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Abstract—With the increasing demand for vast storage repositories, network storage has become important for mass data storage

and processing, telescopic addressing and availability, and the quality of service and security of data storage. This situation demands

the emergence of new technology in the data storage field. In this paper, TH-MSNS, a SAN system, is introduced. This system was

designed and implemented based on the Fiber Channel Protocol and its I/O route was tested. This paper introduces some of the key

techniques in the network storage system, including an SCSI simulating target, intelligent and uniform storage management

architecture, and the processing flow of the read/write commands. The software for the new storage area network system was

implemented as a module in the kernel mode to improve its efficiency. The SCSI target adopts a layered design and standardized

interface, which is compatible with various types of SCSI devices and can use different network protocols. The storage management

software adopts distributed architecture, which enables higher interoperability and compatibility with various kinds of management

protocols. TH-MSNS boasts characteristics such as high adaptability, high efficiency, high scalability, and high compatibility and is

easy to maintain.

Index Terms—Network architecture and design, mass storage, information storage, FCP.
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1 INTRODUCTION

MASSdata storage has become one of the main problems
in the development of networks because of a sharp

increase in data storage. With a large capacity, high transfer
speed, and high system availability, a network storage
device can serve for information access and data sharing. In
past years, the C/S computational model has been widely
used in networks, while, at the same time, information and
data have been scattered because every server in this model
has its own storage system. This kind of inconvenient
architecture may easily lead to a phenomenon known as
“information islands,” which goes against the aim of
information integration and data sharing. As new storage
architecture emerges, the storage area network technique
provides a solution to the problem of how to achieve
information integration and data sharing; it also offers easy
manageability and high security. Because the storage area
network introduces a network-oriented storage structure
and complete separation between data storage and comput-
ing, it has many desirable features, such as flexible
addressing ability, long-distance transmissibility, high I/O
speed, and the ability to share data.

In a topological study of storage networks, Molero et al.

analyzed the efficiency and reliability of some topological

structures, such as their hierarchy, star, and ring [1]; they

also proposed performance models for different topological

structures [2]. In their study of network storage protocols,

Voruganti and Sarkar made a comparison among three

typical protocols in the aspects of efficiency, compatibility,
and scalability [3]; they then gave the most appropriate
working conditions for each protocol. In design and
implementation, Palekar and Russell provided an imple-
mentation of network storage systems based on the ISCSI
protocol [4], which is modularized in a Linux kernel.
Namgoong developed a disk array system, which was
based on the Fiber Channel Protocol (FCP), and then
evaluated its performance [5]. In the application of storage
networks, Milanovic proposed several methods to set up an
enterprise network storage system [6].

In this paper, a storage area network (SAN) system, the
TH-MSNS (TsingHua Mass Storage Network System) [7],
[8], [9] is designed and implemented. The system is based
on Linux SCSI and FCP and its storage node has cluster or
multiprocessor architecture. The storage nodes in our
system can easily be extended in its storage capacity and
data processing ability. As the user would demand, our
system can extend its storage capacity and data processing
ability with a maximum capacity of 45TB for each 16-port
FC Switch. It supports multiuser connection and has high
throughput. In order to improve its performance, we
designed an embedded operating system, working on the
storage nodes to make an optimized runtime environment
for the software we developed. All of the drivers and our
software run in the kernel space with multithread program-
ming technology, which greatly reduces the resource cost.
An intelligent and uniform management software was
designed, which adopted distributed architecture and took
the entire storage system as a set of interrelated, layered
objects to set up the object mode of the storage system. The
modes are consistent with the CIM/WBEM specifications,
so it has high compatibility and portability. The manage-
ment system provides two access modes, one is the GUI
mode and the other is a WEB page mode. Optimized
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techniques in both hardware and software are used together
to optimize the I/O route of network storage and to increase
the transfer speed and efficiency.

