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Abstract

Approximate Nearest Neighbor Search (ANNS) is widely
used in various scenarios. For billion-scale ANNS, on-disk
graph-based indexes, which organize the vectors as a graph
and store them on disk, are favored for their performance and
cost-efficiency. However, existing indexes can not maintain a
stable search performance while inserting new vectors.

In this paper, we propose to use direct insert, which directly
inserts vectors into the on-disk index, rather than buffering
them in memory and merging them to disk in batches like ex-
isting systems. This approach can even out the interference of
insert with frontend search, thus stabilizing the performance.
We evaluate direct insert by integrating it into a billion-scale
graph-based ANNS index named OpiINANN. With a fixed
insert rate, ODINANN outperforms state-of-the-art ANNS in-
dexes in search latency and throughput, and it consistently
shows stable performance in billion-scale vector datasets.

1 Introduction

Approximate nearest neighbor search (ANNS) is the key to
multi-modal data retrieval in web search [10, 17] and retrieval-
augmented generation (RAG) [15]. Multi-modal data, such
as texts and images, are encoded to high-dimensional vectors
using neural networks [9, 19]. An ANNS index is built upon
these vectors and traversed during a search to get the k nearest
neighbors of the query vector. Among all types of ANNS in-
dexes, on-disk graph-based indexes [24,27], in which vectors
are organized as a graph and stored on disk, are favored for
their performance and cost-efficiency to support large-scale
vector search (e.g., billions of vectors [7,22,29]).

There is a strong need for ANNS indexes to support vector
updates because current systems generate new data continu-
ously [16,26,29, 30]. Vector updates can be handled in two
ways, index rebuild and index update. Index rebuild, which
takes several days in billion-scale datasets [30], fails to keep
search results up-to-date. Therefore, index update is favored
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by recent on-disk graph-based indexes [23]. They support
vector inserts and deletes using buffered insert and delete,
where they absorb updates into an in-memory index, and then
bulk merge the in-memory index into the on-disk index peri-
odically. This way reduces the overhead of index updates by
combining disk writes during merge, thus enabling real-time
vector search and online index update.

However, by experimental analysis, we find that buffered
insert is inefficient when merging inserts to disk. First, merge
interferes with frontend search tasks (e.g., increases their me-
dian latency to 1.54x), owing to disk bandwidth interference.
Second, merge has a high memory consumption (e.g., 125GB
for merging 3% of vectors into a billion-scale index [23]),
which consists of the in-memory index for inserts and buffered
disk writes during the merge. Third, merge gains little perfor-
mance boost even with a large insert batch, whose throughput
is capped at 3000 QPS in our experiment. This is because
merge first finds the neighbors for the inserted vectors using
on-disk ANNS. This process can not be batched efficiently
and thus is executed one by one.

In this paper, we propose to use direct insert for on-disk
graph-based ANNS indexes, where vectors are directly in-
serted into the on-disk index one by one, rather than buffered
in memory and merged to disk later as in buffered insert. This
approach can even out the insert cost and avoid the in-memory
index used by buffered insert, thus stabilizing the frontend
search performance and saving memory. Also, it is possible to
make direct insert as fast as buffered insert, because buffered
insert does not benefit much from batching. However, it is
non-trivial to achieve efficient direct insert in graph-based
indexes. There are several challenges as follows.

(1) High disk write overhead of direct insert. Direct
insert updates tens or hundreds of neighbor records of the
target vector. Updating them in place incurs massive disk
writes. To combine these record updates for fewer disk writes,
a straightforward way is to use a log-structured data layout,
but it suffers from garbage collection (GC) overhead.

(2) Complex concurrency control with search. Direct
insert searches the target vector to find its neighbors, which
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Figure 1: On-disk layout of a graph-based ANNS index. The
directed graph is stored as fixed-size records on disk. Each
record contains a vector and its out-neighbor IDs (edges). The
maximum out-neighbor number of each node is limited to R.

are scattered along the search path. For concurrency control,
simply locking all of them before updating causes near-root
lock contention. An alternative approach is to leverage the ap-
proximate features of insert and search for better concurrency,
but how to do this efficiently on disk is still under-exploited.

To address the challenges, we propose OpINANN, a billion-
scale graph-based ANNS index with direct inserts. ODINANN
achieves efficient direct insert with two techniques as follows.

First, to reduce disk write overhead, we propose GC-free
update combining. The key observation is that the graph index
is stored as fixed-size records on disk. This enables out-of-
place record updates to be performed without garbage collec-
tion. Therefore, we do space overprovision on disk to reserve
multiple free record slots in a page, where multiple record
updates can be combined. The old records can be directly re-
cycled without GC. By default, ObiINANN doubles disk space
to combine updates, resulting in 2x disk writes compared to
a log-structured layout.

Second, to increase the concurrency of insert and search,
we introduce approximate concurrency control, leveraging
the approximate features of operations for better parallelism.
The key idea is to ensure per-record isolations rather than per-
operation ones. For vector search, only a consistent snapshot
for each record is required to ensure its correctness. For vector
insert, it links the target vector with an approximate neighbor
snapshot. Besides, we propose two optimizations for insert,
tailored for disk I/O and computing in the critical sections
separately, to further improve the concurrency.

We compare ObINANN with state-of-the-art ANNS indexes
supporting updates, including graph-based DiskANN [23]
and cluster-based SPFresh [30]. In workloads with concurrent
inserts and searches, ODINANN shows stable performance,
with a median search latency fluctuation’ of only 1.07X, com-
pared to DiskANN’s 2.44x. Compared to SPFresh, ODINANN
achieves 62.1% median search latency and ~15% higher ac-
curacy simultaneously, because of the intrinsic advantage of
graph-based indexes over cluster-based ones. In billion-scale
datasets, ODINANN simultaneously reaches 5000 QPS search
throughput and 1100 QPS insert throughput, with a consis-

!Defined as (maximum value / minimum value) in this paper.

