
Aegis: Partitioning Data Block for Efficient Recovery of
Stuck-at-Faults in Phase Change Memory

Jie Fan
†

fanj11@mails.tsinghua.edu.cn
Song Jiang

‡

sjiang@eng.wayne.edu
Jiwu Shu

†∗

shujw@tsinghua.edu.cn
Youhui Zhang

†

zyh02@tsinghua.edu.cn
Weimin Zhen

†

zwm-dcs@tsinghua.edu.cn

†
Department of Computer Science

and Technology
Tsinghua University

Beijing, China

†
Tsinghua National Laboratory for

Information Science and Technology
Beijing, China

‡
Department of Electrical and

Computer Engineering
Wayne State University

Detroit, MI, USA

ABSTRACT
While Phase Change Memory (PCM) holds a great promise
as a complement or even replacement of DRAM-based mem-
ory and flash-based storage, it must effectively overcome its
limit on write endurance to be a reliable device for an ex-
tended period of intensive use. The limited write endurance
can lead to permanent stuck-at faults after a certain num-
ber of writes, which causes some memory cells permanently
stuck at either ’0’ or ’1’. State-of-the-art solutions apply
a bit inversion technique on selected bit groups of a data
block after its partitioning. The effectiveness of this ap-
proach hinges on how a data block is partitioned into bit
groups. While all existing solutions can separate faults into
different groups for error correction, they are inadequate
on three fundamental capabilities desired for any partition
scheme. First, it can maximize probability of successfully
re-partitioning a block so that two faults currently in the
same group are placed into two new groups. Second, it can
partition a block into a small number of groups for space ef-
ficiency. Third, it should spread out faults across the groups
as uniformly as possible, so that more faults can be accom-
modated within the same number of groups. A recovery
solution with these capabilities can provide strong fault tol-
erance with minimal overhead.

We propose Aegis, a recovery solution with a systemat-
ical partition scheme using fewer groups to accommodate
more faults compared with state-of-the-art schemes. The
uniqueness of Aegis’s partition scheme lies on its guaran-
tee that any two bits in the same group will not be in the
same group after a re-partition. Empowered by the parti-
tion scheme, Aegis can recover significantly more faults with
reduced space overhead relative to state-of-the-art solutions.

∗Corresponding author: Jiwu Shu (shujw@tsinghua.edu.cn).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MICRO-46, December 07 - 11 2013, Davis, CA, USA
Copyright 2013 ACM 978-1-4503-2638-4/13/12 ...$15.00
http://dx.doi.org/10.1145/2540708.2540745.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Primary Mem-
ory ; C.4 [Performance of Systems]: Fault Tolerance

Keywords
Phase-change Memory, Reliability, Stuck-at Faults, Parti-
tion Scheme, and Cartesian Plane.

1. INTRODUCTION
Resistive memories have drawn great attention recently

as the scaling of DRAM technology to smaller feature sizes
(beyond 30 nm) becomes increasingly difficult [1, 2]. With
higher scalability and being non-volatile, they hold great
promises to complement or even replace DRAM as main
memory or flashes as storage device. Among a number
of resistive memories currently available, including phase-
change memories (PCM), spin-torque-transfer magnetoresis-
tive memory (STT-MRAM), ferroelectric memory (FRAM),
and memristors (RRAM), PCM is the most promising tech-
nology for volume production [3, 4] and has seen the most
research efforts [5, 8, 10, 13, 14, 16]. One of most challeng-
ing constraints on the device is its limited endurance. That
is, after a limited number of writes on a memory cell (on
average about 107 - 108), the cell is stuck at one of its two
states representing either 0 or 1. Different from transient
errors that are induced by alpha particle and usually found
in DRAM, the so-called stuck-at-fault hard error is perma-
nent and is PCM’s major type of errors. When a cell has a
stuck-at fault, its stuck-at value is still readable but cannot
be changed.

1.1 Addressing the Issue on PCM’s Stuck-at
Faults

Being a major barrier towards PCM’s wide adoption, stuck-
at faults have been studied extensively. There are a number
of solutions proposed to address this specific reliability is-
sue. Some of the solutions rely on the operating system
(OS) to hide the faults. For example, a solution can be to
simply exclude memory pages containing faulty bits from
being allocated. However, by doing this usable memory can
be quickly depleted once there are memory bits approaching
their lifetime limits and starting to fail. This issue is particu-

433

larly severe because of (1) existence of early cell failures due
to lifetime variation, and (2) wide-spread fault occurrences
due to lack of spatial locality in the cell failures. Though
dynamical pairing scheme [7] can recycle faulty pages by us-
ing a pair of pages with error bits at different offsets in the
allocation of one page, it does not support wear-leveling, a
technique essential for high reliability and security [12, 15].
For this reason, it is critical to build an error protection
mechanism within the PCM chip for individual data blocks
as the first-line of defense.

At the chip level error protection is applied on individ-
ual data blocks whose size is usually smaller than page size
defined by OS. There are two general approaches for the
protection. The first approach is to directly record the ad-
dress of each faulty bit (a pointer) within a protected data
block and use a replacement bit to store data on behalf of
the faulty one. This approach is represented by the ECP
(Error Correcting Pointers) scheme [14]. In ECP, a pointer
and its corresponding replacement bit compose a correction
entry, and each entry corresponds to one correctable fault
in a block. With the sizable entries used in the approach,
the number of correctable faults can be small under limited
space budget.

The second approach is based on the fact that stuck-at
values are still readable. In this approach a block is parti-
tioned into a number of groups. If there is only one faulty
cell in each group, the cell can be still used for storing data.
When the cell’s stuck-at value is opposite to the value being
written into the cell, data in the group can be stored in an
inverted form with a flag bit indicating that an inversion has
been conducted. In this approach, it is groups, rather than
bits as in the first approach, that are identified for correc-
tion operation. Thus, the space overhead for bookkeeping
can be smaller, or with the similar amount of space cost
more faults can be tolerated. This approach is represented
by the SAFER (Stuck-At-Fault Error Recovery) scheme [16].
While the advantage of the partition-and-inversion approach
is apparent, effective exploitation of its full potential relies
on the efficacy of partitioning, or how bit cells in a data block
are partitioned into different groups so that the error(s) in
a group can be corrected with data inversion.

1.2 Partitioning Data Blocks for Inversion-based
Correction

For a partition-based scheme to be functional, it must
minimally meet two requirements on how cells in a data
block are partitioned into groups. First, for any existing
faults in a block to be tolerated with any new data to be
written, at most one fault is allowed in a group. Second,
to accommodate a new fault that occurs in a group already
containing a fault, the data block must be repartitioned to
separate them so that no group has more than one fault. The
SAFER scheme meets these requirements by selecting one or
multiple bits from the offset address of a bit within a block to
form a partition vector1. Under the partition configuration
defined by a partition vector, any two bits in a block whose
partition vector values (derived from their respective offset
addresses) are not the same will be in different groups (See
Figure 1(a)). When a new fault occurs at a location with
the same vector value as an existing fault (or the two faults
collide in a group), SAFER expands the vector by adding a

1Partition vector is coined in this paper to concisely and
accurately describe SAFER’s fundamental design principle.

new bit at which the two faults’ addresses are different (See
Figure 1(b)). In this way, the new fault has a unique vector
value and is exclusively in a group. While SAFER meets the
minimal requirements, it does not have some highly desirable
properties for partitioning with high space efficiency and
fault tolerance capability.

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

Addresses of two

existing faults

Partition vector

Address of a

new fault

Expanded vector

(a)

(b)

1 0 1 0 0 0 0 0

Figure 1: Illustrating how bit positions in the 8-bit
offset address in a 256-bit data block are selected to
form a partition vector. In (a) the first bit position is
selected as the partition vector when the addresses
of two existing faults differ at this position. When
a new fault occurs with its vector value (’1’) equal
to that for one of the existing faults, which means it
collides with the existing fault in a group, the vector
has to be expanded (shown in (b)) so that all three
faults have different vector values, which are 00, 10,
and 11.