In contrast with other systems in this area, the TH-MSNS
has a unique flexible hardware and software architecture. It
can connect to fiber hard disks or SCSI hard disks, forming
a network storage system with different functions and
different levels of performance. The storage node has an
SMP main board, on which multithread I/Os are scheduled
to improve I/O efficiency. The design of the storage
network software tools of the system, such as a virtualized
storage management system and a fault-tolerant system,
provides convenient performance at the node level and,
thus, the adaptability of the system is improved. The
technology of a multientry I/O processor and a cooperative
multi-I/O processor is also provided to ensure high
availability and high reliability.

A detailed description of the system will be introduced
in later sections of the paper. First, we will introduce the
hardware configuration and network connection of our

storage area network system. Second, the software frame-

work and I/O route are proposed with the key technology

and flow description of main commands and the validity of

the system is confirmed. Then, the architecture of the

intelligent and uniform storage management software is

proposed. Third, we draw conclusions from some test

results and introduce future work based on this study.

2 THE DESIGN OF THE TH-MSNS

The TH-MSNS is a unique storage area network system,

with its storage I/O operation controlled by a software

system rather than by hardware, as in a conventional

storage area. This avoids the high cost of the hardware and,

at the same time, gains the maximum performance and

flexibility by the efficiency of the software.

2.1 Hardware Configuration and Structure

Fig. 1 illustrates the hardware configuration and connection

structure of the TH-MSNS, which is connected with a
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Fig. 1. Architecture of the TH-MSNS system on a Linux SCSI subsystem.



cluster of server nodes by a fiber switch. The hardware
architecture of the storage area network system consists of
consoles, I/O process nodes, a dense RAID disk array, fiber
channel connection devices, and a TCP/IP connection
network. Consoles, which act as centers for management
and control the storage system, are not involved with the
data transfer and storage services. They are used for the
management of the storage system. I/O process nodes are
the most essential and important part of the system. They
provide the function of data access and protocol interpreta-
tion, such as the FCP and RAID Protocols. The I/O process
node has two kinds of processors: the FCP processors,
which manage the data transfer, and the storage processors,
which manage the data storage. Each storage system can
include multi-I/O process nodes to provide even greater
capacity. The connection device connects the I/O process
nodes with the consoles. This connection device can be used
to increase the scalability. A dense RAID disk array is
directly attached to the system via a RAID controller (e.g., a
four-channel SCSI-RAID adapter). Our storage system can
support up to 15 I/O process nodes, and each I/O process
node can support 2-3 dense RAID disk arrays. Each disk
array can include at least 30 hard disks, so the total capacity
of our system is about 45 TB.

In order to gain high reliability and high availability and
to keep an eye on the system load balance, multiple I/O
paths are enabled for each storage device in the design of
the system. The paths are kept consistent when accessing
the storage device by a set of policies. There are two kinds
of techniques: One is a cooperative multiple I/O processor
technique—see Fig. 1b—and the other is a multientry
processor technique—see Fig. 1c. With the multientry
processor technique, one or more HBA cards are added to
the original I/O processor and, therefore, provide multiple
I/O paths for a single processor, as shown in Fig. 1a and
Fig. 1b. The multiple I/O paths typically take on parts of the
network load and, thus, the bandwidth is effectively
expanded. Once one of their I/O paths fails, the remaining
paths will provide the access path for all of the data and, so,
the SAN availability is improved by reducing the single
node failure on the I/O path. With the cooperative multiple
I/O processors, multiple I/O processor techniques are
applied in a network storage system, not only extending the
capacity of the storage system, but also improving the
availability and performance by ensuring the cooperation of
multiple I/O processors. The I/O processors might connect
to the same storage device, providing multiple I/O paths
for the device.

