
Scalable RDMA RPC on Reliable Connection with
Efficient Resource Sharing

Youmin Chen
Tsinghua University

chenym16@mails.tsinghua.edu.cn

Youyou Lu
Tsinghua University

luyouyou@tsinghua.edu.cn

Jiwu Shu∗
Tsinghua University

shujw@tsinghua.edu.cn

Abstract
RDMA provides extremely low latency and high bandwidth
to distributed systems. Unfortunately, it fails to scale and
suffers from performance degradation when transferring
data to an increasing number of targets on Reliable Connec-
tion (RC). We observe that the above scalability issue has its
root in the resource contention in the NIC cache, the CPU
cache and the memory of each server. In this paper, we pro-
pose ScaleRPC, an efficient RPC primitive using one-sided
RDMA verbs on reliable connection to provide scalable per-
formance. To effectively alleviate the resource contention,
ScaleRPC introduces 1) connection grouping to organize the
network connections into groups, so as to balance the satura-
tion and thrashing of the NIC cache; 2) virtualized mapping
to enable a single message pool to be shared by different
groups of connections, which reduces CPU cache misses
and improve memory utilization. Such scalable connection
management provides substantial performance benefits: By
deploying ScaleRPC both in a distributed file system and a
distributed transactional system, we observe that it achieves
high scalability and respectively improves performance by
up to 90% and 160% for metadata accessing and SmallBank
transaction processing.

Keywords RDMA, Scalability, Resource Sharing

ACM Reference Format:
Youmin Chen, Youyou Lu, and Jiwu Shu. 2019. Scalable RDMA
RPC on Reliable Connection with Efficient Resource Sharing. In
Fourteenth EuroSys Conference 2019 (EuroSys ’19), March 25–28, 2019,
Dresden, Germany. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3302424.3303968

∗Jiwu Shu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’19, March 25–28, 2019, Dresden, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6281-8/19/03. . . $15.00
https://doi.org/10.1145/3302424.3303968

1 Introduction
In-memory processing, by placing data directly in DRAM,
has been widely adopted to satisfy the increasing demands of
extremely fast data storage and processing [3, 4, 19, 23]. Re-
cently, Remote Direct Memory Access (RDMA), due to its low
latency and high bandwidth, is becoming a promising tech-
nology to further narrow the gap between the network and
storage. As such, it has been extensively used in distributed
systems, including the in-memory key-value stores [16, 24,
33], transaction processing systems [9, 13, 18, 35], file sys-
tems [4, 15, 23], and deep learning systems [26].
However, we observe that the throughput (a.k.a, IOPS)

of RDMA drops dramatically when the number of connec-
tions increases. By launchingmultiple clients to concurrently
access a metadata server of an RDMA-enabled distributed
file system, we are surprised to find that the throughput of
Stat operations decreases sharply by almost 50% when the
number of clients increases from 40 to 120. Besides, we also
measure the raw throughput of the RDMA write verb, which
declines from around 20 Mops/s to 2 Mops/s when the num-
ber of clients grows from 10 to more than 200. Many existing
distributed systems adopt the client/server (C/S) model, thus
forming the “one-to-many” message passing paradigm: For
example, the communication between clients and key-value
server to get or put key-value pairs, metadata accessing to the
metadata server (MDS) in distributed file system, accessing
to the sequencer or time server in distributed transactional
system, and the data exchange between the parameter server
and training nodes in distributed deep learning. As a result,
the poor scalability of RDMA becomes a fatal blow for dis-
tributed systems

In this paper, we propose ScaleRPC, an RDMA-based RPC
primitive on reliable connection (RC) mode to provide scal-
able message transferring performance. ScaleRPC achieves
the scalability1 goal by multiplexing the memory space, NIC
cache and CPU cache efficiently in both time and space di-
mensions. Specifically, ScaleRPC first bounds the number of
currently being served connections to a maximum to avoid
the thrashing in the NIC cache. This is achieved by organiz-
ing the connections into groups and serving these groups
in a time-sharing way. ScaleRPC then proposes virtualized
mapping to allow one physical message pool to be shared
1In this paper, the term “scalability” refers to “the ability to transfer data
to (from) one server from (to) an increasing number of clients without
deterioration of the overall throughput”.

1

https://doi.org/10.1145/3302424.3303968
https://doi.org/10.1145/3302424.3303968
https://doi.org/10.1145/3302424.3303968

among all the connections. Therefore, the messages from
an increasing number of connections can be buffered with
limited memory space. Besides, virtualized mapping also re-
duces the cache thrashing in the Last Level Cache (LLC) of
the CPU, as it exports fixed memory addresses to the CPU
cache for different connections.

To further improve the flexibility and efficiency of ScaleRPC,
we are still required to handle the following challenges: 1)
ScaleRPC should be flexible to meet the different require-
ments of different clients. In real-world applications, these
clients may have different frequencies when posting requests
and their behavior may change over time; 2) With virtual-
ized mapping, switching between different groups should
be light-weight and efficient, so as to avoid the server CPUs
from been underutilized. To address these issues, we further
optimize ScaleRPC by proposing priority-based scheduling to
dynamically adjust the client groups, and requests warmup
to reduce the group switching overhead.
Recent studies [1, 16–18] suggest using Unreliable Data-

gram (UD) or Dynamically Connected Transport (DCT) to
design scalable software. However, both of them have to
pay more effort in the software layer before being used in
real-world applications. The detailed discussion is shown in
Section 5.1. In this paper, we choose to improve the scalabil-
ity of RDMA with efficient resource sharing at the system
software layer. As far as we know, this is the first work to
address the above issue from the system perspective rather
than from the hardware. Besides, we target the RDMA-based
RPC design because: Existing systems incorporate RDMA
either by redesigning the system software [13, 23, 24, 35],
which completely changes the I/O path via one-sided verbs,
or substituting the network parts in existing software [16, 18]
with RDMA-based RPC. Generally, it is a more feasible choice
to only replace the RPC subsystem [25], since the RPC im-
plementation is transparent to the applications and existing
software can be easily ported to use ScaleRPC.

Our major contributions are summarized as follows:
1) We propose ScaleRPC to provide scalable RDMA on re-

liable connections. Connection Grouping and Virtualized
Mapping are introduced to efficiently share the hardware
resources between the concurrent clients.

2) We extensively evaluate our proposed ScaleRPC, and the
experimental results show that ScaleRPC achieves compet-
itive scalability and performance with FaSST RPC, state-
of-the-art RDMA-based RPCs deployed on unreliable data-
gram (UD) mode.

3) To further verify the feasibility of ScaleRPC in distributed
systems, we deploy ScaleRPC both in a distributed file
system and a distributed transactional system. With RC
verbs, ScaleRPC also enables us to optimize the trans-
action protocol by co-using the one-sided read/write
and RPC primitives. Both the two systems with ScaleRPC
achieve high scalability and improve performance by up

Table 1. RDMA verbs and MTU Sizes in Different Modes.

send/recv write/imm read/atomic MTU
RC

√ √ √
2 GB

UC
√ √

× 2 GB
UD

√
× × 4 KB

to 90% and 160% respectively for metadata accessing and
SmallBank transaction processing.
The rest of this paper is organized as follows. Section 2

gives our observations that motivate this paper. We present
the design and evaluation of ScaleRPC in Section 3. The
implementation and evaluation of the two distributed sys-
tems are shown in Section 4. Discussions and related work
are respectively given in Section 5 and Section 6, and the
conclusion is made in Section 7.

2 Background and Motivation
2.1 Remote Direct Memory Access
RemoteDirectMemoryAccess (RDMA) provides low-latency
data transmission by directly accessing remote memory. It
bypasses the operating system and supports zero-copy net-
working, and thus achieves both high bandwidth and low
latency. RDMA can be configured in three modes: Reliable
Connection (RC), Unreliable Connection (UC), and Unreli-
able Datagram (UD). While UD supports both unicast (one-
to-one) and multicast (one-to-many) without establishing
connections, RC and UC need to establish connections first
and support only one-to-one data transmission. Another
difference between UD and RC/UC is the Maximum Trans-
mission Unit (MTU). The MTU in UD is only 4 KB, while the
MTU in RC/UC is as large as 2 GB. The difference between
RC and UC is the reliability in the fabric. RC ensures data
transmission is reliable and correct in the network layer,
while UC doesn’t have such guarantee.