First, there should be a sufficient number of candidate
partition configurations to accommodate many faults, as a
new configuration is demanded whenever two faults collide
in a group. In SAFER, each partition vector represents a
candidate configuration. Though theoretically there are 2n

configurations for a data block of 2n bits, the actual number
of usable configurations for a block is only n+1. In SAFER,
an additional configuration is generated by adding a bit into
the current vector. In the worst scenario where every new
fault generates a fault collision, only n+1 faults can be toler-
ated and then any additional fault will fail the entire block.
If a new partition vector could be generated by allowing re-
moval or replacement of bits in the current vector, there is
no assurance that exiting collision can be eliminated or new
collisions are not introduced. While exhaustive search over
the space of 2n candidate configurations is way too expen-
sive to be feasible, SAFER has to accept relatively small set
of configurations from which to determine a collision-free
partition.

Second, the number of groups should be small, as it de-
termines the space overhead. For SAFER a major overhead
space is used for bookkeeping which groups’ data are in-
verted. With increasing number of faults, the number of
groups is increased exponentially (each additional bit in the
partition vector doubles the group count.). When the parti-
tion vector has m bits for a 2n-bit data block (m ≤ n), there
are 2m groups and 2m bits are needed for the bookkeeping,
each indicating if the data in a group are inverted. When
m = n, the overhead space is the same as that for storing

434

real data. Therefore, in practice the maximum number of
groups has to be limited and the number of recoverable faults
(m) has to be reduced. Note that in practice this overhead
has to be budgeted according to the maximum number of
groups in each data block.

Third, faults should be spread out across the groups as
uniformly as possible. We intend to use smaller number of
groups to accommodate more faults. In the meantime, two
faults are not allowed to collide in the same group. There-
fore, groups have to be well utilized for holding faults. In
other words, a partition scheme should scatter bits originally
in the same group into different groups and prevent faults
from meeting in the same group in a re-partition. SAFER
does ensure that faults currently in the same group will be
separated into different groups in its re-partition. However,
it does not explicitly take effort to shuffle bits across the
groups and to increase the chance for bits, including faulty
bits, to move among all the groups.

1.3 Our Solution: an Efficient Partition Scheme
Tolerating More Faults

With the aforementioned desirable properties in mind, we
design a partition scheme that (1) has a larger set of can-
didate partition configurations for resolving fault collision
to tolerate more faults, (2) has smaller number of groups
in each configuration to reduce space overhead, and (3) in-
tensively shuffles the bits among the groups attempting to
uniformly distribute faults across different groups. Using
the proposed partition scheme in which a set of candidate
partition configurations are defined, we guarantee that any
two bits in the same group of a data block in a partition
configuration will not be in the same group in a different
partition configuration from the set. With this assurance,
the number of configurations causing collisions among a set
of faults is well bounded. As long as the candidate set is
sufficiently large, we can always find a configuration accom-
modating the faults without a collision. Compared with
exponentially increasing number of groups with the increase
of tolerable faults in SAFER, the proposed scheme increases
the group count at a polynomial rate. A much smaller group
count not only saves space for bookkeeping as explained,
but also makes feasible an implementation that considers
distinction between the stuck-at values and the data being
written. Such an implementation can further substantially
improve PCM’s fault tolerance (see Section 2.4).

We name the error recovery scheme based on the pro-
posed partition scheme as well as its implementation design
as Aegis. Our evaluation shows that Aegis can use substan-
tially reduced overhead space to tolerate much more faults.

2. THE DESIGN OF AEGIS
The foundation of Aegis is its partition scheme that can

efficiently distribute faults into different groups. In this sec-
tion we first describe the partition scheme as well as its theo-
retic basis. Next we describe the Aegis error recovery scheme
based on its partition scheme as well as its implementation.
Depending on the hardware affordability, the scheme may
know whether a stuck-at value at a fail cell equals to the
data being written into the cell. Assuming this knowledge
is available, we enhance Aegis by possibly allowing multiple
faults in one group to further improve its fault tolerance ca-
pability. In the last part of this section, we describe design
of Aegis’s variants with the enhancement.

2.1 The Partition Scheme for Aegis
A partition scheme defines a set of partition configura-

tions, each specifying how bits in a data block are distributed
into different groups so that not any two faults are in the
same group. When a new fault is detected in a group already
containing a fault in the current partition configuration, a
re-partition, or selecting another partition configuration in
the set, is required to resolve the fault collision. That is, the
minimal requirement on any partition scheme is to ensure
separation of two faults in a group into two different groups
by switching to another partition configuration. However,
Aegis’s partition scheme is more powerful. It separates not
only two faulty bits but also any two bits in a group into
two different groups after switching to a different partition
configuration. This helps to evenly spread faults in a block
across different groups and promotes wear leveling with each
block.

Aegis’s partition scheme is inspired by the observation
that on a Cartesian plane any two different points on a line
uniquely determine slope of the line. If we change the slope
of the line, we can only keep at most one point on the orig-
inal line to stay on a new line of a different slope. If we
consider all points on a line as a group, a partition configu-
ration is to use lines of a common slope to cover points on
the plane so that each of them is on a unique line, or in a
unique group. While a partition configuration corresponds
to a particular slope, changing a configuration is simply to
use lines of a different slope to make any two points that
were original in the same group not be in the same group in
the new configuration.

(0,7)(0,7)

(0,0)
X

Y

(a) k = 0

(0,0) X

Y

(b) k = 1

A = 5 A = 5

B
=

 7

B
=

 7

(4,0) (4,0)

Figure 2: Illustrating how bits in a 32-bit data block
are partitioned into 7 groups, each of 5 bits. For
(a) the partition configuration adopts slope k = 0,
and (b) represents a different configuration using
slope k = 1. In total there are 7 configurations in
the partition scheme defined by the A×B rectangle
(5 × 7). The bits, each represented by a symbol,
are mapped into a Cartesian plane. As the (5 × 7)
rectangle contains three more positions than the 32
bits in the block, the three dotted symbols on the
top right are unmapped. Different symbols are used
to distinguish bits in different groups.

We arrange bits of an n-bit data block in a rectangle on
the Cartesian plane. Coordinates of four corners of the rect-
angle are (0, 0), (A, 0), (0, B), and (A,B), as illustrated in

435

Figure 2. A and B are positive integers and A ≤ B. Fur-
thermore, B must be a prime number. A bit at offset x in
the block is mapped to (a, b) in the Cartesian plane, where
aA + b = x. For a given B, we choose an A so that the
rectangle is sized just large enough to accommodate n bits,
or A(B − 1) < n ≤ AB. While the rectangle can be larger
than N , there can be a small number of points unmapped.
As long as an A × B rectangle is determined, a partition
scheme is defined, including number of partition configura-
tions, number of groups in each configuration, and group
size. For this reason, we call the corresponding scheme an
A×B Aegis scheme.

Theorem 1. For a point (a, b) in the above rectangle
and a given integer k (0 ≤ k < B), there exists a unique y
(0 ≤ y < B) so that b = (ak + y)%B.

Proof. To satisfy b = (ak+y)%B, there must be ak+y =
mB + b or y = mB + b − ak, where m is an integer. Ap-
parently there is one and only one m that produces a y that
belongs to [0, B). Therefore, we have a unique y (0 ≤ y < B)
so that b = (ak+y)%B. �

According to the theorem, a point (a, b) in the rectangle
can be uniquely represented as (a, (ak+y)%B). When a = 0,
point (0, y), which is on the Y axis, is called the anchor point
for any points (a, (ak+y)%B) (0 ≤ a < A). All these points
are on a line whose slope is k (0 ≤ k < B).

