
LerGAN: A Zero-free, Low Data Movement and
PIM-based GAN Architecture*

1st Haiyu Mao
Department of Computer Science

and Technology, Tsinghua University
Beijing, China

mhy15@mails.tsinghua.edu.cn

2nd Mingcong Song
Department of Electrical and Computer

Engineering, University of Florida
Gainesville, FL, USA

songmingcong@ufl.edu

3rd Tao Li
Department of Electrical and Computer

Engineering, University of Florida
Gainesville, FL, USA

taoli@ece.ufl.edu

4th Yuting Dai
College of Computer Science and Technology

Guizhou University
Guizhou, China

yutingdai90@gmail.com

5th Jiwu Shu∗∗
Department of Computer Science and Technology

Tsinghua University
Beijing, China

shujw@tsinghua.edu.cn

Abstract—As a powerful unsupervised learning method, Gen-
erative Adversarial Network (GAN) plays an important role in
many domains such as video prediction and autonomous driving.
It is one of the ten breakthrough technologies in 2018 reported in
MIT Technology Review. However, training a GAN imposes three
more challenges: (1) intensive communication caused by complex
train phases of GAN, (2) much more ineffectual computations
caused by special convolutions, and (3) more frequent off-chip
memory accesses for exchanging inter-mediate data between the
generator and the discriminator.

In this paper, we propose LerGAN1, a PIM-based GAN
accelerator to address the challenges of training GAN. We first
propose a zero-free data reshaping scheme for ReRAM-based
PIM, which removes the zero-related computations. We then
propose a 3D-connected PIM, which can reconfigure connections
inside PIM dynamically according to dataflows of propagation
and updating. Our proposed techniques reduce data movement
to a great extent, avoiding I/O to become a bottleneck of
training GANs. Finally, we propose LerGAN based on these two
techniques, providing different levels of accelerating GAN for
programmers. Experiments shows that LerGAN achieves 47.2×,
21.42× and 7.46× speedup over FPGA-based GAN accelerator,
GPU platform, and ReRAM-based neural network accelerator
respectively. Moreover, LerGAN achieves 9.75×, 7.68× energy
saving on average over GPU platform, ReRAM-based neural net-
work accelerator respectively, and has 1.04× energy consuming
over FPGA-based GAN accelerator.

I. INTRODUCTION

Tremendous success has been fueled by supervised deep

learning in image classification, speech recognition, and so

on [31] [58] [33] [60] [50] [22] [25]. However, non-trivial

amount of training datasets with millions of lables prevents

high-accuracy supervised deep learning from being employed

in many domains where massive labels are either unavailable

or costly to collect through human effort.

*This work is supported by the National Major Project of Scientific
Instrument of National Natural Science Foundation of China (Grant
No.61327902), National Key Research & Development Projects of China
(Grant No.2018YFB1003301), and in part by NSF grants 1822989, 1822459,
1527535, 1423090, and 1320100.
∗∗Jiwu Shu is the corresponding author of this paper.

1 ”Ler” comes from removing ”o” from ”zero” which represents removing 0,
and changing ”z” to ”l” to represent shortening wire connection.

By automatically generating richer synthetic datasets with-

out labeling data sets, semi-supervised learning [9] [27] and

unsupervised learning [24] [20] [17] are promising to extend

the intelligence of deep learning. On the frontier, GAN is

the most popular unsupervised learning method, effectively

working in many domains, such as video prediction [20],

autonomous driving [21] and photo resolution upgrading [34].

Though GAN is powerful to generate items without labeling

training sets by human, its network structure is more complex

than traditional NN’s to efficiently execute on hardware. The

generator model and discriminator model of GAN collabora-

tively work in a minimax manner, to achieve stronger GAN

with higher accuracy. To uphold the interaction between the

two models, massive amount of intermediate data is required

to be communicated between the two models frequently. Since

there are quite limited on-chip memory space to store interme-

diate data, GAN training will introduce additional pressure on

off-chip memory accesses, which consume nearly two orders

of magnitude more energy than a floating point operation [19].

Thus, these huge data movements become a bottleneck of the

system design for GAN.

To solve the memory wall problem in GAN training,

researchers proposed ReRAM-based Processing In Mem-

ory (PIM) [39] [15] [56] [7] [59], which exhibits energy

efficiency in reducing memory access cost compared with

CPUs and GPUs. Besides, it can complete a Matrix-Multiply-

Vector (MMV) operation in almost only one read cycle with

low energy consumption. Since MMV operations dominate the

computation patterns in GAN training, ReRAM-based PIM

technologies have the potential to reduce memory access cost

and accelerate GAN training efficiently.

However, GAN has two main features which are different

from traditional neural networks: (1) zero-insertion during

training phase; (2) complex dataflow patterns between the

two models. These two features degrade the efficiency of

PIM-based accelerator for GAN. First, zero-insertion adds a

heavy burden on storage. Also, I/O traffic becomes the system

bottleneck because, (1) the interaction between generator and

discriminator requires more communication via I/Os in PIM.

669

2018 51st Annual IEEE/ACM International Symposium on Microarchitecture

978-1-5386-6240-3/18/$31.00 ©2018 IEEE
DOI 10.1109/MICRO.2018.00060

Authorized licensed use limited to: Tsinghua University. Downloaded on March 07,2021 at 13:14:12 UTC from IEEE Xplore. Restrictions apply.

(2) complex dataflow of GAN exists irregular data dependen-

cies. Therefore, limited I/O bandwidth stalls GAN training.

To address these challenges in PIM-based GAN architec-

ture, we first propose a novel, software-managed Zero Free

Data Reshaping (ZFDR) scheme to remove all the zero-related

operations produced by GAN. Then, a reconfigurable 3D

connection architecture is proposed, which not only efficiently

fits complex dataflows of GAN, but also supports efficient

ReRAM reads and writes and hides the I/O overhead to a great

extent. Putting ZFDR and reconfigurable 3D interconnection

architecture together, we propose LerGAN, a ReRAM-based

3D connection GAN accelerator, which carefully maps the

data processed by ZFDR to the 3D-connected PIM. By doing

so, it not only achieves higher I/O performance, but also

enables flexibly I/O connection configuration for the complex

dataflows in GAN training. Experiments shows that LerGAN

achieves 47.2×, 21.42× and 7.46× speedup over FPGA-based

GAN accelerator, GPU platform and ReRAM-based neural

network accelerator respectively. Moreover, LerGAN achieves

9.75×, 7.68× energy saving on average over GPU platform,

ReRAM-based NN accelerator respectively, and has 1.04×
energy overhead over FPGA-based GAN accelerator.

The main contributions of this paper are as follows:

(1) We elaborate three steps of zero-inserting that enable

transposed convolution operations in GAN and further analyze

the amount of zeros in GAN training. To address problems

caused by massive zeros in ReRAM-based PIM, we propose

Zero-Free Data Reshaping (ZFDR) to remove zero-related

operations. ZFDR is flexible to support different paddings,

strides and kernel sizes, capable of handling both existing

GANs and future GANs with larger stride (e.g. stride of 3).

(2) We present the dataflows of training GAN in detail and

propose a novel reconfigurable 3D-connected PIM to handle

the complicated dataflows. Our 3D connection supports effi-

cient data transferring of both propagation and updating. It is

worth mentioning that, to the best of our knowledge, we are

the first to study efficient connections in ReRAM-based PIM.

(3) We propose LerGAN based on ZFDR and 3D-connected

PIM. We make slight modifications on the software (via

providing interfaces for ZFDR) and memory controller (via

creating a finite-state machine for data mapping and configu-

ration of switches) to enable LerGAN to combine ZFDR and

3D-connected PIM well. Also, we enable programmers to use

heterogeneous levels of acceleration according to demands.

The rest of this paper is organized as follows. We first intro-

duce ReRAM-based PIM and GAN in Section II. Then we an-

alyze the challenges of using PIM to accelerate GAN training

in Section III. We present our ZFDR and 3D-connected PIM

in Section IV. The design of LerGAN which employs ZFDR

and 3D-connected PIM is in Section V. Section VI evaluates

the proposed algorithms, 3D-connected PIM and LerGAN

system. Finally, we present related works and conclusions in

Section VII and Section VIII respectively.

(b) Data mapped in Crossbar

i1

i2

i3

i4

w11 w12 w13 w14

w24

w34

w44

w23

w33

w43

w22

w32

w42

w21

w31

w41

o1 o2 o3 o4

ReRAM cell

i1 i2 i3 i4 o1 o2 o3 o4

w11 w12 w13 w14

w24

w34

w44

w23

w33

w43

w22

w32

w42

w21

w31

w41

() ()=

(a) MMV

DAC

S&H ADC

Fig. 1. Mapping MMV to ReRAM Crossbar.

Fig. 2. DCGAN Outline

II. BACKGROUND

This section first introduces ReRAM-based PIM and how

it can be utilized to implement NNs efficiently, then presents

GAN and its features.

A. ReRAM-based PIM

ReRAM stands out from other non-volatile memories

(NVMs) since it has high density, low write latency (less

than 10% performance degradation, compared to an ideal

DRAM) [65], and low write energy (up to 72% lower than

DRAM) [46]. Moreover, it has high endurance (> 1010 [35]

[36], up to 1012 [36] [26], much higher than that of PCM ,

which is 107 ∼ 108 [53]). If a network needs to be trained for

105 times [42], ReRAM-based PIM can train 105 ∼ 107 such

networks. Due to these benefits of ReRAM, recent studies [15]

[56] [59] [14] modify it as the hardware of PIM to accelerate

the inference and training of NNs.