Algorithm 1 Vector Search
1: G « graph, g < query vector
2: procedure SEARCH(G, q)
3: s « starting vector, / < candidate pool length
4 candidate pool P « {<s.ID, PQ_distance(s, g)>}
5: explored pool E < 0, i < 0
6: while i </ do
7
8
9

i < index of the first vector in P but not in £
r « record with ID = P[i{].ID » read from disk.
E .insert(r)

10: for nid in r.neighbors do

11: P.insert(<nid, PQ_distance(nid, q)>)

12: end for

13: P « [ nearest vectors to g > PQ distance.
14: end while

15: L < k nearest vectors to g in E > exact distance.
16: return E, L

17: end procedure

tently stable median search latency of ~3ms.
In summary, this paper makes the following contributions:

e We analyze the inefficiency of buffered inserts for on-disk
graph-based ANNS indexes (§2).

e We propose OpINANN, a billion-scale graph-based ANNS
index with direct inserts. It achieves efficient direct inserts
by two key techniques, GC-free update combining, and
approximate concurrency control (§3).

o We evaluate ObINANN to show its efficacy in stabilizing
the search performance and reducing memory usage during
concurrent inserts and searches (§4).

2 Background and Motivation

In this section, we first introduce the layout and operations
of on-disk graph-based ANNS indexes. Then, we show the
inefficiency of buffered insert and how direct insert overcomes
it. Finally, we describe the challenges of direct insert.

2.1 On-Disk Graph-Based ANNS Index

Graph layout. In a graph-based index, vectors are orga-
nized as a directed graph, which is stored as adjacent lists on
disk, as shown in Figure 1. Each disk page contains several
records. Each record consists of a vector (node) and its out-
neighbor IDs (edges). To ensure a fixed size for records, the
nodes’ maximum out-degrees are globally limited to R, where
R is a configurable parameter.

Operations. To our knowledge, DiskANN [23] is the only
on-disk graph-based ANNS index supporting updates. Here,
we introduce its search and buffered insert operations.
Vector search. As shown in Algorithm [, the search process
follows a best-first approach. It starts at a fixed starting vector



Algorithm 2 Vector Insert
1: G « graph, g « vector, R « max out-degree of G
2: Prune(N,R): remove items in N until N.size() <R
3: procedure INSERT(G, q)
E « vectors explored in SEARCH(G, g) » neighbors.
E < Prune(E, R)
set g.neighbors to E
for nbrin E do
N « {nbr.neighbors, g}
N < Prune(N, R)
10 set nbr.neighbors to N
11: end for
12: end procedure

> add edges.
> add reverse edges.

D A AN

s and maintains a candidate pool P containing the nearest
vectors to the target vector (sorted by their distances). In
each step, it explores one or more nearest unexplored vectors,
depending on the beam width. The search terminates when
all the vectors in P are explored.

Buffered insert. Algorithm 2 shows the process of inserting
a vector ¢ into a graph-based index. It first searches g and
records the explored vectors in the search path, which are g’s
candidate neighbors. Then, it attempts to add bi-directional
edges to ¢ and its candidate neighbors. If an edge set ex-
ceeds the out-degree limit, it is pruned according to some
pre-defined rules (e.g., triangle inequality [24]).

DiskANN adopts buffered insert, in order to reduce disk
I/O for neighbor updates by batching them. Specifically, in-
serts are first absorbed by an extra in-memory index. When
searching, both the in-memory and on-disk indexes are tra-
versed. When the in-memory index size reaches a threshold,
a merge is triggered, which includes two steps. First, it inserts
all the vectors in the in-memory index to the on-disk index
using Algorithm 2; all the on-disk graph updates are buffered
in memory (we call this step in-memory merge). Second, the
on-disk updates are committed in batches.

2.2 Buffered Insert is Inefficient

Buffered insert is inefficient when merging to disk. We evalu-
ate Disk ANN to show this issue. We concurrently do buffered
inserts and multi-thread searches in an index with 100 mil-
lion vectors in the BIGANN [12] dataset. Merge is triggered
when the in-memory index contains 6 million vectors (i.e.,
6% of the on-disk index size). More detailed configurations
are shown in §4.1. Figures 2(a) and 2(b) show the timeline,
in which we find three issues.

Issue #1: fluctuated search performance. As shown in
Figure 2(a), the search median latency increases to 1.54X on
average during the first merge. This is because, merge needs
to search the on-disk index to find the neighbors of the target
vector, which causes severe read bandwidth interference with
the frontend search tasks.
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Figure 2: Inefficient buffered insert. (a, b) Concurrent insert
and search vectors in an index with 100 million vectors, merge
6 million buffered inserts each time, two merges in total. (c)
The throughput of merge increases with the batch size but is
bottlenecked by its first step (i.e., in-memory merge).

Issue #2: high memory consumption. As shown in Fig-
ure 2(b), when merging 6% (i.e., 6 million) vectors to disk,
the peak memory usage exceeds 32GB, more than 50% of the
size of the on-disk index with 100 million vectors (~55GB).
The in-memory elements include the index and buffered disk
updates, whose size linearly increases with the number of
buffered inserts. Therefore, larger datasets force more fre-
quent merges due to memory capacity limits. For example,
merging 3% of vectors (i.e., 30 million) into a billion-scale
index requires 125GB of memory [23].

Issue #3: long merge time. In Figures 2(a) and 2(b), merge
accounts for more than 30% of the whole timeline, during
which the system suffers from the two issues above. In our
configuration, we restrict the insert throughput to 1200 QPS
and do not insert vectors during merge. Merge will account
for a higher time percentage in workloads with higher insert
throughput or serving inserts during the merge.

One may consider increasing the batch size to reduce the
time percentage of merge. However, merge gains little per-
formance boost even with a large batch. As shown in Fig-
ure 2(c), the throughput of merge increases with the batch size,
but is bottlenecked by in-memory merge, whose throughput
remains constant regardless of the batch size. This is because,
although disk writes are merged, the in-memory merge is still
executed one by one. For each vector, it searches the on-disk
index for neighbors and incurs hundreds of disk reads.

2.3 Opportunity: Direct Insert

We propose to do direct insert instead of buffered insert. Using
direct insert, vectors are directly inserted into the on-disk
index one by one, instead of buffered in memory and merged
to disk later as in buffered insert.

Direct insert can naturally solve the three issues above.
First, it evens out the bandwidth interference across the whole
timeline, which contributes to stable frontend search per-



formance. Second, it avoids both the in-memory index and
buffered disk writes during merge, thus saving memory. Third,
it is possible for direct insert to be as efficient as buffered in-
sert, as inserts can not be efficiently batched.

However, it is non-trivial to do direct insert efficiently.
There are several challenges as follows.