Aegis’s partition scheme consists of B partition configu-
rations. In the kth configuration (0 ≤ k < B), there are B
groups. Its yth group consists of all points (a, (ak + y)%B)
(0 ≤ a < A, 0 ≤ y < B) with their anchor point at (0, y)
and corresponding slope of k. Figure 2 shows how a 32-bit
block is partitioned into 7 groups, each of 5 bits. Figure 2
(a) show the partitions using the first configuration (with
slope k = 0) and Figure 2 (b) shows the partition using the
second configuration (with slope k = 1). As shown in the
figures, each slope value corresponds a partition configura-
tion and each anchor point corresponds to a group in the
partition configuration. Two points ((a1, (a1k1 + y1)%B)
and (a2, (a2k2 + y2)%B)) are in the same group as long as
k1 = k2 and y1 = y2.

Theorem 2. Under an A × B Aegis partition scheme,
where 0 < A ≤ B and B is a prime number, any two points
that are in the same group in a partition configuration must
not be in the same group again in a different partition con-
figuration.

Proof. According to Theorem 1, any point must be in a
group and only in one group. Any two points that are in
the same group in a particular partition configuration can
be represented as (a1, (a1k+y)%B) and (a2, (a2k+y)%B)),
where 0 ≤ k < B, 0 ≤ y < B, and 0 ≤ a1 < a2 < A.
If a different partition configuration is used, or the slope
is changed to k′ (k 6= k′ and 0 ≤ k′ < B), the two points
should be represented as (a1, (a1k

′+y1)%B) and (a2, (a2k
′+

y2)%B)), where 0 ≤ y1 < B and 0 ≤ y2 < B. As two points
in the same group must have the same anchor point, we only
need to prove y1 6= y2 to show that the two points are not
in the same group in the new partition configuration.

Because (a1k + y)%B = (a1k
′ + y1)%B, we have y1 =

a1(k − k′) + y + m1B (m1 is an integer). Similarly, we
have y2 = a2(k − k′) + y + m2B (m2 is an integer). Now
we have y1 − y2 = (a1 − a2)(k − k′) + (m1 − m2)B. If
y1 = y2 could be held, we would have (a1 − a2)(k − k′) =
(m2 −m1)B, and therefore (a1 − a2)(k − k′) is a multiple
of B. Because |(a1 − a2)| ∈ (0, A), A ≤ B, and |(k − k′)| ∈

(0, B), neither (a1 − a2) nor (k − k′) can be a multiple of
B. Because B is a prime number, (a1 − a2)(k − k′) is not
a multiple of B, which contradicts. Therefore, y1 6= y2, and
with a different slope k′ the two points are not in the same
group. �

2.2 The Aegis Error Recovery Scheme
Aegis’s partition scheme can separate any two faults in the

same group into two different groups using a re-partition, or
switching to a different partition configuration. However, it
does not ensure that two faults that were originally in dif-
ferent groups are not placed into the same group after the
re-partition. This seems to be a serious challenge on the
application of the partition scheme as it is possible to take
multiple re-partition trials before settling on a configuration
without any fault collisions. Fortunately, the number of the
trials is theoretically capped at a very small value and the
cost of the re-partitions, if amortized over all writes, is neg-
ligible.

Assuming that a data block has f faults, which can gener-
ate Cf

2 , or f(f − 1)/2, different pairs of faults. When a pair
of faults are in the same group in one partition configuration,
they are not in the same group in any other configurations
defined in the partition scheme. In the search of a collision-
free partition configuration, after trial of each configuration
at least one pair of faults are rendered impossible to collide
with each other in the remaining configurations. That is, if
the scheme has more than Cf

2 configurations, or minimally

Cf
2 + 1 configurations, there exists at least one collision-free

configuration in which every pair of faults are not in the
same group. Therefore, at the time when a data block ac-
cumulates f faults at most Cf

2 + 1 re-partitions have been
performed. While tens of millions of writes have probably
been performed at the time, the cost associated with the
re-partitions amortized over the writes is negligible.

Aegis adopts the proposed partition scheme. In the mean-
time it uses the general partition-and-inversion framework
proposed in the SAFER scheme [16]. The framework needs
a verification read after each write, or reading data just writ-
ten for comparing it with the original one, to detect any er-
ror(s). Note that in the design of the basic Aegis scheme, we
do not assume it can afford the cost to remember where in-
dividual faults are and what their respective stuck-at values
are. The only recorded information about faults is whether
a group of bits had been inverted for masking error(s) in the
group. This verification read operation should not be re-
garded as an added overhead for the partition-and-inversion
approach, as it has been required for resistive memories [11].

For each data block, an A × B Aegis scheme maintains
a counter, named as slope counter, recording current slope
value k (k = 0, 1, ..., B − 1) and an (inversion) bit vector
whose bth bit indicating whether data in the bth group is
inverted (b = 0, 1, ..., B − 1). b is the identifier (ID) of the
group. Initially the slope counter is 0 and the vector is re-
set. For a write in Aegis, a subsequent verification read will
reveal faults whose stuck-at values are different from the
written data (if any). For each of the faults, Aegis uses a
pre-wired logic to derive ID of the group it belongs to (an
example logic is illustrated in Figure 3). If more than one
faults is found to have the same ID, there is a collision. Aegis
increments the slope counter by one to reach a new partition
configuration. Once again, Aegis examines the faults to see
if there are collisions. Theoretically this re-partition step

436

� × �	

Decoder

Slope

Counter

Group ID

0

1

2

3

4

5

6

7

…
…

� × �� Decoder10 2 3 4

……
30 31

Fault Address

10 2 3 4 5 6

10 2 3 4

Figure 3: An implementation logic to know which
group a fault at a given 5-bit address belongs to
in a 32-bit block with a given 3-bit slope counter
value. On the left of the circuit is a 49×32-bit ROM
recording information on which bits are in the same
group with a given slope value. On the right is a
49× 7-bit ROM in which groups of the same ID are
placed in the same column.

Inversion Vector

� × �	

decoder

Slope

Counter

0

1

2

3

4

5

6

7

…
…

……
10 2 3 4 30 31

10 2 3 4 5 6

Figure 4: An implementation logic to know which
bits of a 32-bit data block need to be written in
their inverted form for a given slope counter value
and a given 7-bit inversion vector. The array of
AND gates on the left of the circuit generate signals,
each corresponding to a combination of a slope and a
group. On the right is a 49× 32-bit ROM recording
the relationship between the combination and the
group’s member bits.

might be repeated for a number of times. However, as we
have explained the repetition is rare in practice and the cost

is negligible. With a collision-free configuration, Aegis knows
which group(s) have the detected fault(s). It sets the corre-
sponding bit(s) in the inversion vector and inverts the bits
that belong to the group(s). An example logic on how bits in
the selected groups are identified for inversion is illustrated
in Figure 4. Writing these inverted bits is also followed with
a verification read. If this read reveals new fault(s), these
fault(s) must collide with the faults detected before the in-
version write, and therefore demand re-partition(s).

2.3 Aegis’s Fault Tolerance Capability and
Space Overhead

A scheme’s Fault Tolerance Capability (FTC) can be mea-
sured with two metrics, each from a different perspective.
One is hard FTC, referring to number of faults a scheme
guarantees to tolerate regardless of distribution of the faults
in a data block and actual data being written. The other is
soft FTC, referring to number of faults that can be tolerated
when the faults located at certain addresses and a number
of writes of certain values happen in a particular order over
the time. As an example, for a 512-bit data block SAFER
using a 5-bit partition vector, its hard FTC is 6, and its soft
FTC can be any number between 6 and 32, depending on
fault and write occurrence patterns. In this section we only
analyze hard FTC as well as its associated space overhead,
and leave discussions on soft FTC in a practical setup in
Section 3.

