
Fleche: An Efficient GPU Embedding Cache for
Personalized Recommendations

Minhui Xie† Youyou Lu†* Jiazhen Lin†

Qing Wang† Jian Gao† Kai Ren‡ Jiwu Shu†

xmh19@mails.tsinghua.edu.cn,luyouyou@tsinghua.edu.cn
†Department of Computer Science and Technology, BNRist, Tsinghua University ‡Kuaishou

Abstract

Deep learning based models have dominated current produc-

tion recommendation systems. However, the gap between

CPU-side DRAM data accessing and GPU processing still

impedes their inference performance. GPU-resident cache

can bridge this gap, but we find that existing systems leave

the benefits to cache the embedding table, a huge sparse

structure, on GPU unexploited. In this paper, we present

Fleche, a holistic cache scheme with detailed designs for ef-

ficient GPU-resident embedding caching. Fleche (1) uses one

cache backend for all embedding tables to improve the total

cache utilization, and (2) merges small kernel calls into one

unitary call to reduce the overhead of kernel maintenance

(e.g., kernel launching and synchronizing). Furthermore, we

carefully design the cache query workflow for finer-grain

parallelism. Evaluations with real-world datasets show that

compared with the prior art, Fleche significantly improves

the throughput of embedding layer by 2.0 − 5.4×, and gets
up to 2.4× speedup of end-to-end inference throughput.

CCS Concepts: • Software and its engineering→Mem-

ory management; • Information systems → Recom-

mender systems.

Keywords: Memory management, GPU cache, Deep learn-

ing recommendation models, Embedding lookup

ACM Reference Format:

Minhui Xie, Youyou Lu, Jiazhen Lin, Qing Wang, Jian Gao, Kai Ren,

and Jiwu Shu. 2022. Fleche: An Efficient GPU Embedding Cache

for Personalized Recommendations. In Seventeenth European Con-

ference on Computer Systems (EuroSys ’22), April 5–8, 2022, RENNES,

France. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/

3492321.3519554

∗Youyou Lu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

EuroSys ’22, April 5–8, 2022, RENNES, France

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9162-7/22/04. . . $15.00

https://doi.org/10.1145/3492321.3519554

1 Introduction

Exploding information production calls for the recommenda-

tion system to extract the essentials from massive informa-

tion sources and generate customized streams for users. The

key determinants of recommendation quality include not

only the prediction accuracy that has always been the algo-

rithmic optimization target, but also the system performance

(e.g., latency and throughput). Given the same requirement

of service-level agreement (SLA), a higher-performance rec-

ommendation system can examine more candidate items,

and thus is more likely to follow users’ interests.

Emerging Deep Learning Recommendation Model [21, 35]

(DLRM) comprises a huge portion in today’s recommenda-

tion systems. DLRM usually has a two-part structure (Fig-

ure 1), an ultra-huge embedding layer (sparse part) with

hundreds of gigabytes of memory footprint, and several fully-

connected layers (dense part), a.k.a., multilayer perceptron

(MLP), running on GPU with only hundreds of megabytes

of memory footprint. The embedding layer contains dozens

of embedding tables, mapping high-dimensional categorical

inputs (i.e., IDs) to latent low-dimensional dense represen-

tations (called embedding vectors, or embeddings for short).

These embedding tables are typically stored as hash tables

on CPU-side DRAM due to the limited GPU memory ca-

pacity. Previous studies from both academia [31, 32] and

industry [17, 26, 27, 29, 45] show that the CPU-side DRAM

bandwidth scarcity caused by irregular and sparse accesses

of embedding tables has become the major performance im-

pediment of recommendation models. For example, Alibaba

reports that over 60% of prediction latency in their produc-

tion models comes from the embedding layers [26, 27]. Fur-

thermore, model developers are driving the growth of model

capacity and complexity for better accuracy. Facing with

the ever-increasing embedding size, the bandwidth scarcity

problem will be more acute in future.

To tackle the bandwidth scarcity, caching on GPUs’ high

bandwidth memory (HBM) can be efficient owing to the high

access locality of real-world workloads. However, we find

that the existing cache scheme (called the static per-table

cache structure) leaves several GPU-resident cache’s bene-

fits unexploited. This cache scheme maintains a fixed-size

cache table for each embedding table to prevent massive

data movement during tables’ repartition. Our evaluation

402

EuroSys ’22, April 5–8, 2022, RENNES, France Minhui Xie et al.

Key

Emb
Vec

Figure 1. The structure of Deep Learning Recommen-

dation Model (DLRM).

of a highly-optimized industry-level recommendation infer-

ence system, NVIDIA HugeCTR-Inference [7] (HugeCTR

for short, see §2.2), shows that this design suffers from two

critical deficiencies: cache under-utilization and overhead of

kernel maintenance.

● Issue 1: cache under-utilization. Compared with the

optimal case, HugeCTR suffers from 11%-42% degradation

in hit rate across different datasets. This huge gap arises

from the structural defect of static per-table cache.

● Issue 2: overhead of kernel maintenance. Up to 70% of

cache query time is spent on tasks other than kernel exe-

cution (called kernel maintainence in this paper, including

CPU launching, context initialization, and CPU synchro-

nization), due to excessive small cache-query kernels.

We propose Fleche 1, a novel cache scheme with detailed

designs for efficient GPU-resident embedding caching. The

key idea of Fleche is co-designing the cache structure and

workflow to improve cache utilization and reduce query time.

Fleche follows the existing two-layer architecture, a GPU-

HBM layer caching hot embeddings and a CPU-DRAM layer

storing all embeddings 2.

To address Issue 1, we propose flat cache (FC). Different

from the previous scheme, FC does not partition cache ta-

bles for each embedding table. Instead, it lets all embedding

tables share one global cache backend by re-encoding input

IDs from all embedding tables to flat keys with a unified

format. Thus, cache tables of different embedding tables can

elastically expand or contract, further exploiting the cache

memory for a higher hit rate. Moreover, with size-aware cod-

ing, Fleche tailors the flat key format for FC to reduce key

conflicts and accuracy losses brought by re-encoding.

To address Issue 2, based on the observation that most

kernel launches are not calls to different kernel functions but

to the same function with different parameters, we propose

1Short for FLat Embedding caCHE.
2We only consider the case where models can be fit into the CPU-DRAM

but not into the GPU-HBM. Larger models will be discussed in §5.

an efficient fusing method for these kernel calls, namely self-

identified kernel fusion. It merges small kernel calls into a

unitary call, and lets each thread in the kernel identify which

kernel call it should serve originally. With this technique,

Fleche reduces the number of query kernels to one, allevi-

ating kernel maintenance overhead, while also keeping the

semantics of multi-cache-table query.

Moreover, we adopt two techniques to optimize the cache

query workflow. First, Fleche decouples the copy of hit em-

beddings from indexing FC. With this optimization, Fleche

enjoys the parallelism between the GPU-HBM and CPU-

DRAM layers. Specifically, Fleche can query the CPU-DRAM

layer for missing embeddings ahead without waiting for

the completion of copying hit embeddings. Second, Fleche

adopts a unified index technique to offload partial index of

CPU-DRAM layer to GPU. Thus, we can further sidestep in-

dexing overhead of missing keys and enjoy the turbo-boost

lookup performance of GPU.

We evaluate Fleche with three public real-world datasets.

Compared with HugeCTR, Fleche significantly improves

the throughput of embedding layer by 2.0 − 5.4×, and gets
up to 2.4× speedup of end-to-end inference throughput with
the same cache size.

In summary, our work makes the following contributions:

● We profile the existing GPU-resident cache scheme

with real-world recommendation workloads, and dis-

cover two main culprits which hinder the embedding

performance.

● We propose Fleche, a holistic GPU-resident cache

scheme for efficient embedding lookup based on our

profiling results.

● We implement Fleche on HugeCTR, evaluate it with

real-world workloads and show its effectiveness.

2 Background & Motivation

We first describe the structure of Deep Learning Recommen-

dationModels (DLRMs) in §2.1, and then analyze the existing

cache scheme with experiments in §2.2.

2.1 Deep Learning Recommendation Models

Overcoming the limited expression ability of conventional

models [15, 30, 34, 39], DLRM has become prevalent both in

academia and industry. It leverages neural networks to pre-

dict the probability of certain interactions between users and

items (e.g., videos), such as the like action in YouTube [14]

and the click action in Facebook [36], and delivers those with

high probabilities to users.

