
equal to 32bits. For instance, in our design, with Sbu f f er =
256KB and Dblock = 5000, it is easy to have Vf inal = 12. Note
that the limited size of the region Bothers cannot hold all the
distant data vertices generated at runtime, and thus Bothers
is configured to a ring buffer to accommodate the incoming
vertices cyclically.

A Vertex Detector Unit (VDU) is inserted to check whether
the selected vertex has been evaluated. In VDU, the vertex
will be discarded once found to have been walked before,
otherwise it will be sent to the NPE unit to compute the
Hamming distance from the query vertex. With the distance

USENIX Association 2019 USENIX Annual Technical Conference 401

provided by the NPE, the Buffer Address Generator (BAG)
module allocates memory space in the InOut buffer for the
vertex and then puts the vertex into the assigned areas of the
InOut buffer. The unevaluated vertices will be fetched from
the InOut buffer and the neighbors of these vertices are loaded
from the weight buffer by the control unit. Meanwhile, the
control unit will finally return the top-T closest vertices when
the number of vertex in the InOut buffer reaches the threshold
configured by users, where T is also configured by users via
the DLG_index API.

Vertex 1
Vertex 1

Vertex 25

ID

1

1

Hash code
32bit 48bit

Vertex 2
Vertex 1

Vertex 25

2

2

Vertex 25
Vertex 1

Vertex 25

25

25

0

25

1

1
1

25

2

1

125

2

25
25

2 251

V0
V1

V25

Vertex the neighbors of vertex

(a) Graph (b) Data Layout

Page 0

Page N

Block 0

Block N

Plane

3 ...

Fig. 6. The data organization on one page.
Data Layout for fast In-SSD NSG search: NAND flash
read operations are performed at a page granularity (16KB),
so that every time the DLG-x accesses the neighborhoods
of one vertex (250bytes), it must read one whole page from
flash, which perhaps causes low bandwidth utilization if lo-
cality is not well preserved. In our design that Knbors = 25,
Wid = 32bits and Whash_code = 48bits. Inspired by the intu-
ition that the neighbor of a neighbor is also likely to be a
neighbor of the query data in the graph, we can infer that
the neighbors of the accessed vertex will be used soon due
to the spatial locality. Therefore, as shown in Fig. 6, V0 and
all its neighbors (V1,V2, ...,V25), are continuously aligned and
stored from the beginning of a page. As a result, such a lay-
out with redundancy is able to reduce flash access by 37x
compared to a non-optimized graph layout. However, such
a layout cause duplicates of vertices in storage and sacrifice
additional storage space for better data access performance,
which is worthwhile regarding the large capacity of SSDs.

Besides data layout transformation, the bit-width of the
hash code is also worth elaborating. Due to the limited page
size Spage, Whash_code and Knbors must conform to the resource
constraint given by:

K2
nbors × (Whash_code +Wid)< Spage (6)

Generally Spage = 16KB, and Wid is 32-bit wide and can rep-
resent 232 files. Because the parameters Whash_code and Knbors
directly impact the deep hashing performance by influenc-
ing the indexing accuracy and also the memory bandwidth
consumption during graph search, once Spage is determined,
Whash_code and Knbors must be adjusted to reach a perfect bal-
ance between accuracy and retrieval time at the offline stage.
Thus, the DLG-x must support different parameter formats in
order to achieve best-effort computing efficiency for databases
of different volume and complexity.

Note that our graph layout and the according searching
strategy are adapted to the underlying hardware for higher
energy efficiency, and they will lead to a marginal amount

Table 3: The accuracy loss.

Dataset
Accuracy(%) at T samples

200 400 600 800 1000

CIFAR-10
Original 86.65 86.58 86.56 86.51 86.54

Our 85.49 85.02 84.75 84.47 84.28
Loss 1.16 1.56 1.81 2.04 2.26

ImageNet
Original 33.78 33.77 33.48 32.89 31.83

Our 30.66 29.79 29.13 28.43 27.47
Loss 3.12 3.98 4.35 4.45 4.36

of query accuracy losses compared to the original algorithm.
Table 3 indicates the accuracy loss compared with the original
lossless DLG algorithm (denoted as Original) on the CIFAR-
10 [9] and ImageNet [45] datasets. The result shows that when
T=1000, the accuracy drops by 2.26% and 4.36%, as a side-
effect of the ∼ 37x performance boost. Fortunately, the DLG
library APIs are flexible enough to allow the developers to
trade-off between accuracy and performance by manipulating
the API arguments.
Data Flow: we show an example to brief the overall flow of
the DLG-x based data retrieval. Firstly, when a query comes,
the DLG-x fetches the input data and parameters of the deep
learning model from the NAND flash into the InOut buffer
and the weight buffer of the DLG-x respectively. Then, the
NPE unit generates the hash code for the input data and writes
it to the graph search registers of the NPE unit. After that,
the DLG-x transfers the Knbors −NN graph from the NAND
flash array to the weight buffer. At the first stage, the initial
vertices are calculated and sent into the corresponding areas
of the InOut buffer. At the second stage, the DLG-x control
unit reads the first unevaluated vertex from the InOut buffer
in ascending order of Hamming distance. Then, the graph
search engine obtains the neighbors of the unevaluated vertex
from the NAND flash and transfers the neighbors to NPE
to generate their Hamming distances from the query vertex
as well. Next, the Buffer Address Generator unit generates
the write addresses for these neighbor vertices in the InOut
buffers according to the calculated Hamming distance and
writes these vertices to the InOut buffers. Meanwhile, the
counter in the graph search engine determines whether the
termination signal should be issued by monitoring the total
number of vertices stored in the InOut buffer. Once the termi-
nation signal is generated, the Cognitive SSD runtime reads
out the vertices from the InOut buffer and then transfers the
ID-directed results stored in NAND flash to the host server
via the PCIe interface.

Zynq-7000

DRAM

PCIe

Interface

NAND

FLASH

NAND

FLASH

Fig. 7. Cognitive SSD prototype.