Challenge 1. Each insert updates tens or hundreds of neigh-
bor records. Applying the updates in place causes massive
random SSD writes, while using a log-structured layout suf-
fers from frequent garbage collection.

In a graph-based index, each vector connects to tens or
hundreds of vectors for navigation [11, 27]. According to
Algorithm 2, bi-directional edges are added to the target vec-
tor and its neighbors during insert. This process updates the
neighbor records scattered randomly on tens or hundreds of
pages [27], which leads to massive random SSD writes.

For fewer writes, a straightforward solution is to use a log-
structured data layout. However, inserting 10% new records
makes the index 12.8x larger (assuming an out-degree of 128);
only 7.9% of the records are valid. Thus, garbage collection,
which gathers the valid records into a new index, is frequently
required. This slows down frontend search requests.

Challenge 2. Ensuring the isolation of direct insert and
search harms their concurrency, due to near-root lock con-
tention. However, the potential of using the approximate index
feature for better concurrency is under-exploited.

According to Algorithm 2, insert may update all the records
explored in the search path. To ensure the isolation of insert
and search, a naive approach is to lock all of the involved
records before updating. However, the record set contains
near-root records. Locking them causes serious lock con-
tention, blocking concurrent inserts and searches.

An alternative approach is to leverage the approximate
feature of operations for fine-grained concurrency control:
Atomicity and isolation of operations are not mandatory for
an approximate index, so they can be relaxed for better con-
currency. However, how to design an efficient concurrency
control protocol for on-disk graph-based indexes, which ef-
ficiently utilizes this feature for shorter critical sections and
better concurrency, is still under-exploited.

3 Design and Implementation

We design OpINANN, a billion-scale graph-based ANNS in-
dex supporting direct inserts and buffered deletes. ODINANN
achieves efficient direct insert with the following goals.

e Reduced disk writes. Direct insert in a graph index up-
dates tens or hundreds of neighbor records. We do space
overprovision to combine these updates into fewer disk
writes, while not suffering from GC overhead (§3.2).
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Figure 3: OpINANN overview.

e High concurrency. We leverage the approximate feature
of operations to relax the isolation level of both insert and
search for better concurrency (§3.3).

3.1 Overview

Figure 3 shows the overview of ObDINANN.

Graph layout. The directed graph in OpINANN is orga-
nized as adjacent lists on disk (Figure 1), similar to previous
works [24,27]. Differently, ODINANN does space overprovi-
sion on disk for multiple free records on a page. Out-of-place
record updates are combined in these pages (§3.2). In memory,
PQ-compressed vectors are stored for graph navigation.

Operations. OpINANN supports three types of operations,
vector search, insert, and delete.

o Vector search. ODINANN follows Algorithm | for vector
search. Differently, ODINANN adopts a dynamic candidate
pool, whose size increases with the number of deleted
vectors in the pool, to ensure search quality in workloads
containing deletes (§3.4.1). For better concurrency, Opi-
NANN only ensures per-record consistency instead of the
atomicity of the whole search (§3.3).

e Direct insert. ODINANN follows Algorithm 2 for direct
vector insert. It updates the records out of place in the
overprovisioned disk space, to combine them for less write
amplification (§3.2). For concurrency control, OpDINANN
uses an approximate snapshot of the target vector’s neigh-
bors during insert to reduce its critical section (§3.3).

e Buffered delete. ODINANN records the ID of deleted vec-
tors in memory (§3.4.1) and merges delete to disk period-
ically (§3.4.2), similar to previous works [23,30]. It has
low runtime memory consumption (only for IDs) and little
interference with frontend search tasks during the merge.

3.2 GC-Free Update Combining

In-place record updates suffer from massive disk writes, while
the log-structured layout induces frequent garbage collection.
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Figure 4: (a) ODINANN does space overprovision for more
free records in a page. (b) Insert a vector and update its neigh-
bors. Multiple record updates are combined into a single page.

To solve this issue, we do space overprovision to merge mul-
tiple record updates into a single page.

3.2.1 Out-of-place Record Updates for Combining

We find that fixed-size records of the graph (Figure 1) enable
out-of-place record updates to be GC-free: If a record is up-
dated out-of-place, its original place can be directly reused by
another update, without explicit garbage collection.

Based on this idea, we do space overprovision to combine
multiple record updates within a single page write. Specifi-
cally, ODINANN reserves extra record slots on disk, creating
multiple free slots per page. During an insert, instead of mod-
ifying records in their original locations, ODINANN writes the
updated records to these free slots. Our allocation strategy
(§3.2.2) prioritizes allocating slots on the same page, thus
achieving the combination of multiple out-of-place updates
into one page. The original record locations are then marked
as available for subsequent inserts.

Figure 4 illustrates this process. In Figure 4(a), 9 allocated
records normally require two pages; however, ODINANN pro-
visions three, leaving three free slots on page 0. This allows
for up to three record updates to be combined. When inserting
Vo (Figure 4(b)), ODINANN updates Vo and its neighbors, Vs
and Vi. These three record updates are combined into a single
write to page 0. Then, the in-memory ID-to-location table is
updated, and the original slots for V5 and Vi are marked for
reuse in future inserts.

3.2.2 Record Allocation Rules

To maximize update combining, a straightforward way is to
greedily allocate new records within pages with the most free
slots. However, this approach requires read-modify-write for

updating partially-filled pages, where the inherent write-read
ordering leads to high latency.

We observe that vector insertion involves reading the pages
containing the target vector’s candidate neighbors. Caching
these pages in memory allows us to update them without
read-modify-write operations. Based on this observation, we
design three record allocation rules, listed in order of priority:

Rule #1: empty rule. We first allocate records in empty
pages where all the records are invalid, as using them does
not require extra reads. Specifically, an empty page queue is
stored in memory, which is updated when recycling records.
Pages in the queue are used first during allocations.

Rule #2: on-path partial-empty rule. We allocate partial-
empty pages only on the search path of insert, to avoid extra
reads in updating them. Recall that each insert first searches
the target vector for its candidate neighbors. The accessed
pages are cached and directly used by neighbor updating. In
this rule, only pages with less than m non-empty records are
allocated, where m is a configurable parameter.

Rule #3: overprovision rule. If the two rules above can
not allocate enough space for all the updated records, we
allocate new pages on disk. Although this rule causes space
overprovision, the overall space consumption is limited by
Rules #1 and #2. We analyze it as follows.