ReRAM-based PIM consists of ReRAM arrays and periph-

eral circuits. Note that, ReRAM arrays can be configured to

either support MMVs (called CArrays in this paper), or be

used as traditional storage (called SArrays in this paper). When

ReRAM arrays are configured as CArrays, they store weights

of NNs and conduct MMVs by feeding corresponding inputs

(briefly shown in Fig.1). ReRAM-based PIM also has buffer

which is composed of ReRAM cells and connected to CArrays

directly. Such buffer is called BArray and enables CArray to

access it randomly, hiding the memory access time when per-

forming computation [15]. Equipped with CArrays, BArrays

and peripheral circuits to support various basic computations,

ReRAM-based PIM can be used to accelerate NNs efficiently.

B. Generative Adversarial Network

The Generative Adversarial Network (GAN) consists of two

components: a discriminator and a generator. The discrim-

inator learns to decide whether a sample is from the real

data set or the generator. The generator aims to generate a

sample close to the real data to confuse the discriminator.

Therefore, in GAN, the two components play a minimax game

670

Authorized licensed use limited to: Tsinghua University. Downloaded on March 07,2021 at 13:14:12 UTC from IEEE Xplore. Restrictions apply.

G D G D

Errors

Gw Dw Gw Dw

G D G D

Forward
Backward

Error
transferring

 Weight
calculation

Train Discriminator Train Generator

m Fakesm Noises
m Reals m Fakesm Noises

Fig. 3. Dataflows of Training Discriminator and Generator of DCGAN

to compete with each other iteratively. A minibatch stochastic

gradient descent method can be used to train this model, where

in each training iteration, a minibatch of m noise samples

{n1, n2, ..., nm} and m true examples {x1, x2, ..., xm} are

sampled from a prior noise distribution pe(n) and real data

distribution pd(x), respectively. We use G(n; θg) to denote

the generative model that generates samples from noises with

parameters θg and D(x) to denote the discriminative model

that represents the probability that x comes from the real

data distribution pd(x). In order to optimize the discriminator,

it needs to be updated by ascending its stochastic gradient

using Equation 1, which means that the discriminator can

assign correct labels to both training examples from D and

samples from G. In order to maximize the generator, GAN

uses Equation 2 to update it by descending its gradient, which

tries to confuse the discriminator to predict the samples as

data from the real data distribution. In conclusion, GAN will

converge eventually so that the generator can generate an

example which is similar to a real one.

∇θd

1

m

m∑
i=1

[logD(xi) + log(1−D(G(ni)))] (1)

∇θg

1

m

m∑
i=1

log(1−D(G(ni))) (2)

We take the most popular Deep Convolutional Generative

Adversarial Network (DCGAN) [54] as an example to further

introduce GAN. The framework of DCGAN is shown in Fig.2.

There are some differences between traditional Convolutional

Neural Network (CNN) and DCGAN in training phase. In

forward propagation phase of discriminator, DCGAN employs

strided convolution (S-CONV) instead of pooling. As shown in

Fig.2, the generator has an inverse structure of discriminator,

and it employs transposed convolution (T-CONV) in forward

propagation phase.

Symbol Description
W l Kernel weights for l-th layer

∇W l Derivative of kernel weights for l-th layer

zl Value of (W l)T x+ b

∇zl Derivative of z for l-th layer
g Active function

al Value of g(zl)

TABLE I
NOTATIONS USED FOR EXPLANATION OF TRAINING DCGAN.

Fig.3 shows dataflows of training DCGAN and Table I

shows notations for explanation of training DCGAN. Overall,

training DCGAN involves two major parts: one is forward

propagation and the other is backward propagation. The back-

ward propagation has two main sub-tasks: error transferring

and ∇weight calculation. When training the discriminator, the

(c) Pad zeros

(a) Insert zeros
between each input (b) Add zeros outside

Original input

Input Zero

…10
24

…10
24 …10
24

…10
24

Fig. 4. Steps of Adding Zeros in Inputs of CONV1.

generator produces m fake samples using m noises (m is the

batch size and a noise (input) is denoted as a vector with

100 elements shown in Layer1 of Fig.2). This step is denoted

by
−→
G , where DCGAN conducts T-CONV. Then, one batch

of real samples and one batch of fake samples are fed into

the discriminator. This step is denoted by
−→
D , where DCGAN

conducts S-CONV. Next, DCGAN computes the error of

output layer ∇zL using the loss function Equation 1, where

L is the last layer of the discriminator. After that, DCGAN

feeds ∇zL back to the network and begins the backward

propagation, which consists of two stages
←−
D and

←−
Dw. Firstly,

∇zL is fed back layer by layer in
←−
D using Equation 3 (∗

denotes an element-wise multiplication). Therefore, in
←−
D , the

T-CONV takes ∇zl+1 and zl cached by
−→
D as inputs then

outputs ∇zl.

∇zl = (W l+1)T∇zl+1 ∗ g′
(zl) (3)

Conducting
←−
Dw needs ∇zl transfered by

←−
D and the interme-

diate al−1 cached by
−→
D . Equation 4 shows the computation in←−

Dw, denoted as W-CONV of discriminator since it is different

from both S-CONV and T-CONV.

∇W l = al−1∇zl (4)

After
←−
Dw, the discriminator is updated with ∇W l. When

training the generator, the generator generates m samples

and feeds them into the discriminator. After conducting
−→
D ,

according to the Equation 2, the error of the output layer in

discriminator is sent to
←−
D . With the intermediate zl cached by−→

D ,
←−
D can calculate errors and send them to error propagation

of generator (denoted as
←−
G). With ∇zl sent by

←−
G and the

intermediate al−1 cached by
−→
G ,

←−
Gw can calculate ∇W l of

generator. After that, the generator is updated with ∇W l.

III. CHALLENGES OF PIM-BASED GAN ACCELERATOR

Although GAN has two networks, each of which resembles

CNN, it manifests some differences from traditional CNN.

In this section, we discuss challenges for PIM-based NN

accelerator to execute GAN.

A. Redundant Zero-Related Operations

Since DCGAN employs S-CONV, its training introduces

considerable zero-insertion, increasing burden on both storage

and bandwidth. In order to explain how redundant zeros are

introduced and restrain the efficiency, we first introduce some

notations used in this paper in Table II and take CONV1

of the generator in Fig. 2 as an example of T-CONV. As

671

Authorized licensed use limited to: Tsinghua University. Downloaded on March 07,2021 at 13:14:12 UTC from IEEE Xplore. Restrictions apply.

…10
24 …10

24

…

…10
24

512

…51
2

Inputs after adding zeros Weights
Corresponding outputs

Fig. 5. Convolution on Inserted Zeros Inputs with Stride of 1.

shown in Fig. 2, Iw = Il = 4 and Ow = Ol = 8. The

converse convolution of CONV1 is the same as CONV8 in

Discriminator, so S
′
= 2, S = 1, P

′
w = P

′
l = 2, Pw = Pl = 2.

Also, CONV1 and CONV8 have the same size of kernel

weight. To conduct CONV1, we first insert one zero between

every two adjacent input numbers horizontally and vertically

(Fig.4(a)), then add one zero at the end of input (Fig.4(b))

and finally use zero padding of 2 (Fig. 4(c)). After that, we

convolute it with 512 kernels, whose Ww = Wl = 5 and

Wh is 1024. Eventually, we obtain an output whose size is

8 × 8 × 512. In this example, we store and transfer 147456

input values while only 16384 of them are useful. Moreover,

we conduct 1638400 multiplications while 295936 of them are

useful, whose efficiency is only 18.06%.

Symbol Description
Iw , Il, Ih Width, length, height of input
Ow , Ol, Oh Width, length, height of output
Ww , Wl, Wh Width, length, height of kernel weight
Nw Number of kernel weights
S Stride size of convolution

S
′

Stride size of converse convolution
Pw , Pl Padding on width, length

P
′
w , P

′
l Padding on width, length of converse convolution

Niz w Number of insert zeros on width
Niz l Number of insert zeros on length
Nzero Number of zeros

TABLE II
NOTATIONS USED FOR EXPLANATION OF CONVOLUTION OPERATIONS.

In general, Iw = Il, Ow = Ol, Pw = Pl and P
′
w = P

′
l .

So we denote them as I , O, P and P
′
, respectively, and their

relationship is described in Equation 5.

O + 2P
′ −W

S′ = (I − 1) · · ·R (R is the remainder) (5)

Generally, to conduct a convolution in the generator, we first

insert S
′ −1 zeros between every two input numbers, then we

add R zeros at the end and finally we use zero padding of P
(where P = W −P

′ − 1). Based on the operations above, we

can calculate Niz w and Nzero.

Niz w = Niz l = (S
′ − 1)× (I − 1) +R (6)

Nzero = (Niz w+Iw+Pw)× (Niz l+Il+Pl)−Iw×Il (7)

From Equation 6 and Equation 7 we can observe that with the

increase of S
′

and P , the issue of redundant zeros in T-CONV

becomes more severe.