402 2019 USENIX Annual Technical Conference USENIX Association

5 Evaluation
5.1 Hardware Implementation

To explore the advantages of the Cognitive SSD system, we
implemented it on the Cosmos plus OpenSSD platform [7].
The Cosmos plus OpenSSD platform consists of an XC7Z045
FPGA chip, 1GB DRAM, an 8-way NAND flash interface,
an Ethernet interface, and a PCIe Gen2 8-lane interface. A
DLG-x accelerator is designed with DeepBurning [55] and
integrated to the modified NAND flash controllers, and they
are all implemented on the programmable logic of XC7Z045.
The Cognitive SSD runs its firmware on a Dual 1GHz ARM
Cortex-A9 core of XC7Z045. The Cognitive SSD is plugged
into the host server via a PCIe link. The host server manages
the high-level requests and maintains the DLG library for API
calls. Fig. 7 shows the Cognitive SSD prototype constructed
for this work.

5.2 Experimental Setup

We first selected the content-based image retrieval system
(CBIR) based on deep hashing and graph search (DLG) al-
gorithm as workload and evaluated the performance of DLG
solution compared to other conventional solution (§5.3). we
evaluated the DLG-x of the Cognitive SSD prototype in §5.4,
and deployed the Cognitive SSD prototype to a single node
and multi-node system, and evaluated them in §5.5, and §5.6,
respectively. Except for the Cognitive SSD prototype, our
experimental setup also consists of a baseline server running
Ubuntu 14.04 with two Intel Xeon E5-2630 CPU@2.20GHz,
32GB DRAM memory, four 1TB PCIe SSDs and an NVIDIA
GTX 1080Ti. Meanwhile, we implemented the CBIR system
in C++ on the baseline server, where the deep hashing is built
on top of Caffe [31]. Based on this platform, we constructed
four solutions baselines: B-CPU, B-GPU, B-FPGA, and B-
DLG-x. For B-CPU, the DLG algorithm runs on the CPU.
For B-GPU, the deep hashing runs on the GPU and graph
search runs on the CPU. For B-FPGA, we use ZC706 FPGA
board [12] to replace Cognitive SSD, and the deep hashing
runs on ZC706 FPGA board and graph search runs on the
CPU. B-DLG-x implements the DLG algorithm on ZC706
FPGA board without any near-data processing technique com-
pared to Cognitive SSD.

5.3 Evaluation of DLG algorithm

Experimental Setup. We used the precision at top T re-
turned samples (Precision@T), measuring the proportion-
ality of corrected retrieved data entries, to verify the perfor-
mance of our deep hashing method on different models and
datasets [36]. The performance is contrasted with traditional
hash methods with 512-dimensional GIST feature, including
Locality-Sensitive Hashing (LSH) [54] and Iterative Quanti-
zation (ITQ) [28]. The used datasets are listed in Table 4.
Evaluation. Fig. 8(a)-(d) shows the Precision@T on different
datasets with different deep hashing models. Due to the poor

Table 4: Datasets used in our experiments

Dataset Total Train/Validate Labels
CIFAR-10 [9] 60000 50000/10000 10

Caltech256 [29] 29780 26790/2990 256
SUN397 [57] 108754 98049/10705 397
ImageNet [45] 1331167 1281167/50000 1000

(a) CIFAR-10 (b) Caltech-256

(c) SUN397 (d) ImageNet

AlexNet(48) ITQ LSH VGG-16(48) ITQ LSH

ResNet-18(48) ITQ LSH
ResNet-50(64) ResNet-50(48)
ITQ LSH A+ITQ AC+ITQ

200 400 800 100030000.0

0.5

1.0

T

P
re

c
is

io
n

10 30 50 100 200 500
0.0

0.3

0.6

T

P
re

c
is

io
n

50 100 200 500 1000
0.0

0.3

0.6

T

P
re

c
is

io
n

200 400 600 800 1000
0.0

0.3

0.6

T

P
re

c
is

io
n

hash code
length

Fig. 8. Precision curves w.r.t top-T.
performance of LSH and ITQ [28] methods on ImageNet,
we added the AlexNet-ITQ (A+ITQ) and AlexNet-CCA-ITQ
(AC+ITQ) methods [58] that uses the output of the FC layer
on Alexnet as the feature vector for search. Our DLG solu-
tion performs better than the other approaches on different
datasets with different scales regardless of the choice of T
value, especially compared to the conventional hash method.
It also shows the robustness of the DLG solution when deploy-
ing on a real-world system. Meanwhile, Fig. 8(d) shows the
performance of our approach is significantly improved when
the code length increases to 64 bits. Thereby, the DLG-x ac-
celerator is configured to support different hash code length to
achieve the trade-off between retrieval accuracy and latency.

5.4 Evaluation of DLG-x

Experimental Setup. We implemented the deep hashing and
graph search algorithm (DLG) on the DLG-x accelerator of
Cognitive SSD and compared the latency and power of the
DLG-x to the solutions based on CPU and GPU, where we
ignore the FPGA baseline because its computational units are
the same as the DLG-x. Firstly, we only compared the latency
and power of the deep hashing unit on the DLG-x running
various deep hashing models to CPU and GPU, where GPU
only reports the total power consumed by NVIDIA GTX
1080Ti without the power of the CPU. Secondly, we only
evaluated the latency of graph search function on the DLG-
x with respect to different number (T) of top retrieved data
entries on the CIFAR-10 and ImageNet dataset.
Performance. Firstly, Table 5 shows the latency of the DLG-
x on various deep hashing schemes outperforms the solution
based on CPU. While the latency of the DLG-x is higher
than GPU because of the hardware resource and frequency
limitation, it consumes less power compared to GPU. More
importantly, the latency of the CPU and GPU on Table 5 only
contains the computation delay of neural network without
the delay of parameters transmission between storage and

USENIX Association 2019 USENIX Annual Technical Conference 403

Table 5: Deep hashing performance on different platforms.

