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Abstract

This paper presents crash consistent Non-Volatile Memory
Express (ccNVMe), a novel extension of the NVMe that de-
fines how host software communicates with the non-volatile
memory (e.g., solid-state drive) across a PCI Express bus with
both crash consistency and performance efficiency. Existing
storage systems pay a huge tax on crash consistency, and
thus can not fully exploit themulti-queue parallelism and low
latency of the NVMe interface. ccNVMe alleviates this major
bottleneck by coupling the crash consistency to the data
dissemination. This new idea allows the storage system to
achieve crash consistency by taking the free rides of the data
dissemination mechanism of NVMe, using only two light-
weight memory-mapped I/Os (MMIO), unlike traditional
systems that use complex update protocol and heavyweight
block I/Os. ccNVMe introduces transaction-aware MMIO
and doorbell to reduce the PCIe traffic as well as to provide
atomicity. We present how to build a high-performance and
crash-consistent file system namely MQFS atop ccNVMe.
We experimentally show that MQFS increases the IOPS of
RocksDB by 36% and 28% compared to a state-of-the-art file
system and Ext4 without journaling, respectively.
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System

Software

overhead

PCIe traffic

MMIO DMA(Q) Block I/O IRQ

Ext4/NVMe High 2(N+2) 2(N+2) N+2 N+2
HoraeFS/NVMe Medium 2(N+2) 2(N+2) N+2 N+2
MQFS/ccNVMe Low 4 N+1 N+1 N+1
MQFS-A/ccNVMe Low 2 0 0 0

Table 1. Software overhead and PCIe traffic of differ-

ent systems for ensuring crash consistency. The number

represents the count of operations needed for ensuring crash

consistency of a transaction that consists of N individual 4 KB

data blocks. MMIO: memory-mapped I/O over PCIe. DMA(Q):

device transfers queue entries from/to host using DMA. Block

I/O: 4 KB data blocks transferred via PCIe. IRQ: interrupt re-

quest. Existing file systems atop NVMe require (N+2) block I/Os

and IRQs over PCIe in the common case; the number 2 indi-

cates the extra journal description and commit record requests.

Built atop ccNVMe, MQFS removes the commit record by tak-

ing the free rides of the doorbell operations, thereby reducing

the number of block I/O and IRQ by 1. ccNVMe also reduces

the number of MMIO and DMA(Q) via the transaction-aware

MMIO and doorbell techniques. By further decoupling atom-

icity from durability, MQFS-A atop ccNVMe does not need to

wait for the completion of DMAs(Q), block I/Os and IRQs.

1 Introduction

The storage hardware has improved significantly over the
last decade, e.g., an off-the-shelf solid-state drive (SSD) [5]
can deliver over 7 GB/s bandwidth and provide 5 microsec-
onds I/O latency. To better utilize high-performance SSDs,
the Non-Volatile Memory Express (NVMe) is introduced at
the device driver layer to offer fast accesses over PCIe. With
these changes, the performance bottlenecks are shifted back
to the software stack.

The crash consistency (i.e., consistently update the persis-
tent data structures despite a sudden system crash such as
a power outage) is one fundamental and challenging issue
faced by the storage systems. Providing crash consistency
incurs expensive performance overhead, and further pre-
vents the system software from taking full advantage of the
fast storage devices. Responding to this challenge, great ef-
forts [15, 17, 22, 24, 27, 28, 31–33, 38, 39, 45, 47] have been
made to enhance the software stack.

Although the hardware and software stack can be contin-
uously advanced, there still remains one critical issue: the
inefficiency from the boundary of the hardware and soft-
ware (i.e., the NVMe driver) prevents the software stack
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from further providing higher performance (§3). For exam-
ple, as presented in Table 1, to guarantee crash consistency
of a transaction that consists of N individual 4 KB user data
blocks, existing file systems (e.g., Ext4 and HoraeFS [27])
built atop NVMe need to wait for the completion of these
data blocks which involve several MMIOs, DMAs, block I/Os
and IRQs. This consumes the available bandwidth of the
PCIe links and the SSD, and increases the transaction la-
tency, therefore lowering the application performance.
In this paper, we propose ccNVMe, a novel extension of

NVMe to define how host software communicates with the
SSD across a PCIe bus with both crash consistency and per-
formance efficiency (§4). The key idea of ccNVMe is to couple
the crash consistency to the data dissemination; a transaction
(a set of requests that must be executed atomically) is guaran-
teed to be crash-consistent when it is about to be dispatched
over PCIe. The data dissemination mechanism of the original
NVMe already tracks the life cycle (e.g., submitted or com-
pleted) of each request in the hardware queues and doorbells.
ccNVMe leverages this feature to submit and complete the
transaction in an ordered and atomic fashion, and makes the
tracked life cycles persistent for recovery, thereby letting the
software ensure crash consistency by taking the free rides
of the data dissemination MMIOs. Specifically, a transaction
is crash-consistent once ccNVMe rings the submission or
completion doorbells.
ccNVMe communicates with the SSD in a transaction-

aware fashion, rather than the eager per-request basis of the
original NVMe; this reduces the number of MMIOs, block
I/Os and interrupt requests (see MQFS/ccNVMe of Table 1),
and thus increases the maximum performance that the file
system can achieve. By further decoupling atomicity from
durability, ccNVMe ensures crash consistency just after ring-
ing (notifying) the SSD’s submission queue doorbell, with
only two MMIOs (see MQFS-A/ccNVMe of Table 1).

ccNVMe is pluggable and agnostic to storage systems; any
storage system demanding crash consistency can enable ccN-
VMe and explicitly mark the request as an atomic one. Here,
we design and implementMQFS to exploit the fast atomicity
and high parallelism of ccNVMe (§5). We further introduce
a range of techniques including multi-queue journaling and
metadata shadow paging to reduce the software overhead.

We implement ccNVMe andMQFS in the Linux kernel (§6).
ccNVMe places the submission queues along with its head
and tail values on the persistent memory region (PMR) [10]
of the NVMe SSDs, and embeds the transaction order in the
reserved fields of the NVMe I/O command. As a result, ccN-
VMe provides failure-atomicity without any logic changes
to the hardware, and is compatible with the original NVMe.
We experimentally compare ccNVMe and MQFS against

Ext4 [2], HoraeFS [27] which is a state-of-the-art journaling
file system, and Ext4-NJ (§7); Ext4-NJ does not perform jour-
naling and we assume it to be the ideal upper bound of the

Ext4 on modern NVMe SSDs.We findMQFS performs signifi-
cantly better than Ext4 and HoraeFS for a range of workloads.
MQFS even surpasses Ext4-NJ when the workload is not se-
verely bounded by I/O. In particular, MQFS increases the
throughput of RocksDB by 66%, 36% and 28%, compared to
Ext4, HoraeFS and Ext4-NJ, respectively. Through the crash
consistency test of CrashMonkey [35], we demonstrate that
MQFS can recover to a correct state after a crash.
In summary, we make the following contributions:

• We propose ccNVMe to achieve high performance and
crash consistency by coupling the crash consistency to the
data dissemination, decoupling atomicity from durability
and introducing transaction-aware MMIO and doorbell.

• We propose MQFS to fully exploit ccNVMe, along with a
range of techniques to reduce software overhead.

• We implement and evaluate ccNVMe and MQFS in the
Linux kernel, demonstrating that ccNVMe and MQFS out-
perform state-of-the-art systems.

2 Non-Volatile Memory Express

Non-Volatile Memory Express (NVMe) [6] is an interface
like serial ATA (SATA) for software to communicate with
high-performance SSDs. It is muchmore efficient than legacy
interfaces due to its low latency and high parallelism of its
high-performance queuing mechanism. The NVMe supports
65535 I/O hardware queues each with 65535 commands (i.e.,
queue depth). Each hardware queue is mapped to each CPU
core to deliver scalable performance. Here, we use Figure 1
to briefly introduce its data dissemination mechanism.