Similar to T-CONV, W-CONV of a generator needs to insert

zeros into inputs. However, W-CONV of a discriminator needs

Input
Weight Output

S = 2

Add Zero

S =1

Weight

Output

Fig. 6. An Example of W-CONV of Discriminator.

to insert zeros to both inputs and kernels. We take a W-CONV

connecting Layer11 and Layer10 in Fig.2 as an example. For

simplicity, we take one input feature map to illustrate the

difference of zero-insertion between W-CONV and T-CONV

in the example.

As shown in Fig.6, in the forward propagation, given a 8×8
input, we first pad it with 2, then convolve it with a 5×5 kernel,

and finally obtain a 4×4 output. In the backward propagation,

we denote ∇Output as dz in Equation 3, whose shape is the

same as the output. We first insert zeros to ∇Output and regard

∇Output as a kernel weight. Then, we convolute the given 8×8
input with the kernel weight to obtain ∇Weight.

For W-CONV of the discriminator, the relationship between

input and output can be described as Equation 8.

I + 2P −W

S
= (O − 1) · · ·R (R is remainder) (8)

Furthermore, the relationship between Niz w and Niz l of the

kernel weight can be described as Equation 9.

Niz w = Niz l = (S − 1)× (O − 1) +R (9)

According to Fig.6, Nzero in W-CONV of the discriminator

equals to the sum of the number of zeros used for input

padding and the number of zeros used for ∇ insertion. It can

be described using Equation 10.

Nzero =[(Niz w +Ow)× (Niz l +Ol)−Ow ×Ol]+

[(Iw + Pw)× (Il + Pl)− Iw × Il]
(10)

For W-CONV of the discriminator, Nzero also increases either

S or P increases according to Equations 9 and 10.

B. Inefficient I/O Connection

For training where massive memory reads/writes are re-

quired to update kernel weights, PipeLayer [59] employs

efficient H-tree wire routing. However, the dataflows of GAN

training are more complicated than that of traditional NNs.

We take a simple GAN (3-layer generator and 3-layer discrim-

inator) as an example to show details of dataflows (training

discriminator in Fig.7 and training generator in Fig.8). Thus,

if we train a GAN by mapping phases to H-tree connection

architecture, it will experience a large number of long routings.

Fig.9 shows two GAN examples N1, N2 training on the

H-tree routing banks. Each bank has 16 tiles and each tile is

composed of several CArrays, BArrays and SArrays. There are

two kinds of routing nodes: (1) multiplexing node, connecting

data wires of the same width; (2) merging node, through

which the width of data wire is divided into two halves. In

672

Authorized licensed use limited to: Tsinghua University. Downloaded on March 07,2021 at 13:14:12 UTC from IEEE Xplore. Restrictions apply.

G

Layer 1 Layer 2 Layer 3

D

D

Dw

Layer 1 Layer 2 Layer 3
Generator Discrinimator

z2
a2

z3
z2

a2
z3input input

W2 W3

z2 z3

Fig. 7. Dataflow of Training Discriminator.

Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3
Generator Discrinimator

error

inputinput z2
a2

z3
z2

a2 z3

W2 W3

z2 z3 z2 z3

G

Gw

G D

D

Fig. 8. Dataflow of Training Generator.

G D DwD

G G Gw D D Dw

G GwG D D

Bus
Bank

N1

N2

Mat
Multiplexing Node
Merging Node

GTrain D Train G

Fig. 9. Networks Mapped to H-tree Connected Tiles.

the examples shown in Fig.9, N1 is a relatively small GAN,

while N2 may be a bigger GAN or a small GAN with high

parallelism (i.e. duplicating kernel weights for several times).

In other words, the space utilized by training a GAN is decided

by the size of GAN itself and the number of kernel weight

duplications. When we map a GAN, we can separately training

discriminator and generator as N1 shows. This introduces

more space while reduces total data movements compared

with the map without duplication like the mapping pattern

of N2. However, all of these mapping patterns suffer from

long routings, as examples marked in green and red arrows

shown in Fig.9. With network size and number of duplications

increasing, this problem becomes more severe. We can relieve

this problem by adding some connections between the routing

nodes whose parent nodes are different, as the connection

pattern used in by MAERI [32]. Since the dataflow of GAN

training is much more complicated, simply doing so will not

achieve desirable performance of speedup.

IV. OUR PROPOSED SOLUTIONS

In this section, we propose our solutions to address the two

challenges analyzed in Section III.

A. PIM-Based Zero-Free Scheme

In order to address the problem mentioned in Section III-A,

we propose a novel software managed, memory controller

supported scheme called ZFDR (Zero-Free Data Reshaping)

to remove zero operations. This scheme consists of two

components: (1) T -CONV ZFDR for T-CONVs; (2) W -

CONV -S ZFDR for W-CONV of stride convolution.

We first take CONV1 (Fig.5) as an example to explain

our T-CONV ZFDR scheme. We usually convert convolutions

into MMVs in PIM-based computation, so we first reshape

kernel weights into vectors. The reshape operation is different

from the general one since we only extract kernel weights

…10
24

…

512

…

4 x 1024 = 4096

inp
ut

…51
2

…

W1 W2

W3 W4

W1
W2
W3
W4

…

W1 W2

W3 W4

Fig. 10. Example of Zero Free Data Reshaping.

(a) Useful: No.12, 14, 22, 24

20

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19

21 22 23 24 25

20

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19

21 22 23 24 25

20

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19

21 22 23 24 25

(b) Useful: No.11, 13, 15, 21, 23, 25 (c) Useful: No.12, 14, 22, 24

Fig. 11. Example of How Useful Weights Change When Sliding.

that multiply non-zero inputs, as shown in Fig.10. After

reshaping all the 512 weight kernels into a 512×4096 matrix,

we map this weight matrix into the Carray and feed the

corresponding 4096 inputs, then we obtain 512 results. All

of above operations correspond to one convolution operation

with 512 kernel weights. After the first convolution operation

shown in Fig.10, we slide kernel weights with stride of 1.

When sliding, the useful kernel weights change. Fig.11 gives

an example of how useful kernel weights change when sliding.

Thus, in step (c), the weight matrix can be reused since it is

the same with that in step (a). We find that some reshaped

weight matrices are reused when kernels slide on the edge

of input map and more reshaped weight matrices are reused

when kernels slide inside the input map.

In summary, we store 25 kinds of reshaped weight matrix

in this case (also the same in CONV2, CONV3 and CONV4).

Notwithstanding this ZFDR scheme introduces more space to

store weights, it improves parallelism greatly. For example, it

only needs 9 cycles (one MMV uses one cycle) to complete

CONV1. While without ZFDR, it will take 64 cycles. More-

over, if we duplicate kernel weights directly (without ZFDR),

and we want to conduct CONV1 in 9 cycles, we need to store

at least 179200 weights. It means that in order to achieve the

same performance as ZFDR, duplicating weights directly not

only consumes 75% more storage, but also transfers 9× inputs.

In order to extend our ZFDR scheme to a general case,

we first define the Loop Length (LL) using the following

equation.

LL =

⎧⎨
⎩

I × S
′
+ (S

′ − 1) P ≥ S
′ − 1

I × S
′

P < S
′ − 1, P +R ≥ S

′ − 1

I × S
′ − (S

′ − 1) P < S
′ − 1, P +R < S

′ − 1
(11)

Then we divide the T-CONV ZFDR scheme into three cases

as follows. Case 1: Reshape kernel weights that conduct
convolution on the corner of input map. This case has ((I−
1)× S

′
+ 1 +R+ 2P − LL)2 sets of reshaped weights, and

each kind of weights is non-reusable. Case 2: Reshape kernel
weights that conduct convolution on the edge of input map.
We define R1, R2 using Equations 12 and 13:

673

Authorized licensed use limited to: Tsinghua University. Downloaded on March 07,2021 at 13:14:12 UTC from IEEE Xplore. Restrictions apply.

R1 =

{
P P < S

′ − 1

P − (S
′ − 1) else

(12)

R2 =

{
(P +R)− (S

′ − 1) P +R ≥ S
′ − 1

P +R else
(13)

Then number of reshaped kernel weights in this case is

R1 × S
′ × 2 + R1 × S

′ × 2, and each reshaped ker-

nel weight can be reused by t times (t ∈ {
⌊
LL−W+1

S′

⌋
,

(
⌊
LL−W+1

S′

⌋
+ 1) }). Case 3: Reshape kernel weights that

conduct convolution inside the input map. This case has

S
′ × S

′
reshaped weights, and each reshaped weight can be

reused by t times (t ∈ {
⌊
LL−W+1

S′

⌋2
, (

⌊
LL−W+1

S′

⌋
+ 1)2,⌊

LL−W+1
S′

⌋
× (

⌊
LL−W+1

S′

⌋
+ 1) }).

The pattern of W-CONV-S ZFDR is similar to that of

T-CONV ZFDR. The difference is, for W-CONV of stride

convolution, we remove zeros from ∇output, reshape it as

weight, then conduct convolution on input map to receive

∇weight. W-CONV-S ZFDR has three cases as follows.

