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ABSTRACT
With increased density, flash memory becomes more vulnerable to
errors. Error correction incurs high overhead, which is sensitive in
SSD cache. However, some applications like multimedia processing
have the intrinsic tolerance of inaccuracies. In this paper, we pro-
pose ASCache, an approximate SSD cache, which allows bit errors
in a controllable threshold for error-tolerant applications, so as to
reduce the cache miss ratio caused by incorrect cache pages. AS-
Cache further trades the strictness of error correction mechanisms
for higher SSD access performance. Evaluations show ASCache
reduces the average read latency by at most 30% and the cache miss
ratio by 52%.

1 INTRODUCTION
As a cost-effective solution, flash-based solid state drives (SSDs)
have been widely deployed as a block level cache in large-scale
distributed systems. The SSD caching system combines the high-
performance SSDs with the low-cost back-end devices (e.g., Hard
disk drives (HDDs)) to pursue a high cost performance ratio. The
optimization approaches for the SSD caching system target on the
life extension of SSDs as well as the performance improvement.

In a typical caching system, utilizing a large cache and adopting
an appropriate replacement algorithm are two intuitive and practi-
cal approaches to get better cache performance. However, in a SSD
caching system, the endurance and reliability problem of SSDs be-
comes a key challenge. A flash memory cell has limited endurance.
A single-level cell (SLC) can tolerate about 100k program/erase
(P/E) cycles while a multi-level cell (MLC) can just tolerate about
10k P/E cycles. What’s more, emerging trinary-level cell (TLC) and
quad-level cell (QLC) could only survive for about 5k and 1.5k P/E
cycles. Raw bit error rate (RBER) is the standard metric to evaluate
flash reliability, it is defined as the number of corrupted bits per
number of total bits read [14]. The reliability mechanisms like the
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error-correction code (ECC), the redundant arrays of independent
drives (RAID) are used to handle the bit errors during the flash
lifetime.

However, to retrieve accurate data could cause significant error
correction overhead and degrade the overall performance, espe-
cially when the RBER is high. The average response time of a SSD
will increase proportionally as the strength of ECC needed [19].
What’s more, when bit errors of a SSD cache page couldn’t be
corrected, it will report a read error. The accurate data will be re-
trieved from the back-end devices as handling a cache miss, thus
leading to high latency accesses and even additional writes to SSDs.
Fortunately, the bit errors might not be so catastrophic for some ap-
plications in domains like computer vision, multimedia processing,
machine learning and so on, it is the intrinsic tolerance to inaccura-
cies of these applications [7]. For instance, we inject bit errors up to
a ratio of 10−2 to some BMP format photos, and the differences even
couldn’t be observed by human eye and the calculated quality loss
is also in a tolerable degree. Recent open-channel SSDs [10] enable
raw page read/write which could be used to allow returning data
with bit errors within a controllable threshold1. As such, on one
hand, even though some bit errors couldn’t be corrected, they could
also be tolerated by the applications, and there is no need to trigger a
cache miss for those incorrect cache pages. On the other hand, if the
bit errors in a flash page are within the tolerable threshold, we could
relax the protection of error correction mechanisms and return the
inaccurate data directly.

In terms of these observations, we try to make the tradeoff be-
tween accuracy and performance to design an approximate SSD
cache. In the application level, it should tolerate a certain degree of
bit errors and have accurate metrics of service quality sacrifice. An
exception handling procedure is also recommended in case the bit
errors transmitted to the applications may cause unexpected conse-
quences. In the caching system level, the SSD cache is designed to
be approximate, and the back-end devices should guarantee the end-
to-end data integrity. Once the approximately cached data couldn’t
meet the quality requirements of applications, a cache miss should
be triggered to retrieve accurate data. In the SSD device level, the
key challenge of providing approximate flash accessing is to identify
which flash page could be returned to the application without error
correction processes and only allow bit errors within a predefined
tolerable bit error rate (BER) to be transmitted to applications. We
propose ASCache, an approximate SSD cache, which features the
following mechanisms:
• Error-Aware Space Management. In the SSD cache, we per-
form a pessimistic tracking of RBER for flash memory and orga-

1This can also be supported by interface extension on standard SSDs.



nize the SSD space into different reliability level groups. We
expose approximate read/write interfaces, which ensure that the
bit errors transmitted to applications are in a controlled thresh-
old and reduce the cache read latency via bypassing the error
correction processes.