CQ

DMA 
engine

PCIe

SQDB
MSI-X

CQDB

Block I/O

①

② ④ ⑤ ⑥

Host

SSD
③

SQ

⑦

DMA
MMIO

Figure 1. NVMe command processing. Described in §2.

Each host CPU core has its own independent submission
queue (SQ), completion queue (CQ) and associated doorbells
(SQDB and CQDB). The SQ and CQ are essentially circular
buffers stored in host memory; the SQDB stores the tail value
of SQ while the CQDB stores the head value of CQ. The host
first places the I/O command in the free SQ slot ( 1 ), followed
by updating the SQDB with the new tail value ( 2 ) to notify
the SSD of the incoming command. The SSD then fetches the
command ( 3 ) and transfers the data from host ( 4 ). After
a command has completed execution, the SSD places a CQ
entry in the free slot of the CQ ( 5 ), followed by generating
an interrupt to the host ( 6 ). The host consumes the new CQ
entry and then writes the CQDB with a new head value to
indicate that the CQ entry has been consumed ( 7 ). As we
can see, an I/O request requires at least 2 MMIOs, 2 DMAs of
the queues, 1 block I/O and 1 interrupt request (e.g., MSI-X).
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Figure 2. Motivation test. Throughput of 4 KB append write followed by fsync. Described in §3.

PMR (persistent memory region) is a new feature of NVMe
released in the 1.4 spec circa June 2019 [8]. It is a region of
general purpose read/write persistent memory of the SSD.
The SSD can enable this feature by exposing a portion of
persistent memory (e.g., capacitor-backed DRAM or Optane
Memory) which can be accessed by the CPU load and store in-
structions. In this paper, to implement and evaluate ccNVMe
on a variety of commercial SSDs that do not support PMR,
we use 2 MB in-SSD capacitor-backed DRAM to package the
tested SSDs as PMR-enabled ones (details in §6).

3 Motivation

In this section, we revisit the crash consistency on mod-
ern NVMe SSDs. Journaling (a.k.a., write-ahead logging)
is a popular solution used by many file systems including
Linux Ext4 [2], IBM’s JFS [14], SGI’s XFS [44] and Windows
NTFS [34] to solve crash consistency issue. Hence, we per-
form experiments on journaling file systems in particular
Ext4, Ext4 without journaling (Ext4-NJ) and a recently pro-
posed HoraeFS [27] to understand the crash consistency
overhead. In the Ext4-NJ setup, we disable journaling of
Ext4, and assume it to be the ideal upper bound of Ext4 on
modern NVMe SSDs. Using the FIO [4] tool, we launch up
to 24 threads, and each performs 4 KB append writes to
its private file followed by fsync independently. We choose
this workload as the massive small synchronous updates can
stress the crash consistency machinery (i.e., journaling). We
consider three NVMe SSDs that were introduced over the
last 6 years, including flash and Optane SSDs; the perfor-
mance matrix of these SSDs is presented in Table 3; the other
configurations of the testbed are described in §7.1. Figure 2
shows the overall results. The gap between Ext4-NJ and Ext4
(or HoraeFS) quantifies the crash consistency overhead.

In the older NVMe drive, as shown in Figure 2(a), the
journaling setups (i.e., Ext4 and HoraeFS) perform compara-
bly against the no-journaling setup (i.e., Ext4-NJ), and even
outperform Ext4-NJ. Using journaling to take advantage of
the higher sequential bandwidth of the SSD, and optimizing
journaling as in HoraeFS to reduce the software overhead,
delivers significant improvements on throughput; the SSD’s
bandwidth is therefore saturated (see Figure 2(d)).

However, as NVMe SSDs evolve, the crash consistency
overhead becomes significant and tends to be more severe,
as presented in Figure 2(b)-(c). Notably in the 24-core case
of Figure 2(c), the crash consistency overhead (i.e., the ratio
of (Ext4-NJ - HoraeFS) to HoraeFS) is nearly 66%. Except
for Ext-NJ, all file systems fail to fully exploit the available
bandwidth. Further analyses suggest that the inefficiency
comes from the software overhead and PCIe traffic.
Software overhead.Many Ext4-based file systems includ-
ing HoraeFS and BarrierFS [45] use a separate thread to
dispatch the journal blocks for ordering and consistency.
The computing power of a single CPU core is sufficient for
old drives, but is inadequate for newer fast drives. Moreover,
the context switches between the application and journaling
thread introduce non-negligible CPU overhead. Efficiently
utilizing multi-cores to perform journaling in the applica-
tion’s context becomes important, as we will show in MQFS.
PCIe traffic. To achieve atomicity of N 4 KB data blocks, the
journaling generates two extra blocks (i.e., the journal de-
scription and commit block) for a single transaction. This ap-
proach requires 2 × (N+2) MMIOs, 2 × (N+2) DMAs from/to
the queue entries, (N+2) blocks I/Os and (N+2) interrupt re-
quests if block merging is disabled. When the SSD is fully
driven by the software stack with enough CPU cores, the ap-
plication performance is instead bottlenecked by the bound-
ary of the software and hardware. With a large bandwidth
consumed at the device driver, the available bandwidth pro-
vided to the file system is therefore limited. Moreover, the
file system needs to wait for the completion of these I/Os
and requests to ensure the atomicity of a transaction. This
increases the transaction latency, leaves the CPU in an idle
state and thus lowers the throughput.

4 ccNVMe: Design and Implementation

To reduce the PCIe traffic and improve the performance
efficiency for crash-consistent storage systems, we propose
ccNVMe to provide efficient atomicity and ordering.
The key idea of ccNVMe is to couple the crash consis-

tency to the data dissemination. The original NVMe already
records the requests in the submission queues and their
states in the doorbells; ringing the submission queue door-
bell (SQDB) indicates that the requests are about to (but not
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Figure 3. ccNVMe design overview. To guarantee atomicity, ccNVMe needs only step 1 and 2 despite the size of a transaction.

The green parts highlight the differences between ccNVMe and the original NVMe. Described in §4.

yet) be submitted to the SSD while ringing the completion
queue doorbell (CQDB) suggests that these requests are com-
pleted. These two doorbells (states) naturally represent the
“0” (nothing) and “1” (all) states of the atomicity.

Based on this observation, we extend NVMe to be atomic
and further crash-consistent. ccNVMe makes the submission
queues durable in case of a sudden crash, and rings the door-
bells in the unit of a transaction rather than a request, to let
the requests of a transaction reach the same state (e.g., all
or nothing), thereby achieving atomicity. We show how to
provide the transaction abstraction atop the original request
notion in §4.2. However, as NVMe does not prescribe any
ordering constraint nor persistence of the submission queue,
it is non-trivial to persist the submission queues entries over
the PCIe link and ring the doorbell efficiently and correctly.
We introduce transaction-aware MMIO and doorbell for effi-
cient persistence in §4.3, and present how to ring the doorbell
to enforce ordering guarantees in §4.4.

4.1 Overview

Figure 3 presents an overview of ccNVMe. In the leftmost of
the figure, ccNVMe is a device driver that sits between the
block layer and the storage devices. But unlike traditional
NVMe, ccNVMe moves further by providing the atomicity
guarantees at the boundary of the hardware and software
layers. This design has two major advantages. First, ccNVMe
lets the atomicity take the free rides of fast NVMe queu-
ing and doorbell operations, and thus accelerates the crash
consistency guarantees. Second, ccNVMe provides generic
atomic primitives, which can free the upper layer systems
from the need to implement a complex update protocol and
to reason about correctness and consistency. For example,
the applications can directly issue atomic operations, or use
the classic file systems APIs (e.g., write) followed by fsync
or a new file system primitive fatomic proposed by this
work to ccNVMe to ensure failure atomicity.