Case 1: Reshape zero-insertion ∇output that conducts
convolution at the corner of input map. This case has⌈
P
S

⌉2
+
⌈
P−R
S

⌉2
+2

⌈
P
S

⌉ ⌈
P−R
S

⌉
number of reshaped ∇outputs

and each of them is non-reusable. Case 2: Reshape zero-
insertion ∇output that conducts convolution on the edge
of input map. This case has 2

⌈
P
S

⌉
+ 2

⌈
P−R
S

⌉
number

of reshaped ∇outputs, and each of them can be reused by

I−(O−1)S times. Case 3: Reshape zero-insertion ∇output
that conduct convolution inside the input map. This case

has only one zero-insertion ∇output whose size is equal to

∇output, and it can be reused by [I − (O − 1)S]
2

times.

Since both T-CONV ZFDR and W-CONV-S ZFDR have

three similar types, we name them as CornerReshape,

EdgeReshape and InsideReshape respectively. Note

that CornerReshape has no reuse of reshaped weights

while InsideReshape tends to have more reuses than

EdgeReshape does. This involves an unbalance in runtime

because InsideReshape takes a long time to execute while

CornerReshape is idle in most of the time. Such unbalance

not only exists in the executing stage, but also in the I/O

transmission, because I/O connected to InsideReshape is

busy while that connected to CornerReshape is slack. In

order to address this problem, we duplicate EdgeReshape
and InsideReshape for Re times and Ri times respectively.

B. 3D-Connected PIM for GAN Training

In order to solve the problem elaborated in Sub-

Section III-B, we propose a 3D-connected PIM, aiming to

efficiently fit dataflows of GAN training.

Fig.12 (a) shows the original H-tree data wire connection

in a bank with 16 tiles (light grey squares). Green and blue

squares are multiplexing nodes, while red and yellow squares

are merging nodes. To better illustrate our 3D connection

architecture, we draw the connections as a binary tree and

mark different connection layers with different colors. First,

we add wires between two nodes whose parent nodes are

different in one layer, such as the wire between the middle two

(a) H-tree Connection (b) 3D Data Wire Connection Unit

Bank 1

2

3

Tile
Router

Fig. 12. 3D Connection Based on Original H-tree Connection.

blue nodes shown in Fig.12 (b). Then we pile up three banks

and add vertical wires between two corresponding nodes.

For each two vertical connected nodes, the width of wire

between them is the same as the width of wire connected

to their parent nodes. Due to the pin bandwidth limitation, we

modify the routers by adding switches. We take two nodes

as examples shown in Fig.12 (b) (original wires are colored

grey and added wires are in yellow). For the node circled in

blue, it has one switch, which can connect wire h, wire d
or wire f , and two wires connected to child nodes are fixed

as original. For the light gray node circled in green, it has

two switches, which can connect wire u, wire d or wire f .

Note that, only nodes in Bank 2 have two switches, which

enable the nodes to connect both upper/down nodes at the

same time. We create a state set s set for each switch, and we

have s set ⊆ {parent, horizontal, upper, down}. Moreover,

we add an adder into the each node, which can be also

bypassed. Thus, we build a 3D data wire connection unit

(3DCU), which can be configured into two modes: Smode
for normal memory read/write and Cmode for computing. In

Smode, the connections are static and configured as H-tree

pattern. While in Cmode, the connections are dynamically

reconfigured according to dataflows.

With 3DCU, we can build our 3D-connected PIM for

training GANs. Fig.13 ellaborates how to use 3DCUs to

train a GAN. First, we connect two 3DCUs ({B1, B2, B3},

{B4, B5, B6}) together. Banks in these two 3DCUs are all

connected to the bus in traditional way. Moreover, B1 and B4,

B3 and B6 can be connected to each other directly, bypassing

the bus and CPU.

After connecting two 3DCUs, we first present the way

of training discriminator in Fig.13 (a). Note that we only

present the critical concept paths, omitting other paths like

data transferring of ∇weight calculation inside the bank. When

training discriminator, B2 and B3 are not used and stay in

Smode, working as traditional memory. We first map
−→
G to

B1 and
−→
D to B4. After that, we configure {B1, B4, B5, B6}

into Cmode. We show the dataflows of training discriminator

with Px (P reperesents the point marked on dataflows in

Fig.13, x is the number of the point). P1 → P2 is the

dataflow of
−→
G , and the zigzag line represents that during

−→
G ,

we may transfer data from one tile to another tile through

horizontal connections. P2 → P3 transfers outputs of generator

to discriminator through the bypass bus connection. P3 → P4

shows the dataflow of
−→
D . During P3 → P4, when we complete

674

Authorized licensed use limited to: Tsinghua University. Downloaded on March 07,2021 at 13:14:12 UTC from IEEE Xplore. Restrictions apply.

8888

12

10

555555

Bus Bus

1

2 3

4

6

7

8

9

10

11

12

13

1

2 3

4

5

6

7

9

11

11

13

14141144
15

16

B1

B2

B3

B4

B5

B6
(a) Training Discriminator (b) Training Generator

Tiles

Intra-3DCU
Connections

B1

B2

B3

B4

B5

B6

Inter-3DCU
Connections

Fig. 13. Dataflows of GAN Training Using 3DCUs.

A
B

C

D

Forward propagation Weight calculation Error transferring

(b) Duplicate weights

Tile

(a) Split weights

Fig. 14. Data mappings on 3D-connected PIM.

the computation of one layer, we map the corresponding part

of
←−
Dw and

←−
D to B5 and B6 respectively. Note that we

continue forward propagation of the discriminator when we

map
←−
Dw and

←−
D . For example, we conduct P11 → P12 and

P9 → P8 simultaneously. We start the backward propagation

by transferring error from P4 to P5. During the backward

propagation, we need the results from both
−→
D (P8 → P7,

P11 → P12) and
←−
D (P6 → P7, P13 → P12) to conduct

←−
Dw.

Also, we need the result from
−→
D (P9 → P10) to conduct

←−
D .

After backward propagation, we configure {B4, B5, B6} into

Smode. Through reading B5 and some calculations in CPU,

we update discriminator by writing new kernel weights to B4.

Fig.13 (b) illustrates the dataflows of training generator.

Note that, after training discriminator, B1 is in Cmode,

while others are in Smode. Thus, we first switch others to

Cmode. At the same time, we can conduct
−→
G shown as

P1 → P2, and map
←−
Gw,

←−
G to B2, B3 simultaneously. Then

we output results of
−→
G to

−→
D marked as P2 → P3 and start−→

D through P3 → P4. Simultaneously, we map
←−
D to B6.

After that, we start backward propagation by transferring error

from P4 to P5. The error is transferred to generator through

P5 → P8 → P9, and during this period, the result in
−→
D is

used for
←−
D , such as P6 → P7. After transferring error to←−

G , we start
←−
G and

←−
Gw in an interleaving way. Similar as

dataflows in backward propagation of discriminator, we need

P11 → P12 and P10 → P12 to conduct
←−
Gw first and then

we need P13 → P14 for
←−
G . Afterwards, we use P1 → P16

and P15 → P16 to complete
←−
Gw. Finally, in the same way

of updating discriminator, we switch {B1, B2, B3} to Smode
and update generator.

In general, we map generator to one or several 3DCUs

and map discriminator to corresponding 3DCUs connected to

generator. The top layer is usually for forward propagation and

the second, third layers are usually for ∇weight calculation,

error transfer respectively. We locate ∇weight calculation in

the second layer since it needs data transferred from either

phases, while error transfer only needs data from forward

propagation. What’s more, in order to reduce data movement,

we should make sure each part of phase is vertical alignment.

Take computation between Layer1 and Layer2 in Fig.8 as an

example. The left figure shown in Fig.14 is an original way of

data mapping. The green and red parts are bigger than the blue

one, because we apply ZFDR scheme on them, duplicating

kernel weights for several times. For the blue one, it applies

the normal kernel weight mapping pattern. This naive data

mapping introduces non-negligible data movements, like blue

lines marked in the left figure. We can solve this problem by

splitting kernel weights and enable each part to handle corre-

sponding vertical partial results (shown in the middle figure

of Fig.14). Thus, we only need small-step data movements

like C → D. It’s worth mentioning that green parts, red parts

and blue parts are not vertical alignment perfectly. They may

have small-step data movements horizontally, but it’s much

better than original data mapping shown in the left figure.

The method in (a) is space-saving but less parallelism. Also,

we can duplicate weights after splitting, like (b) shows. This

improves the parallelism but turns out to be space consuming.

The detailed design will be introduced in Section V.

V. LERGAN DESIGN

In this section, we present how Zero-Free Scheme in

Section IV-A and 3D Connected PIM in Section IV-B work

together in LerGAN.

Fig.15 elaborates the outline of LerGAN design in five parts.

Program In the program stage, we program a network,

describing it layer by layer. For example, in the lth layer,

we use the size of input (input size l), size of kernel

weight (weight size l) and size of output (output size l) to

describe it. Moreover, stride includes the stride of generator

and stride of discriminator and so does padding. Structure

replica degree describes the degree of duplication in each

phase of training GAN. It has three degrees, low, middle
and high. Programmers can easily use these three parameters

which represent low to high parallelisms, without knowing

how to duplicate kernel weights to increase parallelism, which

will be performed by the compiler.

Interface We realize ZFDR by providing two interfaces.