• Approximate Caching. In the SSD caching system, the uncor-
rectable errors caused by the incompetence of error correction in
conventional SSD caches are not immediately handled as cache
misses. If the inaccurate data could be tolerated by the applica-
tions, it will be handled as a cache hit and return the inaccurate
data. This strategy eliminates unnecessary cache misses and the
corresponding cache miss penalty.

2 BACKGROUND
Most NAND flash stores data using floating gate transistors and
is prone to bit errors. Although encoding more bits per cell could
increase the capacity of a SSD without increasing the chip size.
However, it also decreases the reliability of flashmemory bymaking
it more difficult to store and read the data bits correctly.

Error Pattern. The error pattern of flash memory has been
extensively researched [3–5, 14]. The wearing of the flash cells is
significant for the bit errors. Researches show that, as the P/E cycles
increase, the bit error rate of MLC flash memory may increase
exponentially [3]. Another critical factor is the charge leakage,
which causes the retention time of the correct data bits to decrease
[4]. Other factors like cell-to-cell interference, read disturb and so
on, cause bit flips under certain conditions, and their effects are
limited. Since flash memory is erased in block level, pages in a block
will suffer the same cell wearing, and their RBER characteristic will
be similar.

Error Correction. ECC is the most commonly used method to
detect and correct raw bit errors which occur within the flash mem-
ory, e.g., Bose-Chaudhuri-Hocquenghem (BCH) and low-density
parity-check (LDPC) codes. For data written to flash pages, it is
transformed into codewords which each consists of the data and
correction code. The strength of error correction offered by a spe-
cific ECC algorithm is determined by the codeword length and the
coding rate (i.e., the data size divided by the codeword size). For a
specific ECC algorithm and a certain codeword length, a higher cod-
ing rate provides weaker protection but consumes less additional
storage space.

For BCH or LDPC, SSD performs several stages of error correc-
tion to retrieve accurate data, which is known as the error correction
flow [6]. LDPC is now more widely used in commercial SSDs. In
the LDPC error correction flow, the ECC engine performs hard
decoding in the first stage which takes about 8µs . In hard decod-
ing, the ECC engine only uses the hard bit value information read
from a cell using a single set of reference voltages. If the first stage
error correction succeeds, the flow finishes. Otherwise, the flow
moves on to the next stage and performs soft decoding. The key
idea of soft decoding is to use the soft information of each cell
through multiple reads with different sets of reference voltages.
Soft information is typically represented as the log-likelihood ratio
(LLR). The maximum read level, which determines the strength of
protection, is usually set to be six. Generally, data will be decoded
level-by-level, and for each additional soft decoding level, it takes

about 80µs to perform an additional flash memory sensing and
codeword decoding. Zhao et al. [19] proposes to run operations
in different levels concurrently to reduce the overhead when the
soft decoding level is predetermined. However, the soft decoding
still significantly increases the read latency. In the third stage, the
intra-SSD chip-level RAID is triggered. It uses the data in other
pages to recover the lost page data and costs about 10ms . In con-
ventional SSDs, only the successfully decoded or recovered data
will be sent to the host. Otherwise, an uncorrectable error will be
reported. Each stage including different levels of soft decoding in
the LDPC correction flow represents a certain level of protection
strength. What’s more, the later the flow finishes, the higher the
error correction overhead it consumes to retrieve accurate data.