Model structure. Figure 1 sketches a representative DLRM

structure. The model requires two kinds of inputs: continu-

ous and categorical inputs. Continuous inputs (e.g., user age,

video click count, recent product sales) represent features

with continuous values, while categorical inputs (e.g., user

403

Fleche: An Efficient GPU Embedding Cache for Personalized Recommendations EuroSys ’22, April 5–8, 2022, RENNES, France

ID, video ID and list of favorite videos) are one-hot or multi-

hot high-dimensional features and are usually encoded as a

list of IDs. The neural network does not usually take in these

IDs with huge value domains directly, but utilizes the em-

bedding technique to project feature IDs to dense embedding

vectors (or embeddings for short). Specifically, for each kind

of categorical feature, it maintains a hash table with a capac-

ity of 𝑐 as an embedding table, where keys are IDs, and values

are 𝑑-dimensional embedding vectors. Note that the embed-
ding table count typically ranges from dozens to hundreds in

production models [9, 26]. The embedding lookup process is

similar to the lookup of a hash table with the input ID as the

key. After embedding lookup, these embedding vectors of

each category are further compressed into one dense vector

through pooling operation. Finally, all pooled vectors are

concatenated and served as the input of MLP together with

original dense features. Despite the differences in various

concrete designs [13, 20, 33, 37, 38, 40, 47], all DLRMs follow

this Embedding-MLP paradigm [23], with the embedding

layer capturing low-dimensional representations of IDs and

MLP layers learning the latent relationships between input

features and output labels.

Memory-bounded embedding layers. Many companies

(e.g., Alibaba [26, 27] and Facebook [29, 45]) reported that the

embedding layers of their production DLRM models account

for over 60% of the prediction latency. The underlying reason

for this high latency is DRAM bandwidth scarcity [21, 32].

Random lookups of the embedding layer result in a large

number of CPU cache misses, and simultaneous accesses

to multiple embedding tables by different threads exhaust

DRAM’s bandwidth [32].

To solve this problem, one promising method [7] is to

cache hot embeddings on GPU. It lifts the burden of DRAM

with GPU’s surplus memory bandwidth and thus performs

better than no-caching ones (more than 5× improvement of

the embedding layer by our measurement). However, our

analysis indicates that there are still two issues which hinder

caching performance in existing cache schemes.

2.2 Analysis of Existing Cache Schemes

We begin with describing how existing embedding cache

schemes deploy the aforementioned models in the scenario

of inference (Figure 2). Suppose there is a DLRMwith a set of

embedding tables {𝐸0, . . . , 𝐸𝑛−1}, where 𝐸𝑖 is implemented
as a hash table with capacity 𝑐𝑖 and value dimension 𝑑𝑖 . Here
𝑐𝑖 and 𝑑𝑖 respectively denote the corpus size and embed-

ding dimension of 𝑖-th embedding table 𝐸𝑖 . Existing schemes
maintain a separate cache table for each embedding table,

i.e., {𝐶0, . . . ,𝐶𝑛−1}, where each 𝐶𝑖 is a smaller hash table

with capacity 𝑠𝑖 and value dimension 𝑑𝑖 . 𝐸𝑖 resides in the

CPU-DRAM layer, while 𝐶𝑖 resides in the GPU-HBM layer.

When querying the cache, existing schemes launch a ker-

nel for each cache table 𝐶𝑖 with parameters including the

input IDs 𝐼𝐷_𝐿𝑖𝑠𝑡𝑖 , and the address of the output matrix

Figure 2. The sparse part of DLRM and the existing

GPU-resident cache scheme.

(b) Criteo-Kaggle

Cache Size
5%10%20%

H
it

R
at

e

Optimal HugeCTR

(a) Avazu

0%

50%

100%

Cache Size
5%10%20%

Figure 3. Cache hit rate of HugeCTR with different

cache sizes in two real-world datasets, Avazu and

Criteo-Kaggle. Optimal denotes the ideal case where the

cache knows all accesses of datasets. 5% means that the cache

size is 5% of the size of all embedding tables.

𝑂𝑖 with shape 𝑙𝑒𝑛(𝐼𝐷_𝐿𝑖𝑠𝑡𝑖) × 𝑑𝑖 . This kernel searches the
embedding cache table 𝐶𝑖 and copies hit embeddings to 𝑂𝑖 .

Once the kernel finishes, CPU gets the missing ID list from

GPU, queries 𝐸𝑖 , and copies their embeddings to 𝑂𝑖 . For ker-

nel concurrency, 𝑛 kernels are placed into different streams
(e.g., cudaStream in CUDA).

To quantitatively analyze existing cache schemes in depth,

we conduct a series of experiments on HugeCTR, discovering

two main deficiencies.

Issue 1: cache under-utilization. Figure 3 depicts the

cache hit rates of HugeCTR with different cache sizes in two

real-world datasets, Avazu [3] and Criteo-Kaggle [5]. It also

404

EuroSys ’22, April 5–8, 2022, RENNES, France Minhui Xie et al.

Maintenance Time
Execution Time

C
ac

he
 Q

ue
ry

 T
im

e
(μ

s)

200

400

600

of Cache Tables
0 10 20 30 40 50 60

Figure 4. Cache query performance degradation of

HugeCTR with the increasing cache table count. The

number of aggregate query IDs of all embedding caches is set

to 10K. We use the cache query latency with single embedding

table as an approximation to the actual execution time, since

all cases query the same total number of IDs.

plots the theoretical upper limit (“Optimal”) of hit rate with

the same cache size, where the cache knows all accesses of

datasets. We observe that there is quite a huge gap of hit rate

between HugeCTR and Optimal. Also, the under-utilization

ismore severewith smaller cache sizes. Specifically, when the

cache size is 5% of the size of all embedding tables, this gap

reaches 29% for Avazu and is almost 42% for Criteo-Kaggle.

The root cause of this gap is the structural defect of static

per-table cache. HugeCTR statically sets the same proportion

of cache size for all embedding tables. Since the hotspot size

of each embedding table is usually different and constantly

changes with time, the static structure tends to cache the

local hotspots of each embedding table instead of the global

hotspots of all tables, leading to a low hit rate.

Issue 2: overhead of kernel maintenance.We measure

kernel execution time and maintenance time of HugeCTR’s

cache query with a synthetic workload3. Here, we regard

the time not spent doing actual execution in GPU as the

kernel maintenance time, which includes CPU launching,

context initialization, CPU synchronization, communication

between CPU and GPU, etc. We fix the aggregate number

of query IDs to 10K (the results of 1K and 100K are similar),

and vary the number of cache tables, 𝑛. These query IDs are
equally spread to 𝑛 cache tables. From Figure 4 it is clear

that as 𝑛 increases, the kernel maintenance takes longer time.
Specifically, when 𝑛 comes to 60, maintenance time is over
2× than execution time. Note that the number of embedding

tables is commonly greater than 60 in real-world production

models. For example, Facebook and Alibaba state that the

embedding table counts of their two production models are

61 and 98 respectively [9, 26]. We also optimize HugeCTR

using cudaGraph [4] to alleviate the kernel launch overhead

and repeat the experiment. The findings are similar.

3The synthetic workload follows a power law distribution (𝛼 = −1.2). The
number of embedding tables in real datasets is fixed, which cannot be used

for this experiment.

The underlying reason is the excessive small kernels. First,

with scattering all IDs to each cache table, the number of IDs

carried in each kernel is very small. As a result, maintenance

time cannot be hidden by the execution time, and the overall

maintenance time is proportional to the number of query

kernels. Second, HugeCTR needs to launch excessive kernels

whose number is proportional to the number of cache tables,

because these kernels have dependencies on the cache table

parameters (e.g., table address, size, embedding dimension).

To summarize our discussion so far, existing cache schemes

suffer from the static per-table cache structure. Undesirable

low cache utilization increases the time in the CPU-DRAM

layer; excessive small kernels’ maintenance overhead in-

creases the time spent in the GPU-HBM layer.

3 Design

Motivated by our analysis, we propose Fleche. Fleche intro-

duces flat cache (§3.1) and self-identified kernel fusion (§3.2) to

improve cache utilization and alleviate kernel maintenance

overhead, respectively. Moreover, we adopt two techniques

to optimizes the cache query workflow (§3.3).

3.1 Flat Cache

Figure 5a sketches the query process of flat cache (FC). When

querying the GPU-resident cache, Fleche re-encodes all

feature IDs from different embedding tables to flat keys in

a uniform format, and then launches one unitary kernel on

GPU to query the cache backend.

In this section, we first describe the detailed structure of

our FC and the customized design of mapping the original

multi-table caches to FC with re-encoding, and then present

how FC elastically rescales different embedding cache tables.

Finally we analyze the advantages of FC.

Cache table structure. FC is organized as a fashion of key

value separation, with amemory pool storing all embeddings

(i.e., values) from different cache tables, and a GPU-resident

index maintaining the mapping from flat keys to locations in

the memory pool; see Figure 5c. The memory pool inherits

the existing slab memory allocator. Fleche avoids memory

fragmentation by pre-defining the size of each slab according

to the embedding dimension, since all embeddings in an

embedding table shares the same size known in advance.

Fleche pre-allocates a bulk for the memory pool during

booting up and makes finer management inside at runtime.