One is ZFDR T for T-CONV ZFDR and the other is

ZFDR WS for W-CONV-S ZFDR. These two functions do

not reshape data directly but create place holders and dataflows

675

Authorized licensed use limited to: Tsinghua University. Downloaded on March 07,2021 at 13:14:12 UTC from IEEE Xplore. Restrictions apply.

ReRAM-based PIM

BArray

SArray

CArray

Tile

Bus

3DCU3D3D

Circuits for NN

Switch control

Program

Interface

Compiler

Network(…, input_size_l, weight_size_l, output_size_l …, stride, padding, replica_degree) { }
Network structure

G Gw DwD

Data flow
control

Replica

Memory ControllerG
enerator

Discrim
inator

GZFDR_T(, i_gb_t, w_gb_t, o_gb_t …){}

ZFDR_T(i_gf_s, w_gf_s, o_gf_s…
 i_gf_t, w_gf_t, o_gf_t, …){}

ZFDR_WS(, i_dw_l, w_dw_l, o_dw_l, …){}
ZFDR_T(, i_db_l, w_db_l, o_db_l …){}

ZFDR_T(, i_gw_j, w_gw_j, o_gw_j …){}
ZFDR_WS(, i_gw_t, w_gw_t, o_gw_t, …){}

DataMapping(df_reshaped, replica_df)
ZFDM(dw_reshaped, replica_dw)
ZFDM(db_reshaped, replica_db)

D
Dw

D

ZFDM(gf_reshaped, replica_gf)
ZFDM(gw_reshaped, replica_gw)
ZFDM(gb_reshaped, replica_gb)

G
Gw

G Data Map

Switch State

XB
DAC

XB
DAC

XB
DAC

XB
DAC

4 ADCs

Shift & Add

Fig. 15. Outline of LerGAN (an architecture combined techniques of ZFDR and 3DCUs).

for further removing zeros, just like the way of traditional NN

frameworks. Their parameters are passed from programming

a network. These two functions also process the network

layer by layer. The interface component in Fig.15 shows the

most complex situation: the generator of this GAN has both

T-CONV and S-CONV, and the discriminator has T-CONV.

The generator needs ZFDR T for
−→
G (marked in blue), both

ZFDR T and ZFDR WS for
←−
Gw (marked in orange), and

ZFDR T for
←−
G (marked in purple). The discriminator needs

ZFDR T for
←−
D and

←−
Dw (marked in yellow and green).

Under normal situation where the generator has T-CONV and

the discriminator has S-CONV, ZFDR T is needed for
−→
G ,←−

Gw and
←−
D , and ZFDR WS is for

←−
Dw.

Compiler After reshaping data, we start to map them

through a compiler. Mapping data has two parts. One is

mapping generator and the other is mapping discriminator. In

the case of the generator with both T-CONV and S-CONV,

we map
−→
G ,

←−
Gw,

←−
G ,

←−
Dw and

←−
D by using Zero Free Data

Mapping scheme (ZFDM), while we use normal data mapping

scheme (DataMapping) to map
−→
D (shown in the compiler

component of Fig.15). In the case of the generator with only

T-CONV, we use DataMapping for
←−
G and

−→
D , and ZFDM

for the remaining phases. ZFDM has two main parameters:

data reshaped by ZFDR and the number of replicas transferred

from programming.

We take
−→
G to further elaborate ZFDM scheme.

gf reshaped is data reshaped by ZFDR during generator

forward propagation. replica gf is a vector which records the

number of replicas in CornerReshape, EdgeReshape and

InsideReshape. We name items in replica gf as replica c,
replica e and replica i. Also, we calculate the average reuse

time of each case and name them as reuse c, reuse e and

reuse i. We do this because the reusing time of weights inside

each case shows little difference. Assume that the time MMV

consumed in CArray is tm, then the total time of computation

tc total in a layer is tm × reuse i
replica i (the execution time of

parallel tasks is decided by the longest task). We assume the

time of transferring data from one tile to its neighbor is tt,
then transferring results of a layer to its next layer consumes

at least (
⌈

layer size
CArray size

⌉
− 1)× tt, named tt total (layer size

is decided by replica c, replica e and replica i). We fix

replica c as 1 since reuse c is 1, and define the maximum

value replica emax, replica imax = LL × replica emax

to let tt total ≤ tc total (LL is the loop length defined in

Section IV-A). Based on parameters defined above, we can

define replica gf as Table III shows.

Level

Value Part
replica c replica e replica i

low 1 1 replica emax

middle 1 replica emax replica emax

high 1 replica emax replica imax

TABLE III
VALUE OF replica gf .

To summarize, we duplicate kernel weights considering

three factors: (1) Programmers’ demand (space demands).
When the free space is small or programmers would like

to use small memory space to train a GAN, they can

set replica degree as low, and vise versa. (2) Improving
the performance. More replicas indicate higher parallelism,

which means higher performance. (3) Avoiding I/O to become
a bottleneck. More replicas may incur more communications

among tiles, so we must avoid heavy communications from

hindering performance. For other phases in ZFDM, parameters

can be obtained in the same way of
−→
G does.

Then we take
−→
D to further introduce DataMapping

scheme. df reshaped is data reshaped by normal reshaping

scheme during forward propagation phase of discriminator. For

replica df , we define it as Equation 14 shows, where szf is

size of kernel weights after duplication in
−→
D and sn is size

of kernel weights before duplication in
−→
D .

replica df =

⎧⎪⎪⎨
⎪⎪⎩

1 replica degree = low⌊
szf

2×sn

⌋
replica degree = middle⌊

szf
sn

⌋
replica degree = high

(14)

676

Authorized licensed use limited to: Tsinghua University. Downloaded on March 07,2021 at 13:14:12 UTC from IEEE Xplore. Restrictions apply.

Memory controller Memory controller records the in-

formation transferred from the compiler, such as number of

replicas and data mappings. What’s more, it records states of

switches, which are deduced by data mappings. These records

come into a finite state machine, marked in blue rectangle

in Memory Controller (Fig.15). The finite state machine of-

fers states for dataflow controller and switch controller to

control 3DCUs. Also, these two controllers receive signals

from 3DCUs and update the finite state machine. Thus, the

memory controller can manage the data mapping and configure

switches according to the dataflows dynamically.

ReRAM-based PIM The part communicating with mem-

ory controller is ReRAM-based PIM. It is also the main hard-

ware that supports our LerGAN. It is configured with several

3DCU pairs introduced in Fig.13 in Section IV-B. Each tile

in 3DCU contains SArray, CArray and BArray, using the

design in PRIME [15], which has been already introduced in

Section II-A. The ReRAM crossbars in a CArray (marked in

light pink in Fig.15) employ the design of that in ISAAC [56],

since they can support 16-bit precision data while PRIME can

not. Based on the tile equipped with basic NN computation

and storage ability, our proposed 3DCU pairs can work well.

VI. EVALUATION

In this section, we first introduce our experimental setup
and benchmarks used to evaluate the proposed designs. We

then present our evaluation results in terms of performance,

energy, and overhead.

A. Experimental Setup

We compare LerGAN with (1) GANs running on GPU

platform; (2) FPGA-based GAN accelerator [47]; and (3)

GANs running on modified ReRAM-based NN accelerator:

PRIME [15]. We use the NVIDIA Titan X as our GPU plat-

form and choose the Xilinx VCU118 board for implementing

FPGA-based GAN accelerator. The hardware configurations

we used for PRIME and LerGAN are listed in Table IV. The

configurations of ReRAM are from [48].

Host Processor Intel Xeon CPU E5520,
2.27GHz, 4 cores

L1 I/D cache 32KB/32KB; 4-way; 2 cycles access
L2 cache 256KB; 8-way; 10 cycles access

ReRAM-based
Main Memory

Overview TaOx/T iO2-based ReRAM
16GB; 2GB per bank, 128MB per tile;

Bank 32.8ns/41.4ns read/write latency;
413pJ/665pJ read/write energy

H-Tree 29.9ns latency, 386pJ energy

Tile 2.9ns/11.5ns read/write latency;
3.3pJ/34.8pJ read/write energy

I/O Frequency 1.6GHz

TABLE IV
HARDWARE CONFIGURATIONS.

For LerGAN configuration, we use 4-bit for each ReRAM

cell, and 16-bit for input, weight and output (i.e. same as [59]).

The size of ReRAM array is 128 × 128 cells. We configure

half of a tile for CArray (64MB), 1/64 of the tile for BArray

(2MB) and the remaining 62MB for SArray. We use CACTI-

6.5 [49], CACTO-IO [28] to model our interconnects and off-

chip connects respectively.