Error Avoiding. To avoid bit errors in flash memory, Cai et al.
[4] provides insights into the data retention problem and proposes
data refresh mechanisms to handle it by periodically refreshing data
with different strategies in SSDs. The threshold voltage in flash read-
ing operations also significantly affects the RBER observed. Some
researches [3, 5] propose to tune the threshold voltage dynamically
by estimating the RBER of flash. To avoid the bit patterns which
is error-prone, a guided scrambling mechanism [15] is proposed
to add a pseudo-random sequence to the source data to make such
errors less likely.

Approximate Storage. With rising performance demands, the
resource budgets including processors and storage space in SSDs
are limited for those reliability mechanisms. Researches propose ap-
proximate storage which exploits the applications’ error tolerance
to trade accuracy for performance or energy efficiency. Researches
on approximate solid-state storage mainly focus on the flowing
aspects: (1) The quantitative analyzing of the applications’ intrinsic
inaccuracies tolerance [7, 18], application data including photos,
mobile phone sensor logs, machine learning models have been
intensively studied. (2) Hardware approximation methods, such
as writing to embedded flash memory at voltages lower than the
recommended microcontroller’s specification [12] or lowering the
supply voltage to the flash chips during its operations[11], using
high-density phase change memory to store photos [8], etc. (3) Ap-
plication adaptation. Such as analyzing the format of compressed
multimedia files to classify data bits into different importance level
and store them in different storage regions [8, 9], designing a pro-
gramming framework for applications to perform approximate
computing [13], etc.

ASCache is a fresh attempt in building an approximate SSD
cache. Different from the approximate storage mentioned above,
ASCache provides the approximation of flash by relaxing the error
correction strength rather than adopting the hardware-level ap-
proximation, and it is simpler to be applied for practical usage. To
adopt approximate SSD caches, ASCache shifts the responsibility of
data integrity from SSDs to back-end devices and allows controlled
bit errors to be returned to the host. The Error-Aware Space Man-
agement matches the error tolerance of applications with the RBER
characters of flash memory to fully utilize the reliability resources
in SSDs. The Approximate Caching transmits the uncorrectable er-
rors of reading incorrect flash pages to error-tolerant applications
to reduce the cache miss ratio as well as the corresponding cache
miss penalty. The overall design trades the accuracy of applications
for the performance improvement of SSD cache.
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Figure 1: The ASCache Architecture

3 DESIGN
3.1 The ASCache Architecture
As in Figure 1, ASCache is organized based on the conventional SSD
caching system architecture with the following key differences: (1)
SSD Cache Accessing. ASCache defines approximate read/write
interfaces as well as maintaining the normal ones. The data re-
trieved through the approximate read interface will be accurate
or contain bit errors within the application’s tolerance. (2) SSD
Space Management. The flash blocks in SSD caches are organized
by different reliability levels. ASCache prefers allocating physical
pages with a specific reliability level, in which the RBER of flash is
within the application’s tolerance threshold. In this case, data could
be returned to the application even without the error correction
process. (3) Caching Mechanisms. ASCache narrows the scope
of the cache miss by transforming specific uncorrectable errors to
cache hits, and it fits the approximate SSD cache to different cache
write strategies to provide end-to-end data integrity.

3.2 Error-Aware Space Management
For an error-tolerant application, data retrieved from the storage
system should have a lower bit error rate than it could tolerate.With
specific metrics, the tolerable threshold for applications could be
determined via data analysis. However, the RBER of flash memory
is dynamically changing. To build an approximate SSD cache, we
should organize the SSD space based on an appropriate flash RBER
estimation and provide proper approximate accessing interfaces
to guarantee that the RBER of the allocated physical flash pages
would always be in the tolerable threshold.

Pessimistic Tracking of RBER. Precisely tracking the RBER
of every flash pages in real time is a complex and costly task. On the
basis of the prior knowledge about error patterns of flash memory,
we try to perform a pessimistic tracking of flash RBER in block
level for a SSD.