RDMA accesses remote memory with two types of verbs,
which are message semantics and memory semantics. Sim-
ilar to socket programming, message semantics send and
receive requests with RDMA send and recv verbs. RDMA
recv is posted at the receiver before the sender posts send
request, so as to specify the address of the incoming mes-
sage. Since both the sender and the receiver are involved
in the data transmission, they are also known as two-sided
verbs. Memory semantics, such as RDMA read and write
and their variants like write_imm and atomic, are capable
of reading or writing data directly to (from) the remote mem-
ory without the involvement of remote CPUs. Thus, they are
also known as one-sided verbs. These verbs are supported
differently in different modes, which are shown in Table 1.

2.2 Poor Scalability of RDMA
As mentioned before, RDMA exhibits poor scalability when
the number of connections increases. To better understand

2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(a)

0
10
20
30
40

(b)
Th

ro
ug

hp
ut

 (m
illi

on
 o

ps
/s

)40-Clients
120-Clients

80-Clients RC Write In
RC Write Out

UD Send In
UD Send Out

Number of Clients

0

0.5

1.0

Stat ReadDir
Mknod 0 200 400 600 800

Figure 1. (a) Scalability Issue of RDMA in Distributed File
Systems. (b) Raw Throughput of RDMA Verbs.

this issue, we first evaluate the metadata throughput of a dis-
tributed file system named Octopus [23]. Octopus is designed
with light-weight software stack, so as to better exploit the
hardware performance of RDMA and NVM. For simplicity,
Octopus is configured with a single metadata server, and is
accessed with an increasing number of clients. The server
node and client nodes are connected via a 56 Gbps Mellanox
SX-1012 switch (the detailed experimental setup is described
in Section 3.6.1). As shown in Figure 1(a), when the number
of clients increases from 40 to 120, the throughput of Stat
and ReadDir operations decreases significantly (by almost
50%). We attribute this to the poor scalability of RDMA since
Octopus itself never imposes any locking overhead for those
read-oriented operations. We also notice that the through-
put of Mknod declines slightly by about 5%. This is because
Octopus has to do more work for update-oriented operations
and the software layer is the main bottleneck.

We further measure the raw throughput of both inbound
and outbound RDMA verbs (shown in Figure 1(b)). Among
them, inbound verbs are the number of verbs that multiple re-
mote machines (the clients) issue to one machine (the server);
outbound verbs are those that one machine issues to multiple
remote machines. Specifically, 10 threads are launched at one
server to send (recv) 32-byte outbound (inbound) messages
to (from) a number of clients. We observe that the through-
put of outbound write drops from 20 Mops/s to 2 Mops/s as
the number of clients grows from 10 to 800. The throughput
of both inbound write and UD send is never affected.

2.3 Resource Contention in RDMA
Message Flow of RDMA. To better understand the root
cause of the scalability issue of RDMA,we firstly cast a glance
at the message flow of RDMA write between two servers:
During the initialization phase, a Queue Pair (QP) is firstly
created between two servers. It consists of a send queue
and a receive queue to store the posted requests. Besides,
one or multiple memory regions are allocated and registered
with ibv_reg_mr, enabling them to be directly accessed by
remote CPUs. As shown in Figure 2, to post a write request,
the CPU of the sender initiates a verb request and sends it

M
EMCPU	Socket

core1 core2 …

NIC

5

4

M
EM CPU	Socket

core1 …

NIC

NIC	Cache

core2

Last	Level	Cache

3
2

1

NIC	Cache

Last	Level	Cache

Figure 2.Message Flow With RDMA Network.

to the local NIC with MMIO (Memory Mapped I/O) (step 1).
After the NIC is notified with the verb request, it collects the
transferred data with DMA read (step 2), and sends it out
(step 3).When theNIC at the receiver receives thismessage, it
transfers the data to the memory with DMA write according
to the memory address (step 4). The CPU checks the memory
region repeatedly until discovering a new message (step 5).
While RDMA bypasses the operating system with the

lightweight network stack, we find that resource contentions
in the NIC cache, the CPU cache, and the memory signifi-
cantly degrade system performance:

Cache Contention in the NIC Cache for Outbound
Verbs. NICs mainly cache three types of information: 1⃝ the
mapping table between the virtual and physical address of
the registered memory, 2⃝ QP states, and 3⃝ a work queue
elements (WQE) cache [17]. FaRM [13] uses 2 GB huge pages
while LITE [32] directly register physical memory so the
mapping table size is greatly reduced (i.e., 1⃝). However,
when the number of connections grows, the total size of
both QP states and WQE cache will be larger than the NIC
cache size and cause cache thrashing (i.e., step 2 in Figure 2).
To quantitatively understand such issue, we collect the

hardware counters of PCIe events when testing the raw per-
formance of RC write (with the same configuration as in
Figure 1(b)). The results are given in Figure 3 (a). We can
find that before the outbound RC write reaches its peak
performance, the corresponding PCIe read rate almost keeps
in step with the write throughput. This is because, in each
write request, the NIC has to read the payload via DMA read
(step 2 in Figure 2). However, when the number of clients
continues to grow, the throughput of PCIe read becomes far
higher than that of the RC write. This is because, when the
number of connections increases, the WQEs and QP states
are more likely to be evicted out of the NIC cache by the
newly posted one, and the NIC has to read them back from
memory when processing them. Such extra efforts lead to
the degradation of overall performance. On the contrary, the
inbound write verbs exhibit almost constant performance
and the PCIe read rate always keeps at a low standard, be-
cause the NIC only needs to store the messages to the local
memory without modifying the cached states.

Cache Contention in the CPU Cache for Inbound
Verbs. We can observe that the inbound write verbs don’t
cause the thrashing in the NIC cache. However, with DDIO

3

Th
ro

ug
hp

ut
 (m

illi
on

 o
ps

/s
)

RC Write Out
RC Write In

PCIe Read Out
PCIe Read In

RC Write In
L3 Cache Miss

0

10

20

30

40

Number of Clients
(a)

Message Block Size (KB)
(b)

0

20

40

60

80

0 40 80 120 160 200 0 1 2 3 4 5 6 7 8

Figure 3. (a) Inbound/Outbound RC Write Throughput and
the PCIe Read Rates. (b) Throughput of Inbound RC Write
with Different Message Block Sizes.

(Data Direct I/O) technology [11], the NIC is allowed to
directly write data to the last level cache in the CPU (step 4 in
Figure 2) to improve the performance. The NIC accesses the
LLC of the CPU with eitherWrite Update orWrite Allocate.
Write Update allows in-place update if the accessed memory
space already resides in the LLC. Otherwise, the NIC uses
Write Allocate to write data to the newly allocated space in
the LLC. However,Write Allocate mode is restricted to 10%
of the last level cache in typical Intel CPU [11]. Therefore, if
the remotely accessed memory is not efficiently cached in
the LLC, the write allocate operations cause extra cacheline
swapping operations and affect the overall performance. To
reveal the above effect, we collect both the performance
of inbound write and the L3 cache miss rate by varying
the size of the accessed memory region at server side (as
shown in Figure 3 (b)). Specifically, we partition the memory
region of the server into message blocks, and clients are
isolated to write to different blocks (most RDMA-based RPC
adopts such design). In our configuration, the total number
of clients is 400, each client has 20 message blocks to support
batching, and the message size is 32-bytes. From the figure,
we observe that as the message block size grows to larger
than 2KB, the overall throughput shows a sharp drop from 35
Mops/s to less than 10 Mops/s, while the L3 cache miss rate
increases accordingly. With 2KB message blocks, the size of
the totally accessedmemory is around 16MB (2 KB×400×20),
which is comparable to the LLC size. When there are more
connections or with larger message block sizes, the efficiency
of LLC cache is reduced, which further limits the scalability
of inbound verbs.

We conclude that RDMA’s scalability issue has its root in
the resource contention of each server. Enhancements with
more fine-grained management are required in the system
software to improve the RDMA scalability.

3 ScaleRPC
3.1 Overview
Similar to the design of FaRM RPC [13], ScaleRPC chooses
the RC mode and uses one-sided RDMA write verb for the

Clients
Waiting
Queue

…
Groupi
…

Warmup Processing

CPU

Head

Virtualized Mapping
NICNIC Cache

M
EM

Groupa Groupb

Connection
Grouping

Last Level Cache
Outbound

Inbound

Requests

Response

Figure 4. ScaleRPC Overview. (Clients are partitioned into
groups and ScaleRPC only servers one group at a time slice)

communication between the server and client nodes, so as
to meet the high reliability and performance requirements
of the distributed systems.