In the right part of Figure 3, ccNVMe keeps the multi-
queue design of the original NVMe intact; each CPU core
has its own independent I/O queues (i.e., SQs and a CQ),
doorbells and hardware context (e.g., interrupt handler) if the
underlying SSD offers enough hardware resources. The only
difference is the (optional) ccNVMe extension added to each

Dword Bits NVMe ccNVMe

2-3 00:63 reserved transaction ID
12 16:19 reserved REQ_TX or REQ_TX_COMMIT

Table 2. ccNVMe command format. Each command is

64 Bytes. Dword: 4 Bytes. Described in §4.2.

core. In particular, ccNVMe creates persistent submission
queues (P-SQ) and corresponding doorbells (P-SQDB) in the
persistent memory region (PMR) of the NVMe SSD. When
receiving atomic operations, ccNVMe generates ccNVMe
I/O commands to the P-SQ and rings the P-SQDB. Now, the
atomicity is achieved by only two MMIOs (i.e., 1 - 2 ) in
the common case. We design the ccNVMe I/O command by
using the reserved fields of the NVMe common command;
this makes ccNVMe compatible with NVMe. Consequently,
the storage device can directly fetch the I/O commands from
the P-SQ without any logic changes.
The other procedures of an I/O command of ccNVMe,

including the data transfer ( 3 ), interrupt ( 4 and 5 ) and
command completion ( 6 ), is almost similar to NVMe, except
that the basic operational unit is the transaction (a set of
operations that need to be executed atomically) rather than
the request from each slot of the queues.

4.2 Transaction: the Basic Operational Unit

Each entry of an SQ represents a request to a continuous
range of logical block addresses. ccNVMe distinguishes the
atomic request from the non-atomic request via a special at-
tribute REQ_TX. A special atomic request with REQ_TX_COMMIT
serves as a commit point for a transaction. Hence, the com-
mit request implicitly flushes the device to ensure durability,
by issuing a flush command first and setting the FUA bit in
the I/O command, if the volatile write cache is present in
the SSD. ccNVMe embeds these attributes in a reserved field
in the I/O command (Table 2), and handles these atomic
requests differently based on their category (§4.3, §4.4).
ccNVMe groups a set of requests as a transaction and

assigns each transaction a unique transaction ID. The trans-
action ID can be generated by the applications or file systems
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by a logical or physical timestamp (e.g., RDTSCP instruction).
This ID is used for the unique identification of a transaction
as well as deciding the persistence order across multiple sub-
mission queues. The transaction ID is stored in a reserved
field of the command (Table 2).

4.3 Transaction-Aware MMIO and Doorbell

ccNVMe uses persistent MMIO writes to insert atomic re-
quests to P-SQ and ring P-SQDB, which is different from
NVMe that uses non-persistent MMIO writes. Figure 4(a)
illustrates the persistent MMIO write. MMIO write is per-
formed directly by the CPU store instruction. Here, since
the P-SQ structure is organized in a circular log, ccNVMe
leverages the write combining (WC) buffer mode of the CPU
to consolidate consecutive writes into a larger write burst,
thereby improving the memory and PCIe accesses efficiency.
To ensure persistence, ccNVMe uses MMIO flushing via two
steps. First, clflush followed by mfence is used to flush the
MMIO writes to the PCIe Root Complex. Second, exploiting
the PCIe ordering that a read request must not pass a posted
request (e.g., write) (Table 2-39 in PCIe 3.1a spec [11]), ccN-
VMe issues an extra MMIO read request of zero-byte length
to ensure that the MMIO writes finally reach PMR.

Unfortunately, persistentMMIOwrite is significantly slower
than the non-persistent one. As shown in Figure 5, when
issuing 64 bytes payloads, the latency of persistent write (i.e.,
write+sync) is 2.5× higher than that of non-persistent write
(i.e., write). We also notice that the bandwidth and latency
of the persistent write are approaching non-persistent write,
especially when the MMIO size is larger than 512 bytes.
The original NVMe uses non-persistent MMIOs and can

place the submission queues in the host memory. As a result,
it updates the submission queues and rings the doorbells in a
relatively eager fashion: whenever a request is inserted into
the NVMe submission queue, it rings the doorbell immedi-
ately. However, in ccNVMe that requires persistent MMIOs
and operates at the unit of a transaction, ringing the doorbell
on a per-request basis results in considerable overhead, for
two reasons. First, issuing persistent MMIO writes without
batching prevents the CPU from exploiting the coalescing
potentials in the WC buffer, lowering the performance. Sec-
ond, per-request doorbell incurs unnecessary MMIOs over
PCIe, as a transaction is completed only if all of its requests
are finished; only one doorbell operation is needed.

ccNVMe introduces transaction-aware MMIO and doorbell

for dispatching the requests and ringing the doorbell. The
key idea here is to postpone the MMIO flushing (i.e., 2 and
3 in Figure 4(a)) and doorbell until a transaction is being
committed. Figure 4(b) depicts an example. Suppose a trans-
action consists of two requests,Wx−1 andWx−2. In step 1,
Wx−1 is a normal atomic request with REQ_TX that comes
first, and ccNVMe stores it using the CPU store instruction.
When receiving a commit request with REQ_TX_COMMIT, cc-
NVMe triggers MMIO flushing. In step 2, ccNVMe uses cache

CPU WC buffer PCIe Root
Complex PMR

① store ② cache line flush ③ PCIe read

Wx-1 Wx-2

Step 1:①

CPU WC buffer

Step 2:②+③

WC buffer P-SQ

Wx-1 Wx-2

Step 3: ring

P-SQDB

tail

(a) Persistent MMIO write

(b) Transaction-aware doorbell

Figure 4. Transaction-aware MMIO and doorbell. De-

scribed in §4.3.
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line flush and PCIe read as presented in Figure 4(a) to persist
the queue entries to P-SQ. Finally in step 3, ccNVMe rings
the P-SQDB by setting the tail pointer of the P-SQ. Com-
pared to naïve approach which requires N MMIO flushings
and N doorbell operations for a transaction that contains
N requests, ccNVMe only requires 1 MMIO flushing and 1
doorbell operation, regardless of the size of the transaction.

4.4 Correctness and Crash Recovery

Crash consistency includes atomicity and ordering guaran-
tees.We present how ccNVMe provides these two guarantees
during normal execution and after a crash. The key idea here
is to complete the dependent transaction atomically and in
order and track the life cycle of transactions in the face of a
sudden crash. During crash recovery, ccNVMe uses the life
cycles from PMR to redo the completed transactions while
dropping non-atomic or out-of-order transactions.
Normal execution. In ccNVMe, the requests are submitted
and completed in the unit of transaction. This is achieved via
the transaction-aware doorbell mechanism. In particular, cc-
NVMe holds the same assumption that ringing the doorbell
(i.e., writing a value to a 4 B address) itself is an atomic oper-
ation as in the original NVMe. ccNVMe rings the doorbell
atomically (i.e., steps 2 and 6 of Figure 3) after updating
the entries of P-SQ and CQ. Consequently, the transactions
are submitted and completed atomically.
The ordering here means the completion order of depen-

dent transactions during normal execution. ccNVMe main-
tains only the “first-come-first-complete” order of each hard-
ware queue although the original NVMe does not prescribe
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any ordering constraint. ccNVMe allows the device controller
to process the I/O commands from the submission queue
in any order, the same as the original NVMe. Yet, ccNVMe
completes the I/O commands in order by chaining the com-
pletion doorbell (i.e., updating P-SQ-head and ringing the
CQDB sequentially). This ensures that a transaction is made
complete only when its preceding ones finish; the upper
layer systems thus see the completion states of dependent
transactions in order.
Crash recovery. During crash recovery, ccNVMe finds the
unfinished transactions and leaves the specific recovery al-
gorithms (e.g., rollback) to upper layer systems. In particular,
in the face of a sudden power outage, the data of PMR in-
cluding P-SQ, P-SQDB and P-SQ-head are saved to a backup
region of the persistent media (e.g., flash memory) of the SSD.
When power resumes, the data is loaded back onto the PMR.
Then, ccNVMe performs crash recovery during the NVMe
probe; it provides the upper layer system with the unfinished
transactions for recovery. Specifically, the transactions of
the P-SQ that range from the P-SQ-head to P-SQDB are un-
finished ones. ccNVMe makes an in-memory copy of these
unfinished transactions; the upper layer systems can thus
use this copy for recovery logic (e.g., replay finished trans-
actions and discard unfinished ones). As ccNVMe always
completes the transactions atomically and in order, it keeps
the correct persistence order after crash recovery.