P/E cycles (P/Es) and data retention time (Tr etention ) are two
main factors which affect the RBER of flash. The RBER of a flash
page could be described as a simplified model:

RBER = G(P/Es) + H (Tr etention ) (1)

Generally, G(x) is described as exponential, and H(x) is thought
to be linear. P/Es, also cell wearing, has the most significant impact
on RBER. Tr etention may function in a time scale of a day or even
larger. As pages in one block suffer the similar cell wearing, and
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flow, and the latency and correctable RBER of each stage
when the UBER is kept within 10−16 via Monte Carlo simu-
lations; (b) Example for the organization of flash blocks and
reliability levels in ASCache.
retention errors grow as data retention time increases, we utilize
the RBER of the first written page in a block as the upper RBER
limit (RBERU ) of this block, which is maintained as metadata in
block management mechanism. Instead of tracking the RBER of all
pages separately, we use RBERU as the RBER of all pages in the
same block. It allows RBER variation for most pages in a block and
provides a better assurance of being within the tolerable threshold
when allocating pages.

The RBERU of each flash block is updated dynamically. To sim-
plify the update process, the first page or another optional page
of each block is reserved as the reference page which will be used
to track and update the RBERU . We could get the RBER of a page
through the error correction process of ECC engine when read-
ing this page. When a block is erased in the garbage collection
(GC) process, we write random data to the reference page of this
block. Then, record the RBER of this page (RBERr ef ) to update the
RBERU . When the system is idle, we can record the RBER of the
reference page, and then compare the RBERr ef with the present
recorded RBERU (RBERU _old ), and use the bigger one to update
it. Besides, considering the data retention effect during the RBERU
update intervals, we add a small RBER bias (δ ) to RBERU to get a
more pessimistic value. The updating process could be summarized
as:

RBERU =

{
RBERr ef + δ , When GC

Max(RBERr ef ,RBERU _old ) + δ , When idle
(2)

By performing a pessimistic tracking for the flash memory with
RBERU , we could characterize the bit errors in SSDs at the flash
block level efficiently. Furthermore, when retrieving data from a
page in a specific flash block, we use RBERU of this block as the
RBER for this page to determine whether it can be tolerated or not.

Reliability Levels and Space Grouping. The standard metric
used to describe uncorrectable errors is uncorrectable bit error rate
(UBER), which is defined as the codeword failure rate divided by
the codeword length. Contemporary SSD manufacturers target a
UBER of 10−16 [1]. As Figure 2(a) shows, the hard decoding stage
could handle RBER within about 1 × 10−3. When the RBER falls
into about 1 × 10−3~1.3 × 10−2, the six-levels soft decoding will be
triggered. With a higher RBER, RAID would be necessary for data
recovery. We classify the reliability status of flash memory into
eight levels (from level 1 to level 8) according to the LDPC error
correction flow. In level 1, the RBER is higher than the last level



soft decoding. In level 2~7, the RBER value range is determined by
the two adjacent decoding processes. For example, the level 7 RBER
range is between the threshold of hard decoding and the first level
soft decoding. The level 6 RBER range is between the threshold of
the first level and the second level soft decoding. Level 2~5 are in a
similar way. In level 8, the RBER is smaller than the hard decoding
threshold. In our definition, the higher level represents the stronger
reliability.

... ... ... ... 

Group 1 Group 2 Group 3 Group 8

Block x Block y Block z

x yz

Reliability 
Mapping

Figure 3: Example for SSDs block management.

As in Figure 3, based on the estimation of flash RBER and the
definition of reliability levels, we dynamically gather flash blocks
into different groups. Groups are marked with group id from 1 to
8. Each group corresponds to a specific reliability level as Figure
2(b) shows. When the RBERU of a block is updated, the block will
be re-mapped to a specific block group. The mapping process is
as follows: (1) Comparing the RBERU of a block with the RBER
thresholds of different reliability levels to determine its reliability
level. (2) Gathering the block into the corresponding block group,
and removing its record from its old block group. We could use
simple data structures such as arrays or vectors to organize the block
groups, and the grouping process above could be accomplished in
linear time. At the early life stage of a SSD, most blocks will be
gathered in groups with high-reliability levels. With the wearing
of flash cells, some blocks will be reorganized into low-reliability
levels. By grouping blocks with different reliability levels, we could
find proper blocks for application data efficiently when given a
specific application BER tolerant threshold.