Model - Latency (ms) Power (Watt)

Hash-AlexNet
DLG-x 38 9.1
CPU 114 186
GPU 1.83 164

Hash-ResNet-18
DLG-x 94 9.4
CPU 121 185
GPU 7.13 112

Brute-Force-Sort

Graph Search-CPU

DLG-x Brute-Force-Sort/DLG-x
Graph Search-CPU/DLG-x

(a) Latency on CIFAR-10 (b) Speedup on CIFAR-10

(c) Latency on ImageNet (d) Speedup on ImageNet

200 400 600 800 1000100
102
104
106

L
a
te

n
c
y
(u

s
)

200 400 600 800 1000
0

50

100

150

S
p

e
e
d

u
p

111.51 90.22

37.12 36.73

200 400 600 800 1000100
102
104
106

L
a
te

n
c
y
(u

s
)

200 400 600 800 1000
100

102

104

S
p

e
e
d

u
p

5334.4 498.5

12.5
3.4

of Top Retrieval # of Top Retrieval

of Top Retrieval # of Top Retrieval

Fig. 9. Graph search performance of the DLG-x.

memory. When considering the delay of parameters transmis-
sion between storage and memory, the deep hashing occupies
about 87.7% and 73.9% of the total processing time on the
DLG-x accelerator and CPU baseline, on average, respectively.
And the GPU only accounts for 3.5% of the total runtime on
average because the high-speed data processing capability of
GPU makes the data transmission becomes the bottleneck of
system. Besides, the latency of deep hashing on the GPU oc-
cupies 54.17∼26.06% without considering the delay of data
movement because the latency of graph search increases with
the increase of T value.

Secondly, in this experiment, we utilized the Hash-AlexNet
model to generate the hash code database for the construc-
tion of a Knbors −NN graph on the CIFAR-10 and ImageNet
dataset. We compared the retrieval speed of the DLG-x accel-
erator with two counterparts: the brute-force search method
that evaluates all the hash codes stored in the database, and the
CPU executed graph search algorithm. The result is depicted
in Fig. 9. For the CIFAR-10 dataset, the DLG-x accelerator is
111.51-90.22x and 37.12-36.73x faster than the brute-force
method and the CPU-run graph search algorithms respectively,
while for the ImageNet dataset it achieves a 5334.4-498.5x
and 12.5-3.4x speed up over the latter two baselines. As in-
troduced in § 4.3, the retrieval accuracy is only degraded
by 2.26% and 4.36% when T = 1000 on the CIFAR-10 and
ImageNet datasets, respectively.
Power Consumption. We measured and compared the power
consumption of Cognitive SSD system with four baselines:
B-CPU, B-GPU, B-FPGA, and B-DLG-x by using a power
meter under two different situations: (1) IDLE: No retrieval re-
quests need to respond, and (2) ACTIVE: A user continuously
accesses the Cognitive SSD system. The result is illustrated
in Table 6. When the Cognitive SSD+CPU system is IDLE,
its power consumption is slightly higher than B-CPU and
B-GPU because the Cognitive SSD prototype board IDLE

Table 6: Power consumption.

Power
(Watt)

Cognitive
SSD

Cognitive
SSD+CPU

B-
DLG-x

B-
FPGA

B-
CPU

B-
GPU

IDLE 17 98.5 89 89 80 90
ACTIVE 20 122 185.7 195.6 186 330

Table 7: The hardware utilization of Cognitive SSD.

Module # LUT FF BRAM DSP
Flash Controller 8 11031 7539 21 0
NVMe Interface 1 8586 11455 28 0

DLG-x Accelerator 1 67774 18144 137 197
In Total 1 203099 145078 354 197
Percent(%) - 92.91 33.18 64.95 21.8

power is higher than that of the PCIe SSD and GPU. For
active power, when delivering comparable data retrieval per-
formance, the Cognitive SSD system reduces the total power
consumption by up to 34.4% and 63.0% compared with B-
CPU and B-GPU. Simply replacing the GPU with the FPGA
board reduces power consumption by 40.7%. Furthermore,
putting the DLG-x on an identical FPGA board without the
NDP decrease power consumption by 43.72%, which is at-
tributed to the efficiency of hardware specialization. Placing
the DLG-x into the Cognitive SSD system further eliminates
power consumption by another 19.3%, which is the benefit of
near-data processing. In the case of the Cognitive SSD+CPU
solution, the power of CPU is low because it is only responsi-
ble for instruction dispatch without any data transfer between
storage and CPU. In other cases, the CPU is not only in charge
of data transfer management but also for instruction dispatch
or executing the graph search algorithm.
FPGA Resource Utilization. The placement and routing
were completed with Vivado 2016.2 [8]. Table 7 shows the
hardware utilization of Cognitive SSD. It only reports the
resources overhead of the flash controller, NVMe controller,
and the DLG-x accelerator module. The item of In Total
counts in all FPGA resources spent by the Cognitive SSD.

Fig. 10. A CBIR system based on Cognitive SSD.

5.5 The Single-node System Based on Cognitive SSD

Experimental Setup. We implemented the CBIR system by
using the ImageNet dataset on the Cognitive SSD with a base-
line server, where the baseline server is only responsible for
receiving and sending retrieval requests to Cognitive SSD.
The deep hashing architecture is a Hash-AlexNet network
and the hash code length is 48 bits. As shown in Fig. 10, we
built a web-accessible CBIR system based on web framework
CROW [30] to evaluate the latency and query per second
(QPS) of the system by simulating the user requests sent to

404 2019 USENIX Annual Technical Conference USENIX Association

100 200 400 600 800 10000

100

200
B-CPU B-GPU B-FPGA B-DLG-x Cognitive SSD

100 200 400 600 800 1000
0.0

0.1

0.2

of Top Images Retrieved (T)

Q
P

S
/W

a
tt

L
a
te

n
c
y
 (

m
s
)