ccNVMe does not guarantee any global order across mul-
tiple hardware queues; it only assists the upper layer system
with the global order by providing the persistent transaction
ID field. Upper layer systems can embed the global order
in this field to decide the persistence order during recovery.
We further show a file system crash recovery in §5.5 and
experimentally study its correctness in §7.6.

4.5 Programming Model

ccNVMe is a generic device driver that does not change the
interfaces for upper layer systems. Specifically, the kernel file
system can use the intact submit_bio function to submit the
write requests that require crash consistency; the application
can use the original nvme command or the ioctl system call
to submit raw ccNVMe commands. The only exception is that
upper layer systems must explicitly mark the request (e.g.,
tag the bio structure with REQ_TX) and control the ordering
across multiple hardware queues (e.g., write the transaction
ID to a new field of the original bio).
In the current design, ccNVMe does not control the or-

dering and atomicity across multiple hardware queues for
the consideration of CPU and I/O concurrency. Therefore,
ccNVMe does not allow the requests of a transaction to
be distributed to different hardware queues. This requires
that the thread queuing atomic requests to ccNVMe can not
change its running core until it commits the transaction (i.e.,
marks a request with REQ_TX_COMMIT), as the current NVMe
storage stack follows the principle that assigning a dedicated

hardware queue to each core as much as possible. As we
will show in §7.5.2, queuing a transaction consumes only
µs-scale latency, and this is not a big limitation. We leave
the solution to this limitation for future work.

4.6 Discussion

ccNVMe does not need any change in hardware logic, though,
additional changes in the NVMe SSD controller are highly
likely to significantly boost the performance.
Transaction-aware scheduling. The responsiveness of a
transaction is determined by its slowest request. The NVMe
SSD controller can leverage the transaction notion of ccN-
VMe to dispatch and schedule requests to different channels
and chips, to achieve low transaction latency.
Transaction-aware interrupt coalescing. The NVMe has
standardized interrupt coalescing to mitigate host interrupt
overhead by reducing the rate at which interrupt requests
(e.g., MSI-X) are generated by a controller. Nonetheless, the
suitable aggregation granularity of the interrupt coalescing is
hard to decide due to the semantic gap and workload change.
Using ccNVMe, the controller can send only one interrupt
to the host only when a transaction is completed.

5 MQFS: The Multi-Queue File System

ccNVMe is file system and application agnostic; any file sys-
tem or application desiring crash consistency can be adopted
to ccNVMe, by explicitly marking the atomic requests and
assigning the same transaction ID to the requests from a
transaction. Recall that our study in §3 shows modern Linux
file systems still suffer from software overhead and thus are
unable to take full advantage of ccNVMe. In this work, we
introduce multi-queue file system (MQFS) to fully exploit the
atomicity guarantee and multi-queue parallelism of ccNVMe.

5.1 Overview

We develop MQFS based on Ext4 [2], reusing some of its
techniques including in-memory indexing and directory/file
structure. The major difference is the multi-queue journal-

ing introduced to replace the traditional journaling module
(i.e., JBD2), along with a range of techniques to ensure both
high performance and strong consistency. Here, we present
how the critical functions of the crash consistency perform
and interact with ccNVMe, followed by introducing each
technique at length in the next subsections.

MQFS divides the logical address space of the device into
a file system area and several journal areas; the file system
area remains intact as in Ext4;MQFS partitions the journal
area into multiple portions, and each portion is mapped to
a hardware queue. By tagging persistent updates as atomic
ones, each core performs journaling on its own hardware
queue and journal area, and thus reduces the synchronization
from multiple CPU cores.
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Synchronization primitives. The fsync of MQFS guaran-
tees both atomicity and durability. Every time a transaction
is needed (e.g., create, fsync), the linearization point is in-
cremented atomically and assigned as the transaction ID.
When fsync is called,MQFS tags the updates with REQ_TX
and the final journal description block with REQ_TX_COMMIT,
followed by sending these blocks to the journal area for
atomicity and recovery. Note that compared to JBD2, MQFS
eliminates the commit block and removes the ordering points
(e.g., FLUSH), thereby reducing the write traffic and boosting
performance; ringing the P-SQDB actually plays the same
role as the commit block. The fsync returns successfully
until the transaction is made durable, i.e., all updates have
experienced steps 1 to 6 of Figure 3.
Atomicity primitives.MQFS decouples the atomicity from
durability, and introduces two new interfaces, fatomic and
fdataatomic, to separately support the atomicity guarantee.
fatomic synchronizes the same set of blocks of fsync, but
returns without ensuring durability, i.e., all updates have ex-
perienced steps 1 to 2 of Figure 3. fdataatomic is similar
to fatomic, except that it does not flush the file metadata
(e.g., timestamps) if the file size is unchanged. Refer to the
following code. write(file1, "Hello"); write(file1,
"SOSP"); fatomic(file1); using fatomic, the application
can ensure that the file content is either empty or “Hello
SOSP”; no intermediate result (e.g., “Hello”) will be persisted.

We present the I/O path of the synchronization and atomic-
ity primitives, and the advantages of separation of atomicity
from durability using detailed graphs and numbers in §7.5.2.

5.2 Multi-Queue Journaling

Each core writes the journaled data blocks to its dedicated
journal area with less coordination between other cores at
runtime. Conflicts are resolved by using the global transac-
tion ID among transactions during checkpointing. A simple
way of checkpointing is to suspend all logging requests to
each hardware queue, and then checkpoint the journaled
data from the journal areas in the order determined by the
transaction ID.MQFS instead introduces multi-queue jour-
naling to allow one core to perform checkpointing without
suspending the logging requests of other cores.

The key idea of multi-queue journaling is to use per-core
in-memory indexes to coordinate the logging and check-
pointing, while using on-disk transaction IDs to decide the
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persistence order. Specifically, the index is a radix tree, which
manages the state and newest version of a portion of jour-
naled data blocks (Figure 6). MQFS distributes the journaled
blocks to the radix trees with different strategies based on
the journaling mode. In data journaling,MQFS distributes
the journaled blocks by hashing the final location of the
journaled data, e.g., logical block address % the number of
trees. In metadata journaling mode, as only the metadata is
journaled and the metadata is scattered over multiple block
groups (a portion of file system area), MQFS finds the radix
tree by hashing the block group ID of the journaled metadata.
Each radix tree takes the logical block address of the jour-
naled block as the key, and outputs the journal description
entry (JH) recording the mapping from journal block address
to final block address along with the transaction ID (TxID)
and its current state (state).
MQFS uses these indexes to checkpoint the newest data

block and append (but not suspend) the incoming conflicting
logging requests. In Figure 6, suppose journal area 1 runs out
of space and checkpointing is triggered; note that JH with
the same subscript indicates a data block written to the same
logical block address. MQFS replays the log sequentially; for
JH1, it finds its TxID is lower than the newest one from tree
1, i.e., another journal area contains a newer block, and thus
skips the journaled data (JD). JH2 in its log is the newest one
and therefore can be checkpointed; before checkpointing,
the state field is set to chp, indicating that this block is being
checkpointed. Now, suppose journal area 2 receives a new
JH2. By searching tree 2, MQFS finds that another journal
area is checkpointing this block. It then appends the new
JH2 after the old JH2 of tree 2, marks this entry as log and
continues to write JH2 and JD. Using the in-memory indexes
to carefully control the concurrency, and the transaction
ID to correctly enforce the checkpointing order,MQFS can
process logging and checkpointing with higher run-time
concurrency.