As shown in Figure 4, ScaleRPC improves the RPC scalabil-
ity from two aspects: 1) Connection grouping to reduce con-
tention in the NIC cache for outbound messages. By grouping
the number of connections being served, ScaleRPC serves
a limited number of connections at one time, in order to
balance the saturation and contention in the NIC cache. 2)
Virtualized mapping to improve the CPU cache efficiency
for inbound messages. It schedules the groups of connections
to share one physical memory space. which is mapped into
different logical pools for different connections. The limited
usage of memory space also improves the memory utiliza-
tion. To reduce the switching overhead between the groups
of clients, ScaleRPC allows the next group of clients to warm
up their requests in advance.
In ScaleRPC, the RPC request initiator is called the RPC-

Client, and the service that processes the RPC request is
called the RPCServer. Once the RPCServer is started, it first
allocates and registers huge pages (typically 2MB for each
page) of memory from Linux kernel using mmap, which works
as the message pool for remote clients. This message pool is
formatted as contiguous message zones. Each zone is further
cut into message blocks, whose size determines the largest
message size it can support. Different RPCClients are mapped
into different message zones, where clients can send RPC
messages by directly posting RDMA writes to a specific mes-
sage zone. In RPCServer, different message zones are owned
by different working threads. Each thread polls new request
from its own zones, invokes the RPC handler for requests
processing, and sends the response message to the clients
with RDMA write verbs. Previous work [13, 16] shows that
RDMA updates memory in increasing address order, so we
adopt a right-aligned layout for each message with three
fields: Data, MsgLen and Valid. The Valid field at the end
of each message is used for new message detection: Once
the Valid is set as valid, the other two fields are confirmed
to have been finished sending. Therefore, the RPCServer can
decide the arrival of new requests by polling the value of

4

Valid. The MsgLen field represents the length of Data filed,
which is the content of RPC message.

3.2 Connection Grouping
ScaleRPC introduces connection grouping to alleviate the
resource contention in the NIC cache. Before the clients post
RPC requests, they are organized into different groups by the
RPCServer. The working threads at the RPCServer then serve
them in a round-robin way. With such scheduling, the clients
from the same group can send RPC requests simultaneously
to the RPCServer during one time slice, and keep idle for the
rest of time slices. Thus, the clients from different groups
are strictly isolated with the time order. The grouping-based
processing can avoid the cache thrashing in the NIC cache
because the number of clients being served in each time slice
is bounded to a maximum.

Priority-Based Scheduler. In real-world applications,
different clients have different access frequencies to the RPC-
Server, and their behaviors may change over time. Therefore,
a naive grouping strategy is not always optimal regarding
the varying properties of different clients. Accordingly, we
propose a priority-based scheduler to dynamically adjust the
group size and time slice. It achieves this by monitoring the
performance information of each client in real time. When
connecting to the server, each RPCClient will be assigned a
unique ID. For clienti whose ID is i , RPCServer will record
its throughput during the current time slice as Ti and the
average request size as Si . The priority of clienti is defined
as Pi = Ti/Si . Hence, the clients with higher priority are
more likely to send requests more frequently while carrying
less payload. The priority-based scheduler manages those
clients that have the same class of priority into the same
group. The group with higher priority contains a fewer num-
ber of clients and a longer time slice. Such management is
dedicated to squeezing the shared time wasted by those idle
clients to serve those busy ones. Besides, the clients may
dynamically log in or log out during execution, which makes
the group size changes over time. Hence, the scheduler will
lazily split or merge the groups when the current group size
is out of the legal range. Based on our empirical results, the
group is adjusted once its size is not within [12 ,

3
2] of the

default group size.
Note that the group size setting has a high impact on the

overall performance of ScaleRPC. With a small group size,
the number of clients being served in each group is limited,
and they cannot reach the peak performance of the NIC and
server’s CPU. On the other hand, larger group size aggravates
contention in NIC caches, limiting the scalability. Hence, a
proper choice of the group size balances the saturation and
contention of the NIC cache. In our implementation, the
group size is dynamically determined by two factors: 1) the
cache size and the processing capacity of both NIC and CPU;
2) and the aforementioned scheduling policy.

VMP2VMP1 VMPL…

MEM

Group1

Virtualized	
Mapping	Pool

Physical
resources

Group2 GroupL…

CPU

Message	Pool

Last	Level	Cache
Data	Flow
Context	Switch

Figure 5. Virtualized Mapping at RPCServer.

3.3 Virtualized Mapping
The contention in the memory and CPU cache is another
major bottleneck that affects the inbound throughput of
UC/RC RDMA-based RPCs. With DDIO mechanism, the NIC
directly writes the inboundmessages to the last level cache of
the CPU. However, the static mapping makes the size of the
message pool be proportional to the number of the clients.
As a consequence, the message pool fails to reside in the
last level cache when serving too many clients. This leads
to large amounts of Write Allocate operations and causes
performance degradation.
In ScaleRPC, we reduce memory consumption and CPU

cache miss ratio with virtualized mapping. As mentioned in
Section 3.2, with grouping-based message processing, only
the clients in the group being served are allowed to post RPC
requests. Therefore, we only need to allocate one physical
message pool which is exactly capable of serving one group
of clients, in a virtualized mapping way. As shown in Fig-
ure 5, the physical message pool is virtualized to multiple
logical message pools, each of which is used for RDMA com-
munication with one group of clients. In this way, a single
physical message pool serves all connections. Note that the
message pool is stateless, which means that the messages
in the memory pool become obsolete immediately after the
request has been processed. Based on this property, the phys-
ical message pool is shared between different groups without
memory resetting. Similarly, the data that cached in the last
level cache of CPU also becomes invalid, and does not need
to be evicted. Thus, clients in the next groups can directly
overwrite the message pool without evicting or reloading
the cache.

Context Switch. To achieve such virtualized mapping,
each virtualized message pool is associated with its context
metadata, including the ClientIDs, offsets, and performance
counters for the clients of each group. The metadata is saved
and reloaded by the priority-based scheduler at the end of
each time slice (a.k.a., context switch point). Before switch-
ing to another group, each working thread is notified by the
scheduler to process and clear the suspended requests in the
message pool, and notify the corresponding clients with a
context_switch_event, which is piggybacked directly in
the response message. For the clients in the current group

5

core	1 core	m

ClientjClienti

Processing	Pool Warmup	Pool E1 … En

Scheduler

addr batch

Write

Init	requests

Scheduling

Read	

Context	Switch

…

1
2

3

4

entry

Server

Message	

Clients

Cores

Pool

Figure 6.Warmup and Scheduling. Clienti is in Process state,
while Clientj is under warmup.

that don’t have any active requests in the message pool, RPC-
Server also needs to notify them the context_switch_event
with extra RDMA writes. The ratio of the introduced RDMA
writes is lower than 0.01% when compared to the real pay-
load, introducing insignificant effect on the overall perfor-
mance. After processing all the remaining messages, the
scheduler saves the context metadata, and recovers the next
group by reloading its metadata.

RequestsWarmup. Switching between two groups often
makes the working threads at the RPCServer idle for a while
to wait for the new requests from the next group, which
impact the overall performance dramatically. We address this
issue by allowing the clients from the next group to warm up
the requests before being served. As shown in Figure 6, we
introduce aWarmup Pool and an array of Endpoint Entries
to reduce the context switch overhead.

3.4 Putting Everything Together
After establishing a connection with RPCServer, the client
will first move to WARMUP state, during which the RPC re-
quests are firstly initialized locally (step 1 in Figure 6). Then
the client sends a tuple formatted as< req_addr, batch_size >
of local requests to the corresponding endpoint entry using
RDMA write (step 2, write to Ej according to the Client ID).
The scheduler at RPCServer will choose the clients to form
the warmup group according to the scheduling strategies
described in Section 3.2 (step 3). It then fetches the requests
actively from those clients’ memory with RDMA read ac-
cording to the endpoint entry information (step 4). When
the context switch occurs, the warmup pool becomes the
processing pool and the primary processing pool begins
to warmup the next group of clients. The working threads
begin to process the requests in the new processing pool
(previous warmup pool). When the client in the WARMUP state
receives the first response message from RPCServer, it moves
to PROCESS state. At this time, the client is allowed to write
new request directly to the processing pool with RDMA
write. When the client receives a response message with
context_switch_event, it moves to IDLE state, and starts
again by repeating from step 1 again (Figure 7 shows the
state transition of each client in detail).

Connect

Warmup

ProcessIdle

first	response	returns?

context_switch_event

post	new	request?

Figure 7. State Transition of the clients in ScaleRPC.