For the A × B Aegis scheme, its hard FTC is the largest
integer fmax that satisfies Cfmax

2 + 1 ≤ B. To support this
hard FTC, for each n-bit data block Aegis needs a slope
counter of dlog2Be bits and an inversion vector of B bits.
Therefore the hardware cost associated with each data block
is dlog2Be + B bits. If the required hard FTC f satisfies

Cf
2 +1 < B, the hardware cost can be reduced to dlog2(Cf

2 +
1)e + B. Table 1 summarizes number of bits required to
minimally tolerate a given number of faults, or to support
hard FTC, for each 512-bit block in ECP, SAFER, and Aegis
(as well as two Aegis’s variants to be described in Section
2.4.) The required space for ECP and SAFER is calculated
with formulas provided in their respective papers [14, 16].

As shown in the table, SAFER’s cost rises at the fastest
rate with the increase of hard FTC because its group count is
increased exponentially to cover increasing number of faults.
ECP’s cost increases linearly, as it uses a fixed-size pointer
for each fault. However, by indicating errors with pointers,
it may cap the soft FTC as low as its hard FTC, greatly
limiting a scheme’s error correction potential in practice.
In contrast, at moderate and high FTCs Aegis provides a
much smaller cost than either of the existent schemes as
it consistently uses a small number of groups. As exam-
ple, to tolerate 8 faults SAFER has to use 128 groups while
Aegis only needs 31 groups. From another perspective, with
a similar number of groups Aegis can tolerate more faults.
For example, with 31 groups Aegis can tolerate 8 faults, or
accommodate these faults each in a different group. In con-
trast, using 32 groups SAFER can only tolerate 6 faults.
This is because Aegis is more powerful to distribute faults
into different groups, as revealed in Theorem 2. Aegis is
not designed for a PCM whose faults are capped at a very
small count, as it provides minimally 23 groups for a 512-bit
block. This is why its cost at small hard FTCs are higher.
The cost can be reduced by directly recording IDs of bit-
inverted groups.

437

Hard FTC 1 2 3 4 5 6 7 8 9 10
ECP 11 21 31 41 51 61 71 81 91 101

SAFER 1 7 14 22 35 55 91 159 292 552
N (for SAFER) 1 2 4 8 16 32 64 128 256 512

Aegis 23 24 25 26 27 27 28 34 43 53
A× B (for Aegis) 23 × 23 23 × 23 23 × 23 23 × 23 23 × 23 23 × 23 23 × 23 18 × 29 14 × 37 11 × 47

Aegis-rw 23 24 25 26 26 27 27 28 28 34
Aegis-rw-p 1 8 9 15 15 21 21 27 27 32

A× B (for Aegis-rw/Aegis-rw-p) 23 × 23 23 × 23 23 × 23 23 × 23 23 × 23 23 × 23 23 × 23 23 × 23 23 × 23 18 × 29

Table 1: The hardware cost, in terms of bit count, associated with each 512-bit block when different error
recovery schemes (ECP, SAFER, and Aegis) are used to tolerate a given minimal number of faults (Hard FTC).
The row about N lists specific SAFER schemes using different number of partition groups (N). The rows
about A×B list specific Aegis schemes that are used to achieve respective hard FTCs. Aegis-rw and Aegis-rw-p
are two Aegis’s variants. Aegis-rw-p for hard FTC of 1 is a special case where only one inversion bit is needed.

2.4 Enhancing Aegis with Known Faults
Comparing the stuck-at value and actual value being writ-

ten, we can classify a stuck-at fault either as a stuck-at-
Wrong fault (W fault in short), if the two values are differ-
ent, or as a stuck-at-Right fault (R fault in short), if the two
values are the same. A verification read following a write
reveals W faults, and a verification read after an inverted
write reveals R faults. If we are aware of the distinction
among faults (R or W faults), a group can accommodate
more than one fault as long as they are of the same type.
For example, if there are two W faults and zero R fault in a
group, we can recover the errors by inverting the bits in the
group without re-partition. Therefore, a partition scheme
only needs to make sure W faults are not mixed with R
faults in the same group. By relaxing the requirement for
tolerating faults, it is possible to enhance Aegis’s fault toler-
ance capability. However, the feasibility of the enhancement
depends on whether it is affordable to obtain the knowledge
about R and W faults.

One option to obtain the knowledge is to use double writes,
one with the actual data and the other with the inverted
data, of an entire data block to know all R and W faults.
Accordingly, an enhanced Aegis can take advantage of this
additional knowledge for more efficient partition and deter-
mining groups for inverted writing. However, this option is
too expensive to be adopted. In this option all bits in a
block have to be written twice. Actually in practice to re-
duce wear on the PCM, before a write a read is performed
to determine which bits are different between the data be-
ing written and the one currently being stored, and only
the different bits are actually written [18]. Even worse for
the option, unlike indiscriminate-fault distribution, which is
persistent until a new fault occurs, R/W fault distribution
could change upon service of any write request as the in-
volved data may change. Accordingly, the aforementioned
double writes have to be performed during servicing every
write request, making its latency too high and its induced
wear too much.

A more practical option is to adopt the fail cache pro-
posed as an addition to the SAFER scheme for reducing ad-
ditional latency and wear due to inverted writes in groups
with faults [16]. The fail cache is a directly-mapped cache
in an SRAM recording locations of recently detected faults

(their data block addresses and in-block offsets) and their
stuck-at values. Before each write into a block, every bit
in the block has to be checked in the cache to see if it is a
fault. If all faults in a block (if any) are found in the cache,
SAFER can avoid the additional write into the group(s) with
fault(s). Depending on the write locality as well as afford-
ability of the cache in terms of its hardware cost and relative
times of reading from the cache and writing into the PCM,
the fail cache is possible in future’s PCM chips.

Assuming availability of the knowledge on R/W faults in a
block before a write, Aegis can find a partition configuration
without trials of slopes. To this end, for the A × B Aegis
scheme we build an n×n×dlog2Be ROM for a PCM with n-
bit blocks. According to Theorem 2, any two bits collide, or
stay in the same group, in only one partition configuration,
or on only one slope. The ROM records the unique slope
on which any two bits collide. To know on which slope two
given bits collide, we can use one bit’s address as the column
address and the other bit’s address as row address to read
the slope from the ROM. Suppose there are fW and fR W
faults and R faults, respectively, in a block. Aegis picks each
of fW W faults and each of the fR R faults to access the
ROM and knows the set of slopes on which at least a W
fault collides with a R fault. Any slope that is not in this
set can be used as a collision-free partition configuration.
As long as the Aegis scheme provides fW × fR + 1 slopes,
it is guaranteed that such a configuration exists. In a block
with f (f = fW + fR) faults, fW × fR + 1 is smaller than

Cf
2 + 1. So the enhanced Aegis, denoted as Aegis-rw, can

provide a higher hard FTC with lower cost, especially when
a block has a large number of faults. For example, for hard
FTC of 10, Aegis needs 46 slopes while Aegis-rw needs only
26 slopes. Accordingly, with 34 bits Aegis provides a hard
FTC of 8 while Aegis-rw provides a hard FTC of 10, as
shown in Table 1. It is noted that if Aegis-rw and Aegis use
the same (A × B) as their formation, they are of the same
space cost.