0
1
2
3
4
5

G
B

D
WD
B

G
WG
F

N
or
m
al
iz
ed
Sp
ee
du
p

PRIME ZFDR ZFDR-NS

DiscoGAN-
5 pairs

DiscoGAN-
4 pairs

MAGAN-
MNIST

GPGANArtGAN-
CIFAR10

3D-GANcGANDCGAN

D
WD
B

G
WG
F

D
WD
B

G
WG
F

D
WD
B

G
WG
F

D
WD
B

G
WG
F

D
WD
B

G
WG
F

D
WD
B

G
WG
F

G
B

D
WD
B

G
WG
F

G: Generator D: Discrimanator F: Forward B: Backward W: Weight Calculation

Fig. 16. Performance Comparison on Phases used ZFDR with PRIME

0
1
2
3
4
5
6
7
8

Ave
rag
e

ZFDR-NS-3D
NS-Low-2DLow-3D

Low-2D
NS-Low-3D

N
or
m
al
iz
ed
Sp
ee
du
p PRIME ZFDR-2D ZFDR-3D ZFDR-NS-2D

Dis
coG
AN
-5 p
airs

Dis
coG
AN
-4 p
airs

MA
GA
N-M

NIS
T

GP
GA
N

Art
GA
N-C
IFA
R10

3D-
GA
N

cGA
N

DC
GA
N

Fig. 17. Performance Comparison between 3D-Connection and H-tree Con-
nection with ZFDR

0
1
2
3
4
5
6
7

3D-Low-NS3D-ZFDR-NS

Ave
rag
e

N
or
m
al
iz
ed
Sp
ee
du
p PRIME 3D-NR 3D-ZFDR 3D-Low 3D-NR-NS

Dis
coG
AN
-5 p
airs

Dis
coG
AN
-4 p
airs

MA
GA
N-M

NIS
T

GP
GA
N

Art
GA
N-C
IFA
R10

3D-
GA
N

cGA
N

DC
GA
N

Fig. 18. Performance Comparison between ZFDR and Normal Reshape with
3D-Connection

B. Benchmarks

We employ 8 state-of-the-art GAN networks as our bench-

marks, shown in Table V. To describe the topologies of GANs,

we use f , c and t to denote fully-connected, convolution and

transposed convolution layers respectively. For example, the

512c5k2s denotes a convolution layer with 512 input feature

maps, using 5 × 5 × 512 kernels with a stride of 2, while

2s in 512t5k2s denotes a transposed convolution layer with

a stride of 1/2. The 100f denotes a fully-connected layer

with 100-unit input and f1 denotes a fully-connected layer

with 1-unit output. The t3 represents that after T-CONV, there

are 3 output feature maps. For simplicity, if several layers

share the same size of kernel or stride, we consolidate those

common factors at the end, for example 100f -(1024t-512t-
256t-128t)(5k2s)-t3, where layers 1024t, 512t, 256t, and 128t
share the common kernel size of 5 and stride size of 2.

C. Results

We fully train the networks in Table V with the batch size

of 64, and the results are shown as follows.

We first examine the effectiveness of our proposed ZFDR
and 3D connection mechanisms. We then compare the per-

formance and energy between LerGAN and alternative PIM

design such as PRIME. Moreover, we compare LerGAN with

FPGA-based GAN accelerator and GAN running on GPU

platform. Note that we use 2D and 3D to represent H-

tree and 3D connection design, respectively, and investigate

configurations with different degrees of duplication (i.e. low,

middle and high).

Fig.16 shows the performance of ZFDR in different GAN

phases. We use NS to represent normalized space, which

677

Authorized licensed use limited to: Tsinghua University. Downloaded on March 07,2021 at 13:14:12 UTC from IEEE Xplore. Restrictions apply.

Name Generator Item Size Discriminator
DCGAN [54] 100f-(1024t-512t-256t-128t)(5k2s)-t3 64 × 64 (3c-128c-256c-512c-1024c)(5k2s)-f1
cGAN [52] 100f-(256t-128t-64t)(4k2s)-t3 64 × 64 (3c-64c-128c-256c)(4k2s)-f1
3D-GAN [64] 100f-(512t-256t-128t)(4k2s)-t3 64 × 64 × 64 (1c-64c-128c-256c-512c)(4k2s)-f1

ArtGAN-CIFAR-10 [61]
100f-1024t4k1s-512t4k2s-256t4k2s-128t4k2s-
128t3k1s-t3

32 × 32
3c4k2s-128c3k1s-(128c-256c-512c-
1024c)(4k2s)-f11

GPGAN [63] 100f-(512t-256t-128t-64t)(4k2s)-t3 64 × 64 (3c-64c-128c-256c-512c)(4k2s)-f1
MAGAN-MNIST [62] 50f-128t7k1s-64t4k2s-t1 28 × 28 784f-256f-256f-784f-f11
DiscoGAN-4pairs [30] (3c-64c-128c-256c-512t-256t-128t-64t)(4k2s)-t3 64 × 64 (3c-64c-128c-256c-512c)(4k2s)-f1

DiscoGAN-5pairs [30]
(3c-64c-128c-256c-512c)(4k2s)-100f-(512t-256t-
128t-64t)(4k2s)-t3

64 × 64 (3c-64c-128c-256c-512c)(4k2s)-f1

TABLE V
TOPOLOGIES OF GAN BENCHMARKS. (f :fully-connected c: convolution t:transposed convolution k:kernel s:stride)

0
2
4
6
8
10
12
14
16

PRIME Low Middle High NS-Low NS-Middle NS-High

Ave
rag
e

N
or
m
al
iz
ed
Sp
ee
du
p

Dis
coG
AN
-5 p
airs

Dis
coG
AN
-4 p
airs

MA
GA
N-M

NIS
T

GP
GA
N

Art
GA
N-C
IFA
R10

3D-
GA
N

cGA
N

DC
GA
N

Fig. 19. Performance Comparison between LerGAN and PRIME

0

10

20

30

40
NS-HighNS-MiddleNS-Low

Low Middle HighPRIME

Ave
rag
e

N
or
m
al
iz
ed
E
ne
rg
y
Sa
vi
ng

Dis
coG
AN
-5 p
airs

Dis
coG
AN
-4 p
airs

MA
GA
N-M

NIS
T

GP
GA
N

Art
GA
N-C
IFA
R10

3D-
GA
N

cGA
N

DC
GA
N

Fig. 20. Energy Saving Comparison between LerGAN and PRIME

means that PRIME uses the same CArray space as our design.

ZFDR achieves distinct speedup on DCGAN, cGAN, 3D-

GAN, GPGAN and DiscoGAN, which reflects that there are

large portions of zeros in these GANs. What’s more, ZFDR
saves up to 5.2× SArray space for storing inputs (in the case

of DCGAN), and saves 3.86× SArray space on average. Note

that DiscoGAN-4pairs has 5 phases using ZFDR because its

generator has both S-CONV and T-CONV. Moreover, there is

no speedup on discriminator of MAGAN-MNIST, because its

layers are fully-connected.

When we evaluate the entire process of training GANs with

H-tree connection, the speedup of ZFDR almost disappears.

This is resulted from the overhead of data transfers. Fig.17

shows the performance of our 3D connection design com-

pared with H-tree connection. We observe that with our 3D

connection design, the speedup of ZFDR is much more vis-

ible. Moreover, with 3D connection, duplication (low degree)

achieves much higher performance speedup than ZFDR with

no duplication, while duplication achieves little speedup with

H-tree connection.

Fig.18 compares the performance between ZFDR and

normal reshaping (marked as NR) with 3D connection. The

results show that with 3D connection, ZFDR with (without)

duplication achieves 5.11× (2.77×) speedup on average, while

normal reshaping only yields 1.31× speedup, indicating that

both our 3D connection design and ZFDR are critical to

accelerate GAN execution.

Experiments above show that ZFDR and 3D connection

0
30
60
90
120
150

Ave
rag
e

Dis
coG
AN
-5 p
airs

Dis
coG
AN
-4 p
airs

MA
GA
N-M

NIS
T

GP
GA
N

Art
GA
N-C
IFA
R10

3D-
GA
N

cGA
N

N
or
m
al
iz
ed
Sp
ee
du
p FPGA-GAN GPU LerGAN-Low LerGAN-Middle LerGAN-High

DC
GA
N

Fig. 21. Performance Comparison among FPGA-based GAN accelerator,
GPU platform and LerGAN

0

5

10

15

20

Ave
rag
e

N
or
m
al
iz
ed
en
er
gy
sa
vi
ng FPGA-GAN GPU LerGAN-Low LerGAN-Middle LerGAN-High

DC
GA
N

cGA
N

3D-
GA
N

Art
GA
N-C
IFA
R10

GP
GA
N

MA
GA
N-M

NIS
T

Dis
coG
AN
-4 p
airs

Dis
coG
AN
-5 p
airs

Fig. 22. Energy Saving Comparison among FPGA-based GAN accelerator,
GPU platform and LerGAN

can achieve high speedup when they work together. We further

show performance of LerGAN which combines these two

techniques. We train the discriminator and generator of each

GAN for ten iterations and calculate the average time of

each iteration. We compare different duplication degrees of

LerGAN with PRIME, shown in Fig.19. First of all, with our

design applied, DCGAN has more speedup than 3D-GAN and

GPGAN because it has a larger kernel size than others, which

leads to a larger proportion of multiplications with zeros.

Besides, MAGAN-MNIST shows nearly no speedup since its

discriminator is fully-connected and its generator is small with

only one T-CONV.

Fig.20 shows the results of energy saving. Note that

LerGAN-low-NS achieves 28.47× energy saving on average.

This high energy saving owes much to our zero-free and 3D

connection design, since they reduce the amount of data as

well as the data movements requiring long wires. Besides,

with the increase of duplications, LerGAN exhibits less energy

saving, since more duplications leads to (1) more memory

reads/writes when updating GANs; and (2) more complex and

energy-consuming switch configurations.