With the warmup pool, the server threads are enabled to
process the requests in a pipelined way. The execution of
context switch is completely hidden from the critical path.
With virtualized mapping, ScaleRPC can support unlimited
number of clients theoretically, as all the clients share a
same physical message pool. On the contrary, static mapping
approach (such as in HERD RPC) only supports a limited
number of clients once the message pool has been formatted.

3.5 Deployment Considerations
ScaleRPC assumes each RPCClient execute independently,
where there is no synchronization among them. This is usu-
ally the case for many distributed systems following client-
server architecture. Furthermore, the RPCServer and RPC-
Clients are assumed to cooperate together to make the afore-
mentioned optimizations work properly. We achieve this
by implementing a group of easy-to-use APIs to trigger the
execution of remote procedures, which are SyncCall(), Async-
Call() and PollCompletion(). Among them, the two asynchro-
nous APIs (i.e., AsyncCall and PollCompletion) are provided
to enable the clients to post multiple (batch of) remote calls
at a time before collecting their response messages. Hence,
for those distributed systems with “one-to-many” data trans-
ferring, ScaleRPC can be directly incorporated in by calling
those APIs. However, when the clients need to access multi-
ple RPCServers simultaneously, such as in distributed transac-
tion processing, we need to introduce Global Synchronization
to make ScaleRPC applicable (in Section 4.2).
Connection grouping in ScaleRPC improves the overall

throughput and shortens the average latency, but prolongs
the maximum latency compared to RawWrite. However,
we also observe that UD-based RPC (such as FaSST and
HERD) exhibits even higher tail latency: The tail latency of
them is more than 200 µs when serving 120 clients, which is
much higher than ScaleRPC (in Section 3.6.2). In conclusion,
ScaleRPC successfully achieves scalable performance and
reliable data transmission, with the price of relatively higher
tail latency. We believe that such sacrifice is worthwhile,
because one-sided RC verbs with the scalable and reliable
property are vital for the design of distributed systems (see
Section 4). Another limitation is that the RPCs with long
execution time may fail for the first time since they may
be half-executed before a context switch occurs. To address

6

this issue, their information is recorded. Any subsequent re-
quests with the same call type will be executed by a separate
thread in legacy mode. Anyway, this is not always the case
in in-memory storage systems because the execution time
of RPC tends to be short as the data is stored in DRAM.

3.6 Evaluation of ScaleRPC
In this section, we evaluate ScaleRPC’s performance as well
as the benefit breakdown from each mechanism design.

3.6.1 Experimental Setup
Evaluation Platform. Our cluster consists of 12 nodes,
each of which is equipped with two 2.2GHz Intel Xeon E5-
2650 v4 processors and 128 GB of memory. Each processor
has 12 physical cores. All these servers are installed with Cen-
tOS 7.4 and are connected with a Mellanox SX-1012 switch
using MCX353A ConnectX-3 FDR HCAs (56 Gbps over IB
and 40 GbE). To evaluate the performance of ScaleRPC, we
use coroutines provided by Boost C++ library to simulate
hundreds of clients. In client nodes, each thread creates mul-
tiple coroutines, and each coroutine initiates one RPCClient.
The working threads schedule the coroutines in a round
robin manner. Each time one coroutine posts a batch of re-
quests with the asynchronous APIs, it yields to the next
coroutine. The response messages are polled before each
coroutine sends the next batch of requests. In ScaleRPC eval-
uation, we choose one node to work as RPCServer and the
rest of the servers are used to run RPCClients.

Table 2. RPC Implementations for Comparison.

RPC Description
RawWrite RPC a baseline RPC implementation based

on RC write verbs
HERD RPC [16] a scalable RPC with a hybrid of UC

write and UD send verbs.
FaSST RPC [18] a scalable RPC based on UD send verbs.

ComparedRPCPrimitives. We compare ScaleRPCwith
three RDMA-based RPC primitives (as listed in Table 2). In
the three RPC implementations, RawWrite is a variation of
ScaleRPC with all the optimizations disabled (just the same
as the FaRM RPC [13]). HERD RPC [16] uses UC write to
send request messages to the server, while the server uses
UD send to send the response message back. FaSST RPC [18]
uses UD send to post both request and response messages.
We configure the FaSST RPC to work asymmetrically, where
multiple clients post requests to a single server. The clients
of both RawWrite, HERD and FaSST are simulated using
coroutine just like that of ScaleRPC. In our evaluation, the
time slice and group size of ScaleRPC are set to 100 µs and
40 respectively by default. The message pool is formatted as
continuous message blocks with size of 4 KB 2.
2We choose 4 KB as default message block size because this is the largest
message size supported by UD-based RPC like FaSST [18] and HERD [16].

Th
ro

ug
hp

ut
 (m

illi
on

 o
ps

/s
)

of Client Threads # of Physical Client Servers

Batch=8 Batch=8

Batch=4

Batch=1

Batch=4

Batch=1

RawWrite HERD FaSST ScaleRPC

0
5

10
15
20

5
10
15
20

5
10
15
20

100 200 300 400 1 2 3 4 5

Figure 8. Throughput Evaluation for Different RPC Imple-
mentations.

3.6.2 Overall Performance
Weevaluate ScaleRPC’s scalability by collecting both through-
put and latency results. The default message size is 32-byte.

Throughput.We collect the throughput results with two
kinds of experiments. One is to vary the number of clients
from 40 to 400, which are distributed evenly to 11 physical
client servers (shown in the left half of Figure 8). The other
is to vary the number of physical client servers from 1 to 5,
with a total number of client threads of 40 (shown in the right
half of Figure 8). From this figure, we make the following
observations:
(1) ScaleRPC achieves comparable scalability to FaSST, and

significantly outperforms RawWrite, as shown in the left
half of Figure 8. RC-based RawWrite exhibits a signifi-
cant performance drop due to the resource contention
in the RC mode. HERD has much better scalability than
RawWrite, but its performance still drops when the num-
ber of clients is large, especially when the batch size is
small. This is mainly owing to the static mapping design
of the message pool, which fails to reside in the CPU
cache when the number of clients increases. FaSST uses
UD send to post both request and response messages, so
it doesn’t need to create QPs for each client. Besides, the
addresses of the incoming requests are determined by
the FaSST server (by posting UD recv), indicating that
FaSST doesn’t need to create separate buffers for different
clients. As a whole, FaSST shows stable throughput de-
spite variations in the number of clients. In comparison,
ScaleRPC using RC verbs achieves similar scalability to

7

Batch = 1

C
um

ul
at

iv
e

D
is

tri
bu

te
di

on

RawWrite
HERD
FaSST
ScaleRPC

RawWrite
HERD
FaSST
ScaleRPC

(a) Latency (us) (b) Latency (us)

Batch = 8

 RawWrite HERD FaSST ScaleRPC
Median(us) 19 10 11 4
Average(us) 19.7 15.8 15.8 13.5

Max(us) 25 16 19 217
TP(Mops/s) 6.1 7.7 7.7 8.9

 RawWrite HERD FaSST ScaleRPC
Median(us) 44 29 42 15
Average(us) 52.0 45.3 53.6 46.9
Max(us) 57 187 367 230

TP(Mops/s) 18.5 21.2 17.7 20.5

0

0.5

1.0

10 100 10 100

Figure 9. Latency Evaluation for Different RPC Implemen-
tations (120 clients).

UD-based FaSST, and keeps almost constant performance
when the number of clients increases from 40 to 400.

(2) ScaleRPC and RawWrite are more effective in exploiting
the RDMA hardware benefits than FaSST and HERD. As
shown in the right half of Figure 8, when the batch size
is 1, FaSST and HERD require 40 client threads to be
distributed to at least 4 physical client servers to satu-
rate its throughput. With larger batch sizes, FaSST and
HERD still require multiple physical servers to saturate
the throughput. In contrast, Scale RPC and RawWrite can
be saturated with at most two physical servers. This is
because, for each UD-based RPC, the client needs to post
recv verbs beforehand and use ibv_poll_cq to poll the
response message, rather than directly check the local
message pool. With such working mode, CPU is more
likely to be the bottleneck.3 We conclude that RC-based
RPCs verbs are effective in exploiting the hardware ben-
efits than UD-based ones.
Latency. Figure 9 shows the cumulative latency distri-

bution of all the evaluated RPCs. We set the number of
clients to 120 with a varying batch size (1 and 8 respectively).
The median, average, maximum latencies and corresponding
throughput are also shown in the table. We record the la-
tency of each batch asT2−T1, whereT1 is the start time when
posting each batch of requests; T2 is the end time when all
the response messages of this batch return. From the results,
we make the following observations:
(1) ScaleRPC shows a bimodal distribution of latencies due

to the grouping-based scheduling, while the other RPCs
are more smooth in the latency distribution. ScaleRPC is
capable of keeping most of its requests with extremely
low latency, e.g., most of the requests have latencies of
around 4 µs with batch size of 1, and 15 µs with batch size
of 8. In contrast, RawWrite, HERD and FaSST respectively
have median latencies of 19 µs , 10 µs and 11 us when the
batch size is 1. When the batch size is 8, both HERD and

3private talk with Mellanox engineers

FaSST have a wide latency spectrum, most of which falls
in the range from 20 µs to 200 µs .