This sidesteps the latency of cudaMalloc API, up to a dozen

microseconds. The GPU-resident index can be an arbitrary

existing GPU hash index (e.g., MegaKV [42], SlabHash [11]).

To implement an approximate LRU algorithm, FC embraces

a timestamp into each slot of the index.

FC minimizes the size of metadata to save HBM capacity

with domain knowledge. First, FC does not bookkeep any

information of embedding sizes unlike traditional key-value

stores, because the input IDs are bound to specific embedding

405

Fleche: An Efficient GPU Embedding Cache for Personalized Recommendations EuroSys ’22, April 5–8, 2022, RENNES, France

dim = 64

dim = 32

dim = 128

FK1 FK2

Ptr Ptr
timestamp timestamp

(c) The physical storage scheme of FC.

tbl id: variable-len feature id: variable-len

(b) Re-encoding feature IDs to flat keys with size-aware coding.

(a) The cache query process of FC in a nutshell.

Figure 5. The flat cache (FC) structure of Fleche. FK: flat key. Emb: embedding.

tables which imply the size. Second, the per-slot timestamp

also acts as a version number to detect concurrent read-write

conflicts. Note that the write-write conflicts are resolved by

our deduplicating & restoring mechanism (see §4). Thus, we

need no extra metadata for concurrency control.

Re-encoding IDs to flat keys with size-aware coding.We

unify all IDs from different embedding tables to flat keys.

Thus the underlying index of FC is unaware of multi-table

structure. With the abstraction of flat keys, all cache tables

can share one global cache, to achieve high utilization.

To keep the semantic differences of the embeddings with

the same feature ID in different tables (e.g., both the user

table and city table may share the same feature ID 212, but

the one in the user table represents a user while the other

represents New York), we need to re-encode all feature IDs

with a suitable key format for FC. One plain method called

fixed-length coding [41] is to reserve several high bits (e.g.,

8 bits) of keys (e.g., int32) for table IDs to identify different

embedding tables, and encapsulate the original feature IDs

into remaining bits with hashing. In the example above, the

key structure is shown as following:

tbl id: 8-bit ∣ feature id (hashed): 24-bit

However, this method simply reserves the same space

for all embedding tables despite their different corpus sizes,

which suffers from imbalanced utilization of key space. E.g.,

there are only several cities while the number of users can be

billions, leading to severe hash collisions for the user table

and under-utilization of the key space for the city table.

To solve this problem, we propose size-aware encoding

method (see Figure 5b). The key idea is to assign shorter

table IDs to larger tables in order to squeeze more space for

features. Specifically, similar to the fixed-length coding, the

flat key structure is also separated to table ID bits and feature

ID (hashed) bits. For each embedding table (sorted ascending

by the corpus size), we assign it the longest table ID bits

whose remaining feature ID bits are enough for accommo-

dating the key space of this embedding table. Once a table

ID is assigned, the future use of all bits prefixed by it should

be prohibited, in order to avoid inter-table collision. If there

are no available table ID bits for some embedding tables, we

reserve several bits and allocate them in proportional to the

corpus sizes, which may introduce intra-table collision.

Note that the process of encoding is ultra-fast and at al-

most no cost, because the mapping metadata can be stored

as a hash table with only dozens of entries, and for all feature

IDs of one embedding table, it requires only one transforma-

tion since they share the same table ID.

Cache replacement & eviction. Fleche performs cache

replacement for those missing embeddings. To reduce FC’s

swap-in-swap-out overhead of excessive less-frequent IDs,

we apply a probability-based filter policy [34]. With this

policy, each embedding gets swapped into the cache with a

certain probability 𝑝 , so that features that occur less than 1/𝑝
times would bypass cache on the mathematical expectation.

When the utilization of the memory pool exceeds a certain

threshold, FC performs cache eviction with a full table scan

and keeps evicting cold embeddings until memory utiliza-

tion falls below another threshold. Note that there may be

a case of read-after-delete during eviction, which means the

deallocated embeddings are then read by other threads. FC

embraces the epoch-based space reclamation [18] to ensure

the consistency, which first marks the evicted embedding

406

EuroSys ’22, April 5–8, 2022, RENNES, France Minhui Xie et al.

Figure 6. Self-identified kernel fusion method. In this

example, we fuse three tables’ cache query kernels, which orig-

inally have 960, 1920, 640 threads respectively.

as deleted logically and delays the real reclamation until a

grace period where all readers no longer have access to it.

Advantages.With the flat key abstraction as a shim layer,

FC abstracts a multi-table external cache interface, and inter-

nally enjoys the benefits of high cache utilization as a single

physical cache. All embedding table caches can elastically

rescale to capture the hotspots of the whole picture.

3.2 Self-identified Kernel Fusion

Upon the single cache structure of flat cache, we propose

an efficient kernel-fusion method to squeeze the number of

cache query kernels to only one.

We follow the previous notations (see §2.2) for conve-

nience of expression. To perform cache queries of multiple

tables, existing method launches a separate kernel for each

set of parameters (including the embedding dimension 𝑑𝑖 ,
input flat key list 𝐹𝐾_𝐿𝑖𝑠𝑡𝑖 and output matrix address 𝑂𝑖),

which suffers severe kernel maintenance overhead. Since

these kernel launches are calls to the same kernel function

with various arguments instead of different functions, it pro-

vides us the opportunity of kernel fusion.

Here we propose self-identified kernel fusion to squeeze

the number of embedding cache query kernels to one, which

still supports the original interface of multi-cache queries

but alleviates kernel maintenance overhead. Specifically,

this method consists of three phases. Suppose the original

𝑖th kernel contains𝑚𝑖 threads.

1) Initialization phase. CPU initializes an array (called

Args Array) to store the original 𝑛 kernels’ arguments, and
calculates a prefix-sum array 𝑠𝑐𝑎𝑛, with each element con-
taining the sum of the first 𝑖 kernels’ thread count, formally

𝑠𝑐𝑎𝑛 = [0,𝑚0,𝑚0 +𝑚1,⋯,
𝑛−1

∑
𝑗=0

𝑚 𝑗]

Then we issue a kernel with ∑𝑛−1
𝑗=0 𝑚 𝑗 threads.

2) Identification phase. In this phase, every GPU thread

needs to identify its position in the original multi-kernel

scenario. Specifically, for the thread with ID 𝑡𝑖𝑑 , it starts by
performing a binary search on the 𝑠𝑐𝑎𝑛 to find the largest el-
ement which is smaller than 𝑡𝑖𝑑 , whose index is denoted as 𝜑 .
This means the thread 𝑡𝑖𝑑 corresponds to the (𝑡𝑖𝑑−𝑠𝑐𝑎𝑛[𝜑])-
th thread of 𝜑-th kernel. Since all threads share the same
𝑠𝑐𝑎𝑛 and Args Array arrays, Fleche can cache them in low-

latency shared memory of GPU’s streaming multiprocessors

(SMs) to speed up repeated accesses. Though binary search

appears to introduce branch divergence (leading to poor

performance), it does not actually exist in our case. An im-

portant property to understand it is that, since the 𝑡𝑖𝑑s are
consecutive, the branch conditions of every 32 threads (a

warp) walking through are exactly the same, if the thread

count in each kernel rounds up to multiples of the warp size.

3) Execution phase. Now each thread can take its kernel

arguments from the Args Array and execute the correspond-

ing job just as the multi-kernel fashion.

Figure 6 shows a running example of fusing three cache

query kernels. The original three kernels consist of 960, 1920,

640 threads respectively. With the aforementioned fusion

method, we only need to launch a kernel of 3520 threads

once, reduing maintenance overhead.

The fusion process is executed during the building of com-

putational graph. Since DLRMs first transform feature IDs

with embedding, the queries for all embedding tables are

launched simultaneously. It helps us find all cache query

operators and fuse them easily.

3.3 Optimizing the Workflow of Cache Query

Leveraging the key-value separation structure of FC, we

adopt two techniques to further optimize the workflow of

cache query: 1) decoupling copying from indexing to enable

parallelism between GPU-HBM’s copying and CPU-DRAM

layer’s indexing, and 2) using unified index to bypass index-

ing of CPU-DRAM layer.

Decoupling copying from indexing. To reduce the number

of kernels (as more kernels come with more maintenance

overhead), existing per-table-cache scheme fuses both in-

dexing and copying in a tightly-coupled kernel, but suffers

from in-critical-path copy. Figure 7a shows a specific exam-

ple. Suppose there are two warps trying to access a certain

key-value pair at the same time. If warp 1 locks it first, warp

2 will keep retrying until warp 1 finishes the copy process

407

Fleche: An Efficient GPU Embedding Cache for Personalized Recommendations EuroSys ’22, April 5–8, 2022, RENNES, France

Lock Unlock
S0 Index S1 Copy S2 Retry

S0 S1

S2

S0 S1

S2

(a) Naive

(b) Fleche

K
V

warp 1

warp 2

warp 1

warp 2

Figure 7. Decoupling the copying operation out of crit-

ical path. The right part compares the timing diagrams of the

naive approach and Fleche. Warp 1 is a writer, and warp 2

can be a reader or writer.