We also compare LerGAN with FPGA-based GAN acceler-

ator and GPU platform. Fig.21 and 22 show the performance

and energy consumption of aforementioned architectures, re-

spectively. In terms of the performance, LerGAN achieves

47.2× and 21.42× speedup on average over FPGA-GAN and

678

Authorized licensed use limited to: Tsinghua University. Downloaded on March 07,2021 at 13:14:12 UTC from IEEE Xplore. Restrictions apply.

16%

13.6%
70.4%Updating

Communication

Computing

Fig. 23. The Breakdown of Energy
Consumption in LerGAN (Overall)

ADC
DAC
Other 4.2%

10.5%
45.14%

40.16%

Cell Switching

Fig. 24. The Breakdown of Energy
Consumption of a ReRAM Tile

GPU, respectively. What’s more, DiscoGAN manifests more

speedup over others because (1) it has more T-CONVs, which

means more zeros. Our LerGAN with ZFDR design shows

higher performance; (2) the size of DiscoGAN is bigger,

leading to more off-chip memory accesses for FPGA and

GPU, which causes PIM-based LerGAN to perform better.

Moreover, GANs with small sizes, such as MAGAN-MNIST,

and lacking of T-CONVs, cause less speedup. For the energy

saving, LerGAN-low saves more energy than FPGA-based

GAN accelerator for GANs with small size but with more

frequent T-CONVs (the left five GANs in Fig.21). However,

for GANs with small size and less T-CONVs (MAGAN-

MNIST) and GANs with big size (DiscoGAN), LerGAN

shows slightly less energy saving than what FPGA-GAN

accelerator performs. This is because LerGAN consumes more

energy when updating networks, consequently extra energy

cost can not be amortized by the energy saving opportunity. On

average, LerGAN has 1.04× energy consumption than FPGA-

GAN accelerator. Moreover, as shown in Fig.21 and 22, though

more duplication (e.g. LerGAN-high) brings more speedup, it

results in more energy consumption.

D. Energy Distribution

Fig.23 shows the overall energy distribution of LerGAN

executed across the experimented benchmarks. The energy of

computing dominates 70.4% of the total energy in LerGAN

since it has a large amount of ReRAM-tile-related operations,

while that of communication occupies 16%, benefited from

our 3D-connected PIM design. Moreover, we break down the

energy distribution of a ReRAM tile, as shown in Fig.24. The

results show that cell switching (40.16%) and ADC (45.14%)

are the two main energy-consuming contributors. Several

studies [66] [37] contribute on reducing energy consumption

of cell switching and ADC. If LerGAN is equipped with 1-

pJ cell switching [66], and a more energy-saving ADC (e.g.

60% [37]), it can achieve nearly 3× power reduction.

E. Overhead

The overhead of LerGAN has two parts: software overhead

and hardware overhead. For the software overhead caused by

ZFDR and ZFDM , LerGAN spends 32.52% more time than

traditional methods on compiling. However, compared with

the total time spent on training a GAN(e.g. several days), the

overhead of few minutes incurred by the software overhead can

be ignored. For the hardware, since we add some switches and

wires, it causes 13.3% space overhead compared with PRIME.

However, this space overhead can be justified by the higher

performance (2.1× speedup) delivered by LerGAN, compared

with PRIME using the same space.

VII. RELATED WORK

3D Network on Chip (NoC) There are several prior

studiess on 3D NoC [38] [29] [51] [8] [1], which are proposed

for shortening connections. However, their complex routing

algorithms are not suitable for GAN, while our succinct 3D

connection design fits GAN well.

NN accelerators Many recent works accelerate NN based

on FPGAs [67] [45] [69] [57] [3] and ASICs [18] [23] [68]

[40] [12] [43] [55] [44] [2]. Diannao family was proposed

based on Near-Data Processing (NDP) [11] [13] [16] [41],

which locates processors near the memory to reduce the

overhead of off-chip memory access. Our design is based on

ReRAM-based PIM, further reducing data movements.

ReRAM-based NN accelerators PRIME [15] is an accel-

erator on basic computations of inference like MMV compu-

tation. ISAAC [56] proposed a pipeline solution to accelerate

inference of CNNs. PipeLayer [59] further proposed a pipeline

solution with intra-layer parallelism on both inference and

training of CNNs. TIME [14] proposed a ReRAM-based

training-in-memory architecture and further reduced the fre-

quency of ReRAM read/write. Our work proposes a zero-free,

3D connected GAN accelerator.

GAN accelerators Song et.al. [47] proposed FPGA-based

GAN accelerator. It uses well-designed dataflows to remove

zero operations and increase data reuse on FPGA. Amir et.al.

proposed a SIMD-MIMD acceleration for GAN [5] [4] [6],

by removing zeros in GAN training. Chen et.al. proposed

ReGAN, a ReRAM-based GAN accelerator using pipeline [10]

design. Our LerGAN design is PIM-based and flexible to

handle all zero-related scenarios in GAN training.

VIII. CONCLUSIONS

This paper proposes a PIM-based GAN accelerator: Ler-

GAN, which achieves low data movement and zero-free com-

putation. LerGAN has two main techniques: (1) Zero-Free

Data Reshaping (ZFDR) designed for ReRAM-based PIM

to remove computations with zeros; and (2) reconfigurable

3D connection in PIM which removes the bottleneck of

long data movement. LerGAN also combines these techniques

with minor modifications of software and memory controller.

Experiments show that both these techniques are critical in

accelerating GAN training. Experiments show that LerGAN

achieves 47.2×, 21.42× and 7.46× speedup over FPGA-based

GAN accelerator, GPU platform and PRIME respectively.

Moreover, LerGAN achieves 9.75×, 7.68× energy saving on

average over GPU platform, PRIME respectively, and has

1.04× energy consuming over FPGA-based GAN accelerator.

ACKNOWLEDGMENT

This work is supported by the National Major Project of

Scientific Instrument of National Natural Science Foundation

of China (Grant No.61327902), National Key Research &

Development Projects of China (Grant No.2018YFB1003301),

and in part by NSF grants 1822989, 1822459, 1527535,

1423090, and 1320100.

679

Authorized licensed use limited to: Tsinghua University. Downloaded on March 07,2021 at 13:14:12 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. B. Ahmed and A. B. Abdallah, “La-xyz: low latency, high through-
put look-ahead routing algorithm for 3d network-on-chip (3d-noc)
architecture,” in Embedded Multicore Socs (MCSoC), 2012 IEEE 6th
International Symposium on. IEEE, 2012, pp. 167–174.

[2] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in ACM SIGARCH Computer Architecture News, vol. 44,
no. 3. IEEE Press, 2016, pp. 1–13.

[3] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn accel-
erators,” in Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on. IEEE, 2016, pp. 1–12.

[4] Y. Amir, F. Hajar, J. W. Philip, S. Kambiz, E. Hadi, and S. K. Nam,
“Ganax: A unified simd-mimd acceleration for generative adversarial
network,” in IEEE/ACM International Symposium on Computer Archi-
tecture (ISCA), 2018.

[5] Y. Amir, S. Kambiz, E. Hadi, and S. K. Nam, “A simd-mimd acceleration
with access-execute decoupling for generative adversarial networks,” in
SysML Conference (SysML), 2018.

[6] Y. Amir, B. Michael, K. Behnam, G. Soroush, S. Kambiz, E. Hadi,
and S. K. Nam, “Fxgan: A unified mimd-simd fpga acceleration with
decoupled access-execute units for generative adversarial networks,” in
IEEE International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), 2018.

[7] M. N. Bojnordi and E. Ipek, “Memristive boltzmann machine: A
hardware accelerator for combinatorial optimization and deep learning,”
in High Performance Computer Architecture (HPCA), 2016 IEEE Inter-
national Symposium on. IEEE, 2016, pp. 1–13.

[8] C.-H. Chao, K.-Y. Jheng, H.-Y. Wang, J.-C. Wu, and A.-Y. Wu,
“Traffic-and thermal-aware run-time thermal management scheme for
3d noc systems,” in Networks-on-Chip (NOCS), 2010 Fourth ACM/IEEE
International Symposium on. IEEE, 2010, pp. 223–230.

[9] O. Chapelle, B. Scholkopf, and A. Zien, “Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews],” IEEE Transactions on
Neural Networks, vol. 20, no. 3, pp. 542–542, 2009.

[10] F. Chen, L. Song, and Y. Chen, “Regan: a pipelined reram-based
accelerator for generative adversarial networks,” in Proceedings of the
23rd Asia and South Pacific Design Automation Conference. IEEE
Press, 2018, pp. 178–183.

[11] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” ACM Sigplan Notices, vol. 49, no. 4, pp. 269–284,
2014.

[12] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–
138, 2017.

[13] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun et al., “Dadiannao: A machine-learning supercomputer,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE Computer Society, 2014, pp. 609–622.

[14] M. Cheng, L. Xia, Z. Zhu, Y. Cai, Y. Xie, Y. Wang, and H. Yang,
“Time: A training-in-memory architecture for memristor-based deep
neural networks,” in Proceedings of the 54th Annual Design Automation
Conference 2017. ACM, 2017, p. 26.

[15] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: a novel processing-in-memory architecture for neural
network computation in reram-based main memory,” in ACM SIGARCH
Computer Architecture News, vol. 44, no. 3. IEEE Press, 2016, pp. 27–
39.