Approximate Flash Accessing. As Table 1 shows, we expose
two sets of read/write interfaces for accessing flash memory. The
normal read/write provides strict data integrity as in conventional
SSDs. In normal write, blocks with the highest reliability level will
be allocated to write data. The correction code and RAID parity will
also be written to flash. In normal read, data will go through the
error correction flow to correct all bit errors. Otherwise, it reports
a read error. The approximate read/write provides relaxed data in-
tegrity in flash accessing.AP_BER is the user-defined parameter to
describe the tolerable BER of the application. In AP_WRITE, we map
the AP_BER to a specific reliability level first, then try to allocate
flash blocks gathered in higher levels. What’s more, we prefer to
allocate pages from blocks in the highest available level. If no avail-
able blocks, then allocate space from the lower level groups, and we
will mark those pages as mismatched to indicate that the AP_BER
is lower than the RBER of them. The correction code and RAID
parity would be an optional choice if allocated blocks have smaller
RBER than AP_BER. We choose to maintain these redundant data
to support error correction after AP_WRITE both in normal read

Table 1: Description of Flash Accessing Interfaces

Interface Parameter Description

READ (LPA, ...) Normal read
WRITE (LPA, buffer, ...) Normal write
AP_READ (LPA, AP_BER ...) Approximate read
AP_WRITE (LPA, buffer, AP_BER ...) Approximate write

and AP_READ. In AP_READ, if the flash page isn’t marked as mis-
matched, then retrieve the RBERU of its corresponding block. If
AP_BER is higher than the RBERU , data with bit errors will be
returned to the host without error correction. Otherwise, it will go
through the error correction flow to correct the bit errors. If the
flow fails, it returns a read error. Since AP_WRITE prefers allocat-
ing blocks which have lower RBER than AP_BER, AP_READ could
avoid triggering the error correction flow in most flash accesses.
Besides, the reliability level is divided according to the error correc-
tion flow, when it needs to correct bit errors, we could predict the
finish point of the flow and avoid doing soft decoding level-by-level.
When the flash memory wears seriously, the read errors caused
by codeword failure will happen more frequently in conventional
SSDs. If AP_BER is high enough, the AP_READ could still provide
accessing service and avoid unnecessary read errors.
3.3 Approximate Caching
Although we provide approximate flash accessing interfaces and at-
tempt to keep the bit errors returned to be within the application’s
tolerance, to design an approximate SSD caching system is still fac-
ing challenges. The first challenge is to guarantee the end-to-end
data integrity. In conventional systems, SSDs and back-end devices
both exploit some reliability mechanisms to avoid the uncorrectable
errors. Data retrieved from SSDs is ensured to be accurate, or it
will return read error to the host. In ASCache, we relax the data
integrity in SSDs, AP_READ may return inaccurate data. Suppose
that the correct data is cached and has not been written to the
back-end devices. When flushing or data replacement occurs, the
approximately cached data will be written back to back-end de-
vices as a correct copy, then the accurate data is lost. The other
challenge is to adopt the approximate SSD in the caching system.
The approximate SSD allows approximate accessing which will
avoid the overhead of error correction mechanisms. Besides, the
caching system also focuses on decreasing the cache miss ratio and
prolonging the lifetime of SSDs. We should reconsider the cache
design to fit in the approximate SSD.

Table 2: Approximate SSD Cache Strategies

Write Strategy Data Integrity Requirements

Write Back Relaxed for Applications, Strict for
Back-end Storage

Write Through Relaxed for Applications
Write Around Relaxed for Applications

CacheWrite Strategies. Table 2 shows three cache write strate-
gies. In order to provide end-to-end data integrity, we discuss the
writing process in these strategies.