Figure 8. Optimizing the workflow of cache query. In

subfigure (c), indexing of these missing keys is offloaded to

unified index.

and releases the lock. This copy time is not short on GPU due

to the high latency of global memory access. Since the cache

usually only uses one warp (32 threads) to query one key and

copy the desired embedding, if the embedding dimension is

larger than 32, this warp needs to perform more rounds of

global memory access, further aggravating the lock time.

Self-identified kernel fusion gives us the opportunity to

achieve the best of both worlds. It features Fleche’s decou-

pling of indexing and copying (Figure 7b) at the cost of just

incrementing the number of kernels from 1 to 2. In contrast,

that of per-table cache schemes increments from 𝑛 to 2𝑛.
Fleche’s decoupling design adjusts theworkflows of cache

operations. For querying, the indexing kernel locates all hit

embeddings’ addresses and the copying kernel copies from

these addresses to output matrices. There is no need for the

copying kernel to consider the thread safety thanks to our

epoch-based space reclamation mechanism. For replacement,

we first launch a copying kernel to copy the embeddings to

the addresses allocated from the memory pool, and then

launch an indexing kernel to modify ⟨key, address⟩ map-
pings of FC. This is achievable since the process of copying

embedding is invisible to indexing.

This decoupling design enjoys three benefits. First, copy

operations are moved out of the critical path. Second, we

shorten the copying time. Instead of being limited to a single

warp copying the entire embedding, our copying kernel can

launch more threads according to embedding dimensions,

improving the SM utilization of GPU. Third, Fleche can

query the CPU-DRAM layer ahead without waiting for the

completion of copying kernel; see Figure 8b. This is because

once the indexing kernel finishes its execution, we already

know which key is missing.

Bypassing indexing of CPU-DRAM layer. Fleche pro-

poses a unified index technique (Figure 8c) to further shorten

the cache query workflow opportunistically. This technique

offloads lookups of partial embeddings stored in the CPU-

DRAM layer to GPU. Specifically, we record these embed-

dings’ locations in FC and set the least significant bit of

pointers to indicate a CPU-DRAM pointer. Therefore, slow

indexing for some missing keys in DRAM gets bypassed, and

is replaced by extremely fast parallel GPU queries.

Althoughmaintaining an index inGPU for the CPU-DRAM

layer improves performance, it requires additional memory

space which could have been used to cache embedding. Thus,

we need carefully consider the tradeoffs.

Here we empirically give a simple method to tune the

memory capacity for unified index. We start with an empty

unified index, and keep gradually increasing its capacity, by

replacing the cache of cold embeddings with CPU-DRAM

pointers. We pause increasing until the performance peak

is reached. If a significant performance decline is detected

(which means that workload changes), we clear the unified

index and repeat the above process.

4 Implementation

We implement Fleche on HugeCTR by replacing the origi-

nal cache module. Fleche leverages Slab-Hash [11] as the

underlying index of flat cache, same as HugeCTR.

Deduplicating and restoring. Since there are usually many

duplicate IDs among different samples in a batch, in order to

eliminate redundant cache queries, Fleche first deduplicates

all IDs, and restores the full output matrix according to the

deduplication results after querying embedding. The dedupli-

cating mechanism also ensures no concurrent readers exist

for the same key on GPU-resident index, which allows us to

implement concurrency control with existing timestamps.

Fast memory copy between host and device with GPU-

Direct RDMA. There are fragmented copies between CPU

and GPU for various metadata in Fleche, e.g., the Args Ar-

ray, 𝑠𝑐𝑎𝑛 array in the self-identified kernel fusion method.
The vanilla cudaMemcpy API incurs in a 6−7 µs overhead,
not suitable for excessive small copies. Fleche exploits the

408

EuroSys ’22, April 5–8, 2022, RENNES, France Minhui Xie et al.

GDRCopy library [6], which exposes HBM to CPU and uses

CPU-driven copies based onNVIDIAGPUDirect RDMA tech-

nology, to speed up the small copy to about 0.1 µs latency.

5 Discussion

Dealing with giant models. We describe Fleche in the

context of a single machine. However, the size of indus-

trial recommendation models can exceed a single machine’s

DRAM capability. In this case, the local CPU-DRAM layer

is no longer an immutable layer with all parameters, but

becomes another cache layer, and the full amount of pa-

rameters are stored in a new additional layer (e.g., remote

parameter servers). All our designs still work in this scenario,

but we should carefully deal with a corner case: unified in-

dex’s pointers to DRAM may be invalidated due to the cache

eviction of the CPU-DRAM layer.

Dealing with multi-GPU. Fleche focuses on single-GPU

caching only. The main reason is that according to various

datasets, the size of hotspots is commonly small enough for

a single GPU. Multi-GPU caching expands the size of cache

system and removes the redundancy between GPUs with

model parallelism. We leave it for future research.

Generality of self-identified kernel fusion method. Our

self-identified kernel fusion method has its generality, not

only for multi-table cache queries, but also for a specific type

of maintenance overhead issue where we need to wait the

completion of too many small kernels issued simultaneously.

These kernels need to meet two assumptions. 1) They

should share the same thread block size, otherwise the block

size of fused kernel may fail to satisfy the original block

synchronization semantics and produce unintended results.

2) They should not introduce greater-than-block-granularity

synchronization (e.g. grid_group sync), as the problem of

hanging on will occur after fusion. Fortunately, multi-table

cache query kernels satisfy the above assumptions.

Alternative designs. We discuss alternative designs, and

why we do not adopt them.

1) Reduction cache. Fleche relies on the point-cache scheme

similar to traditional hash-based key-value stores. As an-

other way of caching, the reduction cache [28, 32] brings the

memoization technique to cache the reduced results (after

the pooling layer) of co-appearing embeddings.

Fleche does not adopt the reduction-cache scheme, be-

cause it is only applicable to simple pooling layers (e.g., sum,

avg, max) instead of more complicated layers such as atten-

tion layers [47], which damages model generality. Still, if

model generality is not considered, implementing a reduc-

tion cache on GPU would be considered.

2) Persistent kernels. Existing GPU-resident KV store uses

persistent kernel [1] to alleviate the maintenance overhead,

i.e., it specially issues a dead-loop kernel to indefinitely poll

requests and generate results, which does not work in our

scenario either. This is because recommendation models

CPU NVIDIA T4 GPU

Cores 64 2560

Cache Sizes 1-16-22 MB 96-512 KB

Memory Capability 512 GB 15 GB

Memory Bandwidth 60 GB/s 300 GB/s

TDP 300 W 70 W

Table 1. Hardware platform.

Datasets
#

Emb Tbls

#

Samples

Sparse

IDs

Param

Size

Avazu 22 40M 49M 5.8GB

Criteo-Kaggle 26 45M 34M 4.1GB

Criteo-TB 26 4.4B 0.9B 461GB

Table 2. Datasets for evaluation.

contain not only the sparse embedding part but also the

following dense MLP part, and with persistent kernel oc-

cupying SM resources, the MLP part would suffer a slower

computation speed, which is unacceptable.

Applicability to other embedding models.We discuss the

applicability of Fleche to two other types of models lever-

aging embedding: natural language processing (NLP) which

embeds words, and graph neural network (GNN) which em-

beds graph nodes, edges, and their attributes. 1) Fleche does

not apply to NLP models because the word embedding table

is small (e.g., ∼100 MB in Google BERT [16]) due to limited

words, and can be fully cached in GPU. 2) In terms of GNN,

the categorical features of graph nodes and edges also in-

troduce many large embedding tables, which exhibit similar

behaviors as recommendation models, so we believe it is

practical for GNN to gain benefits from Fleche and it will

be considered as our future work.

6 Evaluation

6.1 Evaluation Setup

Testbed.We run experiments on a machine equipped with

an Intel Xeon Gold 6252 CPU and an NVIDIA T4 GPU (15 GB

HBM available), which shares the same configuration as our

inference cluster in production; the bandwidth of HBM on

GPU and CPU-side DRAM is 300 GB/s and 60 GB/s respec-

tively; see Table 1 for detailed specifications. All codes are

compiled by GCC 9.3 and nvcc 11.3 with -O3. We use CUDA

Toolkit 11.3 and cuDNN 8.2 for GPU.

Datasets.We use real-world datasets to evaluate Fleche’s

performance and synthetic datasets to evaluate its sensitivity.

We use the preprocessing scripts in HugeCTR to remove low

frequent features of all datasets.