(2) ScaleRPC shows much higher maximum latency when
the batch size is 1. This is mainly because we are using
lighter workloads and the network is not fully saturated.
Thus, connection grouping increases tail latency unnec-
essarily. But even so, ScaleRPC is still more efficient in
delivering higher throughput than the compared systems.

(3) ScaleRPC has close or smaller maximum latencies with
high concurrent workload (e.g., when the batch size is set
to 8). In this case, the network is fully saturated. It’s easy
to understand that the maximum latency of ScaleRPC is
closely related to the size of time slice and the number of
groups. However, UD-based RPCs like HERD and FaSST
exhibit a wide latency spectrum, and they show the same
or even higher tail latency.
As a whole, ScaleRPC achieves comparable scalability with

UD-based RPCs and is more effective in exploiting the hard-
ware benefits. It also provides lower latencies to the majority
of the requests, and keeps close or smaller maximum laten-
cies. In the future, we expect to adopt more fine-grained
scheduling regarding the sensitivity of different RPCClients
(e.g., different clients may have different requirements on ei-
ther throughput or latency), thus combining the advantages
of both low tail latency and high scalability.

3.6.3 Analysis of Internal Mechanisms
To understand the effects respectively from the internal
mechanisms of ScaleRPC, we collect the hardware perfor-
mance counters for analysis. These hardware counters are
collected using the Processor Counter Monitor (PCM [2])
tool provided by Intel. Among them:
- PCIeRdCur indicates the number of operations of reading
data blocks from memory to PCIe devices.

- RFO is the number of operations of writing partial data
blocks to memory from PCIe devices.

- ItoM indicates the number of operations of writing full
data blocks to memory from PCIe devices. The summary
of RFO and ItoM gives the total number of write operations
from PCIe devices to memory.

- PCIeItoM indicates the number of full data block write
operations using theWrite Allocate mode when writings
data to memory from PCIe devices4.
Effects of Connection Grouping. Figure 10 shows the

throughput and the associated hardware counters respec-
tively for RawWrite and ScaleRPC. From the figure, we can
see that the PCIeRdCur counter of RawWrite increases dra-
matically to more than 20 million ops/s when the number
of clients grows larger than 40. This tells that, when there
are more than 40 clients, there are a large number of PCIe
read operations. The reason lies in the NIC cache thrashing.

4Since PCIeItoM counter is valid only on Intel v1/v2 CPUs, we move RPC-
Server to a v2 CPU platform to replay the experiments.

8

Th
ro

ug
hp

ut
 (m

illi
on

 o
ps

/s
)

Number of Clients

PCIeRdCur
RFO+ItoM

PCIeItoM
RawWrite

Number of Clients

PCIeRdCur
RFO+ItoM

PCIeItoM
ScaleRPC

0

5

10

(a) RawWrite (b) ScaleRPC

0

10

20

30

0 50 100 150 0 50 100 150

Figure 10. Analysis of the Internal Mechanisms using Hard-
ware Counters.

When the NIC cache cannot keep all the QP states for the
connected clients, they are evicted to the main memory. Also,
the WQEs also need to be switched out and in from the NIC
cache to the memory for different connections. Both of them
result in extra PCIe read operations. When the number of
clients is 150, the PCIeRdCur counter drops again, but the
RawWrite performance is still poor. This is because the high
rate of allocating writes (indicated by high PCIeItoM which
will be discussed next) leads to slow performance. In compar-
ison, the PCIeRdCur counter keeps pace with the throughput
of ScaleRPC, and ensures its scalability.

Effects of Virtualized Mapping. As shown in Figure 10,
the PCIeItoM counter shows a different pattern in RawWrite
and ScaleRPC. In RawWrite, the PCIeItoM counter increases
when the number of clients grows. This is because more
message pools are allocated for the growing number of
clients. The increased message pools result in more CPU
cache misses. In other words, larger message pool sizes lead
to poorer CPU cache efficiency. Therefore, with either larger
block size in the message pool or more message pool blocks,
the cache efficiency is reduced. In comparison, the virtual-
ized mapping technique in ScaleRPC virtualizes different
memory spaces using a single physical message pool. This
single physical space reduces the chances of data eviction
from the CPU cache when the virtualized memory spaces
serve different clients. As shown in the figure, the PCIeItoM
counter in ScaleRPC has a stable but low rate for a different
number of clients.

3.6.4 Analysis of UniformWorkloads
As mentioned before, the group size and time slice size is
partially determined by the cache size and the processing
capacity of both NIC and CPU. Thus, we analyze these pa-
rameter settings with uniform workloads by sending 32-byte
requests to the RPCServer.
Configuration of the Time Slice Size. In this part, we

measuring the throughput of ScaleRPC with varied time slice
size from 30 µs to 250 µs (80 clients, group size of 40 and
batch size of 1, shown in Figure 11(a)). From the figure, we
observe that the throughput improves from 7.6 Mops/s to

Th
ro

ug
hp

ut
 (m

illi
on

 o
ps

/s
)

(a) Time Slice (us) (b) Group Size

5
6
7
8
9

10

5
6
7
8
9

10

30 50 100 150 200 250 20 30 40 50 60 70

Figure 11. (a) Sensitivity to the time slice size. (b) Sensitivity
to the group size.

8.9 Mops/s when the time slice grows from 30 us to 250 us.
This is because with a smaller time slice, the frequent con-
text switches incur much overhead and cause more network
traffic of extra timeout notifications, thus limiting the perfor-
mance. Using a larger time slice is helpful for improving the
throughput, however, it incurs longer waiting time in the
IDEL state, which amplifies the tail latency. In our evaluation,
the 100 us time slice provides both high throughput and low
latency, and is a feasible choice.

Configuration of the Group Size. In this evaluation, we
vary the group size from 20 to 70 with a step of 10, and use
two groups of clients to access the RPCServer. Figure 11(b)
shows the throughput under different group size settings.
From the figure we can see that the throughput of ScaleRPC
is first increased and then decreased. For small group sizes
such as 10, ScaleRPC only provides 5.7 million operations
per second. The main reason is that the clients in a small
group are unable to saturate the RDMA network. For large
group sizes such as 70, ScaleRPC also encounters a slight
performance drop. This is because the resource contention
becomes more serious in the CPU cache and the NIC cache.
As a whole, the group size of 40 provides high throughput in
our hardware, which is optimal to balance the high through-
put and low latency.

3.6.5 Analysis of Non-uniformWorkloads
Apart from the hardware effects, the group size and time
slice size are also dynamically affected by the behavior of
different clients. To reveal the effects of the priority-based
scheduler, we measure the throughput of ScaleRPC with
imbalanced workloads. This is achieved by launching clients
with different access frequency distribution. For comparison,
we implement a Static mode based on ScaleRPC. It keeps
both group size and time slice a fixed number.
Figure 12(b) shows the throughput of two modes when

accessed by clients with different AFD. To simulate such
imbalanced behavior, we inject different latencies for each
client before they post the next request. The latencies we
choose for different clients follow a Gaussian distribution
(with σ set to 0.8 and 1 respectively in our evaluation). With
dynamic scheduling, those clients with higher accessing fre-
quency are organized into the same group and share a larger

9

Th
ro

ug
hp

ut

(m
illi

on
 o

ps
/s

)

Static Dynamic

Different Value of Sigma

0

2

4

6

8

10

0.8 1

Figure 12. Throughput with different type of access fre-
quency distribution.

time slice. Our experiment shows that Dynamic mode out-
perform Static mode by 9% and 10% with different σ .

4 Deployments of ScaleRPC
It’s necessary to notice that the introduced techniques in
Section 3 are not restricted in RPC design, but benefit all
the systems deployed on RC/UC verbs. Based on such princi-
ple, we (1) transplant ScaleRPC into an existing distributed
file system with little efforts, and (2) redesign a distributed
transaction system named ScaleTX by rebalancing the loads
between coordinators and participants by co-using the one-
sided verbs and ScaleRPC.