5.3 Metadata Shadow Paging

The metadata is small (e.g., 256 B) and the file system usu-
ally stitches metadata from different files into a single shared
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metadata block. Though accessing different parts of the meta-
data block, operations from different threads are executed
serially. For example, as shown in Figure 7(a), two threads T1
and T2 update the same block D1. Although the two threads
update disjoint parts, they are serialized by the page lock, due
to the access granularity of the virtual memory subsystem.

To ease this overhead and to construct the journal entries
in parallel, we introduce metadata shadow paging to further
parallelize I/O operations. The main idea is to update the
metadata page sequentially while making a local copy for
journaling. MQFS uses this technique to fully exploit the
concurrent logging of the multi-queue journaling.

For example in Figure 7(b), T1 updates the in-memory D1,
makes a copy and then journals that copy D1−1. Immediately
after T1 has made a copy, T2 can start processing D1 with
the same procedure, i.e., copy and journal D1−2.
In MQFS, only the metadata blocks use shadow paging

because only a few metadata blocks (e.g., 1-3) are needed for
a fsync call in the common case. Data blocks still use the
typical lock-based approach because (1) the data blocks are
aligned with page granularity without page-level contention
from different files, and (2) the number of data blocks is
usually non-deterministic; a request with enormous user
data blocks can consume a large portion of memory space.

MQFS uses metadata shadow paging to journal the file sys-
tem directory tree. Specifically, MQFS first takes a snapshot
of the updated metadata, and then journals the read-only
snapshot. For example in Figure 7(c), T1 creates a new file
B and persists it to the storage. Meanwhile, T2 creates and
syncs a new file C. Assume A is new to /root and T1 goes first.
T1 performs shadow paging on path /root/A/B, and then
releases the lock on the directory entries of A and /root. Af-
ter that, T2 performs shadow paging on path A/C. Finally, T1
and T2 journal individual path snapshots in parallel, thereby
increasing concurrency; MQFS merges the two paths at the
checkpoint phase, applying the newest file system directory
tree to the file system area.

5.4 Handling Block Reuse across Multi-Queue

A challenge of MQFS is handling block reuse. Like Ext4,
MQFS supports both data and ordered metadata journaling.
The tricky block reuse case, becomes more challenging in
MQFS. In metadata journaling, the file system journals only
the file system metadata and lets the user data blocks bypass
the journal area. Problems arise from the bifurcated paths.

For example, the file system first journals a directory entry
(the content of directories is considered metadata) JD1. Then
the user deletes the directory, freeing the block of D1. Later,
the file system reuses D1 and writes some user data to it,
bypassing journal. Assume a crash happens at this time. The
further recovery replays the log which overwrites D1 with
the old directory entry JD1. As a result, the user data is filled
with the content of the directory entry and is thus corrupt.
To address this block reuse problem, classic journaling adds
revocation record JR to avoid replaying the revoked JD1.
Unfortunately, directly applying the JR toMQFS can not

solve this problem. Using the same example, as shown in
Figure 8(a), suppose journal area 1 runs out of space and
performs a checkpoint on JD1. At this time, journal area 2
receives a JR on D1, indicating the previous JD1 of journal
area 1 can not be replayed. After that, the file system reuses
the D1 and submits a user block directly to the file system
area, bypassing the journal. Assume the JD1 is successfully
checkpointed and a crash happens before the persistence
of the later D1. During crash recovery, the JR does not take
any effect because the JD1 is already written back to the file
system area. As a result, the user still sees the incorrect data
block (i.e., the old directory entry).

The root cause of this issue is: though the JR synchronizes
the journal area and file system area, it is unable to coordinate
the journal areas across multiple queues. Hence, MQFS uses
the per-core radix trees for synchronization, writing the JR
record selectively.
Specifically, as shown in Figure 8(b), there are two cases

when the file system is about to submit a JR record: (1) the
reused block is being checkpointed by the journal area 1
and (2) the reused block is not yet checkpointed. In the first
case, the JR record is cancelled andMQFS regresses to data
journaling mode for JD1 and journals the JD1 for correct-
ness, even D1 is a user data block. In the second case, the JR
record is accepted by journal area 2; the radix tree removes
associated JH that is older than the JR. The next checkpoint
of journal area 1 therefore ignores JD1.

5.5 Crash Recovery

Graceful shutdown. At a graceful shutdown (e.g., umount),
MQFSwaits for the completion of all in-progress transactions
before detaching from ccNVMe. This ensures thatMQFS does
not rely on any information from ccNVMe for replaying the
journal and ensuring crash consistency.
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Sudden crash.MQFS performs crash recovery in the unit of
transaction. It first reads the P-SQ from ccNVMe to find the
unfinished transactions;MQFS discards these transactions.
For committed transactions, MQFS links the transactions
ordered by the transaction ID from all journal areas, and
replays them sequentially, the same as in the classic single-
compound journaling of Ext4.

6 Implementation Details

We implement ccNVMe in the Linux kernel 4.18.20 as a load-
able kernel module by extending the nvme module, which is
based on the NVMe 1.2 spec [7] (circa Nov. 2014). We look at
the newest 1.4c spec [9] (circa Mar. 2021); there is no change
in the command processing steps, common command fields
nor the specific write command in this version, and thus the
ccNVMe design can be also applied to the newest NVMe.

Using ioremap_wc, ccNVMe remaps the PMR region from
a PMR-enabled SSD to enable the write combining feature
of the CPU on this region. ccNVMe uses memcpy_fromio
for MMIO read and memcpy_toio for MMIO write. As our
tested SSDs have not enabled PMR yet, we use an indirect
approach to evaluate ccNVMe, as depicted in Figure 9.
In the ideal implementation (Figure 9(a)), a request re-

quires one round trip to the Test SSD. Our implementation
(Figure 9(b)) uses a PMR SSD to wrap a Test NVMe SSD as
a PMR-enabled one. In particular, MQFS first submits the
request to ccNVMe. ccNVMe then forwards the request to
the Test SSD through the block layer, after it performs queue
and doorbell operations on the PMR SSD. Upon completion,
ccNVMe rings the doorbell (if desired) on the PMR SSD be-
fore returning toMQFS. In our implementation, the MMIO
operations (i.e., 1 , 2 and 6 of Figure 3) are duplicated; one
to PMR SSD and another to the Test SSD. The block I/O and
MSI-X (i.e., 3 , 4 and 5 of Figure 3) remains one from the
Test SSD. Therefore, the evaluation atop our implementation
can reflect the least performance and the same consistency
of the ideal implementation.

7 Evaluation

In this section, we first describe the setups of our test envi-
ronment (§7.1). Next, we examine the performance of trans-
action processing of ccNVMe (§7.2) and evaluate MQFS
against the state-of-the-art journaling file systems through
microbenchmark (§7.3) and macrobenchmark (§7.4). Then,

Name Seq. Bandwidth Rand. IOPS 4KB Latency

Intel flash
750 NVMe

Read: 2.2 GB/s
Write: 0.95 GB/s

Read: 430K
Write: 230K

Read: 20 us
Write: 20 us

Intel Optane
905P NVMe

Read: 2.6 GB/s
Write: 2.2 GB/s

Read: 575K
Write: 550K

Read: 10 us
Write: 10 us

Intel Optane
DC P5800X1

Read: 7.2 GB/s
Write: 6.2 GB/s

Read: 1.5M
Write: 1.5M

Read: 5 us
Write: 5 us

1 This is a PCIe 4.0 SSD. On our PCIe 3.0 server, its sequen-
tial read/write bandwidth and random read/write IOPS are
3.3 GB/s, 3.3 GB/s, 850K and 820K, respectively. Its 4 KB
random read/write latency through the Linux kernel NVMe
stack is 8 us and 9 us, respectively.