3.2.3 Space Consumption and Write Amplification

Each page contains m non-empty records on average, resulting
in (n/m)x space consumption compared to in-place record
update, where 7 is #records per page. Compared to the log-
structured layout, where n record updates are combined in a
single page write, ODINANN combines (n —m) record updates
in a single page write. This concludes a write amplification
of n/(n—m)x. By default, ODINANN sets m to | n/2], so the
space consumption and write amplification are 2.

This analysis is based on the assumption that Rule #2 uses
most pages with < m non-empty records. In §4.5, we will
show that this assumption holds in real-world datasets.

We find that such overprovisioning is cost-effective. In our
billion-scale evaluation (§4.3), OpINANN uses 2x disk space
(~1TB extra) but ~128GB less peak memory, compared to
DiskANN (buffered insert). The price trend [20] shows that a
1TB SSD (~$100) is cheaper than 128GB DRAM (>$200).

3.3 Approximate Concurrency Control

Search and insert are both approximate processes. Search
returns an approximate top-k of the target vector, and insert
selects an approximate neighbor set for the target vector using
a top-k search. These operations are not required to be atomic
and isolated, to achieve better concurrency.

We leverage such approximate features to design an ef-
ficient concurrency control protocol for search and insert.
Specifically, searches see a consistent snapshot for each
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record instead of the whole graph, while inserts see approxi-
mate snapshots for their candidate neighbor sets.

Search-insert conflicts. The search thread only holds locks
when it reads a record (line 8 in Algorithm 1) to avoid get-
ting a torn record. As out-of-place record update is adopted,
locking only the ID-to-location mapping item ensures a con-
sistent record snapshot, with no need to lock the page. In other
periods, no locks are held for better concurrency.

Figure 5(a) shows an example. The search process includes
5 steps. In each step, only the per-record ID-to-location lock
is held for the target record. In Step 3, a new record @ is
inserted, with updates to the records on the search path. As
we do not ensure a consistent snapshot for the whole graph
(i.e., atomic search operation), we allow @ to be invisible by
the search process before Step 4 and visible after it.

Insert-insert conflicts. Insert follows the process of Algo-
rithm 2. Figure 5(b) shows an example of concurrent inserts,
where vector @ is inserted by executing Steps 1, 3, 4, and 5,
and vector @ is concurrently inserted in Step 2.

To insert a vector ®, OpINANN first searches @ to get the
explored vectors in the search path, which are then pruned
to generate @O’s candidate neighbors (® and ®, Step 1). The
acquired neighbor set is not accurate but an approximate snap-
shot, since new records may be concurrently inserted (e.g., @
in Step 2). Second, it acquires the per-record write locks of
the involved records, as well as the per-page write locks for
pages to be updated (Step 3). Third, it validates the neighbor
records by reloading them, to avoid update loss (e.g., loss of
®’s update, Step 3). Fourth, it updates the involved records
(®, @, and ®) on disk, using the approach in Section 3.2 (Step

4). Finally, it releases all the locks (Step 5).

This process seems to be similar to optimistic concurrency
control (OCC). However, OCC aims to achieve atomicity
in operations. It searches the index again for validation and
repeats the read-lock-validate process until the result set does
not change. Instead, we directly view the obtained vector
set as an approximate snapshot of candidate neighbors, thus
avoiding the long latency of extra search.

We observe that this method is still not efficient enough,
because of costly disk I/O and neighbor pruning in the critical
section. We further propose two optimizations for them.

Optimization #1: move disk I/O out of critical sections.
We find that the approximate neighbor snapshot enables us-
ing a write-back page cache to avoid disk I/O in the critical
section. An insert contains one batched disk read (for record
reload) and one batched disk write (for record updates) in the
critical section. For the read, we admit the explored vectors
to the cache (Step 1), thus reloading most of them from the
cache (Step 3). For the write, we only write the record back to
the cache (Step 4). To limit the cache space, cached pages are
immediately freed after a search. A background I/O thread is
used to commit the cached writes to disk (Step 5).

Optimization #2: delta neighbor pruning. Approximate
concurrency control avoids most disk I/O in the critical sec-
tion, by using Optimization #1. However, pruning (line 9 in
Algorithm 2) becomes the bottleneck in the critical section. In
DiskANN, pruning compares all the neighbor pairs to validate
triangle inequality, which results in a complexity of O(R?),
where R is the maximum out-degree. Billion-scale datasets
require a large R (e.g., 128) for search performance, resulting
in high pruning overhead.



We reduce the complexity of most neighbor pruning in
insert from O(R?) to O(R). This is inspired by an observa-
tion that the original neighbors mostly follow the triangular
inequality. Therefore, instead of checking all the neighbor
pairs, we only check the newly inserted neighbor with all the
other neighbors. The farthest neighbor that does not follow
triangular inequality is pruned.

If no neighbor can be pruned, we fall back to the original
O(R?) pruning algorithm. We prune the first neighbor that
does not follow triangular inequality, for early stopping while
not breaking the characteristics of the original graph.

3.4 Buffered Delete and Merge

In §3.2 and §3.3, we show how ObpINANN supports efficient
direct inserts. In this section, we discuss how ObINANN sup-
ports buffered deletes and merging at a low cost. We choose
buffered deletes instead of direct ones because they show little
interference with frontend search during the merge (§4.7).

3.4.1 Buffered Delete

Overview. ObINANN records the IDs of deleted vectors in
memory. When deleting a vector, ODINANN adds its ID to an
in-memory deletion set, resulting in a low runtime memory
footprint (4B or 8B per vector). Deleted vectors are excluded
from the search results after the on-disk ANNS.

For concurrency control with search and insert, a global
read-write lock is used. Delete operations acquire the write
lock to update the delete set. After a search finishes on the
disk, it acquires the read lock and excludes the deleted records
from the search result. We do not use more fine-grained locks
as delete has much less overhead than search and insert.

Challenge: search quality insurance. In workloads con-
taining deletes, the on-disk search quality may be degraded
by deleted vectors. Specifically, the results returned by the
on-disk ANNS may contain deleted vectors, which are ex-
cluded from the results after the on-disk ANNS finishes. This
process may lead to fewer than expected top-k results, even
if we return more than k results in the on-disk search. In Obi-
NANN, we should solve this issue without the assistance of
the in-memory index, because it is avoided by direct insert.