4.1 ScaleRPC in Distributed File System
A typical distributed file system (DFS) consists of a single
metadata server (MDS) and multiple data servers (DSs). The
lack of highly scalable and parallel metadata processing with
a single-node MDS is becoming an important performance
bottleneck. In this section, we replace the RPC subsystem of
Octopus [23] with ScaleRPC to reveal its effects in real-world
workloads. Octopus is an efficient distributed file system
deployed on emerging hardware like RDMA and NVM. It
redesigns the software stack by abstracting a distributed
shared persistent memory pool, so as to reduce redundant
memory copying. It also introduces self-identified RPC for
metadata access. Different from ScaleRPC, Self-identified RPC
uses RDMA write-imm to post requests. In this way, the
server threads can directly locate the new messages with the
encapsulated immediate number, avoiding to scan the whole
message pool.

We usemdtest benchmark to evaluate the metadata perfor-
mance. Figure 13 shows the metadata performance when us-
ing self-identified RPC (abbreviated as selfRPC) and ScaleRPC
respectively in Octopus with a varying number of clients.
HERD and FaSST are not evaluated here because both of
them use Unreliable Datagrammode, which has limitedMTU
of 4 KB, dissatisfying the requirement of variable-sized meda-
data access to the MDS. As shown in the figure, ScaleRPC
outperforms selfRPC in all four evaluated operations. In de-
tail, for those write-oriented metadata operations like Mknod
and Rmnod, ScaleRPC slightly outperforms selfRPC by 5% -
6.5% with 80 and 120 clients. This is because both Mknod and

selfRPC ScaleRPC

(a) (b)

80 Clients 120 Clients

selfRPC ScaleRPC

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0.5

1.0

1.5

2.0

2.5

MknodRmnod Stat
ReadDir MknodRmnod Stat

ReadDir

Figure 13. Performance of ScaleRPC in File Systems.

Rmnod operations require more complicated processing in
the file system, which incurs higher software overhead in the
file system itself than in the network. For the read-oriented
metadata operations like Stat and ReadDir, ScaleRPC out-
performs selfRPC respectively by 50% and 90% on average
with 80 and 120 clients launched. Since those read-oriented
operations introduce negligible software overhead in the
file system, the scalability benefits of ScaleRPC dominate
the overall system performance. In conclusion, ScaleRPC
supports variable-sized reliable data transmission, which is
necessary for file systems, and provides high performance
and scalability simultaneously.

4.2 ScaleRPC in Transactional System
We further implement a distributed transactional system run-
ning on ScaleRPC named ScaleTX. It consists of two parts:
the coordinators and the participants. The coordinators (also
act as the clients) are responsible to initiate and coordinate
the transaction, while the participants (also act as the stor-
age servers) need to make responses when involved in the
transaction processing. A key-value store is deployed on
the storage servers and provides serializability with ScaleTX
when operating on multiple key-value pairs. The key-value
store is an in-memory hash table which has the same lay-
out as that of MICA [20]. In our implementation, we deploy
three servers (participants) to manage the key-value store,
each of which store one shard. These three servers also act
as RPCServer to process the transactional requests from the
clients (i.e., coordinators).

Global Synchronization. As illustrated in Section 3.5,
ScaleRPC targets at improving the scalability of “one-to-
many” data transferring. Therefore, ScaleRPC cannot be di-
rectly used in “many-to-many” data transferring as required
in ScaleTX: In the transaction processing, a client may access
multiple servers simultaneously. In ScaleRPC, however, the
RPCServers schedule the clients independently: When one
client is in PROCESS state of one server, it may still in WARMUP
state of another server, making the clients always stalling.
We use an NTP-like protocol to synchronize the RPC-

Servers, so as to make them switch the groups of clients at
the same pace. During the initialization phase, we choose
one of the RPCServers to work as the time server, which is

10

TimeServer

Followeri Ti1
Ti2

T3

Ti4

D

Di

Followerj

Tj2

Tj1 Tj4 Dj SYNC

sync resp

Figure 14. Synchronization Between RPCServers.

predefined with the configuration scripts. Other RPCServers
(namely the followers) send sync requests to the time server
periodically for global synchronization. As shown in Fig-
ure 14, the current time of Ti1, Ti4 and Ti2, T3 are recorded
respectively by the followers and the time server when send-
ing or receiving the sync or resp message. Besides, the time
server will encapsulate the value of (T3 − Ti2) (denoted as
∆Ti) in the resp message. After this, the time server and the
followers will sleep for D and Di respectively before the
next context switch occurs, where D is a pre-defined value
and Di = D − (Ti4 −Ti1 − ∆Ti)/2. With such design, all the
RPCServers can schedule the clients with the same pace. In
our implementation, the global synchronization event occurs
once in every 100 ms, with an insignificant impact on the
overall performance.
Similar to FaSST [18] and FaRM [13], we use optimistic

concurrent control for serializability between transactions
execution and two-phase commit for consistent commit.
We further optimize the transactional protocol by co-using
ScaleRPC and one-sided verbs, so as to reduce latency and
improve throughput. As shown in Figure 15, the client acts
as the coordinator and the KV servers act as the participants.
The keys that read and updated by the transaction are de-
noted as read set (R) and write set (W) respectively. In this
figure, the write set containsw1 and the read set consists of
r1 and r2.
1) Execution: The coordinator reads the key-value items

from R andW by posting RPCs to the participants. Mean-
while, each item in W is locked by the KV servers, and
the addresses of each KV item in R andW are sent back to
the clients. Note that each KV item in the KV server has
a co-located version number. To ensure the serializability,
the versions and the version addresses of each element in
R are sent back as well.

2) Validate: The coordinator checks the versions in R by
posting RDMA reads according to the version addresses
collected in the execution phase. If any version in R is
modified by a concurrent transaction, the validation phase
fails and this transaction is aborted.

3) Log and Commit: To commit a transaction if the val-
idation succeeds, the coordinator first appends the log
entries in each primary node of W by posting RPCs. If
logging succeeds, the coordinator updates the primary
key-value items in W by directly using RDMA writes.
Meanwhile, the lock filed is released by zeroing the lock
field of each KV item.

C

P1

P2

P3
Validate	

(RDMA	Read)
Log

(ScaleRPC)
Commit

(RDMA	Write)
Read

(ScaleRPC)

r1

w1

r2

r1

r2

w1 w1

Lock Unlock

Exec

Figure 15. Protocol of ScaleTX. C indicates the coordinator
and P1, P2 and P3 are the participants.

It is worth mentioning that ScaleTX uses one-sided read
and write during the validation and commit phase. Such
design has two advantages: (1) ScaleTX naturally inherits
the good scalability of ScaleRPC. (2) ScaleTX uses one-sided
verbs to offload a part of execution logic from the participants
to the coordinators, improving the overall performance.

4.2.1 Evaluation of ScaleTX
We evaluate ScaleTX with two benchmarks: (1) an object
store with different configurations of read set and write set,
similar to the read-intensive OLTP benchmark in FaSST [18];
(2) a write-intensive benchmark named SmallBank [5]. We
deploy RawWrite RPC, HERD RPC, FaSST RPC and ScaleRPC
to run the distributed transaction protocol described in Sec-
tion 4. For comparison, we disable the optimization of using
one-sided verbs and replace them with RPCs. These transac-
tion systems are respectively called RawWrite, HERD, FaSST
and ScaleTX-O for short.

Object Store. In object store evaluation, we generate
workloads with random keys and each transaction contains
r items in read set and w items in write set, which is de-
noted as (r,w). Figure 16 shows the performance of different
implementations, and we have the following observations:
1. Generally, both HERD and FaSST have poor perfor-

mance with 80 clients connected. This is mainly because UD
connections are inefficient to achieve high throughput with
the limited number of physical client nodes (as described
in Section 3.6.2). The transaction with RawWrite shows the
highest throughput in all evaluated workloads when con-
nected by 80 clients, but it drops by 56 % on average when the
number of clients increases to 160. This is mainly owing to
the poor scalability of RawWrite RPC. Particularly, ScaleTX
achieves the highest throughput among all the systems while
keeping good scalability.
2. For read-only transactions as shown in Figure 16(a.1),

we find that ScaleTX has the same throughput as ScaleTX-O.
This is because posting one-sided verbs (i.e., RDMA read)
doesn’t reduce the network traffic. However, using one-sided
verbs still reduces the execution latency by 15% with low-
concurrent workloads (not shown in the figure).

3. For read-write transactions (in Figure 16(a.2)), ScaleTX
can respectively outperform RawWrite, HERD, FaSST and

11

RawWrite HERD FaSST ScaleTX-O ScaleTX
Object Store

Th
ro

ug
hp

ut
 (M

tp
s)

0.5

1

1.5

a.1. (4,0) a.2. (4,2) b.