Table 3. NVMe SSDs performance.

we perform a deep dive into understanding how different
aspects of ccNVMe and MQFS contribute to its performance
gains (§7.5). Finally, we verify the crash consistency of MQFS
in the face of a series of complex crash scenarios (§7.6).

7.1 Experimental Setup

Hardware. We conduct all experiments in a server with 2
Intel E5-2680 V3 CPUs; each CPU has 12 physical cores and
runs at 2.50 GHZ. We use three SSDs; their performance is
presented in Table 3. The PMR SSD has 2 MB PMR and its
PMR performance is presented in Figure 5.
Compared systems. For the performance of atomicity guar-
antees, we compare ccNVMe against the classic approach
(e.g., JBD2) and Horae’s approach [27]. For file system and
application performance, we compare MQFS against Ext4,
Ext4-NJ and HoraeFS [27], a state-of-the-art journaling file
system optimized for NVMe SSDs. Ext4 is mounted with
default options. To show the ideal performance upper bound,
we disable the journaling in Ext4 and refer this setup to
Ext4-NJ. Note that all the tested file systems are based on the
same codebase of the Ext4, share the same OS, use metadata
journaling and use 1 GB journal space in total.

7.2 Transaction Performance

This section evaluates the transaction performance of differ-
ent approaches: the classic that writes a journal description
block and journaled blocks followed by writing a commit
record; the Horae one that removes the ordering points of the
classic one; the ccNVMe one that packs the journal descrip-
tion block and the journaled blocks as a single transaction.
During the test, we vary the number of threads and the size
of a transaction. Each transaction consists of several random
4 KB requests. Each thread performs its own transactions
independently. Figure 10 reports the results.
Single-core performance. ccNVMe-atomic outperforms
the classic and Horae by 3× and 2.2× averagely in a single
core, as shown in Figure 10(a). Compared to the classic and
Horae, ccNVMe achieves 1.5× and 1.2× throughput when we

140



0

1k

2k

3k

write size (KB)
4 8 16 32 64

100

200

300

400

# of threads
4 8 12

classic Horae ccNVMe ccNVMe-atomic

100
200
300
400

# of threads
4 8 12

(a) Single-core Throughput (b) Single-core I/O utilization (c) Multi-core TPS (d) Multi-core I/O utilization

classic Horae ccNVMe ccNVMe-atomic

0

200

400

# of threads
0 1 2 3 4 5 6

Th
ro

ug
hp

ut
 (M

B
/s

)

I/O
 u

til
iz

at
io

n 
(%

)

I/O
 u

til
iz

at
io

n 
(%

)

K
 T

x/
s

0

50

100

write size (KB)
4 8 16 32 64

0

50

100

# of threads
1 2 4 8 12

Figure 10. Atomic transaction performance. Tested SSD: Intel P5800X. Throughput: transactions per second × write size. I/O

utilization: used bandwidth ÷ maximum bandwidth. TPS: transactions per second. ccNVMe: atomicity and durability guarantee.

ccNVMe-atomic: atomicity guarantee. Described in §7.2.

0

500

1.0k

1.5k

write size (KB)
4 8 16 32 64 128

0

500

1k

# of threads
4 8 12 16 20 24

Ext4 HoraeFS Ext4-NJ MQFS MQFS-atomic

0

500

1k

# of threads
4 8 12 16 20 24

(a) Single-core Throughput (b) Single-core Latency (c) Multi-core Throughput (d) Multi-core Latency

Ext4 HoraeFS Ext4-NJ MQFS MQFS-atomic

0

100

200

# of threads
1 4 8 12

Th
ro

ug
hp

ut
 (M

B
/s

)

Av
g.

 L
at

en
cy

 (u
s)

Av
g.

 L
at

en
cy

 (u
s)

Th
ro

ug
hp

ut
 (M

B
/s

)
0

50

100

150

write size (KB)
4 16 64 128

0

100

200

# of threads
1 8 16 24

Figure 11. File system performance. Tested SSD: Intel 905P. MQFS: atomicity and durability guarantees (i.e., fsync). MQFS-

atomic: atomicity guarantee (i.e., fdataatomic). Error bar: standard deviation of the latency. Described in §7.3.

wait for the durability of the transactions. Through inspect-
ing the I/O utilization via the iostat tool, we observe that
even with a 64 KB write size, the classic and Horae drives
only 62% and 63% the bandwidth while ccNVMe achieves
93% (Figure 10(b)). ccNVMe-atomic does not expose the la-
tency of block I/O and interrupt handler to the transaction
processing, thus achieving higher throughput and I/O uti-
lization. Moreover, ccNVMe removes the ordering points
in transaction processing as in Horae, and reduces the traf-
fic (i.e., the commit block and doorbell MMIOs) over PCIe,
therefore outperforming its peers.
Multi-core performance.We extend the single-core mea-
surements to use up to 12 threads, and each issues 4 KB
atomic writes. Figure 10(b) presents the results. We high-
light two takeaways here. First, by decoupling atomicity
from durability, ccNVMe-atomic saturates the bandwidth
using only two cores, while others need at least 8 cores (Fig-
ure 10(d)). Second, when the load is high (i.e., over 8 cores), all
approaches are able to saturate the bandwidth by issuing in-
dependent transactions. However, as ccNVMe eliminates the
commit block and reduces the MMIOs, ccNVMe still brings
50% TPS gain against the classic and Horae (Figure 10(c)).

7.3 File System Performance

We examine the throughput and latency of the file systems.
Here, we use FIO [4] to issue append write followed by

fsync or fdataatomic, which always trigger metadata jour-
naling. During the test, we vary the size of each write request
and the number of threads. Figure 11 shows the results.
Single-core performance. From Figure 11(a), we observe
thatMQFS exhibits 2.1×, 1.9× and 1.2× throughput averagely
against Ext4, HoraeFS and Ext4-NJ respectively in a single
core. As presented in Figure 11(b), the fsync latency de-
creases by 56%, 41% and 24% on average, when we useMQFS
against whenwe use Ext4, HoraeFS and Ext4-NJ, respectively.
From the error bar, we find thatMQFS delivers more stable
latency. Here, we find that the SSD’s bandwidth is not fully
saturated by the single thread. Unlike HoraeFS that uses a
dedicated thread to perform journaling,MQFS performs jour-
naling at the application’s context to avoid context switch,
and scales the journaling to multi-queue, thereby increasing
the throughput and decreasing the latency. Due to the elimi-
nation of the ordering points in journaling,MQFS overlaps
the CPU and I/O processing, and thus prevails Ext4-NJ.
Multi-core performance. In Figure 11(c), when the num-
ber of threads is lower than 12, MQFS exhibits up to 2.4×,
1.5× and 1.1× throughput gain against Ext4, HoraeFS and
Ext4-NJ respectively. As shown in Figure 11(d), MQFS re-
duces the average fsync latency by 55.6% and 28% averagely
when compared to Ext4 and HoraeFS respectively. Here, the
reasons are a little different. First, fsync calls from different
threads are likely to contend for the same metadata block. In
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Ext4 and HoraeFS, the accesses to the same block are serial-
ized by the block-level lock.MQFS copies out the metadata
block for journaling and thus improves the I/O concurrency.
Second, in MQFS, when a thread performs checkpointing,
except for necessary version comparison of its local trans-
action ID with the global one on the global radix trees, it
does not block other threads. When the number of threads
grows over 12,MQFS saturates the throughput; it achieves
68% the throughput of Ext4-NJ, and outperforms Ext4 and
HoraeFS by 2× and 1.5×, respectively. The major bottleneck
here is shifted to the write traffic over PCIe. AsMQFS does
not need the journal commit block and reduces the MMIOs
using write combining, it provides higher throughput.
Decoupling atomicity from durability. From Figure 11,
we also observeMQFS-atomic further improves performance
over MQFS and Ext4-NJ. The improvements come from two
aspects. First, ccNVMe itself decouples atomicity from dura-
bility; built atop ccNVMe, MQFS guarantees atomicity once
the atomic requests are inserted into the hardware queue
(i.e., 1 and 2 of Figure 3), which is very fast (more details in
§7.5.2). Second, compared to Ext4-NJ, the threads of MQFS
need not synchronize on the shared page, and thus insert
the requests independently, efficiently using the CPU cycles.