If the expected number of faults are well smaller than the
number of groups, the inversion vector can be replaced with
directly recorded group pointers, or IDs of inverted groups,
much like what ECP does. In Aegis-rw only groups contain-
ing W faults are inverted and their IDs are recorded. How-
ever, a block containing f faults can have as much as f such

438

groups, and Aegis-rw has to use f pointers to achieve a hard
FTC of f . Fortunately we can enhance it to a scheme, named
as Aegis-rw-p, using only bf/2c group pointers because (1)
Aegis-rw knows all R faults and W faults; and (2) according
to the pigeonhole principle we have either fW ≤ bf/2c or
fR ≤ bf/2c. If fW ≤ bf/2c, groups with W faults are writ-
ten in their inverted form and pointers to these W groups are
recorded. If fR ≤ bf/2c, groups without R faults are writ-
ten in their inverted form and pointers to these R groups are
recorded. To read data stored in the block, PCM first inverts
the groups identified by the pointers, and then inverts the
entire block. In addition to the pointers a bit is needed to
distinguish the two cases. In both cases, Aegis-rw-p performs
only one write if the fail cache reveals all faults. Otherwise,
additional writes are needed. The minimal hardware cost for
Aegis-rw-p to tolerate a given number of hard FTC is listed
in Table 1. The (A × B) Aegis-rw-p scheme with p pointers
needs log2(min(bf/2c×df/2e+1, B))+bf/2c×dlog2Be+2
bits to protect each data block, which includes a bit indicat-
ing whether inversion of entire block is conducted and an-
other bit indicating whether all pointers have been used. As
shown in the table, using group pointers can further substan-
tially reduce space overhead. However, use of fixed number
of pointers can compromise reliability in terms of soft FTC.
It is noted that as Aegis-rw and Aegis-rw-p are derived from
Aegis, they are also specified by (A×B) used to define Aegis
scheme.

3. PERFORMANCE EVALUATION
In this section we evaluate efficacy and cost-effectiveness

of Aegis for tolerating PCM’s stuck-at faults. In the eval-
uation, we compare Aegis with thee other error recovery
schemes specifically designed for stuck-at faults, including
ECP, SAFER, and RDIS. Among them RDIS is an error re-
covery scheme using the partition-and-inversion approach [10].
It recursively selects bits arranged on a two dimensional ar-
ray into different sets to separate R faults from W faults, so
that bit inversion can be applied to correct the faults. While
the distinction of W and R faults is required in RDIS rather
than as an option in SAFER and Aegis, we always supply it
with a sufficiently large cache to provide information about
any faulty cells in the experiments. In addition, we use
RDIS-3, or the RDIS applying recursive partition for three
times, to represent RDIS, as does in the RDIS paper [10].
For ECP, we evaluate its use of different numbers of point-
ers. The scheme using N pointers is denoted as ECPN. For
SAFER, we include both the scheme without using cache,
denoted as SAFERN where N is the number of partition
groups, and the scheme using a sufficiently large cache to
provide fault information for any writes (or a cache without
misses), denoted as SAFERN-cache, in the evaluation. To
be conservative, we always use Aegis without a cache, de-
noted as Aegis, in its comparison with previously proposed
schemes, and only two Aegis variants, Aegis-rw and Aegis-
rw-p, assume the existence of such a cache.

3.1 Experimental Setup
We use Monte Carlo simulations for the experimentation,

whose setup is similar to the configuration commonly adopted
in the evaluation of previously proposed schemes [10, 13, 14,
16]. For each PCM cell, we assign it with a lifetime in terms
of number of writes before its failure. This lifetime follows
the normal distribution with a mean lifetime of 108 and a

25% coefficient of variance. There is no correlation between
neighboring cells on their fault occurrences.

There are two kinds of blocks in the simulation. One is
the data block on which an error recovery scheme applies
its protection, whose size is expected to be in the range
between 128 bits and 512 bits, equal to a physical row [16].
The other is the memory block, on which memory allocation
is carried out. A memory block consists of a number of data
blocks. When any of its data blocks has an unrecoverable
fault, the memory block is considered to be a failed one
and is excluded from allocation for storing and accessing
data, which concludes the lifetime of the memory block. A
memory block can be of the size of the last-level cache line
(e.g., 256 Bytes) or be an operating system page (e.g., 4K
Bytes). In the paper we only present results for 4KB pages,
and the results for the other memory block size (256B) show
a similar trend.

We assume a perfect wear leveling operation across the
memory blocks, so that writes are uniformly distributed over
the live memory blocks. This assumption is well taken as
techniques such as Randomized Region-based Start-Gap [12]
and the Security Refresh [15] have demonstrated an effect
close to this.

We assume there is a read operation immediately preced-
ing any write request to a data block, so that the data to be
written to a data block and the data currently stored in the
block can be compared. In this way, the bits of the same
values in the two data items can be excluded from the PCM
write operation to reduce cell wearing [8, 18]. We assume
that a cell has a 50% probability to be excluded in serving a
write request. In the simulation, we continuously issue page
writes to a 8MB PCM memory until all memory blocks are
dead to collect statistics for reporting.

3.2 Comparing Aegis with Existing Schemes

37
46

55

31

50

64

28

36

41
51

61
55

91

159

96

28

36

67

0

100

200

300

400

500

600

700

800

E
C

P
4

E
C

P
5

E
C

P
6

S
A

F
E

R
1

6

S
A

F
E

R
3

2

R
D

IS
-3

A
e

g
is

 1
2

x2
3

A
e

g
is

 9
x
3

1

E
C

P
4

E
C

P
5

E
C

P
6

S
A

F
E

R
3

2

S
A

F
E

R
6

4

S
A

F
E

R
1

2
8

R
D

IS
-3

A
e

g
is

 2
3

x2
3

A
e

g
is

 1
7

x3
1

A
e

g
is

 9
x
6

1

256 bits 512 bits

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

R
e

co
v

e
ra

b
le

 F
a

u
lt

s

Figure 5: Average number of recoverable faults in a
4KB page with either 256-bit data blocks or 512-bit
data blocks. Results for various ECP, RDIS, SAFER,
and Aegis schemes are shown. In addition, the num-
bers of bits required for protecting each data block
is shown above respective bars.

Figure 5 shows average number of faults that can be re-
covered in a 4KB-page before any of the page’s data blocks
has an unrecoverable fault, or soft FTC. The data block size

439

37
46

55

31

50

64
28

36

41
51

61 55

91

159
96

28
36

67

0%

200%

400%

600%

800%

1000%

1200%

E
C

P
4

E
C

P
5

E
C

P
6

S
A

F
E

R
1

6

S
A

F
E

R
3

2

R
D

IS
-3

A
e

g
is

 1
2

x
2

3

A
e

g
is

 9
x
3

1

E
C

P
4

E
C

P
5

E
C

P
6

S
A

F
E

R
3

2

S
A

F
E

R
6

4

S
A

F
E

R
1

2
8

R
D

IS
-3

A
e

g
is

 2
3

x
2

3

A
e

g
is

 1
7

x
3

1

A
e

g
is

 9
x
6

1

256 bits 512 bits

Li
fe

ti
m

e
 I

m
p

ro
v

m
e

n
t

Figure 6: Improvement of a 4KB-page’s lifetime in
percentage over that of a 4KB page without any er-
ror protection. A page comprises either 256-bit data
blocks or 512-bit data blocks. Results for various
ECP, RDIS, SAFER, and Aegis schemes are shown. In
addition, the numbers of bits required for protecting
each data block is shown above respective bars.

can be either 256 bits or 512 bits. Each scheme’s required
overhead bits are also shown. In the figure we observe that
with similar or even lower space overhead Aegis can tolerate
a much higher number of faults. For example, with 512-
bit blocks Aegis 9× 61 spends 67 bits to tolerate 711 faults
in a page, while SAFER64 spends 91 bits to tolerate only
293 faults. Even worse, SAFER128 spends much more bits
(159) but can only tolerate 465 faults. With 256 bits, Aegis
12 × 23 spends only 28 bits to achieve 474-fault tolerance,
while ECP6 needs 55 bits to reach 264-fault tolerance capa-
bility. RDIS-3 can be too expensive to use for small data
blocks. With 256-bit data blocks, RDIS-3’s space overhead
is 25% of data space. This overhead is reduced to 19% with
512-bit blocks. In the meantime, Aegis 9 × 61’s overhead
is only 13% but it provides a much stronger fault tolerance
(711 faults for the Aegis vs. 342 faults for RDIS-3).