SmallBank

1

2

3

4Object Store

1

2

3

80 160 80 160 80 160

Figure 16. Performance of ScaleTX. (a.*) represent the performance of object store with varying size of write set and read set.
(b) shows the performance of SmallBank.

ScaleTX-O by 131%, 60%, 51% and 10% with 160 clients con-
nected. This improvement mainly owes to (1) the efficient
and scalable design of ScaleRPC, and (2) the one-sided RDMA
write used in multiple phases, which offloads the transac-
tion committing overhead from servers to clients.

SmallBank. The SmallBank OLTP benchmark simulates
simple bank account transactions. It is write-intensive with
85% of update transactions. In SmallBank evaluation, we load
1, 000, 000 bank accounts per server in advance, and let the
4% of the total accounts be accessed by 60% of transactions.

From Figure 16(b) we find that ScaleTX has the best per-
formance and outperforms RawWrite, HERD, FaSST and
ScaleTX-O by 18%, 112%, 120% and 30% respectively with
80 clients, and by 160%, 73%, 79% and 26% with 160 clients,
which reflects both the high scalability of ScaleRPC and high
efficiency of ScaleTX. We also notice that the performance
gap between ScaleTX and ScaleTX-O increases when com-
pared with that in the object store. This is because SmallBank
is write-intensive, in other words, has a larger write set. Dur-
ing the transaction commit phase, all other four transaction
systems have to pay more efforts to send RPCs for com-
mitting the transactions, while ScaleTX only needs to post
write verbs without waiting for the feedback messages. This
also proves that in large-scale, write-intensive transaction
processing (which widely exists in banking, e-commerce,
etc.), adopting one-sided verbs in RC RDMA to redesign
light-weight transaction processing protocols is particularly
important, and ScaleRPC provides such opportunity.

5 Discussion
5.1 Existing Approaches.
UD-based. Recent research has suggested the Unreliable Data-
gram (UD) mode to design the scalable software [16, 18].
Though the UD mode shows good scalability (as shown in
Figure 1), its limitations are also obvious: (1) One-sided verbs
are not supported by UD connections, which are the most
important verbs to exploit the performance of RDMA net-
work [13, 24, 34, 35]. (2) UD cannot transfer data larger than
4 KB. To support ordered transferring of large-sized mes-
sages, the data has to be cut into contiguous 4 KB slices, and
the acknowledgment has to be made by the receiver before

the next transmission. However, in our implemented proto-
type, such ordered transferring only provides the bandwidth
of 0.8 GB/s with a single thread, which is merely 12.5% of that
of the RC verbs. Transferring data in a pipelined way can
improve the performance, but inevitably causing increased
complexity in the software.

Dynamically Connected Transport (DCT). It is recently in-
troduced in the new generation of Mellanox’s HCAs to im-
prove its scalability on reliable connections [1]. It achieves
this by sharing the context between all the connections: the
context is created each time the data transmission occurs
by posting an inline message to the other side, and then
destroyed immediately when switching to another connec-
tion. With the above approach, the size of cached connection
status in the NIC is efficiently restricted. However, for small-
sized network requests, DCT almost doubles the number
of network packets compared to the real payload. DCT in-
creases latency by 100 µs to 3 µs on RC mode [31].
Newer generation of HCAs. Mellanox’s ConnectX-4 and

ConnectX-5 HCAs are all equipped with larger cache space
to improve scalability. However, eRPC [6] reveals that their
throughput drops almost by half as the number of connec-
tions increases to 5000. DrTM-H [34] also has similar experi-
mental results. Since these HCAs adopts the memory-less ar-
chitecture, it’s unlikely that improvements in NIC hardware
will allow it to scale to unlimited number of connections.

5.2 Unique Properties of ScaleRPC
Remote procedure call (RPC), as a simple and versatile ab-
straction for inter-node interaction, has been widely adopted
in existing distributed systems. Accordingly, we improve
the scalability of RDMA by providing a scalable RDMA-
based RPC primitive. Any existing software with “one-to-
many” messaging paradigm can be easily ported to use
ScaleRPC. Similar to existing approaches [17, 18], we achieve
performance improvements with batching by providing a
group of asynchronous APIs. Request batching doesn’t im-
pose extra restrictions on existing software since most of
them [8, 12, 29, 37] always batch the requests before sending
them. Others that don’t leverage such opportunity still can
use the synchronous APIs.

12

Besides, this paper implements ScaleRPC based on reli-
able connection (RC). We choose RC mode because 1) RC
supports sending as large as 2 GB of data at a time, which
meets the requirements of sending variable-length payloads
in real-world applications. 2) One-sided RC verbs have higher
performance compared with UD send, since one-sided reads
or writes eliminate the MMIO overhead for the receivers to
post recv verbs. 3) Improving the scalability of RC RDMA
verbs enables us to co-use RC-based RPC primitives and one-
sided verbs. As illustrated in Section 4.2, selectively using
RPCs and one-sided verbs at different phases in the trans-
actional protocol can provide higher performance, and this
shares the same target as that of DrTM-H [34] and FaRM [14].
ScaleRPC steps further to provide scalable performance in
the transaction processing.

6 Related Work
RDMA has long been used in high-performance computing
(HPC) community to provide high aggregated I/O bandwidth,
like in Lustre [10, 27], PVFS [36] and NFS [7]. RDMA opti-
mizations have also been made for MPI implementations,
like MPICH [21, 22] and OpenMPI [28]. Different from the
HPC community, which focuses on achieving high I/O band-
width, RDMA is getting widely used in recent in-memory
storage systems, and the throughput and scalability become
relatively more challengeable.

Improving the Scalability of RDMA. LITE [32] is a ker-
nel abstraction for safe and scalable RDMA access in data
centers. It directly registers physical memory to reduce the
NIC cache thrashing. With bandwidth requirements, LITE
only launches one thread to poll the completion of the posted
verbs. We believe that the scalability of LITE will be further
improved even for small-sized messages with optimizations
like connection grouping and virtualized mapping equipped.
Both FaSST [18] and HERD [16] propose to use unreliable
datagram (UD) for inter-node communication. since UD sup-
ports “many-to-many” data transferring, the above two sys-
tems only need to create one QP for each working threads
(instead of creating one for each connection), and thereby
provide scalable performance. However, as described before,
UD also faces many limitations.

General RDMA Optimizations. RDMA optimizations
have been extensively explored from many perspectives.
DrTM [9, 35] is a distributed transaction processing system
which co-uses RDMA and Hardware Transactional Memory
for high consistency and atomicity. FaRM [13] proposes a
distributed computing platform, which provides the transac-
tional interface for applications to access the shared memory.
[17] provides guidelines on how to use RDMA efficiently
from a low-level perspective. CQCN [38] proposes an end-
to-end congestion control scheme for RoCE v2 to solve the
fairness and performance issue.

RDMA in In-Memory Storage Systems. RDMA has
been widely adopted in both distributed file systems and
key-value stores to achieve high efficiency. Several key-value
stores are carefully redesigned to work over RDMA-enabled
network. Pilaf [24] improves the get performance by letting
the clients directly post RDMA read. HERD enables both get
and put operations to be processed at server side with the
efficient design of RPC, which is a hybrid design of UD write
and UD send. For distributed file systems, Crail [4] is a re-
cently developed distributed file system built on DaRPC [30],
which achieves good performance with both medadata and
data communication. NVFS [15] provides a novel design
of HDFS with byte-addressable NVM and RDMA network.
Octopus [23] is a distributed shared persistent memory file
system that combines the new features of RDMA and NVM
by redesigning the software.

7 Conclusion
RDMA achieves low latency and high bandwidth by bypass-
ing the operating system. In this paper, we notice that the
resource contentions exist both in the NIC cache, CPU cache
and memory of each server, which limits the scalability of
RDMA network. To address this issue, we propose an effi-
cient RPC primitive named ScaleRPC with internal mecha-
nisms like connection grouping and virtualized mapping. We
perform an extensive evaluation on ScaleRPC and build two
distributed systems on it. Our experimental results show that
ScaleRPC provides scalable performance while guaranteeing
the reliable message transmission.

Acknowledgments
We sincerely thank our shepherd Dan R. K. Ports for help-
ing us improve the paper. We also thank the anonymous
reviewers for their feedback and suggestions. This work is
supported by National Key Research & Development Pro-
gram of China (Grant No. 2018YFB1003301), the National
Natural Science Foundation of China (Grant No. 61832011,
61772300), and Huawei Innovation Research Program (Grant
No. HF2017070004).