For real-world datasets, we useAvazu [3], Criteo-Kaggle [5],

and Criteo-TB [8]; see Table 2 for their detailed characteris-

tics. For Avazu and Criteo-Kaggle, the embedding dimension

409

Fleche: An Efficient GPU Embedding Cache for Personalized Recommendations EuroSys ’22, April 5–8, 2022, RENNES, France
Th

ro
ug

hp
ut

 (i
nf

er
en

ce
/s

ec
) (c) End-to-end, Criteo-TB(b) End-to-end, Criteo-Kaggle

HugeCTR Fleche w/o unified index Fleche w/ unified index

(a) End-to-end, Avazu

0

2×105
4×105
6×105
8×105

(f) Embedding only, Criteo-TB

Batch Size

32 64 128 256 512
1024

2048
4096

8192

(e) Embedding only, Criteo-Kaggle

Batch Size

32 64 128 256 512
1024

2048
4096

8192

(d) Embedding only, Avazu

0

3×106

6×106

Batch Size

32 64 128 256 512
1024

2048
4096

8192

Figure 9. (Exp #1) Overall throughput improvement.

(c) Criteo-TB(b) Criteo-Kaggle
HugeCTR Fleche

(a) Avazu

0

5

10

(f) Criteo-TB

0 10 20 30

(e) Criteo-Kaggle

0 20 40
×105

(d) Avazu

0

5

10

15

0 50 100
Throughput (Inference / sec)

M
ed

ia
n

La
te

nc
y

(m
s)

P
99

 L
at

en
cy

 (m
s)

Figure 10. (Exp #2) Throughput vs. median/P99 latency

of the embedding layer.

is configured as 32, while for Criteo-TB, the dimension is con-

figured as 128. Note that all these datasets are open source,

and thus our experiments can be easily reproduced.

For synthetic datasets, we generate feature IDs subjecting

to a power law distribution. Unless otherwise stated, the 𝛼
of power law distribution is −1.2, the embedding dimension
is configured as 32, and the embedding table count is 40 with

each table containing 0.25𝑀 features.

Model.We evaluate Fleche on a Deep Cross Network [40]

with 6 multi-cross layers and a MLP layer with (1024, 1024)

hidden units. We mainly focus on a single model instead of

several ones for evaluation, because all our techniques target

at the embedding part, and the most important difference

between different kinds of recommendation models lies in

their MLP parts, e.g., the extra FM layer [20], Cross layer [40],

and transformer layer [46], while their embedding parts

remain similar. For comprehensiveness of evaluation, we

also benchmark Fleche with several models for evaluating

the sensitivity of MLP layers in §6.4, since different models

may exhibit different ratios of embedding/MLP costs, which

affects the gain of Fleche for end-to-end performance.

Systems in comparison. We present comparisons with

HugeCTR. It is the only recommendation inference system

supporting GPU-resident cache. For fair comparison, both

Fleche and HugeCTR are configured with the same HBM

cache size. We also apply the GDR-Copy library to optimize

small copies for HugeCTR. If not specified, the cache size

of Avazu and Criteo-Kaggle is set to 5% of the size of all

embedding tables, and that of Criteo-TB is set to 0.5%. The
batch size is set to 4096. We omit the results of a no-caching

system, because caching brings a more than five-fold perfor-

mance improvement according to our evaluation; we focus

on how to use caching well.

For all experiments, we first issue requests to warm up

the cache, and then collect metrics. We run each experiment

3 times and show the average.

6.2 Overall Performance

Exp #1: Throughput. In Figure 9 (a-c), we compare the

end-to-end throughput of HugeCTR and Fleche (both with

and without unified index) in three datasets with batch sizes

ranging from 32 to 8192. Fleche with unified index achieves

1.1−2.1×, 1.3−2.4×, and 1.2−2.2× speedup over HugeCTR in
Avazu, Criteo-Kaggle, and Criteo-TB respectively, which jus-

tifies the designs of Fleche. Meanwhile, the variant without

unified index outperforms HugeCTR by 1.1−2.0×, 1.2−2.1×,
and 1.2 − 2.1×. We also find that the larger the batch size is,

the less performance Fleche improves, because all the tech-

niques of Fleche optimize the embedding part only, which

takes up a smaller proportion of the end-to-end latency in

the larger batch size case.

We repeat our experiments on a model with only em-

bedding layers, i.e., sidestep the computation of MLP lay-

ers, to evaluate Fleche’s performance improvement on em-

bedding layers. As shown in Figure 9 (d-f), the standalone

improvement of embedding layer ranges from 2.7 − 3.9×,

410

EuroSys ’22, April 5–8, 2022, RENNES, France Minhui Xie et al.

(c) Criteo-TB
2% 1% 0.5%

Batch Size

32 64 128 256 512
1024

2048
4096

8192

(b) Criteo-Kaggle
20% 10% 5%

Batch Size

32 64 128 256 512
1024

2048
4096

8192

20% 10% 5%

E
m

be
dd

in
g

S
pe

ed
up

ov
er

 H
ug

eC
TR

(a) Avazu

0x

2x

4x

6x

Batch Size

32 64 128 256 512
1024

2048
4096

8192

Figure 11. (Exp #3) Throughput improvement of the embedding part in Fleche compared with HugeCTR under

different cache sizes. 20% means that the cache size is 20% of the size of all embedding tables.

4.1 − 5.3×, 4.5 − 5.4×(with unified index), and 2.0 − 3.3×,
2.8 − 3.6×, 3.6 − 4.7×(without unified index) respectively in
Avazu, Criteo-Kaggle, and Criteo-TB. We observe that: 1)

the improvement in Criteo is higher compared with that in

Avazu, since Criteo has more embedding tables and a more

skewed hotness distribution among tables. 2) Compared with

Criteo-Kaggle, Criteo-TB suffers from low throughput due

to the large corpus size.

Exp #2: Throughput vs. Latency. Figure 10 shows the

median / 99 percent (P99) latencies and the corresponding

throughput of HugeCTR and Fleche for the embedding part.

We find that Fleche exhibits much lower latency (both me-

dian and P99) and significantly higher throughput. For exam-

ple, given the median latency of 1ms in Avazu, the through-

put of Fleche achieves 80𝑀 inference per second, around

4.2× to that of HugeCTR. Put differently, given the through-

put of 40𝑀 in Avazu, the reduction of latency brought by

Fleche over HugeCTR reaches one order of magnitude. Sim-

ilar with Exp #1, Fleche improves more in Criteo-Kaggle

and Criteo-TB than in Avazu.

Exp #3: Performance with different cache sizes. Since

the performance of the MLP part remains the same as cache

size changes, we only focus on the embedding part. Specifi-

cally, as shown in Figure 11, we evaluate the performance

of embedding layer under cache sizes accounting for 5%,

10%, 20% (for Avazu and Criteo-Kaggle) and 0.5%, 1%, 2%
(for Criteo-TB) of the size of all embedding tables. Fleche

outperforms HugeCTR by 1.9−3.8×, 2.4−5.3× and 3.9−5.8×
in Avazu, Criteo-Kaggle and Criteo-TB, respectively.

We observe that: 1) in Avazu andCriteo-Kaggle, the smaller

the cache size, the more performance Fleche boosts, while

in Criteo-TB, there is no such phenomenon. This is because

in Criteo-TB, the cache hit rates improved by Fleche’s flat

cache are similar in different cache sizes. However, in Avazu

and Criteo-Kaggle, the cache hit rates improved are higher

with smaller cache sizes, which means that HugeCTR’s per-

table cache structure suffers from severer under-utilization

with scarce capacity in these two datasets. The detailed hit

rates in different datasets will be reported in Exp #4.

2) The increasing in the batch size brings down the im-

provement of Fleche. The reason is that with a larger batch,

(c) Criteo-TB

0.5%1%2%

(b) Criteo-Kaggle

Cache Size
5%10%20%

Optimal HugeCTR Fleche

H
it

R
at

e

(a) Avazu

0%

50%

100%

5%10%20%

Figure 12. (Exp #4) The cache hit rate improvement

brought by flat cache. Optimal denotes the ideal case where

the cache knows all accesses of datasets.

unoptimized operations such as deduplicating and restoring

take more time. See Exp #8 for details.

6.3 Techniques

We evaluate the effectiveness of our proposed techniques and

show how much they contribute to the final performance.

Exp #4: Flat cache. Figure 12 shows the cache hit rate im-

provement of flat cache in three datasets. Specifically, Fleche

achieves hit rates of 85%−90%, 85%−94% and 90%−96% with

different cache sizes in Avazu, Criteo-Kaggle, and Criteo-TB

respectively, improving by 2%−15%, 11%−27% and 39%−41%
compared with HugeCTR. Fleche is quite close to the opti-

mal case and we attribute these results to the efficiency of

flat cache’s sharing structure.