Figure 6 shows improvement of lifetime of a 4KB-page,
or the number of page writes it can sustain before seeing
its first unrecoverable fault, under various error recovery
schemes over that of a 4KB-page without any fault pro-
tection. The trend of the improvement well matches that
of tolerable faults shown in Figure 5. However, the lifetime
gaps between different schemes shown in Figure 6 are smaller
than those about number of recoverable faults shown in Fig-
ure 5. For example, with 512-bit data blocks Aegis 9 × 61
can tolerate 95% more faults than Aegis 17 × 31 (711 vs.
364). However, it can only improve lifetime by 19% (10.7X
vs. 9.0X). The reason is that faults mostly occur when a
page approaches the end of its lifetime, or the density of
faults is high at the last segment of its lifetime. Therefore,
recovering a relatively large number additional faults may
be translated into a small reduction of lifetime. Even so,
Aegis still provides the most cost-effective fault protection.
If we use the 12.5% space overhead of the (72, 64) Hamming
coding, the most popular ECC scheme, as the upper bound
of any schemes’ space overhead, there are six schemes shown

0%

5%

10%

15%

20%

25%

30%

35%

40%

E
C

P
4

E
C

P
5

E
C

P
6

S
A

F
E

R
1

6

S
A

F
E

R
3

2

R
D

IS
-3

A
e

g
is

 1
2

x
2

3

A
e

g
is

 9
x
3

1

E
C

P
4

E
C

P
5

E
C

P
6

S
A

F
E

R
3

2

S
A

F
E

R
6

4

S
A

F
E

R
1

2
8

R
D

IS
-3

A
e

g
is

 2
3

x
2

3

A
e

g
is

 1
7

x
3

1

A
e

g
is

 9
x
6

1

256 bits 512 bits

L
if

e
t
im

e
 C

o
n

t
r
ib

u
t
io

n
 P

e
r

B

it

Figure 7: Each-overhead-bit’s contribution to the
improvement of a 4KB-page’s lifetime. The im-
provements are the ones shown in Figure 6.

in Figure 6 meeting this criteria, which are ECP4, ECP5,
ECP6, SAFER32, Aegis 23×23, and Aegis 17×31 with 512-
bit data blocks. Among the schemes, the two Aegis schemes
provide the highest lifetime improvements with the small-
est overhead. For example, with only 5.5% space overhead
Aegis 23 × 23 provides a 32% larger lifetime improvement
(8.3X vs 6.3X) than ECP4, the non-Aegis scheme with the
smallest overhead (8%).

In all the schemes, increased overhead space leads to more
recoverable faults and larger lifetime improvement. In the
meantime, each-overhead-bit’s contribution to a page’s life-
time improvement is decreasing, as shown in Figure 7. Among
the scheme, ECP has the smallest decrease as each of its
additional pointers guarantees one more recoverable fault.
Both SAFER and Aegis suffer substantial decrease, indicat-
ing that increasing a scheme’s fault tolerance capability can
compromise efficiency of its space used for fault protection,
as it is challenging to ensure that additional partition groups
can be well utilized to accommodate faults before a data
block fails. However, if we compare the per-bit contributions
between different schemes, Aegis has a clear advantage. In
both 256-bit data block and 512-bit data block scenarios,
the Aegis schemes with the lowest contribution (Aegis 9×31
and Aegis 9 × 61, respectively) provide higher contribution
values than any other schemes in their respective scenar-
ios. Considering that they also provide the (almost) highest
lifetime improvements, these Aegis schemes are strong error-
recovery scheme candidates for PCM chips demanding long
lifetime.

While Figure 5 reports average number of faults that makes
a 4KB-page fail, Figure 8 depicts how likely each of its 512-
bit data block fails after a particular number of faults occur
in the block. Apparently before these schemes’ hard FTCs
are reached, the block’s failure probability is 0%. After the
hard FTCs, ECP’s curves almost vertically rise as it cannot
tolerate any faults beyond hard FTC. Aegis generally per-
forms better than SAFER, even with a lower space cost. For
example, Aegis 9× 61 has a lower space cost (67 bits) than
SAFER64 ((91 bits) and SAFER128 (159 bits). However, it
has lower failure probabilities. Furthermore, it is even better
than SAFER64-cache, which uses a sufficiently large cache

440

0%

20%

40%

60%

80%

100%

0 10 20 30 40

P
ro

b
il

it
y

 o
f

F
a

il
u

re

Number of Faults in a 512-bit Block

ECP5

ECP6

SAFER32

SAFER64

SAFER128

SAFER32-cache

SAFER64-cache

SAFER128-cache

RDIS-3

Aegis 23x23

Aegis 17x31

Aegis 9x61

Figure 8: Failure probability of a 512-bit data block
with various numbers of faults under different fault
recovery schemes.

and substantially improves SAFER64. Without a cache,
Aegis 9 × 61 has to generate intensive inversion writes in
response to a large number groups containing faults when
there are more than 20 faults in the block. In contrast, with
the help of a cache SAFER128-cache and RDIS-3 perform
better when the fault count is beyond 22. Aegis can regain
its advantage when it is upgraded to its cache-available vari-
ants.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6

P
e

rc
e

n
ta

g
e

 o
f

S
u

rv
iv

a
l

P
a

g
e

s

Number of Page Writes (Billions)

No correction

ECP5

ECP6

SAFER32

SAFER64

SAFER128

SAFER32-cache

SAFER64-cache

SAFER128-cache

RDIS-3

Aegis 23x23

Aegis 17x31

Aegis 9x61

Figure 9: 4KB-page survival rate with continuous
page writes under various fault recovery schemes.
512-bit data block is adopted.

While Figure 6 shows average lifetime improvement of a
4KB-page, Figure 9 shows percentage of 4KB pages in the
tested 8MB memory that are still alive after certain number
of page writes. As shown, for all the schemes the curves
precipitate once failed pages start to substantially appear,
indicating that a PCM chip would soon become unusable
once page failures become not rare. This is attributed to

the prefect wear leveling assumed in the evaluation. The
trend about disparity among the schemes well matches that
shown in Figure 8 about block failure probability. We use
number of page writes causing half of pages in an 8MB chip
to fail as the metric, named as half lifetime. Among various
schemes, Aegis provides the best half lifetime. For example,
Aegis 17 × 31 and SAFER32 use similar number of partition
groups (31 vs. 32), Aegis 17 × 31 extends SAFER32’s half
lifetime by 0.7 billion page writes, or by 16%. Furthermore,
it even has a larger half lifetime than SAFER32-cache. As
shown, Aegis 9 × 61 has a half lifetime almost equal to
that of SAFER128-cache. More important, it achieves this
without using a cache and with only 42% of the overhead
bits used by SAFER128-cache for protecting each data block
(67 vs. 159).

3.3 Comparing Aegis with its Variants

4.5E+09

5E+09

5.5E+09

6E+09

6.5E+09

7E+09

3 4 5 6 7 8 9 10 11 12 13 14 15

L
if

e
ti

m
e

 o
f

a
 5

1
2

 -
b

it
 B

lo
c
k

Number of Pointers

23x23 18x29 17x31

14x37 13x41 12x43

11x47 10x53 9x59

9x61 8x67 8x71

Figure 10: Lifetime of a 512-bit data block protected
with various Aegis-rw-p A × B schemes that use dif-
ferent numbers of pointers (p).

In this section we evaluate two Aegis variants, Aegis-rw
and Aegis-rw-p, and compare their results with Aegis’s to
understand how these two variants may improve Aegis. Be-
cause we assume existence of a sufficiently large cache for
the two variants, the experiment results presented in this
section also help to reveal how much Aegis can benefit from
the use of a cache.