Solution: dynamic candidate pool. As deleted nodes are
excluded from the search result, there may be insufficient
results even with a large candidate pool length /. To tackle the
problem, we adapt the candidate pool size dynamically.

We find that the deleted vectors should only serve as index-
ing, but not contribute to the results. Motivated by this, we
"ignore" the existence of deleted vectors in the candidate pool,
namely, we let the candidate pool contain at most / vectors
that are not deleted. To achieve it, we adjust the candidate pool
size [ after admitting the neighbors of the current exploring
vector (line 12 in Algorithm 1).

3.4.2 Two-Pass Merge for Delete

When to merge. We use two metrics to decide when to
merge. The first is the ratio of deleted vectors in the index.
When it reaches a threshold (e.g., 10%), merging is triggered.
This metric is straightforward but sometimes inaccurate. This
is because vectors located in different places are not equally
important. For example, near-root vectors influence every
search request, while near-boundary vectors may only influ-
ence a small part. However, they are treated equally in the
metric of deleted vector ratio.

We use the search I/O amplification as another metric. It
is based on our observation that the disk I/O in the search
process reflects the index quality. Given the same candidate
pool size I, worse index quality results in a larger candidate
pool, thus resulting in more disk I/O. Therefore, we record
the average disk I/O during the search. Merging is triggered
when the disk /O is significantly more (e.g., 1.1X) than when
no vectors are deleted.

How to merge. Merging delete in ODINANN includes two
passes, in each pass OpINANN scans the whole index sequen-
tially. This process is not as I/O intensive as merging inserts,
so it shows little interference with frontend search (§4.7).

In the first pass, ODINANN scans the whole index to load
the neighbor IDs of the deleted vectors into memory. Loading
all of them can cause a high memory consumption (e.g., 512B
for a vector with 128 neighbors). ODINANN uses a simple ap-
proach, namely loading part of the neighbors for each vector,
to meet the memory budget at the cost of index quality.

In the second pass, OpINANN scans the whole index to do
three things in a streaming manner. (1) Read a batch of records
and replace the deleted vector IDs with their neighbor IDs in
memory. (2) Prune neighbors for records whose out-degree is
larger than the limit. (3) Write them back to disk.

Updates during merge. Deletes can be trivially handled in
memory, so we mainly discuss inserts here. We propose two
ways for inserts during merge. First, they can be absorbed by
an in-memory index and digested using direct insert after the
merge. Second, they can be executed with direct insert by not
allocating records in the merging pages. As merge is typically
short in OpDINANN (§4.7), the overheads of the in-memory
index and extra disk space are acceptable.

3.5 Discussion

Consistency. ObpiNANN uses snapshots and journaling for
consistency. Merging creates an index snapshot. Between two
merging, journaling is used to record the delta updates for
the in-memory and on-disk data structures. For less overhead,
journaling may be flushed to disk later than on-disk inserts.
To maintain a consistent prefix for updates [28], we roll back
the index by (buffered) deleting all the records with newer
IDs than the journal. We store the metadata for recovery (e.g.,
ID and transaction ID) together with each record on disk.



GC-free. OpINANN supports GC-free inserts. Compared to
the log-structured layout, ODINANN directly reuses the invalid
records, eliminating the need for logical garbage collection
— a process to gather valid records into a new index. Our
designs target FTL-based SSDs and do not interfere with their
physical garbage collection. For deletes, to recycle the space
of deleted vectors, ODINANN needs the lightweight merge
(§3.4.2), which is similar to a logical GC.

Insert latency. Compared to buffered insert in Disk ANN,

OpINANN has a higher insert latency as it directly writes the

updated records to disk. This leads to a ~11.1ms insert latency

(§4.4). We believe this latency is acceptable, as real-world

systems [7,22] target indexing latencies around 10ms.

Memory usage. ObDINANN stores three things in memory:

e PQ table for PQ-compressed vectors, 32 bytes per vector.

e [D-to-location and ID-to-tag hash tables contain the map-
ping of vector ID to 4-byte record location and 4-byte tag
(the same as DiskANN [23]), 16 bytes per vector.

o Location-to-ID hash table contains the mapping of record
location to vector ID, used by the first pass of a merge. We
use per-page fixed-size arrays for this, requiring 4 bytes
per record (including empty ones) and 4 bytes per page.
For a typical OpINANN index with 2x disk space consump-

tion and 6 records per page, the memory usage is ~58 bytes
per vector or 58GB for billion-scale datasets. The memory
usage in our evaluation is higher (83.8GB, §4.3). This is due
to the memory overheads of hash tables, and free slots caused
by dynamic doubling of the PQ table and hash tables.

4 Evaluation

We evaluate ODINANN to answer the following questions:

e How does ODINANN compare to other updatable ANNS
indexes for concurrent inserts and searches? (§4.2)

e How does OpDINANN perform in billion-scale datasets com-
pared to other ANNS indexes? (§4.3)

e How do the techniques in OpINANN contribute to the per-
formance of direct insert? (§4.4)

e How do OpiNANN'’s techniques for inserts impact internal
metrics, e.g., disk consumption and index quality? (§4.5)

o How does the number of out-neighbors impact ODINANN’s
insert and search performance? (§4.6)

e How does OpINANN perform for workloads with concur-
rent inserts, deletes, and searches? (§4.7)

4.1 Experimental Setup

Basic configuration. We use one node for evaluation, which
has the following configuration:

e CPU: 2x 28-core Intel Xeon Gold 6330 @ 2.00GHz;
e RAM: 512GB (16x 32GB DDR4 2933MT/s);

e SSD: 1x Samsung PM9A3 3.84TB;
e OS: Ubuntu 22.04 LTS with Linux kernel 5.15.0.
Datasets. We use three vector datasets for evaluation:

e SIFT100M [12], a dataset containing 100 million uint8
vectors with a dimension of 128, and 10,000 query vectors.

o DEEP100M [3], a dataset containing 100 million float
vectors with a dimension of 96, and 10,000 query vectors.

e SIFTI1B [12], a dataset containing one billion uint8 vec-
tors with a dimension of 128, and 10,000 query vectors.
SIFT100M and DEEP100M are subsets of SIFT1B and

DEEP1B with 100 million vectors.