Exp #5: Re-encoding with size-aware coding. Figure 13

shows the model accuracy after re-encoding with different

methods by varying the number of bits of flat keys. The

common metric for recommendation models, Area Under

Curve [22] (AUC, the higher the better), is applied here to

evaluate the model performance. We evaluate a fixed-length

encoding method [41] (“Kraken” in Figure 13), and our size-

aware encoding method (denoted as “Fleche”). We also eval-

uate the AUC upper bound with an ideal case where no key

conflicts occurs. As we can see, our encoding approach al-

ways exhibits 1) much higher AUC with the same number of

bits, or 2) significantly less bit number with the same AUC

than Kraken. This is mainly because our variable-length

411

Fleche: An Efficient GPU Embedding Cache for Personalized Recommendations EuroSys ’22, April 5–8, 2022, RENNES, France

Upper Bound

(b) Criteo-Kaggle
0.74

0.76

0.78

0.80

of Bits
16 18 20 22

Kraken Fleche
Upper Bound

A
U

C

(a) Avazu0.72

0.74

0.76

of Bits
15 20 25

Figure 13. (Exp #5) Model performance (AUC) of differ-

ent flat-key encoding methods. The red line denotes the

AUC of ideal case without conflicts, which is the upper bound.

(b) Cache size = 5%

of Embedding Tbls
0 20 40 60

HugeCTR Fleche

C
ac

he
 Q

ue
ry

 L
at

en
cy

 (μ
s)

(a) Cache size = 10%

0

200

400

600

of Embedding Tbls
0 20 40 60

Figure 14. (Exp #6) Latency of cache query under differ-

ent embedding table counts. The total number of queried

keys spreading all embedding caches is 10K. Other queried keys

share a similar result.

encoding method makes full use of the limited bit represen-

tation space, while Kraken’s fixed-length encoding causes

violent key conflicts.

Exp #6: Self-identified kernel fusion. Similar to §2.2, we

fix the total number of query keys and evaluate the embed-

ding cache query latency by varying the number of appor-

tioned cache tables. As shown in Figure 14, we make the

following two observations.

1) When the embedding table count is smaller than 15, the

maintenance overhead is hidden by the long execution time.

The decoupling design of Fleche introduces onemore kernel

and therefore gives higher latency. Fortunately, the number

of embedding tables in the real-world inference scenario is

usually much larger than 15.

2) As the number of tables increases, HugeCTR suffers

from a rising latency, while Fleche keeps an almost stable

latency (the slightly increasing latency of Fleche is due to

more host-to-device metadata copies).

Our fusion method cuts out the kernel maintenance over-

head almost completely. By our measurement, the overhead

of initialization phase and identification phase is only several

microseconds, which is negligible.

Cache Query
DRAM Query

Baseline +Decoupling +Unified Index

La
te

nc
y

(μ
s)

0

500

1000

Batch Size
32 64 128 256 512 1024 2048 4096 8192

0
50
100

32 64 128

Figure 15. (Exp #7) Benefits of unified index and decou-

pling copying from indexing. Design techniques are cumu-

lative. Baseline: HugeCTR with flat cache and self-identified

kernel fusion. Decoupling: decoupling copying from indexing.

Cache Query = Cache Index + Cache Copy, so is DRAM.

Exp #7: Optimizing the cache query workflow. Figure 15

illustrates the improvement brought by unified index and

decoupling copying from indexing. We only show the results

of Avazu and 5% cache size, and omit other cases that have

similar results due to space limitations. The benefits of two

techniques differ as batch size changes. With small batch

sizes (32−128), decoupling copying from indexing can reduce

the latency by 15.3% to 19.7% since the overhead of GPU

query is the bottleneck. As batch size increases (e.g., larger

than 4096), the proportion of cache query gets smaller, so the

latency of decoupling copying from indexing only decreases

by 4.2% to 9.8%. Conversely, unified index performs better
with larger batch sizes, where the reduction reaches 33.0%
to 40.9%. This is because in this case, DRAM query accounts

for a larger proportion of the overhead.

Exp #8: Contributions of techniques to performance.

We analyze Fleche’s performance by breaking down the

gap between HugeCTR and Fleche. Figure 16 illustrates

that using flat cache respectively reduces the latency by

3.6% − 19.7% in Avazu, 3.5% − 13.7% in Criteo-Kaggle, and

8.0%−32.4% in Criteo-TB, mainly steming from the reduction

in CPU-DRAM layer time due to the improved hit rate. By

introducing self-identified kernel fusion, the cache query

latency is further reduced by 64.3%−81.9% in Avazu, 68.9%−
89.7% in Criteo-Kaggle, and 65.7%−91.9% in Criteo-TB, which
results in an end-to-end reduction of 38.8% − 61.2%, 55.4% −
66.9% and 61.7% − 73.0% respectively. Finally, we optimize

the workflow of cache query, which reduces the latency by

60.2% − 68.6% in Avazu, 71.0% − 79.9% in Criteo-Kaggle, and

74.5% − 79.6% in Criteo-TB cumulatively.

6.4 Sensitivity

In this subsection, we mainly use the synthetic dataset to

evaluate the sensitivity of Fleche (except Exp #12). Note that

there is almost no difference between HugeCTR and Fleche

in the hit rate for the synthetic dataset. This is because every

embedding table has the same size and hotness distribution,

412

EuroSys ’22, April 5–8, 2022, RENNES, France Minhui Xie et al.

HugeCTR +FC +Fusion +Opt Cache Query DRAM Query Other
(a) Avazu

La
te

nc
y

(m
s)

0

1

2

3

Batch Size

32 64 128 256 512
1024

2048
4096

8192

0

0.2

0.4
32 64 128 (b) Criteo-Kaggle

0

2

4

6

Batch Size

32 64 128 256 512
1024

2048
4096

8192

0

0.5
32 64 128

(c) Criteo-TB

0

5

10

Batch Size

32 64 128 256 512
1024

2048
4096

8192

0

0.5

32 64 128

Figure 16. (Exp #8) Contributions of techniques to performance. Design techniques are cumulative. Fusion: self-identified

kernel fusion. Opt: unified index and decoupling copying from indexing. Other: other operations not related to querying, including

deduplicating, restoring, etc. Cache Query = Cache Index + Cache Copy, so is DRAM.

(b) Size
=5%

−2−1

HugeCTR Fleche
(a) Size
=10%

La
te

nc
y

(m
s)

2

5
10
20

50

−2−1
α

Figure 17. (Exp #9) Impact of

embedding skewness.

(b) Size=5%

1632 64 96

HugeCTR Fleche

(a) Size=10%

0

5

10

1632 64 96
Embedding Dimension

Figure 18. (Exp #10) Impact

of embedding dimension.

of Embedding Tbls

(b) Size=5%

0 50

HugeCTR Fleche

(a) Size=10%

0

2

4

0 50

Figure 19. (Exp #11) Impact

of embedding table number.

(a) Avazu

0

1

2

2 3 4 5

(b) Criteo-
Kaggle

2 3 4 5

HugeCTR Fleche

Emb
MLP

of Hidden Layers

Figure 20. (Exp #12) Im-

pact of MLP layers.

for ease of sensitivity tests (eliminating all benefits of FC). Yet,

even with this ideal distribution, Fleche still improves the

embedding performance significantly in different cases (see

below). To exclude the effects of cache sizes on sensitivity,

we evaluate synthetic datasets with two cache sizes, 5% and

10% (achieving hit rates of 69% and 78% respectively).

Exp #9: Impact of embedding skewness. Figure 17 shows

how skewness of workloads affects Fleche’s performance.

We vary the 𝛼 parameter of power law distribution from −0.5
to −2.0 (a smaller 𝛼 implies larger skewness of the data dis-

tribution). First, Fleche constantly benefits the embedding

lookup by 1.4 − 2.8× under different distributions. Second,
for the low-skewness case (e.g., 𝛼 = −0.5), the latency of both
Fleche and HugeCTR increases due to low hit rate. However,

Fleche gains more improvement than the high-skewness

case (e.g., 𝛼 = −2.0). This is due to the fact that more indexing
operations of CPU-DRAM layer are offloaded to Fleche’s

unified index at low hit rates.

Exp #10: Impact of embedding dimension. Figure 18

depicts the latency of embedding layer in HugeCTR and

Fleche with varying embedding dimensions. We make the

following two observations.

1) Generally, the larger the embedding dimension is, the

slower the embedding part is. This is due to larger copy size

for both GPU and CPU. Still, Fleche outperforms HugeCTR

by 1.2 − 1.9× under different dimensions.

2) Interestingly, we can see that the performance of each

system with 16 embedding dimensions is similar to that

with 32, because the memory coalescing characteristic of

GPU results in no difference between copying 16 dimensions

and 32 dimensions. Thus, their difference only exists in the

DRAM part, yet it is quite small, less than 100 µs.

Exp #11: Impact of embedding table number.We ana-

lyze how two systems behave with varying embedding table

numbers. We fix the number of querying IDs to 100K and

change the number of embedding tables (Figure 19). Overall,

Fleche achieves 1.8− 2.2× and 1.8− 2.1× improvement over

HugeCTR with 5% and 10% cache size respectively (except

the case where the table count is 1). When the table count is

1, Fleche shares a similar performance because of low ker-

nel maintenance overhead at this point. As the embedding

table count increases, Fleche’s increased latency is mainly

attributed to sorting out fragmented memory copies from

query requests for each embedding table.