7.4 Application Performance

We now evaluate MQFS performance over the I/O intensive
Varmail [3], and both CPU and I/O intensive RocksDB [1].
Varmail. Varmail is a metadata and fsync intensive work-
load from Filebench [3]. Here, we use the default configura-
tion of Varmail. Figure 12(a) plots the results.

In SSD A,MQFS achieves 2.4×, 1.2× and 0.9× the through-
put of Ext4, HoraeFS and Ext4-NJ respectively. In the faster
SSD B, MQFS outperforms Ext4 and HoraeFS by 2.6× and
1.1× respectively; MQFS achieves comparable throughput
compared to Ext4-NJ. The improvement of MQFS comes
from the following aspects. First, in SSD A, all HoraeFS, Ext4-
NJ andMQFS are bounded by the I/O. Compared to HoraeFS,
MQFS eliminates the journaling commit block and reduces
the persistent MMIOs and thus provides higher throughput.
Second, in the faster SSD B, I/O is no longer the bottleneck
for HoraeFS and Ext4-NJ. Varmail contains many persistent
metadata operations such as creat and unlink followed by

fsync.MQFS parallelizes the I/O processing of the metadata
blocks by metadata shadow paging while Ext4-NJ and Ho-
raeFS serialize the accesses to the shared metadata blocks.
Consequently, MQFS utilizes the CPU more efficiently to
fully drive the SSD and thus provides higher throughput.
RocksDB. RocksDB is a popular key-value store deployed
in several production clusters [1]. We deploy RocksDB atop
the tested file systems and measure the throughput of the
user requests. Here, we use db_bench, a benchmark tool
of RocksDB to evaluate the file system performance under
the fillsync workload, which represents the random write-
dominant case. During the test, the benchmark launches 24
threads, and each issues 16-byte key and 1024-byte value to
a 20 GB dataset. Figure 12(b) shows the result.
In SSD A,MQFS prevails EXT4-NJ and HoraeFS by 40%.

In SSD B, the throughput increases by 66%, 36% and 28%
when we useMQFS against when we use Ext4, HoraeFS and
Ext4-NJ respectively.MQFS overlaps the I/O processing of
the data, metadata and journaled blocks, and reduces the
cache line flushings over the PCIe. Therefore,MQFS signif-
icantly reduces the CPU cycles spent on idle-waiting (i.e.,
block I/O) or busy-waiting (i.e., MMIO) for I/O completion.
This in turn reserves more CPU cycles for RocksDB and file
system logic. During the test, we observe that MQFS has
5× higher CPU utilization (i.e., the CPU cycles consumed in
kernel space) and RocksDB atopMQFS has 2× higher CPU
utilization (i.e., the CPU cycles consumed in user space).
Moreover, the MQFS does not need a commit record, which
not only reduces the number of block I/Os that need extra
CPU operations (e.g., memory allocation), but also removes
the context switches introduced by the interrupt handler. As
a result of higher CPU and I/O efficiency,MQFS outperforms
its peers on RocksDB which is both CPU and I/O intensive.

7.5 Understanding the Performance

In this section, we evaluate how various design techniques
of MQFS contribute to its performance improvement.

7.5.1 Performance Contribution. Now, we show that
each of the design techniques of MQFS, i.e., ccNVMe (§4),
the multi-queue journaling (§5.2) and the metadata shadow
paging (§5.3), are essential to improve the performance. The
test increases the number of threads, and each issues 4 KB
write followed by fsync on a private file. We choose Ext4
as the baseline because MQFS is implemented atop Ext4.
Figure 13(a) shows the result on an Optane 905P SSD.

The ccNVMe (+ccNVMe) contributes to performance signif-
icantly; it achieves approximately 1.4× the throughput of
the baseline. Atop the ccNVMe, the multi-queue journaling
(+MQJournal) further makes around 47% gains averagely.
The metadata shadow paging (+MetaPaging) shows a further
23% throughput improvement. The above results therefore
indicate that all of the three building blocks are indeed nec-
essary to improve the performance.
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Figure 13. Performance contribution. Base: Ext4. +ccN-

VMe: use ccNVMe (§4) to perform journaling. +MQJournal:

multi-queue journaling (§5.2). +MetaPaging: metadata shadow

paging (§5.3). Described in §7.5.1.

We further quantify the effect of each technique in a faster
SSD. The results are shown in Figure 13(b). We find that the
advantages of ccNVMe become more obvious; the ccNVMe
increases the throughput by up to 2.1×. This is because when
I/O becomes faster, both the CPU and I/O efficiency become
dominant factors affecting performance. ccNVMe removes
context switches and decouples atomicity from the durability,
thereby accelerating the rate at which the CPU dispatches
requests to the device. Moreover, ccNVMe reduces the block
I/O and MMIO traffic over PCIe, making more bandwidth for
file system usage. The MQJournal also boosts the throughput
by 53% averagely with varying the threads. When enabling
MetaPaging, the throughput increases by 20% on average.
This suggests that scaling the I/Os of the journaling and de-
coupling the atomicity from the durability to parallelize CPU
and I/Os bring significant performance improvement. We
also notice that the benefit of ccNVMe becomes narrow be-
yond 8 threads. This is because when the number of threads
exceeds 8, the multicore scalability of the traditional journal-
ing becomes the major performance bottleneck that hides
the benefits of ccNVMe.
7.5.2 Decomposing the Latency. In this section, we in-
vestigate the file system internal procedure to understand the
performance of MQFS against Ext4-NJ. The test initiates one
thread and repeats the following operations: it first creates a
file, and then writes 4 KB data to the file, ending with calling
fsync on the file. As shown in the topmost of Figure 14(a),
for each fsync,MQFS starts a transaction, searches the dirty
data blocks and allocates space for them (S-iD), followed by
sending the blocks to ccNVMe. After that,MQFS processes
the file metadata (S-iM) and the parent directory (S-pM) with
similar procedures. Next, it constructs and submits the jour-
nal description block that contains the transaction ID and the
mapping from the home logical block address to the journal
logical block address of the journaled data (S-JH). It finally
waits for the completion and durability of these blocks (W-x).
The table below presents the average time (in nanoseconds)

S-iD S-iMCPU S-pM W-iM W-iD W-pM

SSD

S-iD + W-iD

iM
pM

S-iM + W-iM S-pM + W-pM

SSD

iD

iD iM pM

CPU

S-iD S-iM S-pM S-JH W-iM W-iD W-pM W-JH fatomic fsync
6790 1782 1599 1107 10300 110 343 356 11278 22387