(a) Latency

(b) QPS/Watt

Fig. 11. System performance.
the URL address via ApacheBench (ab) [1]. The latency mea-
surement indicates the time between issuing a request and the
arrival of the result. The QPS is a scalability measuring metric
characterizing the throughput of the system. The latency and
QPS are affected by the software algorithm and the hardware
performance of the system. Meanwhile, we utilized the metric
of QPS per watt (QPS/Watt) to evaluate the energy-efficiency
of the system.
Evaluation. We evaluated the performance of the Cognitive
SSD system and four baselines under the assumption that data
(weight/graph) cannot be accommodated in DRAM and must
travel across the SSD cache, I/O interface, and DRAM before
reaching a compute unit. The performance of the Cognitive
SSD system and four baselines are shown in Fig. 11. With
the increased number of top images retrieved, the retrieval
time spent on the DLG-x accelerator will rise. It leads to
increased retrieval latency and decreased QPS for the Cog-
nitive SSD. Meanwhile, we also observe the 95% requests
complete in time in experiments when write operations and
garbage collection are inactive on the Cognitive SSD. Note
that write operations and garbage collection are rare for the
Cognitive SSD compared to read operations and usually oc-
cur offline. The workloads on the Cognitive SSD are read-
only, which sustains the latency of the Cognitive SSD at a
steady level with little fluctuation. Besides, in comparison
to the B-CPU, the Cognitive SSD reduces latency by 69.9%
on average. The performance improvement stems from the
high-speed of data processing on the DLG-x accelerator com-
pared to B-CPU. Due to the overhead of data movement
caused by the bandwidth limitation of the I/O interface and
onboard memory, the latency of B-FPGA and B-DLG-x is
higher than B-GPU. Compared to the B-FPGA and B-DLG-x
baselines, the Cognitive SSD reduces latency by 63.79% and
63.02% on average, which benefits from near-data processing.
The average retrieval speed of B-GPU is 1.11x faster than
Cognitive SSD because the execution of deep hashing costs
more time on the resource-limited DLG-x compared to power-
ful GPUs. However, Cognitive SSD is more energy-efficient
(QPS/Watt) than a GPU-integrated system by 2.44x, which is
shown in Fig. 11(b). More importantly, the Cognitive SSD is
implemented with FPGA and the operating frequency is only
100MHz. The performance will be better if the Cognitive SSD

Ethernet

Worker

Server

Nginx Server

Worker

Server

Worker

Server

PCIe

Worker Server

PCIe PCIe

Ethernet

Nginx Server

Worker ServerCognitive

SSD

(a) Conventional Multi-node Cluster
(CMC)

(b) Host-Free Cluster
(HFC)

Fig. 12. The architecture of the conventional multi-node clus-
ter(CMC)(a) and host-free cluster(HFC)(b).

is implemented with ASIC or escalated operating frequency.

5.6 The Cluster of Connected Cognitive SSDs

Experimental Setup. We evaluated the performance and the
scalability of the Cognitive SSD when it scales into a multi-
node cluster system. Fig. 12(a) shows the architecture of a
conventional low-cost small-scale cluster system in a data
warehouse. The cluster system consists of 10 worker servers
and 1 Nginx [5] server. The Nginx server is responsible for
load balancing. The worker nodes connect to the Nginx server
by using TCP connections. In this case, we constructed four
cluster system baselines by extending above four baselines:
BC-CPU, BC-GPU, BC-FPGA, and BC-DLG-x. We issued
requests to measure the QPS and the latency per request of
the Cognitive SSD based cluster system when multiple users
are accessing the web service shown in Fig. 10 concurrently
via the ab tool.
Evaluation. Fig. 13(a) illustrates that when concurrent users
equal to 400, all evaluated schemes rise slowly in experi-
ments, which is limited by the thread of worker server and the
node number of clusters. Meanwhile, the variation of peak
QPS is due to the change of the performance bottleneck in
different solutions. For example, the saturation performance
of BC-GPU and CMC is constrained by the thread of the
server while that of BC-CPU, BC-FPGA, and BC-DLG-x is
determined by the latency of deep hashing inference and data
movement. Fig. 13(b) shows that the QPS and latency per re-
quest of four baselines and CMC also change with the scale of
the node cluster when the number of concurrent users reaches
400. As the number of nodes increases, the QPS gradually in-
creases to the peak value, and the latency gradually decreases
owing to improvement of service parallelism. When the nodes
increase, the load-balancing mechanism of Nginx prevents a
large hotspot formation in the cluster, which greatly increases
the waiting time of requests.

We also measured the power consumption of the CMC
system while running the CBIR service and compared it to
BC-CPU, BC-GPU, BC-FPGA, and BC-DLG-x. When the
cluster system is active, as shown in Fig. 14, the power con-
sumption of a single node in the BC-CPU and BC-GPU are
respectively 1.52x and 2.70x higher than a single node in the
CMC. Similarly, Fig. 15 indicates the power of BC-CPU and
BC-GPU is 1.45x and 2.46x than that of a CMC. Meanwhile,
we also compared the QPS/Watt of CMC with other four base-
line in Fig. 13(c). The energy-efficiency (QPS/Watt) of CMC

USENIX Association 2019 USENIX Annual Technical Conference 405

(a) QPS w.r.t Concurrency (b) QPS&Latency under different nodes (c) QPS/Watt w.r.t Concurrency

QPS:
Latency:

1 10 20 40 60 80 10
0

20
0

30
0

40
0

50
0

0

1000

2000

3000

Concurrency

Q
P

S
BC-CPU

BC-GPU

BC-FPGA

BC-DLG-x

CMC

HFC

1 2 4 6 8 10
0

1000

2000

3000

0

500

1000

1500

2000

2500

Node

Q
P

S
L

a
te

n
c

y
(m

s
)

BC-CPU BC-GPU BC-FPGA BC-DLG-x CMC HFC

BC-CPU BC-GPU BC-FPGA BC-DLG-x CMC HFC

1 10 20 40 60 80 10
0

20
0

30
0

40
0

50
0

0.0

0.5

1.0

1.5

2.0

Concurrency

Q
P

S
/W

a
tt

Fig. 13. Performance comparison.

BC-
CPU

BC-
GPU

BC-
FPGA

BC-
DLG-x

CMC HFC
0

200

400

P
o

w
e
r

(W
a
tt

s
)

Cognitive SSDIDLE ACTIVE

17.3%
16.4%

Fig. 14. Power dissipation of a single node.
is higher than the other four baselines because of short data
movement path and the energy-efficient DLG-x accelerator.
When the cluster system is IDLE, the power consumption is
slightly higher than BC-CPU and BC-GPU because of the
power consumption of the Cognitive SSD prototype is higher
than the enterprise SSD.

It is noted that Fig. 15 indicates the power consumption of
the Cognitive SSD only occupies about 15.93% (IDLE) and
14.08% (ACTIVE) of the entire system in the CMC archi-
tecture. The Cognitive SSD contains one Dual 1GHz ARM
Cortex-A9 core, which could run embedded Linux system
and has lower power consumption compared with the Intel
Xeon CPU. Thereby, as shown in Fig. 12(b), to further re-
duce power consumption, we proposed the architecture of the
host-free cluster (HFC) system, where the Cognitive SSD is
directly connected to the Ngnix server via TCP connection,
and the embedded Linux system runs a simple NAND flash
management daemon and crow web framework.