[16] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in ACM SIGARCH Computer Architecture News, vol. 43, no. 3.
ACM, 2015, pp. 92–104.

[17] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and
S. Bengio, “Why does unsupervised pre-training help deep learning?”
Journal of Machine Learning Research, vol. 11, no. Feb, pp. 625–660,
2010.

[18] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun, “Neuflow: A runtime reconfigurable dataflow processor
for vision,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Computer Society Conference on. IEEE, 2011,
pp. 109–116.

[19] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “Nda:
Near-dram acceleration architecture leveraging commodity dram devices
and standard memory modules,” in High Performance Computer Archi-
tecture (HPCA), 2015 IEEE 21st International Symposium on. IEEE,
2015, pp. 283–295.

[20] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning for
physical interaction through video prediction,” in Advances in neural
information processing systems, 2016, pp. 64–72.

[21] A. Ghosh, B. Bhattacharya, and S. B. R. Chowdhury, “Sad-gan: Syn-
thetic autonomous driving using generative adversarial networks,” arXiv
preprint arXiv:1611.08788, 2016.

[22] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, speech and signal pro-
cessing (icassp), 2013 ieee international conference on. IEEE, 2013,
pp. 6645–6649.

[23] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” in Computer Architecture (ISCA), 2016 ACM/IEEE 43rd
Annual International Symposium on. IEEE, 2016, pp. 243–254.

[24] T. Hastie, R. Tibshirani, and J. Friedman, “Unsupervised learning,” in
The elements of statistical learning. Springer, 2009, pp. 485–585.

[25] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal processing magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[26] C.-W. Hsu, I.-T. Wang, C.-L. Lo, M.-C. Chiang, W.-Y. Jang, C.-H. Lin,
and T.-H. Hou, “Self-rectifying bipolar tao x/tio 2 rram with superior
endurance over 10 12 cycles for 3d high-density storage-class memory,”
in VLSI Technology (VLSIT), 2013 Symposium on. IEEE, 2013, pp.
T166–T167.

[27] G. Huang, S. Song, J. N. Gupta, and C. Wu, “Semi-supervised and unsu-
pervised extreme learning machines,” IEEE transactions on cybernetics,
vol. 44, no. 12, pp. 2405–2417, 2014.

[28] N. P. Jouppi, A. B. Kahng, N. Muralimanohar, and V. Srinivas, “Cacti-
io: Cacti with off-chip power-area-timing models,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 7, pp.
1254–1267, 2015.

[29] J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie, V. Narayanan, M. S.
Yousif, and C. R. Das, “A novel dimensionally-decomposed router for
on-chip communication in 3d architectures,” ACM SIGARCH Computer
Architecture News, vol. 35, no. 2, pp. 138–149, 2007.

[30] T. Kim, M. Cha, H. Kim, J. Lee, and J. Kim, “Learning to discover cross-
domain relations with generative adversarial networks,” arXiv preprint
arXiv:1703.05192, 2017.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[32] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible
dataflow mapping over dnn accelerators via reconfigurable intercon-
nects,” 2018.

[33] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[34] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single
image super-resolution using a generative adversarial network,” arXiv
preprint, 2016.

[35] H. Lee, Y. Chen, P. Chen, P. Gu, Y. Hsu, S. Wang, W. Liu, C. Tsai,
S. Sheu, P. Chiang et al., “Evidence and solution of over-reset problem
for hfo x based resistive memory with sub-ns switching speed and
high endurance,” in Electron Devices Meeting (IEDM), 2010 IEEE
International. IEEE, 2010, pp. 19–7.

[36] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B.
Kim, C.-J. Kim, D. H. Seo, S. Seo et al., “A fast, high-endurance and
scalable non-volatile memory device made from asymmetric ta 2 o 5-
x/tao 2- x bilayer structures,” Nature materials, vol. 10, no. 8, p. 625,
2011.

[37] B. Li, L. Xia, P. Gu, Y. Wang, and H. Yang, “Merging the interface:
Power, area and accuracy co-optimization for rram crossbar-based
mixed-signal computing system,” in Proceedings of the 52nd Annual
Design Automation Conference. ACM, 2015, p. 13.

[38] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan, and
M. Kandemir, “Design and management of 3d chip multiprocessors

680

Authorized licensed use limited to: Tsinghua University. Downloaded on March 07,2021 at 13:14:12 UTC from IEEE Xplore. Restrictions apply.

using network-in-memory,” in ACM SIGARCH Computer Architecture
News, vol. 34, no. 2. IEEE Computer Society, 2006, pp. 130–141.

[39] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerg-
ing non-volatile memories,” in Design Automation Conference (DAC),
2016 53nd ACM/EDAC/IEEE. IEEE, 2016, pp. 1–6.

[40] R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong, “Redeye:
analog convnet image sensor architecture for continuous mobile vision,”
in ACM SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE
Press, 2016, pp. 255–266.

[41] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen, “Pudiannao: A polyvalent machine learning accelerator,”
in ACM SIGARCH Computer Architecture News, vol. 43, no. 1. ACM,
2015, pp. 369–381.

[42] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,” in
Advances in neural information processing systems, 2016, pp. 469–477.

[43] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An instruction set architecture for neural networks,” in
ACM SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE
Press, 2016, pp. 393–405.

[44] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible
dataflow accelerator architecture for convolutional neural networks,” in
High Performance Computer Architecture (HPCA), 2017 IEEE Interna-
tional Symposium on. IEEE, 2017, pp. 553–564.

[45] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop oper-
ation and dataflow in fpga acceleration of deep convolutional neural
networks,” in Proceedings of the 2017 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays. ACM, 2017, pp. 45–54.

[46] M. Mao, Y. Cao, S. Yu, and C. Chakrabarti, “Optimizing latency, energy,
and reliability of 1t1r reram through cross-layer techniques,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 6,
no. 3, pp. 352–363, 2016.

[47] S. Mingcong, Z. Jiaqi, C. Huixiang, and L. Tao, “Towards efficient
microarchitectural design for accelerating unsupervised gan-based deep
learning,” in High Performance Computer Architecture (HPCA), 2018
IEEE 24st International Symposium on, 2018.

[48] S. Mittal, M. Poremba, J. Vetter, and Y. Xie, “Exploring design space
of 3d nvm and edram caches using destiny tool,” Oak Ridge National
Laboratory, USA, Tech. Rep. ORNL/TM-2014/636, 2014.

[49] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
nuca organizations and wiring alternatives for large caches with cacti
6.0,” in Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, 2007, pp.
3–14.

[50] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng,
“Multimodal deep learning,” in Proceedings of the 28th international
conference on machine learning (ICML-11), 2011, pp. 689–696.

[51] D. Park, S. Eachempati, R. Das, A. K. Mishra, Y. Xie, N. Vijaykrishnan,
and C. R. Das, “Mira: A multi-layered on-chip interconnect router archi-
tecture,” in Computer Architecture, 2008. ISCA’08. 35th International
Symposium on. IEEE, 2008, pp. 251–261.

[52] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2536–2544.

[53] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
ACM SIGARCH Computer Architecture News, vol. 37, no. 3, pp. 24–33,
2009.

[54] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[55] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling
low-power, highly-accurate deep neural network accelerators,” in ACM
SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE Press,
2016, pp. 267–278.

[56] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26,
2016.

[57] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models

to fpgas,” in Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on. IEEE, 2016, pp. 1–12.

[58] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[59] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on. IEEE,
2017, pp. 541–552.

[60] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in International
conference on machine learning, 2013, pp. 1139–1147.

[61] W. R. Tan, C. S. Chan, H. Aguirre, and K. Tanaka, “Artgan:
artwork synthesis with conditional categorial gans,” arXiv preprint
arXiv:1702.03410, 2017.

[62] R. Wang, A. Cully, H. J. Chang, and Y. Demiris, “Magan: Mar-
gin adaptation for generative adversarial networks,” arXiv preprint
arXiv:1704.03817, 2017.

[63] H. Wu, S. Zheng, J. Zhang, and K. Huang, “Gp-gan: Towards realis-
tic high-resolution image blending,” arXiv preprint arXiv:1703.07195,
2017.

[64] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning a
probabilistic latent space of object shapes via 3d generative-adversarial
modeling,” in Advances in Neural Information Processing Systems,
2016, pp. 82–90.

[65] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu,
and Y. Xie, “Overcoming the challenges of crossbar resistive memory
architectures,” in 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2015, pp. 476–
488.

[66] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and H.-S. P. Wong, “A
neuromorphic visual system using rram synaptic devices with sub-pj
energy and tolerance to variability: Experimental characterization and
large-scale modeling,” in Electron Devices Meeting (IEDM), 2012 IEEE
International. IEEE, 2012, pp. 10–4.

[67] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2015, pp. 161–170.

[68] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in
Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International
Symposium on. IEEE, 2016, pp. 1–12.

[69] M. Zhu, L. Liu, C. Wang, and Y. Xie, “Cnnlab: a novel parallel
framework for neural networks using gpu and fpga-a practical study
with trade-off analysis,” arXiv preprint arXiv:1606.06234, 2016.

681

Authorized licensed use limited to: Tsinghua University. Downloaded on March 07,2021 at 13:14:12 UTC from IEEE Xplore. Restrictions apply.