Exp #12: Impact of MLP layers. Figure 20 shows the end-

to-end prediction latency of HugeCTR and Fleche with dif-

ferent numbers of hidden layers on Avazu and Criteo-Kaggle.

Each of the layer has 1024 hidden units. The batch size is

configured as 256. Similar findings are found for other batch

413

Fleche: An Efficient GPU Embedding Cache for Personalized Recommendations EuroSys ’22, April 5–8, 2022, RENNES, France

sizes and the Criteo-TB dataset. First, Fleche’s MLP time is

similar with that of HugeCTR, since our techniques involve

only the embedding part, and they do not interfere with the

computation of theMLP part. Second, as theMLP gets deeper,

the MLP time increases accordingly, which results in less

performance gain from Fleche. Yet, Fleche constantly ben-

efits the end-to-end performance compared with HugeCTR

with all different models.

7 Related Work

The most related work is HugeCTR [7], an optimized in-

ference system for recommendation models proposed by

NVIDIA, which employs GPU-resident cache to resolve the

DRAM’s bandwidth bottleneck.We have detailedly described

it in §2.2. Next, we organize the related work into two types:

1) with different goal and similar mechanism, which uses

GPU-resident cache but for other goals, and 2) with similar

goal and different mechanism, which uses other techniques

to solve the DRAM bandwidth problem of embeddings.

7.1 Different Goal, Similar Mechanism

GPU-accelerated in-memory key-value stores (KVSs) [11, 24,

42] enjoy the benefit of massive threads’ lookup in paral-

lel to boost throughput. However, GPU-KVS is a bespoke

system designed for high peak throughput of general KV

requests. Simply using a traditional GPU-KVS as embedding

cache suffers from unsatisfied performance under the rec-

ommendation scenario. First, a separate GPU-KVS for each

embedding cache table only captures local hot spots, causing

under-utilization, while a global GPU-KVS encounters the

problem of key conflicts. Second, unlike GPU-KVS, which

usually carries up to hundreds of thousands of keys in one

kernel to amortize maintainence overhead, the batch size of

IDs in a recommendation inference request is small, which

exposes the kernel maintenance latency due to the relatively

shorter kernel execution time. These two arising problems

are the main focuses of Fleche.

Industrial large-scale recommendation model training sys-

tems (AIBOX [44], HierPS [43], ScaleFreeCTR [19]) mostly

maintain the embedding parameters to be used soon on GPU-

resident cache tables and the overall parameters on DRAMs

or SSDs. The key intuition is that, each training batch only

requires accesses to a small portion of substantial model

parameters. With training datasets known in advance, these

systems can prefetch embeddings of next several batches

and write them into GPUs, successfully hiding the overhead

of embedding layer accesses. However, unlike training, the

inference process faces more challenges due to the unpre-

dictable IDs carried by the incoming requests.

Kraken [41] shares the idea of sharing the space of dif-

ferent embedding tables, and uses a fixed-length encoding

method for flat keys. However, Kraken is designed for con-

tinuous training in CPU while Fleche targets specifically at

GPU caching. Moreover, the accuracy degradation caused

by conflicts with fixed-length coding is unacceptable in in-

ference. We propose variable-length size-aware coding in

Fleche to effectively solve this problem.

7.2 Similar Goal, Different Mechanism

MERCI [32] applies memoization for recording the reduced

results of embeddings to alleviate bandwidth pressure. It is

only applicable to static datasets due to its static renumbering

technique, but not operative in the real online query scenario

where IDs keep pouring in constantly.

Some studies seek near memory processing (NMP) archi-

tecture to reduce unnecessary data movements [10, 29, 31],

while others offload embedding operations to FPGAs with

high-bandwidth memory (HBM) [25–27]. Nonetheless, these

studies either use gem5 [12] simulator and cannot get vali-

dated on real hardware, or require additional expensive hard-

ware, e.g., HBM-equipped FPGA ($6,495), which costs about

3× the price of NVIDIA Tesla T4 datacenter GPU ($2,268) [2].

These studies only aim at exploring research interests and

can not practically deploy on a large scale in a real industrial

production setting in foreseeable several years. Unlike the

above two types, Fleche leverages the off-the-shelf GPU in

datacenters without the need of additional hardware.

8 Conclusion

In this paper, we study the problem of accelerating inference

of deep learning based recommendation models (DLRMs).

This problem comes from the bandwidth gap of CPU-side

DRAM data accessing and GPU processing. We evaluate the

existing systems and find their common pitfalls, 1) cache

under-utilization, 2) overhead of kernel maintenance. We

then apply the instructional insights on how to cache the

embedding table on GPU, including sharing one global cache

backend among all embedding tables, merging small ker-

nel calls into a single large one, decoupling copying from

indexing. And we present Fleche, a holistic cache scheme

with detailed designs for efficient GPU-resident embedding

caching. Experiments with real-world datasets show that

compared with the prior art, Fleche significantly improves

the throughput of embedding layer, and gets speedup of

end-to-end inference throughput.

Acknowledgements

We sincerely thank our shepherd Y. Charlie Hu and anony-

mous reviewers for their valuable feedback, which greatly

improved this paper. We also thank Xiao Liang, Hongbo Ao

for their insightful suggestions. This work is funded by the

National Natural Science Foundation of China (Grant No.

62022051, 61832011), and Kuaishou.

414

EuroSys ’22, April 5–8, 2022, RENNES, France Minhui Xie et al.

References
[1] 2018. Design high-performance in-memory key-value operations

with persistent GPU kernels and openshem. https://www.csm.ornl.

gov/workshops/openshmem2018/presentations/openshmem2018-

NVIDIA-ORNL.pdf.

[2] 2021. Amazon.com: HP R0W29A Tesla T4 Graphic Card - 1 Gpus

- 16 GB: Computers & Accessories. https://www.amazon.com/HP-

R0W29A-Tesla-Graphic-Card/dp/B07PGY6QPT.

[3] 2021. Click-Through Rate Prediction | Kaggle. https://www.kaggle.

com/c/avazu-ctr-prediction.

[4] 2021. CUDA Runtime API::CUDA Toolkit Documentation.

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART_

_GRAPH.html.

[5] 2021. Display Advertising Challenge | Kaggle. https://www.kaggle.

com/c/criteo-display-ad-challenge.

[6] 2021. NVIDIA/gdrcopy: A fast GPU memory copy library based on

NVIDIA GPUDirect RDMA technology. https://github.com/NVIDIA/

gdrcopy.

[7] 2021. NVIDIA/HugeCTR: HugeCTR is a high efficiency GPU frame-

work designed for Click-Through-Rate (CTR) estimating training.

https://github.com/NVIDIA/HugeCTR.

[8] 2022. Download Criteo 1TB Click Logs dataset - Criteo AI Lab. https:

//ailab.criteo.com/download-criteo-1tb-click-logs-dataset/.

[9] Ehsan K Ardestani, Changkyu Kim, Seung Jae Lee, Luoshang Pan,

Valmiki Rampersad, Jens Axboe, Banit Agrawal, Fuxun Yu, Ansha Yu,

Trung Le, et al. 2021. Supporting Massive DLRM Inference Through

Software Defined Memory. arXiv preprint arXiv:2110.11489 (2021).

[10] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Da Eun Shim, Sung-Kyu

Lim, and Hyesoon Kim. 2021. FAFNIR: Accelerating Sparse Gathering

by Using Efficient near-Memory Intelligent Reduction. In 2021 IEEE

International Symposium on High-Performance Computer Architecture

(HPCA). IEEE, Seoul, Korea (South), 908–920. https://doi.org/10/gkg3vr

[11] Saman Ashkiani, Martin Farach-Colton, and John D Owens. 2018. A

dynamic hash table for the GPU. In 2018 IEEE International Parallel

and Distributed Processing Symposium (IPDPS). IEEE, 419–429.

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-

hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar

Krishna, Somayeh Sardashti, et al. 2011. The gem5 simulator. ACM

SIGARCH computer architecture news 39, 2 (2011), 1–7.

[13] Heng-Tze Cheng, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan

Hong, Vihan Jain, Xiaobing Liu, Hemal Shah, Levent Koc, Jeremiah

Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-

son, Greg Corrado, and Wei Chai. 2016. Wide & Deep Learning for

Recommender Systems. In Proceedings of the 1st Workshop on Deep

Learning for Recommender Systems - DLRS 2016. ACM Press, Boston,

MA, USA, 7–10. https://doi.org/10.1145/2988450.2988454

[14] Paul Covington, Jay Adams, and Emre Sargin. [n.d.]. Deep Neural

Networks for YouTube Recommendations. ([n. d.]), 8. https://doi.org/

10/gfvb44

[15] Christian Desrosiers and George Karypis. 2011. A comprehensive sur-

vey of neighborhood-based recommendation methods. Recommender

systems handbook (2011), 107–144.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

2018. Bert: Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805 (2018).

[17] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy,

Sergey Pupyrev, Kim Hazelwood, Asaf Cidon, and Sachin Katti. 2018.