We measured the performance of the host-free cluster sys-
tem under the same experimental setup, which is illustrated
in Fig. 13, Fig. 14, and Fig. 15. Fig. 14 shows that the power
dissipation of a single node in the host-free cluster system is
reduced by up to 89.2%, 93.9%, and 83.6% compared with
that of BC-CPU, BC-GPU, and the original CMC when sys-
tem is active. Considering the host server contains two Intel
Xeon E5-2630 CPU that outperforms the dual Cortex-A9 in
the Cognitive SSD, thereby, we measured the QPS per watt
(QPS/Watt) to illustrate the energy-efficiency of the HFC
system. The result (Fig. 13(c)) shows that when system con-
currency is low, HFC delivers better energy-efficiency than
the other four baselines and even better than the CMC archi-
tecture. The reason is that using high-performance machines
to handle infrequent requests results in low energy-efficiency.
Therefore, Fig. 13(c) witnesses the energy-efficiency of HFC
relatively decreases with the increasing concurrency of the
system. The performance growth of HFC under different node
numbers also project that the level-off throughput is limited by

BC-
CPU

BC-
GPU

BC-
FPGA

BC-
DLG-x

CMC HFC
0

2000

4000

P
o

w
e
r

(W
a
tt

s
)

Cognitive SSDIDLE ACTIVE

15.93%
14.08%

Fig. 15. Power dissipation of cluster.
the embedded CPU power instead of the DLG-x. In analysis,
the HFC system will have much lower power consumption
and higher performance if the Cortex-A9 processor is replaced
by the latest Cortex-A series, e.g., a quad-core or octo-core
Cortex-A75. Therefore, connecting the Cognitive SSD di-
rectly via interconnects contributes to much higher energy
efficiency in Cognitive SSD system and guaranteed service
throughput as well.

6 Conclusion
In this paper, we have introduced the Cognitive SSD, a near-
data deep learning device that actively performs low latency,
low power and high accuracy unstructured data retrieval. We
have designed and implemented the Cognitive SSD with a
direct flash-access deep hashing and graph search accelerator,
to combat the complex software stack and inefficient mem-
ory hierarchy barriers in the conventional multimedia data
retrieval systems. Our prototype demonstrates that the Cogni-
tive SSD reduces latency by 69.9% on average compared to
CPU, and more than 34.4% and 63.0% power saving against
CPU and GPU respectively. Furthermore, the Cognitive SSD
can scale to a multi-SSD system and significantly reduces the
cost and power overhead of large-scale storage nodes in data
centers. The demo of the retrieval system based on Cognitive
SSD is available at [3] and part of the source code is available
at [2].

Acknowledgments
We thank our shepherd, Joseph Tucek, and the anonymous
ATC reviewers for their valuable and constructive suggestions.
We thank the professor Jiafeng Guo of the CAS key lab of net-
work data science and techology for his supports and sugges-
tions. This work was supported in part by the National Natural
Science Foundation of China under Grant 61874124, Grant
61876173,Grant 61432017, Grant 61532017, Grant 61772300
and YESS hip program No.YESS2016qnrc001.

406 2019 USENIX Annual Technical Conference USENIX Association

References
[1] ab - Apache HTTP server benchmarking tool - Apache

HTTP Server Version 2.4. http://httpd.apache.
org/docs/2.4/programs/ab.html.

[2] The Cognitive SSD. https://github.com/
Cognitive-SSD.

[3] The Cognitive SSD Platform. http://cognitivessd.
vicp.io:10110/.

[4] Flexible I/O tester. https://fio.readthedocs.io/
en/latest/fio_doc.html#moral-license.

[5] NGINX. https://www.nginx.com/.

[6] Nvm express. https://nvmexpress.org/.

[7] The OpenSSD Project. http://openssd.io.

[8] Vivado. https://www.xilinx.com/support/
download.html.

[9] Learning multiple layers of features from
tiny images. Technical report, 2009. http:
//citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.222.9220&rep=rep1&type=pdf.

[10] The biggest data challenges that you might
not even know you have, May 2016. https:
//www.ibm.com/blogs/watson/2016/05/
biggest-data-challenges-might-not-even-know/.

[11] Micron nand flash. page 239, 2017. https://www.
micron.com/products/nand-flash.

[12] ZC706 Evaluation Board for the Zynq-7000
XC7z045 SoC User Guide (UG954). page 115,
2018. https://www.xilinx.com/support/
documentation/boards_and_kits/zc706/
ug954-zc706-eval-board-xc7z045-ap-soc.pdf.

[13] David G. Andersen, Jason Franklin, Michael Kaminsky,
Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.
Fawn: A fast array of wimpy nodes. In Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 1–14, New York,
NY, USA, 2009. ACM. http://doi.acm.org/10.
1145/1629575.1629577.

[14] R. Balasubramonian, J. Chang, T. Manning, J. H.
Moreno, R. Murphy, R. Nair, and S. Swanson. Near-data
processing: Insights from a micro-46 workshop. IEEE
Micro, 34(4):36–42, July 2014. https://ieeexplore.
ieee.org/document/6871738.

[15] Matias Bjørling, Javier González, and Philippe
Bonnet. Lightnvm: The linux open-channel SSD
subsystem. In 15th USENIX Conference on File and
Storage Technologies (FAST’17), pages 359–374, 2017.
https://www.usenix.org/conference/fast17/
technical-sessions/presentation/bjorling.

[16] S. Boboila, Y. Kim, S. S. Vazhkudai, P. Desnoyers, and
G. M. Shipman. Active flash: Out-of-core data analyt-
ics on flash storage. In 012 IEEE 28th Symposium on
Mass Storage Systems and Technologies (MSST), pages
1–12, April 2012. https://ieeexplore.ieee.org/
document/6232366.

[17] Deng Cai. A revisit of hashing algorithms for approxi-
mate nearest neighbor search. CoRR, abs/1612.07545,
2016. http://arxiv.org/abs/1612.07545.

[18] Adrian M. Caulfield, Arup De, Joel Coburn, Todor I.
Mollow, Rajesh K. Gupta, and Steven Swanson. Moneta:
A high-performance storage array architecture for next-
generation, non-volatile memories. In Proceedings of
the 2010 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO ’43, pages 385–395,
Washington, DC, USA, 2010. IEEE Computer Society.
https://doi.org/10.1109/MICRO.2010.33.