Depending on the number of pointers used in Aegis-rw-p,
or the p value, the scheme exhibits different cost-effectiveness.
Figure 10 shows the lifetime of a 512-bit data block in terms
of number of writes under the Aegis-rw-p scheme when we
use different p values and different A × B formations. As
shown in the figure, for each A × B curve the lifetime in-
creases quickly with the increase of p when p is relatively
small. Then it reaches a plateau and further increasing
p receives little return on the block’s lifetime. The point-
ers are used to record faults that can be recovered by the
corresponding Aegis-rw scheme. When there are a suffi-
ciently large number of pointers, the constraint on Aegis-
rw-p’s fault tolerance capability is shifted from pointer count
to the capability of Aegis-rw. It is noted that the plateau
represents the lifetime provided by corresponding Aegis-rw
scheme. The lifetime provided by an A×B Aegis-rw scheme

441

is determined by the prime number B. As shown, the life-
time increases by as much as 24% when B increases from 23
to 71.

As Aegis-rw-p’s fault tolerance capacity is bounded by
that of Aegis-rw, it has to at least have an advantage on
space overhead to be considered as a candidate scheme. To
this end, we choose some representative Aegis-rw-p schemes
that have relatively strong capability but smaller space over-
head than corresponding Aegis-rw schemes to compare with
Aegis in the following experiments. The schemes are Aegis-
rw-p 23 × 23 with 4 pointers, Aegis-rw-p 17 × 31 with 5
pointers, Aegis-rw-p 9× 61 with 9 pointers, and Aegis-rw-p
8× 71 with 9 pointers.

28

36

67

78

28

36

67

78

27

32

62 72

0

200

400

600

800

1000

1200

23 x 23 17 x 31 9 x 61 8 x 71

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

R
e

co
v

e
ra

b
le

F
a

u
lt

s

Scheme Configuration

Aegis

Aegis-rw

Aegis-rw-p

Figure 11: Average number of recoverable faults of
a 4KB page with 512-bit data blocks. Results are for
Aegis, Aegis-rw, and Aegis-rw-p with different A×B for-
mations. In addition, the numbers of bits required
for protecting each data block are shown above re-
spective bars.

Figure 11 shows number of recoverable faults in a 4KB
page for Aegis, Aegis-rw, and Aegis-rw-p. Taking advantage
of knowledge on the distinction of R and W faults, Aegis-
rw substantially increases number of recoverable faults than
Aegis (by 52%, 41%, 33%, and 28% for Aegises 23 × 23,
17×31, 9×61, and 8×71, respectively). This improvement
is expected as Aegis-rw explicitly allows multiple faults to
be in the same partition group as long as they are of the
same nature (R or W faults). In addition, Aegis-rw removes
extra inversion writes, which can slow down the cells’ wear-
ing. However, this improvement does not come for free. A
cache is required to remember all faults on a PCM chip if ev-
ery write request is expected to obtain the fault information
about the page to be written before actual write operation
is performed. When the chip is still in its early age, there
are only a few faults for the cache to record. However, when
the chip gets old and many cells approach their lifetimes,
the cache has to be sized sufficiently large to accommodate
a flush of faults. Aegis-rw-p provides a means to flexibly
adjust space overhead by varying the number of pointers.
However, as soon as its overhead is lowered below that of
Aegis-rw, Aegis-rw-p’s fault tolerance capacity is reduced to
a number close to or even smaller than that of Aegis (See Fig-
ure 11). In the meantime, as shown in Figure 12 Aegis-rw-p’s
lifetime improvement is consistently higher than that of cor-

28
36

67
78

28
36

67
78

27
32

62 72

0%

200%

400%

600%

800%

1000%

1200%

23 x 23 17 x 31 9 x 61 8 x 71

Li
fe

ti
m

e
 I

m
p

ro
v

m
e

n
t

Scheme Configuration

Aegis

Aegis-rw

Aegis-rw-p

Figure 12: Improvement of a 4KB-page’s lifetime in
percentage over that of a 4KB page without any
error protection. A page comprises 512-bit data
blocks. Results are for Aegis, Aegis-rw, and Aegis-rw-
p with different A × B formations. In addition, the
numbers of bits required for protecting each data
block are shown above respective bars.

responding Aegis, because it removes extra inversion writes
and reduces writes to the cells. This figure also shows that
Aegis-rw produces the largest lifetime improvement, though
at a smaller scale than that for recoverable faults.

0%

5%

10%

15%

20%

25%

30%

35%

40%

23 x 23 17 x 31 9 x 61 8 x 71

Li
fe

ti
m

e
 C

o
n

tr
ib

u
ti

o
n

 P
e

r
B

it

Scheme Configuration

Aegis

Aegis-rw

Aegis-rw-p

Figure 13: Each-overhead-bit’s contribution to the
improvement of a 4KB-page’s lifetime. The im-
provements are the ones shown in Figure 12.

Figure 13 shows each-overhead-bit’s contribution to the
improvement of the lifetime shown in Figure 12. According
to the results, the two Aegis’s variants can more efficiently
use the overhead space. In particular, the per-bit contri-
bution of Aegis-rw-p can be higher than that of Aegis-rw.
However, taking into account of the space used for the fail
cache, Aegis is likely more efficient on its use of overhead
space than the two variants.

In the experiments we do not evaluate the impact of cache
size on the two variants’ results, as the impact is subject
to the workload characteristics, lifetime variation, and eco-

442

nomic factors. We would like to leave the study of two vari-
ants’s merits in a more general context as a future work.
In summary, without relying on a possibly expensive cache
Aegis has been able to cost-effectively improve PCM’s relia-
bility. Aegis-rw is used when strong reliability takes priority
while Aegis-rw-p can be used for trading reliability for cost.

4. RELATED WORK
Aegis is designed to recover permanent stuck-at faults for

PCM using an optimized partition-and-inversion approach.
Below we discuss related works on error protection for mem-
ories, especially the PCM memory.

Transient and Permanent Faults. Unlike resistive
memories, typical errors in DRAM are transient and are
possibly induced by alpha particles. Usually the Error Cor-
recting Code (ECC) schemes, such as hamming code, are
used to correct the errors. However, it is expensive to use
ECC to correct multiple errors in a data block. This is not
a serious issue for DRAM as multiple transient errors simul-
taneously induced by alpha particles in a block as small as
64 bits is rare [9]. However, PCM is less likely to have tran-
sient errors. Instead, it has permanent stuck-at faults that
can be gradually accumulated over time within the lifetime
of a data block. Hence, the more faults a scheme can toler-
ate, the longer the block’s lifetime is. Aegis allows substan-
tially more faults to be corrected and the effort can directly
benefit lifetime and usability of the PCM memory. Perma-
nent faults can be recovered at different levels, including at
a higher level for leveraging support from operating system
(OS) and at a low level built within a chip to protect indi-
vidual data blocks.

OS-assisted Recovery of Stuck-at Faults and On-
chip Recovery. The most intuitive way for OS to tolerate
faults is to exclude any memory blocks (or pages) containing
unrecoverable faults from memory allocation. To be effec-
tive, this strategy assumes an on-chip fault tolerance scheme
that has provided strong protection of data blocks within
a page. Otherwise, the pool of allocatable pages can be
quickly depleted. There have been a number of optimized
schemes proposed to address the concern. The Dynamic
Pairing scheme attempts to reuse faulty pages by pairing two
pages that do not have faults at the same offsets [7]. A pair
of faulty pages are accessed in place of one fault-free page. In
addition to the use of page pairing technique, the RePRAM
scheme introduces parity code across a group of faulty pages
to add another layer of protection [6]. While these schemes
can slow down the rate of page loss, they are not compat-
ible with wear-leveling techniques that are critical in the
use of PCM. FREE-p is another scheme relying on OS to
re-direct access of a faulty block of cacheline size to a non-
faulty block via a pointer embedded in the faulty block [17].
This re-direction is initiated after the in-block protection
becomes incapable of correcting faults. With Aegis’s strong
fault tolerance capability, the re-direction as well as loss of
faulty pages can be substantially delayed. In contrast with
the OS-assisted scheme, on-chip recovery schemes provide
the first line of defense against PCM faults.