References
[1] 2013. Mellanox Technologies. Connect-IB: Architecture for Scalable

High Performance Computing. http://www.mellanox.com/related-d
ocs/applications/SB_Connect-IB.pdf.

[2] 2016. Processor Counter Monitor (PCM). "https://github.com/opcm/
pcm".

[3] 2016. SAP HANA, In-memory computing and real time analytics.
"http://go.sap.com/product/technology-platform/hana.html".

[4] 2017. Crail: A Fast Multi-tiered Distributed Direct Access File System.
https://github.com/zrlio/crail.

[5] Mohammad Alomari, Michael Cahill, Alan Fekete, and Uwe Rohm.
2008. The cost of serializability on platforms that use snapshot isolation.
InData Engineering, 2008. ICDE 2008. IEEE 24th International Conference
on. IEEE, 576–585.

13

http://www.mellanox.com/related-docs/applications/SB_Connect-IB.pdf
http://www.mellanox.com/related-docs/applications/SB_Connect-IB.pdf
"https://github.com/opcm/pcm"
"https://github.com/opcm/pcm"
"http://go.sap.com/product/technology-platform/hana.html"
"http://go.sap.com/product/technology-platform/hana.html"
https://github.com/zrlio/crail

[6] Kalia Anuj, Kaminsky Michael, and Andersen David. 2019. Datacen-
ter RPCs can be General and Fast. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19).

[7] Brent Callaghan, Theresa Lingutla-Raj, Alex Chiu, Peter Staubach,
and Omer Asad. 2003. NFS over RDMA. In Proceedings of the ACM
SIGCOMM Workshop on Network-I/O Convergence: Experience, Lessons,
Implications (NICELI ’03). ACM, 196–208.

[8] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. 2015. Apache Flink: Stream and
Batch Processing in a Single Engine. IEEE Data Eng. Bull. 38 (2015),
28–38.

[9] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen.
2016. Fast and general distributed transactions using RDMA and
HTM. In Proceedings of the Eleventh European Conference on Computer
Systems. ACM, 26.

[10] Sean Cochrane, K Kutzer, and L McIntosh. 2009. Solving the HPC
I/O bottleneck: SunâĎć LustreâĎć storage system. Sun BluePrintsâĎć
Online, Sun Microsystems (2009).

[11] Intel Corporation. 2012. Intel data direct I/O technology (Intel DDIO):
A primer. "http://www.intel.com/content/dam/www/public/us/en/d
ocuments/technology-briefs/data-direct-i-o-technology-brief.pdf".

[12] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[13] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: fast remote memory. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14). 401–414.

[14] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightin-
gale, Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel
Castro. 2015. No Compromises: Distributed Transactions with Consis-
tency, Availability, and Performance. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles (SOSP ’15). ACM, New York, NY,
USA, 54–70. https://doi.org/10.1145/2815400.2815425

[15] Nusrat Sharmin Islam, Md Wasi-ur Rahman, Xiaoyi Lu, and Dha-
baleswar K Panda. 2016. High Performance Design for HDFS with
Byte-Addressability of NVM and RDMA. In Proceedings of the 2016
International Conference on Supercomputing. ACM.

[16] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using
RDMA efficiently for key-value services. In SIGCOMM.

[17] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. Design
Guidelines for High Performance RDMA Systems. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16).

[18] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. FaSST:
fast, scalable and simple distributed transactionswith two-sided RDMA
datagram RPCs. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). USENIX Association, 185–201.

[19] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica.
2014. Tachyon: Reliable, Memory Speed Storage for Cluster Com-
puting Frameworks. In Proceedings of the ACM Symposium on Cloud
Computing.

[20] Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kamin-
sky. 2014. MICA: A holistic approach to fast in-memory key-value
storage. management 15, 32 (2014), 36.

[21] Jiuxing Liu, Amith R Mamidala, and Dhabaleswar K Panda. 2004. Fast
and scalable MPI-level broadcast using InfiniBand’s hardware mul-
ticast support. In Proceedings of the 18th International Parallel and
Distributed Processing Symposium. IEEE, 10.

[22] Jiuxing Liu, Jiesheng Wu, Sushmitha P Kini, Pete Wyckoff, and Dha-
baleswar K Panda. 2003. High performance RDMA-based MPI imple-
mentation over InfiniBand. In Proceedings of the 17th annual interna-
tional conference on Supercomputing. ACM, 295–304.

[23] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an
RDMA-enabled distributed persistent memory file system. In 2017

USENIX Annual Technical Conference (USENIX ATC 17). USENIX Asso-
ciation, 773–785.

[24] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-
Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store.
In Presented as part of the 2013 USENIX Annual Technical Conference
(USENIX ATC 13). 103–114.

[25] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,
Collin Lee, Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry
Qin, Mendel Rosenblum, et al. 2015. The RAMCloud storage system.
ACM Transactions on Computer Systems (TOCS) 33, 3 (2015), 7.

[26] Yufei Ren, Xingbo Wu, Li Zhang, Yandong Wang, Wei Zhang, Zijun
Wang, Michel Hack, and Song Jiang. 2017. iRDMA: Efficient Use of
RDMA in Distributed Deep Learning Systems. 2017 IEEE 19th Interna-
tional Conference on High Performance Computing and Communications;
IEEE 15th International Conference on Smart City; IEEE 3rd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS) (2017),
231–238.

[27] Galen Shipman, David Dillow, Sarp Oral, Feiyi Wang, Douglas Fuller,
Jason Hill, and Zhe Zhang. 2010. Lessons learned in deploying the
worldâĂŹs largest scale lustre file system. In The 52nd Cray user group
conference.

[28] Galen M Shipman, Timothy S Woodall, Richard L Graham, Arthur B
Maccabe, and Patrick G Bridges. 2006. Infiniband scalability in Open
MPI. In Proceedings of the 20th International Parallel and Distributed
Processing Symposium. IEEE, 10–pp.

[29] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. 2010. The Hadoop Distributed File System. 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST) (2010),
1–10.

[30] Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and Jonas Pfefferle.
2014. DaRPC: Data center rpc. In Proceedings of the ACM Symposium
on Cloud Computing (SoCC). ACM, 1–13.

[31] Hari Subramoni, Khaled Hamidouche, Akshey Venkatesh, Sourav
Chakraborty, and Dhabaleswar K Panda. 2014. Designing MPI library
with dynamic connected transport (DCT) of InfiniBand: early experi-
ences. In International Supercomputing Conference. Springer, 278–295.

[32] Shin-Yeh Tsai and Yiying Zhang. 2017. Lite kernel rdma support
for datacenter applications. In Proceedings of the 26th Symposium on
Operating Systems Principles. ACM, 306–324.

[33] YandongWang, Li Zhang, Jian Tan, Min Li, Yuqing Gao, Xavier Guerin,
Xiaoqiao Meng, and Shicong Meng. 2015. HydraDB: a resilient RDMA-
driven key-value middleware for in-memory cluster computing. In
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. ACM, 22.

[34] XingdaWei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Decon-
structing RDMA-enabled Distributed Transactions: Hybrid is Better!.
In 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18). 233–251.

[35] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen.
2015. Fast in-memory transaction processing using RDMA and HTM.
In Proceedings of the 25th Symposium on Operating Systems Principles.
ACM, 87–104.

[36] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar Panda. 2003. PVFS over
InfiniBand: Design and performance evaluation. In Proceedings of the
2003 International Conference on Parallel Processing. IEEE, 125–132.

[37] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster computing with working
sets. HotCloud 10, 10-10 (2010), 95.

[38] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, and Ming Zhang. 2015. Congestion control for
large-scale RDMA deployments. In ACM SIGCOMM Computer Com-
munication Review, Vol. 45. ACM, 523–536.

14

"http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf"
"http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf"
https://doi.org/10.1145/2815400.2815425

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Remote Direct Memory Access
	2.2 Poor Scalability of RDMA
	2.3 Resource Contention in RDMA

	3 ScaleRPC
	3.1 Overview
	3.2 Connection Grouping
	3.3 Virtualized Mapping
	3.4 Putting Everything Together
	3.5 Deployment Considerations
	3.6 Evaluation of ScaleRPC

	4 Deployments of ScaleRPC
	4.1 ScaleRPC in Distributed File System
	4.2 ScaleRPC in Transactional System

	5 Discussion
	5.1 Existing Approaches.
	5.2 Unique Properties of ScaleRPC

	6 Related Work
	7 Conclusion
	References