[19] Intel IT Center. Big data 101: Unstruc-
tured data analytics. page 4. https:
//www.intel.com/content/www/us/en/big-data/
unstructured-data-analytics-paper.html.

[20] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang,
Chengyong Wu, Yunji Chen, and Olivier Temam. Di-
annao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning. In Proceedings of
the 19th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’14, pages 269–284, New York, NY,
USA, 2014. ACM. http://doi.acm.org/10.1145/
2541940.2541967.

[21] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss:
A spatial architecture for energy-efficient dataflow for
convolutional neural networks. In Proceedings of the
43rd International Symposium on Computer Architec-
ture, ISCA ’16, pages 367–379, Piscataway, NJ, USA,
2016. IEEE Press. https://doi.org/10.1109/ISCA.
2016.40.

[22] Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan
Kim, Youngmin Yi, and Gregory R. Ganger. Active
disk meets flash: A case for intelligent ssds. In Pro-
ceedings of the 27th International ACM Conference
on International Conference on Supercomputing, ICS
’13, pages 91–102, New York, NY, USA, 2013. ACM.
http://doi.acm.org/10.1145/2464996.2465003.

USENIX Association 2019 USENIX Annual Technical Conference 407

http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/Cognitive-SSD
https://github.com/Cognitive-SSD
http://cognitivessd.vicp.io:10110/
http://cognitivessd.vicp.io:10110/
https://fio.readthedocs.io/en/latest/fio_doc.html#moral-license
https://fio.readthedocs.io/en/latest/fio_doc.html#moral-license
https://www.nginx.com/
https://nvmexpress.org/
http://openssd.io
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support/download.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/
https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/
https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/
https://www.micron.com/products/nand-flash
https://www.micron.com/products/nand-flash
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
http://doi.acm.org/10.1145/1629575.1629577
http://doi.acm.org/10.1145/1629575.1629577
https://ieeexplore.ieee.org/document/6871738
https://ieeexplore.ieee.org/document/6871738
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
https://ieeexplore.ieee.org/document/6232366
https://ieeexplore.ieee.org/document/6232366
http://arxiv.org/abs/1612.07545
https://doi.org/10.1109/MICRO.2010.33
https://www.intel.com/content/www/us/en/big-data/unstructured-data-analytics-paper.html
https://www.intel.com/content/www/us/en/big-data/unstructured-data-analytics-paper.html
https://www.intel.com/content/www/us/en/big-data/unstructured-data-analytics-paper.html
http://doi.acm.org/10.1145/2541940.2541967
http://doi.acm.org/10.1145/2541940.2541967
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
http://doi.acm.org/10.1145/2464996.2465003

[23] Hyeokjun Choe, Seil Lee, Seongsik Park, Sei Joon Kim,
Eui-Young Chung, and Sungroh Yoon. Near-data pro-
cessing for machine learning. CoRR, abs/1610.02273,
2016. http://arxiv.org/abs/1610.02273.

[24] Arup De, Maya Gokhale, Rajesh Gupta, and Steven
Swanson. Minerva: Accelerating data analysis in
next-generation ssds. In Proceedings of the 2013
IEEE 21st Annual International Symposium on Field-
Programmable Custom Computing Machines, FCCM
’13, pages 9–16, Washington, DC, USA, 2013. IEEE
Computer Society. http://dx.doi.org/10.1109/
FCCM.2013.46.

[25] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik
Park, Kwanghyun Park, and David J. DeWitt. Query
processing on smart ssds: Opportunities and challenges.
In Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD
’13, pages 1221–1230, New York, NY, USA, 2013. ACM.
http://doi.acm.org/10.1145/2463676.2465295.

[26] Cong Fu and Deng Cai. EFANNA : An extremely fast
approximate nearest neighbor search algorithm based
on knn graph. CoRR, abs/1609.07228, 2016. http:
//arxiv.org/abs/1609.07228.

[27] Cong Fu, Changxu Wang, and Deng Cai. Fast approxi-
mate nearest neighbor search with navigating spreading-
out graphs. CoRR, abs/1707.00143, 2017. http:
//arxiv.org/abs/1707.00143.

[28] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and
Florent Perronnin. Iterative quantization: A procrustean
approach to learning binary codes for large-scale im-
age retrieval. IEEE Trans. Pattern Anal. Mach. In-
tell., 35(12):2916–2929, December 2013. https://
doi.org/10.1109/TPAMI.2012.193.

[29] Gregory Griffin, Alex Holub, and Pietro Perona.
Caltech-256 Object Category Dataset, March 2007.
http://resolver.caltech.edu/CaltechAUTHORS:
CNS-TR-2007-001.

[30] Jaeseung Ha. crow: Crow is very fast and easy to
use C++ micro web framework, June 2018. https:
//github.com/ipkn/crow.

[31] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional ar-
chitecture for fast feature embedding. In Proceed-
ings of the 22Nd ACM International Conference on
Multimedia, MM ’14, pages 675–678, New York, NY,
USA, 2014. ACM. http://doi.acm.org/10.1145/
2647868.2654889.

[32] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks,
John Ankcorn, Myron King, Shuotao Xu, and Arvind.
Bluedbm: An appliance for big data analytics. In Pro-
ceedings of the 42Nd Annual International Symposium
on Computer Architecture, ISCA ’15, pages 1–13, New
York, NY, USA, 2015. ACM. http://doi.acm.org/
10.1145/2749469.2750412.

[33] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao
Xu, and Arvind. Grafboost: Using accelerated flash
storage for external graph analytics. In Proceedings of
the 45th Annual International Symposium on Computer
Architecture, ISCA ’18, pages 411–424, Piscataway, NJ,
USA, 2018. IEEE Press. https://doi.org/10.1109/
ISCA.2018.00042.

[34] Yangwook Kang, Yang-Suk Kee, Ethan L. Miller, and
Chanik Park. Enabling cost-effective data processing
with smart ssd. 2013 IEEE 29th Symposium on Mass
Storage Systems and Technologies (MSST), pages 1–
12, 2013. ftp://ftp.cse.ucsc.edu/pub/darrell/
kang-msst13.pdf.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural
networks. Commun. ACM, 60(6):84–90, May 2017.
http://doi.acm.org/10.1145/3065386.