Compared systems. We compare OpINANN with two state-
of-the-art ANNS indexes: DiskANN [23] and SPFresh [30].

DiskANN is a graph-based index using buffered inserts.
OpINANN is implemented based on DiskANN. Unless oth-
erwise stated, we use the following update configurations
for them: Insert candidate pool size /; is 128. Maximum out-
neighbors per record R is 96 for SIFT100M and DEEP100M,
and 128 for SIFT1B. The maximal number of vectors to prune
in delete C is 384. DiskANN merges updates when the in-
memory index size reaches 6% of the on-disk index.

For search configurations, they use a beamwidth equal to 4.
The default search candidate list I is set to 20 for SIFT100M,
and 25 for DEEP100M and SIFT1B. The near-root neighbor
cache is disabled. For efficiency, we use io_uring [13] in
replace of 1ibaio as their I/O engine.

SPFresh is a variant of SPANN [5], a cluster-based index
that divides vectors into clusters. It supports vector updates by
updating the target vector in its nearest clusters. To reduce the
imbalance of clusters, SPFresh splits and merges them. We
configure SPFresh using the same settings as its open-source
code. The maximum cluster size is set to 16KB for SIFT and
48KB for DEEP, for the same number of vectors in a cluster.

We do not compare with other on-disk ANNS systems, such
as Starling [27], as they are not designed to support updates.

Metrics. ObpINANN is designed for online ANNS scenar-
ios, so we evaluate the search performance, search accuracy,
and memory usage during concurrent updates. We use mul-
tiple search threads to evaluate search performance, as high
search throughput is required in real-world workloads (e.g.,
5000 QPS [29]). We gradually add search threads to increase
throughput while keeping latency relatively low. For Obi-
NANN and DiskANN, we use 32 search threads. For SPFresh,
we use 16 search threads in SIFT and 8 threads in DEEP.

4.2 Overall Performance: Insert-Search

In this evaluation, we build indexes using SIFT100M and
DEEP100M datasets and then insert another 100 million vec-
tors into them. Multi-thread searches are concurrently exe-
cuted to show their interference by inserts and merges.

The evaluated systems take different times in the eval-
uations. This is because we do not insert vectors during
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Figure 6: Overall performance in SIFT100M dataset, insert another 100M vectors.

DiskANN’s merge, and the average insert throughputs of com-
pared indexes are different. We set their insert throughputs to
800~1200 QPS, similar to previous works [30].

4.2.1 SIFT100M

Figure 6 shows the results in the SIFT100M dataset. From
the figure, we make the following observations:

Low and stable search latency. The results are shown
in Figure 6(a)~Figure 6(c). Compared with Disk ANN, Opi-
NANN shows lower P50 (median) search latency with less fluc-
tuation (i.e., maximum P50 latency / minimum P50 latency).
OpiINANN has 13.3% lower P50 latency than DiskANN on
average, which shows that direct insert introduces little cost
for disk writes compared to merging them. Besides, the P50
latency of OpINANN fluctuates only 1.07X at most, compared
to 2.44% in DiskANN. This is because merging in Disk ANN
causes bandwidth interference with search tasks, which in-
creases the search latency.

Compared with DiskANN, OpiNANN has 34.6%/19.5%
lower P90/P99 search latency on average, more significant
than the P50 latency. This is because of read-write conflicts
of DiskANN’s in-memory index, which uses per-node read-
write locks for concurrency control. An insert acquires the
per-node lock and blocks concurrent readers. Contrastively,
OpINANN uses approximate concurrency control to reduce
such blocking. Writers only block readers when they are
updating the id-to-location mapping.

Compared with SPFresh, OpiINANN has 51.7%/36.5%/
28.4% lower P50/P90/P99 search latency on average. This
is because fine-grained graph-based indexes (OpINANN) are
advantageous in search compared to coarse-grained cluster-
based indexes (SPFresh), especially in disk bandwidth con-

sumption. On average, ODINANN reads 41 pages per search,
while SPFresh reads 198 pages. Although SPFresh replicates
the clusters to make disk reads mostly sequential, it still shows
higher latency than OpINANN.

High search throughput. Compared with DiskANN and
SPFresh, ObINANN has 1.15% and 1.99x throughput on av-
erage, as in Figure 6(d). The reason here is the same as that
in latency. Disk ANN needs extra search in the in-memory in-
dex, and it suffers from bandwidth interference during merge.
The cluster-based SPFresh consumes more disk IOPS than
OpINANN per search, which limits its throughput.

Unsacrificed search accuracy. As shown in Figure 6(e),
the accuracy of ObINANN is comparable with Disk ANN. The
accuracy of OpINANN is 99.1%~100% that of Disk ANN
when the in-memory index is empty. The accuracy gap be-
tween OpINANN and DiskANN increases along with the in-
memory index size, as Disk ANN finds top-k in both the in-
memory and on-disk indexes for each search. However, the
in-memory index forces Disk ANN to merge updates to disks,
which causes performance fluctuation.

OpNANN and DiskANN consistently show higher accu-
racy than SPFresh. This is because graph-based indexes are
more advantageous than cluster-based indexes in terms of
search [7]. We show that this advantage still exists even after
the index is updated. In all, ODINANN maintains lower latency,
higher throughput, and higher search accuracy than SPFresh.

The accuracy of ODINANN and DiskANN drops with time.
This is because they use PQ to accelerate pruning in insert
operations, which is less accurate than the initial graph build-
ing [23]. Another reason is that larger datasets intrinsically
require a larger search L for higher accuracy.

The accuracy of SPFresh increases over time, because of its
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Figure 7: Overall performance in DEEP100M dataset, insert another 100M vectors.

cluster split protocol. However, it comes at the cost of more
pages accessed per request, which results in a throughput drop
over time, as shown in Figure 6(d).

Low memory footprint. ObpINANN’s peak memory usage
is 29.3% of DiskANN. This is because OpINANN uses di-
rect inserts. ODINANN only needs an extra ID-to-location
mapping in memory to support out-of-place record updates,
while Disk ANN stores the in-memory index and the delta of
updates for merging. They lead to a 56.3GB peak memory
usage in the final index with ~200M vectors. The in-memory
data structures in Disk ANN require even more memory when
the on-disk index size further increases, to keep a fixed merge
threshold (6% of the on-disk index size in our configuration).