(a) MQFS fsync() and fatomic() path of a newly created file

S-iD + W-iD S-iM + W-iM S-pM + W-pM fsync(ns)
17928 10519 10040 38487

(b) Ext4-NJ fsync() path of a newly created file

S-JH

JH

fatomic()
W-JH

Figure 14. Latency breakdown. S: submit; i: this file; D:

data; M: metadata; p: parent directory; JH: journal description

block; W: wait for I/O completion. The number in the tables

shows the time (in nanoseconds) spent on this function. Due to

power loss protection of the Optane SSD, the FLUSH is ignored

by the block layer and is thus not shown. Described in §7.5.2.

spent on each function. Similarly, Figure 14(b) presents the
fsync path of Ext4-NJ, which synchronously processes each
type of data block without journaling.
MQFS decreases the overall latency by 42% compared to

Ext4-NJ. This improvement comes from two aspects: higher
CPU and I/O efficiency. First, the CPU is usedmore efficiently
in MQFS. With ccNVMe, MQFS continuously submits the
iD, iM, pM and JH, without leaving the CPU in an idle state
waiting for the I/O like Ext4-NJ. From the figure, we can see
that atomicity guarantee (i.e., fatomic) costs only around
10 µs. Second, the I/O in MQFS is performed with higher
efficiency.MQFS queues more I/Os to the storage, taking full
advantage of the internal data parallelism of the SSD. Nev-
ertheless, the fatomic and fsync can be further improved
according to our analysis. The first is the block layer which
is still relatively heavyweight for today’s ultra-low latency
SSD; for example, S-iM still costs more than 1 µs to pass
the request. The second is in S-iD, where Ext4 introduces
non-negligible overhead for searching the dirty blocks and
allocating space.

Workload Brief Description

Crash Points

Total Passed

create_delete create() and remove() on files. 1000 1000

generic 035 rename() overwrite on existing files
and directories. From xfstest 035. 1000 1000

generic 106 link() and unlink() on files,
remove() directory. From xfstest 106. 1000 1000

generic 321 Various directory fsync() tests.
From xfstest 321. 1000 1000

Table 4. Crash consistency test. Described in §7.6.
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7.6 Crash Consistency

We test if MQFS recovers correctly in the face of unexpected
system failures. We use CrashMonkey [35], a black-box crash
test tool, to automatically generate and perform 1000 tests
for each workload. We run four workloads to cover several
error-prone file system calls including rename; the generic
workloads are from xfstest. Table 4 reports the results. As
MQFS always packs the target files of a file operation into a
single transaction for atomicity, it passes all 1000 test cases.

8 Related Work

Crash consistent file systems.Many researches optimized
crash-consistent storage systems in particular the journaling
file systems [15, 17–20, 22, 25–27, 29, 36, 38, 43, 45]. These
systems rely on the classic journaling over NVMe to pro-
vide failure atomicity, which waits for the completion of
several PCIe round trips. Built atop ccNVMe, MQFS how-
ever achieves the atomicity guarantee by using only two
persistent MMIOs. This increases the throughput as well
as decreases the latency, since ccNVMe conceals the PCIe
transfer and interrupt handler overhead to the file system
for atomicity, and reduces the traffic (e.g., the commit record)
over PCIe. We next discuss the comparison of the techniques
(i.e., multi-queue journaling and metadata shadow paging)
against these journaling file systems at length.

One category of these works [22, 29, 38, 39] is to improve
the multicore scalability by partitioning the journal into
multiple micro journals, which is similar to multi-queue
journaling. The differences lie in the control flow of each
micro journal and the coordination among micro journals.
First, IceFS [29], SpanFS [22], CCFS [39] and iJournal-

ing [38] introduce extra write traffic (e.g., the commit record)
and expensive ordering points (e.g., the FLUSH). Partition-
ing amplifies the extra write traffic, as it prevents multiple
transactions from sharing a commit record to amortize the
write traffic. MQFS however does not need ordering points
and extra write traffic, by taking the free rides of the NVMe
doorbell operations.

Second, the virtual journals of IceFS share a single physical
log and need to suspend logging and serialize checkpoint-
ing when making free space. SpanFS allows each domain to
perform checkpointing in parallel, but needs to maintain a
global consistency over multiple domains (i.e., building con-
nections across domains) at logging phase; this introduces
extra synchronization overhead and write traffic. iJournal-
ing preserves the legacy single compound journal, and may
need to synchronize the compound journal and the file-level
journals during checkpointing.MQFS instead uses scalable
in-memory indexes for higher run-time scalability, and de-
tects conflicts during checkpointing and recovery.

Another category [17, 27, 45] is to decouple the ordering
from durability, thereby removing the ordering points of jour-
naling. ccNVMe naturally decouples the transaction ordering

from durability when queuing requests (the in-order com-
pletion in §4.4). ccNVMe further decouples a stronger prop-
erty, the atomicity, from the durability, providing a clearer
post-crash state. In addition, MQFS differs from them in the
multicore scalability and the handling of page conflicts.
First, OptFS, BarrierFS and HoraeFS use only one thread

to commit transactions. Hence, the throughput is bounded
by the single thread and the latency increases due to com-
munication (e.g., context switches) between the application
and JBD2 thread. In contrast, MQFS scales the journaling
to multiple hardware queues and performs it in the applica-
tions’ context, to fully exploit the concurrency provided by
the SSD and the multi-core CPUs of modern computers.

Second, in BarrierFS and HoraeFS, a running transaction
with a conflict page can not be committed until the dependent
transactions have made this page durable. This serializes the
committing phase on transactions sharing the same page.
MQFS uses metadata shadow paging to handle page conflict,
thereby increasing the I/O concurrency of committing phase.
ScaleFS [15] logically records the directory changes in

per-core operation logs for running transactions and merges
these logs during committing. The hybrid-granularity jour-
naling of CCFS associates byte-range changes with the run-
ning transaction and super-imposes the delta on the global
block when transaction committing starts. These designs are
orthogonal to the metadata shadow paging, and can be ap-
plied toMQFS to concurrently buffer the in-memory changes
for the running transaction before committing.
ccNVMe does not provide isolation as in TxOS [40]. In-

stead, we leave the isolation to upper layer systems since
there are various levels of isolation and different systems
have their own demand for isolation. Providing isolation at
upper layer systems is orthogonal to ccNVMe’s design.
Transactional storage. A school of works provide atomic-
ity interfaces at disk level [16, 21, 23, 30, 37, 41, 42]. They
can achieve higher performance than ccNVMe by leveraging
the features of storage media (e.g., copy-on-write of NAND
flash). Yet, they require extensive hardware changes and it
remains unclear whether similar designs can be applied to
emerging Optane memory-based SSDs. ccNVMe requires the
storage to enable the standard PMR, which is relatively sim-
ple (by using capacitor-backed DRAM or directly exposing a
portion of the persistent Optane memory). ccNVMe does not
limit the number of concurrent atomic writes as long as the
hardware queue is available, while in transactional SSD this
is limited by the internal resources (e.g., device-side CPU).
Byte-addressable SSD. Flatflash [12] exploits the byte ad-
dressability of SSD for a unified memory-storage hierarchy.
Bae et.al [13] design an SSD with dual byte and block in-
terfaces and simply put the database logging atop its SSD.
Coinpurse [46] uses the PMR to expedite non-aligned writes
from the file systems. Horae [27] builds dedicated ordering
interfaces atop PMR. In this work, we use PMR to extend
NVMe for efficient crash consistency.
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9 Conclusion

We present ccNVMe, a new approach to achieve high per-
formance and crash consistency simultaneously in storage
systems. By coupling the crash consistency to the data dis-
semination and decoupling atomicity from durability, ccN-
VMe ensures atomicity guarantee with only two lightweight
MMIOs and therefore improves the performance. We intro-
duceMQFS to fully exploit the ccNVMe, showing thatMQFS
successfully saturates the SSD’s bandwidth with fewer CPU
cores and outperforms state-of-the-art file systems.
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