2.2 Software Architecture

If classified by the location, the storage area network system
includes three kinds of software, as shown in Fig. 2: the
storage software in the server node, the storage manage-
ment software in consoles, and the software in the network
storage system. The storage software in the server node
consists of the driver of the fiber channel adapter, the SCSI
protocol driver, and the storage management agent. The
driver of the fiber channel adapter implements storage
transfer protocols. It acts as an SCSI client. It encapsulates
the SCSI commands from the SCSI mid-level driver,
transfers them to the fiber target device, and returns the

results. The storage management agent accepts commands

from the management software in consoles, executes the

commands, and returns the results. The storage system

management software consists of four components:

1. Storage management software based on a Browser/
Master/Slave structure.

2. A storage management agent on each server.
3. Storage management interface software in consoles,

such as device management, system management,
backup management, mirroring management, snap-
shot management, and virtualized management.

4. An I/O agent in the I/O process nodes. The software
in the I/O process nodes is data accessing, Fiber
Channel protocol processing, RAID protocol proces-
sing, and several others, including a Fiber Channel
target driver, an object simulator, an embedded
operating system, and function agent software.

The software and hardware architecture described above

not only facilitates the expansion and management of the

storage capacity, as well as the design of the backup

subsystem, the mirror subsystem, and the snapshot sub-

system within the storage networks, but also contributes to

the design of reliable, high-performance, and special-pur-

pose storage network protocols and application interface

systems, and it allows storage nodes of the TH-MSNS system

to be connected across a special-purpose network. Compared

with other storage area network products, the benefits of the

TH-MSNS system can be described as follows:

1. The storage node is implemented on an SMP
mainboard, which not only provides the precondi-
tion for implementing the multithreaded I/O sche-
duling and improving the I/O efficiency, but also
enhances the processing capability of I/O nodes.

2. A newly designed flexible and specified software/
hardware architecture is implemented,which en-
ables the connection of fiber disks and SCSI disks
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and the composition of network storage systems
with various functions and performances.

3. The software modules of our storage network, such
as the storage virtualization management module
and the disaster recovery module, were designed on
the storage node level. Such a mechanism truly
achieves irrelevancy with the operating systems and
even the file systems of servers and, thus, greatly
enhances the systems’ generality.

4. An advanced architecture with a multientry I/O
node and cooperative multiple I/O nodes is
provided which efficiently enlarges the data
accessing bandwidth and enhances the reliability
and availability as well.

2.3 I/O Route in TH-MSNS

The key problem with the success of a storage system is the
selection and the validation of the I/O route. A special I/O
route should be used to ensure that the server node finds
such a “local disk” when it searches its hardware, even
though such a space has been put somewhere else on the
network. The difference here is that SCSI target simulator
architecture was adopted to extend the SCSI bus on the
network through the Fiber Channel protocol. So, the SCSI
target simulator must be able to analyze and process the
SCSI commands and messages. In fact, the target simulator
in the I/O node must receive the SCSI command from the
network and then pass the command to the local SCSI
device to be executed and, after that, deliver the result to the
front server. The SCSI-RAID function is provided to present
multiple SCSI disks as a single RAID disk such as RAID 5,
RAID 1, and so on. The I/O path can map the logical RAID
block device to the server as the server’s local device.
Applications on the server node can perform every disk
operation on this “local” disk such as FDISK, FORMAT,
COPY, and READ/WRITE [10].

Because TH-MSNS refers to the multientry I/O machine
and cooperative multiple I/O node machines, its I/O paths
are complex. To explain thewhole system clearly,weprovide
an introduction to the most fundamental and important
techniques of our system in the following sections, excluding
the I/O paths and technologies with the multientry I/O
nodes and cooperative multiple I/O nodes.