Compared with SPFresh, OpINANN has 86.8% peak mem-
ory usage. SPFresh stores a navigation graph for indexing the
nearby clusters of the target vector. The graph size increases
when a cluster split happens.

4.2.2 DEEP100M

Figure 7 shows the result in the DEEP100M dataset. In this
dataset, ODINANN keeps low and stable latency, and low mem-
ory usage. We make further observations:

(1) The performance boost of OpINANN in DEEP100M
is less significant than in SIFT100M. This is because it ben-
efits less from out-of-place record updates. Each vector in
DEEP100M is 384B, compared to 128B in SIFT100M. Larger
vectors result in fewer records on a page (5 vs. 7), and thus
fewer merge opportunities for updates.

(2) The advantage of ODINANN over SPFresh is more sig-
nificant in DEEP100M, due to larger vectors. ODINANN and
DiskANN only use one vector per search step, whose size
is smaller than a page. Therefore, large vectors have little

impact on performance. Their performance drop mainly ac-
counts for the change of search L. However, SPFresh executes
a brute-force search for all the vectors in a cluster. In this con-
figuration, we use the same number of per-cluster vectors as
SIFT. Larger vectors result in more per-cluster disk I/O, which
is the bottleneck of SPFresh’s search performance.

4.3 Overall Performance: SIFT1B

In this section, we show that ODINANN efficiently handles
billion-scale datasets. We build an initial index with 800M
vectors in SIFT1B. Then, we insert the other 200M vectors
into it and execute concurrent searches. Disk ANN merges the
in-memory index to disk when it reaches 30 million vectors
(~3%), the same as its paper [23].

Figure 8 shows the results. From the figure, we find that
the stable performance of OpINANN holds, so we can draw
similar conclusions as in §4.2. For example, ODINANN shows
85.7% and 62.1% median latency on average compared to
DiskANN and SPFresh. We make two new observations:

First, for DiskANN, although the number of vectors per
merge is reduced from 6% (in §4.2) to 3% of the on-disk
index, it still shows a high memory usage (> 200GB). Also,
P99 search latency spikes are observed, due to bandwidth
contention when merging to disk. Second, SPFresh uses less
memory than OpINANN (52.2GB vs. 83.8GB). This is be-
cause SPFresh uses a coarse-grained cross-cluster index. To
achieve a higher search accuracy, SPFresh should make its
clusters fine-grained, inducing higher memory usage.
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Figure 8: Overall performance in SIFT1B dataset, insert 200M vectors into an index of 800M vectors.
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4.4 Breakdown Analysis

In this section, we break down the performance gap between
Baseline and ObiINANN, to show the contributions of the tech-
niques to efficient direct insert. We build a base index using
the SIFT100M dataset and insert 100K vectors into it. We
evaluate insert latency and throughput using 27 insert threads,
without concurrent search.

Baseline. We implement the Baseline based on OpiINANN.
It does direct inserts by updating records in place and uses
the basic approximate concurrency control, without the two
optimizations. We do not use two-phase locking for Baseline,
as it seriously degrades the performance. Figure 9 shows that
Baseline has low insert throughput, which can not meet the
demands of real-world workloads (e.g., 1000 QPS [29]).

+Async. We move the disk I/O out of the critical section
(Optimization #1 in §3.3). It reduces the insert latency to
80.8%. However, the insert throughput can not be increased
because of the inherent cost of inserts.

+OP. We do space overprovision and out-of-place record
updates (§3.2). It increases the insert throughput to 5.12% and
reduces its latency to 27.1%. This is because it not only re-
duces the inherent cost of disk writes by combining them, but
reduces contention by updating the pages with fewer records.

+Prune. We use delta pruning (Optimization #2 in §3.3) to
reduce the compute overhead. It further increases the through-
put to 2.59% and reduces the latency to 39.7%. By adopting all
the optimizations, ODINANN reaches 2000 QPS with 11.1ms
median latency for insert, which meets the demands of real-
world workloads better.

4.5 In-Depth Analysis

To further understand the tradeoffs in ObiINANN, we collect
statistics for the indexes in §4.2 on disk space consumption
and index quality.

Disk space consumption. ObpiINANN does space overprovi-
sion for fewer writes. Here, we compare the disk space con-
sumption of ODINANN and SPFresh. We exclude Disk ANN
as its on-disk index is immutable and thus with ideal size.

Figure 10(a) shows the disk space consumption of Obi-
NANN and SPFresh for the final index of §4.2 with 200M
vectors. (1) OpINANN has 1.98%/2.29x space amplification
for SIFT/DEEP datasets, which concludes that the record allo-
cation policy in ObINANN has near-ideal space amplification
(§3.2.3). (2) ODINANN requires 84.8%/49.7% of SPFresh’s
disk space for the final index. This is because SPFresh uses
vector replication (8x by default) for better search accuracy,
which consumes more space than the edges in ODINANN.
Also, SPFresh splits clusters into half-empty ones for cluster
balancing, which causes space amplification.
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Figure 10: (a) Disk space consumption of ObiINANN and
SPFresh compared to the ideal case (no overprovision and
split). (b) Index quality of ObpINANN and DiskANN after
inserting 93 million vectors into an index of DEEP100M.

Index quality. Approximate concurrency control uses a re-
laxed isolation level and delta pruning for better concurrency,
at the cost of index quality. Figure 10(b) shows the index qual-
ity of DEEP100M after the last merge in §4.2.2 (i.e., 93M
vectors inserted). With the same recall, ODINANN accesses
~4.5% more disk pages than DiskANN. The performance
loss is acceptable considering the benefits of direct inserts,
and it can be further optimized by a more accurate algorithm
for delta pruning, which we leave for future work.

4.6 Parameter Study: Out-Neighbors

In this section, we show how the number of maximum out-
neighbors (R) impacts insert and search performance. We
build indexes on SIFT100M using different Rs (32, 64, 96,
128), where the maximum R is used by previous works [24]
and OpINANN to support billion-scale datasets. The insert
candidate pool size [; is set to R+ 32 (e.g., 128 for R = 96).
We use 10 insert threads and 32 search threads for concurrent
insert and search, the same as in §4.2.1.