[36] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Wenjie
Zhang, and Xuemin Lin. Approximate nearest neighbor
search on high dimensional data - experiments, analyses,
and improvement (v1.0). CoRR, abs/1610.02455, 2016.
http://arxiv.org/abs/1610.02455.

[37] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. Fea-
ture learning based deep supervised hashing with pair-
wise labels. In Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJ-
CAI’16, pages 1711–1717. AAAI Press, 2016. http://
dl.acm.org/citation.cfm?id=3060832.3060860.

[38] K. Lin, H. Yang, J. Hsiao, and C. Chen. Deep learn-
ing of binary hash codes for fast image retrieval. In
2015 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 27–35, June
2015. http://ieeexplore.ieee.org/document/
7301269/.

[39] V. E. Liong, Jiwen Lu, Gang Wang, P. Moulin, and
Jie Zhou. Deep hashing for compact binary codes
learning. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2475–
2483, June 2015. http://ieeexplore.ieee.org/
document/7298862/.

[40] H. Liu, R. Wang, S. Shan, and X. Chen. Deep super-
vised hashing for fast image retrieval. In 2016 IEEE

408 2019 USENIX Annual Technical Conference USENIX Association

http://arxiv.org/abs/1610.02273
http://dx.doi.org/10.1109/FCCM.2013.46
http://dx.doi.org/10.1109/FCCM.2013.46
http://doi.acm.org/10.1145/2463676.2465295
http://arxiv.org/abs/1609.07228
http://arxiv.org/abs/1609.07228
http://arxiv.org/abs/1707.00143
http://arxiv.org/abs/1707.00143
https://doi.org/10.1109/TPAMI.2012.193
https://doi.org/10.1109/TPAMI.2012.193
http://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001
http://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001
https://github.com/ipkn/crow
https://github.com/ipkn/crow
http://doi.acm.org/10.1145/2647868.2654889
http://doi.acm.org/10.1145/2647868.2654889
http://doi.acm.org/10.1145/2749469.2750412
http://doi.acm.org/10.1145/2749469.2750412
https://doi.org/10.1109/ISCA.2018.00042
https://doi.org/10.1109/ISCA.2018.00042
ftp://ftp.cse.ucsc.edu/pub/darrell/kang-msst13.pdf
ftp://ftp.cse.ucsc.edu/pub/darrell/kang-msst13.pdf
http://doi.acm.org/10.1145/3065386
http://arxiv.org/abs/1610.02455
http://dl.acm.org/citation.cfm?id=3060832.3060860
http://dl.acm.org/citation.cfm?id=3060832.3060860
http://ieeexplore.ieee.org/document/7301269/
http://ieeexplore.ieee.org/document/7301269/
http://ieeexplore.ieee.org/document/7298862/
http://ieeexplore.ieee.org/document/7298862/

Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2064–2072, June 2016. http:
//ieeexplore.ieee.org/document/7780596/.

[41] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Oc-
topus: an rdma-enabled distributed persistent mem-
ory file system. In 2017 USENIX Annual Tech-
nical Conference (USENIX ATC’17), pages 773–
785, 2017. https://www.usenix.org/conference/
atc17/technical-sessions/presentation/lu.

[42] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extending
the lifetime of flash-based storage through reducing
write amplification from file systems. In Presented
as part of the 11th USENIX Conference on File and
Storage Technologies (FAST’13), pages 257–270, 2013.
https://www.usenix.org/conference/fast13/
technical-sessions/presentation/lu_youyou.

[43] Jian Ouyang, Shiding Lin, Zhenyu Hou, Peng Wang,
Yong Wang, and Guangyu Sun. Active ssd design
for energy-efficiency improvement of web-scale data
analysis. In Proceedings of the 2013 International
Symposium on Low Power Electronics and Design,
ISLPED ’13, pages 286–291, Piscataway, NJ, USA,
2013. IEEE Press. http://dl.acm.org/citation.
cfm?id=2648668.2648739.

[44] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. Sdf: Software-
defined flash for web-scale internet storage systems. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, pages 471–484, 2014.
http://doi.acm.org/10.1145/2654822.2541959.

[45] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. Imagenet large scale vi-
sual recognition challenge. Int. J. Comput. Vision,
115(3):211–252, December 2015. http://dx.doi.
org/10.1007/s11263-015-0816-y.

[46] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin,
Yang Liu, and Steven Swanson. Willow: A user-
programmable ssd. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, pages 67–80, Berkeley, CA,
USA, 2014. USENIX Association. http://dl.acm.
org/citation.cfm?id=2685048.2685055.

[47] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. CoRR, abs/1409.1556, 2014. http://arxiv.org/
abs/1409.1556.

[48] Yongseok Son, Nae Young Song, Hyuck Han, Hyeon-
sang Eom, and Heon Young Yeom. A user-level file
system for fast storage devices. In Proceedings of the
2014 International Conference on Cloud and Autonomic
Computing, ICCAC ’14, pages 258–264, Washington,
DC, USA, 2014. IEEE Computer Society. https:
//doi.org/10.1109/ICCAC.2014.14.

[49] Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng
Liu, and Xiaowei Li. C-brain: A deep learning accel-
erator that tames the diversity of cnns through adap-
tive data-level parallelization. In Proceedings of the
53rd Annual Design Automation Conference, DAC ’16,
pages 123:1–123:6, New York, NY, USA, 2016. ACM.
http://doi.acm.org/10.1145/2897937.2897995.

[50] Devesh Tiwari, Simona Boboila, Sudharshan S. Vazhku-
dai, Youngjae Kim, Xiaosong Ma, Peter J. Desnoyers,
and Yan Solihin. Active flash: Towards energy-efficient,
in-situ data analytics on extreme-scale machines. In Pro-
ceedings of the 11th USENIX Conference on File and
Storage Technologies, FAST’13, pages 119–132, Berke-
ley, CA, USA, 2013. USENIX Association. http://
dl.acm.org/citation.cfm?id=2591272.2591286.

[51] Devesh Tiwari, Sudharshan S. Vazhkudai, Youngjae
Kim, Xiaosong Ma, Simona Boboila, and Peter J.
Desnoyers. Reducing data movement costs using energy
efficient, active computation on ssd. In Proceedings of
the 2012 USENIX Conference on Power-Aware Com-
puting and Systems, HotPower’12, pages 4–4, Berkeley,
CA, USA, 2012. USENIX Association. http://dl.
acm.org/citation.cfm?id=2387869.2387873.