Pointer-based and Partition-and-Inversion-based
Recovery Approaches. As we have mentioned in Sec-
tion 1, there are two approaches to tolerate stuck-at faults.
ECP [14] belongs to the pointer-based approach that explic-
itly records fault addresses and uses replacement bits to ac-
commodate data written to the addresses. The concern with

this approach is that the number of tolerable faults is limited
by the number of pointers. As the space overhead is pro-
portional to the number of pointers, this number has to be
relatively small. By applying the pigeonhole principle, the
Aegis-rw-p scheme can more than double the number of cor-
rectable faults using the same number of pointers and make
the use of pointers a more viable approach. SAFER [16] and
RDIS [10] belong to the second approach using bit partition
and group inversion. The efficacy of the approach depends
largely on how a data block is partitioned into groups, or the
partition scheme. On this aspect Aegis has its advantage
over SAFER by turning the exponential increase of group
count into a polynomial increase and spreading faults more
evenly across different groups. Aegis has its advantage over
RDIS by being able to guarantee recovery of a much higher
number of faults (only 3 for the RDIS scheme suggested in
its paper [10]), smaller space overhead, and optional use of
the possibly expensive fail cache.

As there is a high variability in lifetime across memory
cells, it is not cost effective to spend equal amount of space
on every data block without considering actual number of
faults in individual blocks. To this end, Qureshi et al. pro-
posed a Pay-As-You-Go (PAYG) framework that associates
smaller amount of space with each data block for local er-
ror correction (LEC) to correct up to one fault per block
and allocates space from a global error correction (GEC)
pool for any blocks whose faults cannot be corrected by the
LEC [13]. As PAYG is a framework that can employ any
error correction scheme in its GEC component, Aegis com-
plements PAYG with its strong fault tolerance capability
and its space efficiency.

5. CONCLUSION
We propose the design and implementation of Aegis, an

efficient fault recovery scheme, in response to the urgent
need for protecting resistive memories, such as PCM, from
stuck-at faults. Different from transient errors, the perma-
nent faults in PCM can be accumulated. A recovery scheme
that can efficiently tolerate a large number of faults in a
data block is demanded for wide adoption of the technique.
Aegis intelligently partitions a block into a relatively small
number of groups and effectively distributes faults into dif-
ferent groups, so that the faults can be tolerated by using
bit inversion in selected groups. Compared with represen-
tative fault tolerance schemes such as ECP and SAFER,
Aegis requires smaller overhead space to store information
on how to correct errors and achieves higher fault tolerance
and longer memory lifetime. As an anecdotal evidence, our
experiments show that Aegis 17 × 31 uses only 7% of the
memory as overhead space to tolerate 24% more faults than
SAFER64, which has to use 18% of the memory as over-
head space. This overhead is even larger than that of Aegis
9 × 61 (13%). However, Aegis 9 × 61 tolerates 142% more
faults and extends its a memory page’s lifetime by 21% if
compared with SAFER64.

In addition, Aegis can be flexibly configured to meet re-
quirement on PCM reliability. If a cache is available, Aegis
can take advantage of it for higher fault tolerance capacity.
It can also choose a larger prime number as B in Aegis A ×
B to accommodate more faults. While cost-effectiveness of
the cache depends on workload characteristics, we leave it
as a future work to study optimality of Aegis’s variations in
various specific application scenarios.

443

6. ACKNOWLEDGMENTS
This work is supported by the National Natural Science

Foundation of China (Grant No. 60925006), the State Key
Program of National Natural Science of China (Grant No.
61232003), the National High Technology Research and De-
velopment Program of China (Grant No. 2013AA013201),
and Shanghai Key Laboratory of Scalable Computing and
Systems, and the research fund of Tsinghua-Tencent Joint
Laboratory for Internet Innovation Technology, and Tsinghua
University Initiative Scientific Research Program.

7. REFERENCES

[1] Emerging research devices. In International
Technology Roadmap for Semiconductors, 2011.

[2] K. Kim. “Technology for sub-50nm DRAM and NAND
flash manufacturing”, In International Electron
Devices Meeting, 2005.

[3] Micron Announces Availability of Phase Change
Memory for Mobile Devices. In
http://investors.micron.com/releasedetail.cfm
?ReleaseID=692563, July, 2012.

[4] Samsung Ships Industry’s First Multi-chip Package
with a PRAM Chip for Handsets. In http://www.
samsung.com/us/aboutsamsung/news/newsIrRead.do?
news ctgry=irnewsrelease&news seq=18828 April,
2010.

[5] J. Condit, E. Nightingale, C. Frost, E. Ipek, D.
Burger, B. Lee, and D. Coetzee. “Better I/O Through
Byte-Addressable, Persistent Memory”, In Symposium
on Operating Systems Principles, October 2009.

[6] J. Chen, G. Venkataramani, and H. H. Huang.
“RePRAM: Re-cycling PRAM Faulty Blocks for
Extended Lifetime”, In IEEE International Conference
on Dependable Systems and Networks, 2012.

[7] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and
T. Moscibroda. “Dynamically Replicated Memory:
Building Reliable Systems from Nanoscale Resistive
Memories”, In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2010.

[8] B. Lee, E. Ipek, O. Mutlu, and D. Burger.
“Architecting Phase-Change Memory as a Scalable
DRAM Alternative”, In Proceedings of the
International Symposium on Computer Architecture,
June 2009.

[9] F. Matsuoka and F. Masuoka. “Numerical Analysis of
Alpha-particle-induced Soft Errors in Floating
Channel Type Surrounding Gate Transistor (FC-SGT)
DRAM Cell”, In IEEE Transactions on Electron
Devices, 2003.

[10] R. Melhem, R, R. Maddah, and S. Cho. “RDIS: A
Recursively Defined Invertible Set Scheme to Tolerate
Multiple Stuck-At Faults in Resistive Memory”, In
Proceedings of the 42nd Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks, June 2012.

[11] T. Nirschl, J. B. Phipp, T. D. Happ, G.W. Burr, B.
Rajendran, M. H. Lee, A. Schrott, M. Yang, M.
Breitwisch, C. F. Chen, et al. “Write Strategies for 2
and 4-bit Multi-level Phase-change memory. In IEEE
International Electron Devices Meeting, 2007.

[12] M. K. Qureshi, J. Karidis, M. Fraceschini, V.
Srinivasan, L. Lastras, and B. Abali. “Enhancing
Lifetime and Security of Phase Change Memories via
Start-Gap Wear Leveling”, In Proceedings of the
International Symposium on Microarchitecture, 2009.

[13] M. K. Qureshi. “Pay-As-You-Go: Low-Overhead
Hard-Error Correction for Phase Change Memories”,
In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture,
December, 2011.

[14] S. Schechter, G. Loh, K. Strauss, and D. Burger. “Use
ECP, not ECC, for Hard Failures in Resistive
Memories”, In Proceedings of the International
Symposium on Computer Architecture, June 2010.

[15] N. H. Seong, D. H. Woo, and H.-H. S. Lee. “Security
Refresh: Prevent Malicious Wear-out and Increase
Durability for Phase-Change Memory with
Dynamically Randomized Address Mapping”, In
Proceedings of the 37th annual International
Symposium on Computer Architecture, pages, 2010.

[16] N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers,
and H. S. Lee. “SAFER: Stuck-At-Fault Error
Recovery for Memories”, In Proceedings of the 43th
Annual IEEE/ACM International Symposium on
Microarchitecture, 2010.

[17] D. H. Yoon, N. Muralimanohar, J. Chang, P.
Ranganathan, N. Jouppi, and M. Erez. “FREE-p:
Protecting Non-volatile Memory against both Hard
and Soft Errors”, In Proceedings of IEEE 17th
International Symposium on High Performance
Computer Architecture, 2011.

[18] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. “A Durable
and Energy Efficient Main Memory Using Phase
Change Memory Technology”, In Proceedings of the
International Symposium on Computer Architecture,
2009.

444