In Write Back caches, data will be written to SSD cache first, and
a special flag is used to indicate that the data has not been persisted
to back-end devices. When data replacement or cache flushing



happens, we will read the relevant data from SSD cache and then
write the data back to back-end devices. We could use the normal
or approximate write interface to cache data in SSDs while must
use the normal read interface to retrieve accurate data in the data
write-back process. In this way, the correct copy is persisted. For
applications, they could still use AP_READ when adopting normal
write or AP_WRITE. Since the reliability level of data could easily
be retrieved, and the cache write interfaces allocate flash pages
from the available highest reliability group, there is a large chance
that the RBER of the flash block will be smaller than AP_BER.

In Write Through and Write Around caches, correct data will be
written to back-end devices directly when accesses come to the SSD
caching system. The back-end devices maintain the correct copy of
data, and this ensures the end-to-end data integrity. In view of this,
the SSD cache could be accessed using AP_READ and AP_WRITE
as well as normal read/write.
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Figure 4: Cache miss in SSD caching systems

Cache Miss Elimination. In conventional SSD caching system,
as Figure 4(a) shows, if data is not cached in SSD cache or the
correction flow fails, a cache miss occurs. To handle a cache miss,
the system will retrieve the correct data from the back-end devices
and return it to the application. Then the correct data will also
be written into the SSD cache for future access. If the cache miss
results from the error correction failure, the old version of data
should be invalided, and the new version should be written into a
more reliable place in the SSD cache.

By exploiting the approximate flash accessing interfaces, we
narrow the scope of cache miss. As in Figure 4(b), unlike the con-
ventional system in Figure 4(a), when reading data bits from flash
memory, we could determine its reliability level and whether the
application could tolerate the corresponding BER or not. Only when
the application couldn’t tolerate such bit errors, the error correc-
tion flow is triggered as in the conventional SSDs. If AP_BER is
higher than the RBER threshold of the error correction flow, the
read errors in conventional SSD cache caused by error correction
failure could be handled as normal reads by AP_READ in ASCache
rather than incurring cache misses. Then the cache miss penalty,
such as additional reads to back-end devices and writes to SSDs,
could also be avoided.

When a cache miss occurs, data replacement might be triggered
to swap a valid data page out and store the data retrieved from back-
end devices there. If the cache miss is caused by the error correction
failure, it could be eliminated in ASCache, and the valid page could

also be retained. In other words, ASCache is more friendly for
replacement algorithms by maintaining the data locality to a large
extent as in the memory level cache system.

4 EVALUATIONS
In this section, we evaluate ASCache on the following aspects: (1)
The benefits of adopting approximate SSD cache. (2) The tradeoff
between accuracy and performance. We use a qemu-based NVMe
open-channel SSD emulator to build the approximate SSD cache,
detailed specification of the emulated flash is in Table 3. To simplify
the evaluation process, we scale down the capacity of SSD and HDD
to be 812MiB and 20GiB. What’s more, the average HDDs read la-
tency is about 3ms . The caching system is tested under the scenario
of video distribution, in which many clients concurrently request
different video streams. All videos [17] are in the YUV4MPEG for-
mat which is convenient for bit error injection and analysis.

Table 3: The Flash Specification
Geometry 8 luns, 1024 blocks, 65536 pages; OP=20%
Page Size 16KB with 1KB OOB data
Latency Read 80µs , Write 200µs , Erase 1200µs