[52] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark
Gahagan, and Steven Swanson. Morpheus: Creating
application objects efficiently for heterogeneous com-
puting. SIGARCH Comput. Archit. News, 44(3):53–65,
June 2016. http://doi.acm.org/10.1145/3007787.
3001143.

[53] Jianguo Wang, Dongchul Park, Yang-Suk Kee, Yannis
Papakonstantinou, and Steven Swanson. Ssd in-storage
computing for list intersection. In Proceedings of the
12th International Workshop on Data Management on
New Hardware, DaMoN ’16, pages 4:1–4:7, 2016. http:
//doi.acm.org/10.1145/2933349.2933353.

[54] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and
Jianqiu Ji. Hashing for Similarity Search: A Survey.
arXiv:1408.2927 [cs], August 2014. http://arxiv.
org/abs/1408.2927.

[55] Ying Wang, Jie Xu, Yinhe Han, Huawei Li, and Xiaowei
Li. Deepburning: Automatic generation of fpga-based
learning accelerators for the neural network family. In

USENIX Association 2019 USENIX Annual Technical Conference 409

http://ieeexplore.ieee.org/document/7780596/
http://ieeexplore.ieee.org/document/7780596/
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu_youyou
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu_youyou
http://dl.acm.org/citation.cfm?id=2648668.2648739
http://dl.acm.org/citation.cfm?id=2648668.2648739
http://doi.acm.org/10.1145/2654822.2541959
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dl.acm.org/citation.cfm?id=2685048.2685055
http://dl.acm.org/citation.cfm?id=2685048.2685055
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/ICCAC.2014.14
https://doi.org/10.1109/ICCAC.2014.14
http://doi.acm.org/10.1145/2897937.2897995
http://dl.acm.org/citation.cfm?id=2591272.2591286
http://dl.acm.org/citation.cfm?id=2591272.2591286
http://dl.acm.org/citation.cfm?id=2387869.2387873
http://dl.acm.org/citation.cfm?id=2387869.2387873
http://doi.acm.org/10.1145/3007787.3001143
http://doi.acm.org/10.1145/3007787.3001143
http://doi.acm.org/10.1145/2933349.2933353
http://doi.acm.org/10.1145/2933349.2933353
http://arxiv.org/abs/1408.2927
http://arxiv.org/abs/1408.2927

Proceedings of the 53rd Annual Design Automation Con-
ference, DAC ’16, pages 110:1–110:6, New York, NY,
USA, 2016. ACM. http://doi.acm.org/10.1145/
2897937.2898003.

[56] Louis Woods, Zsolt István, and Gustavo Alonso. Ibex:
An intelligent storage engine with support for advanced
sql offloading. Proc. VLDB Endow., 7(11):963–974,
July 2014. http://dx.doi.org/10.14778/2732967.
2732972.

[57] Jianxiong Xiao, Krista A. Ehinger, James Hays, Antonio
Torralba, and Aude Oliva. Sun database: Exploring a
large collection of scene categories. Int. J. Comput.
Vision, 119(1):3–22, August 2016. http://dx.doi.
org/10.1007/s11263-014-0748-y.

[58] Huei-Fang Yang, Kevin Lin, and Chu-Song Chen. Su-
pervised learning of semantics-preserving hash via deep
convolutional neural networks. IEEE Trans. Pattern
Anal. Mach. Intell., 40(2):437–451, February 2018.
https://doi.org/10.1109/TPAMI.2017.2666812.

[59] Jiacheng Zhang, Jiwu Shu, and Youyou Lu. Parafs: A
log-structured file system to exploit the internal paral-

lelism of flash devices. In 2016 USENIX Annual Techni-
cal Conference (USENIX ATC’16), pages 87–100, 2016.
https://www.usenix.org/conference/atc16/
technical-sessions/presentation/zhang.

[60] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon
Koh, Changlim Lee, Mohammad Alian, Myoungjun
Chun, Mahmut Taylan Kandemir, Nam Sung Kim, Ji-
hong Kim, and Myoungsoo Jung. Flashshare: Punching
through server storage stack from kernel to firmware
for ultra-low latency ssds. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’18, pages 477–492, Berkeley,
CA, USA, 2018. USENIX Association. http://dl.
acm.org/citation.cfm?id=3291168.3291203.

[61] Liang Zheng, Yi Yang, and Qi Tian. SIFT meets
CNN: A decade survey of instance retrieval. CoRR,
abs/1608.01807, 2016. http://arxiv.org/abs/
1608.01807.

410 2019 USENIX Annual Technical Conference USENIX Association

http://doi.acm.org/10.1145/2897937.2898003
http://doi.acm.org/10.1145/2897937.2898003
http://dx.doi.org/10.14778/2732967.2732972
http://dx.doi.org/10.14778/2732967.2732972
http://dx.doi.org/10.1007/s11263-014-0748-y
http://dx.doi.org/10.1007/s11263-014-0748-y
https://doi.org/10.1109/TPAMI.2017.2666812
https://www.usenix.org/conference/atc16/technical-sessions/presentation/zhang
https://www.usenix.org/conference/atc16/technical-sessions/presentation/zhang
http://dl.acm.org/citation.cfm?id=3291168.3291203
http://dl.acm.org/citation.cfm?id=3291168.3291203
http://arxiv.org/abs/1608.01807
http://arxiv.org/abs/1608.01807

	Introduction
	Background and Preliminaries
	Unstructured Data Retrieval System
	Near data processing & deep learning accelerator

	Cognitive SSD System
	The Cognitive SSD Software: DLG Library
	Hardware Architecture: Cognitive SSD
	The Procedure of data retrieval in Cognitive SSD

	DLG-x Accelerator
	Architecture: Direct Flash Accessing
	I/O Path in Cognitive SSD
	Fusing Deep Learning and Graph Search

	Evaluation
	Hardware Implementation
	Experimental Setup
	Evaluation of DLG algorithm
	Evaluation of DLG-x
	The Single-node System Based on Cognitive SSD
	The Cluster of Connected Cognitive SSDs

	Conclusion