Figure 11 shows the results. From the figure, we observe
that: (1) A large R increases search performance but reduces
insert throughput. A large R contributes to better graph con-
nectivity, which leads to reduced search latency. However, it
requires a large insert candidate pool (/;) to find enough neigh-
bors. Thus, an insert requires to search more vectors, decreas-
ing its performance. As shown in the figure, R = 96 strikes a
balance between search performance and insert throughput,
so we choose R = 96 as our SIFT100M configuration.

(2) The memory usage is nearly constant across different
Rs, as discussed in §3.5. However, setting R to 128 results in
~800MB (8.75%) more memory usage compared to R = 64.
This is due to our implementation of the location-to-ID table,
which uses per-page arrays with size 10. A larger R leads
to more pages in the index, and thus a larger location-to-
ID table. When R = 32, we use a larger array size of 15. It
shows higher memory usage than R = 64, due to the dynamic
doubling of tables during insert. We consider the difference
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Figure 11: The impact of maximum out-neighbors (R) on (a)
search latency; (b) insert throughput; (¢) memory usage. 10
insert threads and 32 search threads.

in memory usage is not a major issue, as we can always select
an appropriate per-page array size for each graph index.

4.7 Workload with Deletes

In this section, we show the performance of OpINANN in
workload with deletes. We build an index on SIFT100M, and
then gradually replace the original 100M vectors with another
100M vectors. OpINANN merges at 20% updated vectors,
while DiskANN merges at 6%. We do not update vectors
during merge, to directly show the interference of merge on
the frontend search. We show the results for similar durations.

The result is shown in Figure 12, in which the performance
of SPFresh is similar to that in §4.2. We compare ODINANN
with DiskANN and make the following observations:

(1) The merge period of ObINANN has little interference on
frontend search, as merging deletes only requires two scans of
the on-disk index, which is not I/O-intensive. However, merg-
ing inserts in DiskANN is I/O intensive, so it has bandwidth
interference with frontend search tasks.

(2) Merging in ObINANN can be less frequent than in
DiskANN because buffered deletes require much less memory
than buffered inserts during runtime. Deleting a vector only
records an ID in memory, while inserting records the vector
and its edges in the in-memory index.

(3) OpINANN uses less memory than DiskANN during a
merge. This is because ObDINANN only loads 20 nearest neigh-
bors for each deleted node into memory, while DiskANN
loads all the 96 neighbors. The neighbor number can be con-
figured to trade index quality (~2.5% accuracy for the final
index, with the same number of disk I/Os) off for memory.
An accurate and memory-efficient delete method is preferred
to optimize this, which we leave for future work.

(4) The search accuracy of OpINANN can be ensured be-
tween two merges, thanks to the dynamic candidate pool de-
sign. With a fixed configuration of candidate pool length, Opi-
NANN can ensure the search accuracy regardless of deleted
vectors, at the cost of more disk I/O per search.
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Figure 12: Workload with deletes in SIFT100M dataset, replace the original 100M vectors with another 100M vectors. Note that
OpiNANN merges at 20% updated vectors, while Disk ANN merges at 6% for less memory usage. With similar elapsed time in
this figure, ODINANN and SPFresh finish replacing the whole 100M vectors, while Disk ANN replaces SOM vectors.

5 Related Work

Billion-Scale ANNS indexes. Real-world workloads do
vector search on billions of vectors [7,22]. Traditional ANNS
indexes are stored in memory [4, 7, 18]. To support billion-
scale datasets in a single node, they suffer from high prices
and limited scalability. To this end, two new methods, hybrid
storage and vector compression, are proposed.

Hybrid storage. Some works rely on hybrid storage media
for more capacity, such as SSD and DRAM. DiskANN [24]
and Starling [27] are on-disk graph-based indexes. They store
the full graph on disk, and compressed vectors in memory
for graph navigation. SPANN [5] is an on-disk cluster-based
index. It stores the clusters on disk, and a small graph in mem-
ory to index the nearest clusters. HM-ANN [21] maintains a
hierarchical graph [18] in DRAM and persistent memory.
Some other works seek performance boosts with near-data
processing. CXL-ANNS [11] uses processing units near the
CXL memory for distance calculation, and SmartANNS [25]
uses FPGAs in SmartSSDs for graph traversal. These methods
can not only reduce the CPU burden for computation, but
mitigate the bandwidth bottleneck by avoiding transferring
vectors between CPU and slow-speed storage media.
OpINANN uses commodity SSDs for capacity expansion. It
does not rely on near-data processing for better compatibility.

Vector compression. Instead of increasing capacity, some
works compress vectors for smaller index sizes in memory.
Product quantization (PQ) [8, 14] is a popular vector compres-
sion method for ANNS. It splits vectors into equally sized
chunks and does clustering for each chunk. Vectors are re-
placed with per-chunk IDs representing their nearest centroids.
This way is used by IVF [2] indexes for less memory footprint.
DiskANN [24] also stores PQ-compressed vectors in memory
to reduce neighbor reads during graph navigation. LVQ [1]
focuses on single-vector compression instead of cross-vector
clustering. It uses scalar quantization in each vector to map
floating-point vectors to bits, which improves search perfor-
mance with reduced memory footprint.

OpINANN stores PQ-compressed vectors in memory for

graph navigation. The designs in ODINANN are orthogonal to
vector compression methods.

Updatable ANNS indexes. Graph-based DiskANN [23]
uses buffered inserts, which interfere with frontend search
tasks, motivating our designs for OpINANN. Cluster-based
SPFresh [30] supports in-place vector updates. It is more chal-
lenging for graph-based ObINANN to support efficient updates
than cluster-based SPFresh, due to the intrinsic complexity
of graph neighbor maintenance. However, ODINANN benefits
from better search accuracy and performance.

Reserving space for efficient updates. ALEX [6] is a
learned index that also leverages reserved space (called "gaps"
in its paper) for efficient updates. Unlike ALEX, which uses
one gap for each new key-value pair to avoid model retrain-
ing, OpINANN uses multiple record slots for a single insert,
combining record updates in the same page.

6 Conclusion

We argue that direct insert is more suitable for graph-based
ANNS indexes and propose OpINANN. It efficiently processes
inserts in the on-disk index instead of buffering them. Evalua-
tions show that ODINANN keeps stable insert and search per-
formance in billion-scale vector datasets. This work demon-
strates that on-disk graph-based ANNS indexes can benefit
from high search accuracy, stable search performance, as well
as efficient updates simultaneously using direct insert.
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