Bandana: Using non-volatile memory for storing deep learning models.

arXiv preprint arXiv:1811.05922 (2018).

[18] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University

of Cambridge, Computer Laboratory.

[19] Huifeng Guo, Wei Guo, Yong Gao, Ruiming Tang, Xiuqiang He,

and Wenzhi Liu. 2021. ScaleFreeCTR: MixCache-Based Distributed

Training System for CTR Models with Huge Embedding Table.

arXiv:2104.08542 [cs] (May 2021). arXiv:2104.08542 [cs]

[20] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang

He. 2017. DeepFM: a factorization-machine based neural network for

CTR prediction. arXiv preprint arXiv:1703.04247 (2017).

[21] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Bran-

don Reagen, David Brooks, Bradford Cottel, Kim Hazelwood, Bill Jia,

Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail

Smelyanskiy, Liang Xiong, and Xuan Zhang. 2020. The Architectural

Implications of Facebook’s DNN-Based Personalized Recommendation.

arXiv:1906.03109 [cs] (Feb. 2020). arXiv:1906.03109 [cs]

[22] James A Hanley and Barbara J McNeil. 1982. The meaning and use

of the area under a receiver operating characteristic (ROC) curve.

Radiology 143, 1 (1982), 29–36.

[23] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and

Tat-Seng Chua. 2017. Neural Collaborative Filtering. In Proceedings of

the 26th International Conference on World Wide Web (Perth, Australia)

(WWW ’17). International World Wide Web Conferences Steering

Committee, Republic and Canton of Geneva, CHE, 173–182. https:

//doi.org/10.1145/3038912.3052569

[24] Tayler H Hetherington, Mike O’Connor, and Tor M Aamodt. 2015.

Memcachedgpu: Scaling-up scale-out key-value stores. In Proceedings

of the Sixth ACM Symposium on Cloud Computing. 43–57.

[25] Ranggi Hwang, Taehun Kim, Youngeun Kwon, and Minsoo Rhu. 2020.

Centaur: A Chiplet-Based, Hybrid Sparse-Dense Accelerator for Per-

sonalized Recommendations. In 2020 ACM/IEEE 47th Annual Interna-

tional Symposium on Computer Architecture (ISCA). IEEE, Valencia,

Spain, 968–981. https://doi.org/10/gh7zp6

[26] Wenqi Jiang, Zhenhao He, Shuai Zhang, Thomas B Preußer, Kai Zeng,

Liang Feng, Jiansong Zhang, Tongxuan Liu, Yong Li, Jingren Zhou, et al.

2021. MicroRec: efficient recommendation inference by hardware and

data structure solutions. Proceedings of Machine Learning and Systems

3 (2021).

[27] Wenqi Jiang, Zhenhao He, Shuai Zhang, Kai Zeng, Liang Feng, Jian-

song Zhang, Tongxuan Liu, Yong Li, and Jingren Zhou. 2021. FleetRec:

Large-Scale Recommendation Inference on Hybrid GPU-FPGA Clus-

ters. (2021), 10.

[28] Hongju Kal, Yonsei University, Seokmin Lee, Yonsei University, Gun

Ko, Yonsei University, Won Woo Ro, and Yonsei University. [n.d.].

SPACE: Locality-Aware Processing in Heterogeneous Memory for

Personalized Recommendations. ([n. d.]), 13.

[29] Liu Ke, Udit Gupta, Carole-Jean Wu, Benjamin Youngjae Cho, Mark

Hempstead, Brandon Reagen, Xuan Zhang, David Brooks, Vikas

Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill

Jia, Hsien-Hsin S. Lee, Meng Li, Bert Maher, Dheevatsa Mudigere,

Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy, and Xiaodong

Wang. 2019. RecNMP: Accelerating Personalized Recommendation

with near-Memory Processing. arXiv:1912.12953 [cs] (Dec. 2019).

arXiv:1912.12953 [cs]

[30] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factor-

ization techniques for recommender systems. Computer 42, 8 (2009),

30–37.

[31] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. TensorDIMM:

A Practical near-Memory Processing Architecture for Embeddings

and Tensor Operations in Deep Learning. In Proceedings of the 52nd

Annual IEEE/ACM International Symposium on Microarchitecture. ACM,

Columbus OH USA, 740–753. https://doi.org/10/gkfjhs

[32] Yejin Lee, Seong Hoon Seo, Hyunji Choi, Hyoung Uk Sul, Soosung

Kim, Jae W Lee, and Tae Jun Ham. 2021. MERCI: efficient embedding

reduction on commodity hardware via sub-query memoization. In

Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems. 302–313.

[33] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing

Xie, and Guangzhong Sun. 2018. xdeepfm: Combining explicit and

implicit feature interactions for recommender systems. In Proceed-

ings of the 24th ACM SIGKDD International Conference on Knowledge

415

Fleche: An Efficient GPU Embedding Cache for Personalized Recommendations EuroSys ’22, April 5–8, 2022, RENNES, France

Discovery & Data Mining. 1754–1763.

[34] H. Brendan McMahan, Daniel Golovin, Sharat Chikkerur, Dan Liu,

Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Boulos, Jeremy

Kubica, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner, Julian

Grady, Lan Nie, Todd Phillips, and Eugene Davydov. 2013. Ad Click

Prediction: A View from the Trenches. In Proceedings of the 19th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining - KDD ’13. ACM Press, Chicago, Illinois, USA, 1222. https:

//doi.org/10.1145/2487575.2488200

[35] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu

Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit

Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,

Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-

namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,

Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha

Smelyanskiy. 2019. Deep Learning Recommendation Model for Person-

alization and Recommendation Systems. arXiv:1906.00091 [cs] (May

2019). arXiv:1906.00091 [cs]

[36] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind

Kalaiah, Daya Khudia, James Law, Parth Malani, Andrey Malevich,

Satish Nadathur, et al. 2018. Deep learning inference in facebook data

centers: Characterization, performance optimizations and hardware

implications. arXiv preprint arXiv:1811.09886 (2018).

[37] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and

Jun Wang. 2016. Product-based neural networks for user response

prediction. In 2016 IEEE 16th International Conference on Data Mining

(ICDM). IEEE, 1149–1154.

[38] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu,

Ming Zhang, and Jian Tang. 2019. Autoint: Automatic feature inter-

action learning via self-attentive neural networks. In Proceedings of

the 28th ACM International Conference on Information and Knowledge

Management. 1161–1170.

[39] Strother H Walker and David B Duncan. 1967. Estimation of the

probability of an event as a function of several independent variables.

Biometrika 54, 1-2 (1967), 167–179.

[40] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep &

cross network for ad click predictions. In Proceedings of the ADKDD’17.

1–7.

[41] Minhui Xie, Kai Ren, Youyou Lu, Guangxu Yang, Qingxing Xu, Bi-

hai Wu, Jiazhen Lin, Hongbo Ao, Wanhong Xu, and Jiwu Shu. 2020.

Kraken: Memory-Efficient Continual Learning for Large-Scale Real-

Time Recommendations. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis

(Atlanta, Georgia) (SC ’20). IEEE Press, Article 21, 17 pages.

[42] Kai Zhang, KaiboWang, Yuan Yuan, Lei Guo, Rubao Lee, and Xiaodong

Zhang. 2015. Mega-kv: A case for gpus to maximize the throughput

of in-memory key-value stores. Proceedings of the VLDB Endowment 8,

11 (2015), 1226–1237.

[43] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Ming-

ming Sun, and Ping Li. 2020. Distributed hierarchical gpu parameter

server for massive scale deep learning ads systems. arXiv preprint

arXiv:2003.05622 (2020).

[44] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and

Ping Li. 2019. AIBox: CTR Prediction Model Training on a Single Node.

In Proceedings of the 28th ACM International Conference on Information

and Knowledge Management - CIKM ’19. ACM Press, Beijing, China,

319–328. https://doi.org/10.1145/3357384.3358045

[45] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou,

Xiaoqiang Zhu, and Kun Gai. 2019. Deep interest evolution network

for click-through rate prediction. In Proceedings of the AAAI conference

on artificial intelligence, Vol. 33. 5941–5948.

[46] Guorui Zhou, Chengru Song, Xiaoqiang Zhu, Ying Fan, Han Zhu, Xiao

Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest

Network for Click-through Rate Prediction. arXiv:1706.06978 [cs, stat]
(Sept. 2018). arXiv:1706.06978 [cs, stat]

[47] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao

Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest

network for click-through rate prediction. In Proceedings of the 24th

ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining. 1059–1068.

416