Average Read Latency. Figure 5 compares the average read
latency in traditional SSD cache and ASCache when AP_BER grad-
ually increases. We model the reliability status of flash blocks in a
Gaussian distribution. Most blocks are gathered in the middle level
groups as in Figure 5. In this distribution, the SSD blocks are at the
life stage when the LDPC soft decoding is needed and the correction
flow could handle the bit errors in most accesses. So no cache miss
happens due to read errors in the traditional cache, the cache hit
ratio in ASCache and traditional cache are close to each other, and
it is about 0.83 in our evaluation. We observe that as the AP_BER
increases, the average read latency of ASCache will decrease while
the traditional cache remains unchanged. It is because the accesses
to blocks which have a lower RBER than the AP_BER will bypass
unnecessary error correction processes in ASCache while must still
go through the correction flow to correct the bit errors in traditional
SSD cache. This case demonstrates the effectiveness of approximate
SSD accessing. Especially, if the AP_BER is more than 0.011 when
bit errors in most blocks could be tolerated, the average read latency
drops about 30% in ASCache.
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Figure 5: Average read latency under different AP_BER; The
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CacheMisses. When the RBER exceeds the LDPC soft decoding
threshold, the codeword failure rate will increase significantly. We
simulate different codeword failure rate in traditional SSD cache to
test the cache miss ratio. To simplify the evaluation, we simulate
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the RAID process as cache misses for its overhead is much larger
than the HDDs access. What’s more, we suppose the AP_BER could
tolerate almost all accesses and only simulate a small portion which
increases as the failure rate to be intolerable. In Figure 6, as the code-
word failure rate increases, the cache miss ratio due to read errors
increases proportionally in the traditional cache. However, the ratio
in ASCache almost remains unchanged. This case demonstrates the
effectiveness of cache miss elimination. Especially, when the code-
word failure rate is 0.3, up to 52% cache misses due to read errors in
the traditional cache is eliminated by ASCache. What’s more, read
errors will incur snowball effects, because retries or some other
handlers, which even affect the latency of other accesses, will be
triggered. Designs like bcache [2], adopt the cache bypass mecha-
nism, which will bypass the SSD cache when the latency exceeds
a defined threshold. As in Figure 6, due to the snowball effects
of read errors, the cache miss ratio in traditional cache increases
tremendously when the codeword failure ratio exceeds 0.2.
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Case Study. To further demonstrate the tradeoff between accu-

racy and performance in ASCache, we collect the access traces of
a specific video and analyze the quality and average read latency
of each video frame in ASCache as well as in the traditional cache.
The structural similarity (SSIM) index [16] is used to measure the
video quality. The reliability status of SSD blocks is also modeled
as a Gaussian distribution as in Figure 5. AP_BER is set to tolerate
almost all the RBER of blocks. In the SSIM curves in Figure 7, the
video frames read from ASCache contain bit errors with different
RBER, about 87.7% of frames have a SSIM value between 0.4~0.8, and
0.4 is the largest quality loss in this evaluation. The video frames
read from the traditional cache are error-free, and the SSIM value of

frames is 1. In the latency curves in Figure 7, since traditional cache
uses error correction mechanisms to correct bit errors, the average
read latency of each frame varies with the RBER of different blocks.
About 93.6% accesses have the latency of more than 200µs . However,
the average latency of frame pages in ASCache varies between a
smaller range between 80~100µs . The evaluation is based on the fact
that the application could tolerate 0.4 SSIM quality loss. If higher
SSIM is required, the frames which don’t meet this requirement
should go through the correction flow as in the traditional cache,
and the read latency of these frame pages will increase. This case
demonstrates the quality loss and corresponding performance gain
in ASCache. We can observe that ASCache provides a practical
and effective solution to trade the accuracy for performance by
exploiting the error tolerance of applications.

5 CONCLUSIONS
In order to eliminate the influence of flash bit errors on the perfor-
mance of SSD cache, we propose ASCache, an approximate SSD
cache for error-tolerant applications. On one hand, ASCache allows
inaccurate data for applications and relaxes the strictness of error
correction mechanisms. On the other hand, ASCache redesigns the
cache strategies to fit in the approximate SSD cache and further
avoids unnecessary cache misses while guaranteeing the end-to-
end data integrity. Our evaluations demonstrate the effectiveness of
ASCache and describe the accuracy-performance tradeoff in detail
with a case study. What’s more, with the insight into the error cor-
rection flow and RBER of flash, ASCache provides a new method
for flash approximation. We believe that ASCache can be adopted
for much more error-tolerant applications and future researches.
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