With the technology described above, the SCSI target can
easily implement the network-based I/O route of a storage
areanetwork system, as Fig. 3 illustrates.On the server nodes,
the users’ I/O requests are delivered to the SCSI mid level by
the file system. The SCSI mid level transforms these

I/O requests into SCSI commands and detaches them to
I/O storage nodes by using the interface provided by the FC
adapter driver. Then, the FCP adapter sends the SCSI
commands to I/O storage nodes via a switch or another FC
connection device. In this way, to the server node, the FC
adapter driver performs the role of a local SCSI disk.
Generally, applications on server nodes can send SCSI
commands to the SCSI driver as a local SCSI disk. The SCSI
driver transfers the commands to the transfer protocol driver.
An FC adaptor driver or an I-SCSI driver encapsulates the
command into packages and sends the packages to storage
nodes through the storage network. The transfer protocol
driver on the storage nodesdealswith thepackages theyhave
receivedand transmits them to the SCSI target. Then, the SCSI
target handles all SCSI commands. In the implementation,we
chose the SCSI-RAID subsystem to provide an SCSI disk pool
to consolidate storage,which passes SCSI commands on to its
firmware to complete the final stepof the I/Orequest [7], [11].

By using a certain mapping method, a connection was
established between the logical block device on the storage
node and on the server node. In general, although the
logical device is a virtual device, it seems to act as the real
local storage device of the server nodes and can perform
any block device operations. For a more systematic
illustration, the I/O route of the storage system is broken
down in Fig. 4.

In a traditional I/O system, commands are sent to an
SCSI controller; in our system, they are sent to the function
queuecommand( ) of the Qlogic Fibre Channel Adapter
driver, encapsulated, and then sent to the FC adapter on
the storage node. So, the local I/O route is extended to the
fiber channel-based network I/O route.

3 KEY TECHNOLOGY IN THE TH-MSNS

3.1 SCSI Target Simulator

3.1.1 Two-Layered Structure of FETD and STML

The SCSI target is the kernel that implements the network
storage. In the I/O storage node, the target receives an SCSI
command from the network and then passes the command to
the local SCSI device to be executed and, finally, passes the
result back to the server. Considering the scalability and
standardization of the target and referring to the layered
method of the SCSI specification, we divided the target into
two layers: the Front End Target Driver (FETD) and the SCSI
Target Middle Level (STML) to implement the target. The
FETD layer functions as a lower SCSI layer that is responsible
for receiving the SCSI command from the network and then
passing it to the STML layer. On the other hand, the STML
layer is functionally like the SCSI mid-layer, which has the
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Fig. 3. The I/O route of the storage system.

Fig. 4. The I/O virtual route.



task of receiving the incoming SCSI command and then
passing it to the local node to be executed. The details of the
two-layer structured TH-MSNS system are shown in Fig. 5.

The FC adapter generates an interrupt signal when it
receives a frame. Then, the FETD level uses the interrupt
handler to deal with the received frame. If nothing is wrong
with the frame, the FETD sends it to the STML and
continues to wait for other commands. The STML gives the
SCSI COMMAND a unique ID after checking it and then
sends responsive information to the FETD. If the received
SCSI command is READ/WRITE, management for buffers
and exceptions is also needed.

In our implementation, both the FETD and the STML
work in kernel mode. When the FETD is loaded into the
kernel, it registers to the STML first. The STML includes two
threads: the STT (SCSI Target Thread), which performs the
interaction with the FETD, and the SPT (SCSI Signal
Processing Thread). During registration, the FETD submits
an API function table to the STML through which the STML
can return responsive data to the Initiator. On the other
hand, the STML provides a function interface to the FETD
by determining which FETD can transfer SCSI commands
and data and activate the STT. When registration is
completed, the FETD begins to wait for SCSI commands
from the Initiator. Once a command has been received, the
FETD sends it to the STML and activates the STT. Then, the
STT begins to execute the command. The following
description illustrates the process by which a READ
command is executed: First, when the STT is ready, it
notifies the FETD to read the data and then suspend itself
again. Second, when the FETD finishes reading the data, it
wakes up the STT. Third, when the STT completes its task, it
notifies the FETD. Finally, when the FETD finishes interac-
tion with the Initiator, it notifies the STT to release
resources. Thus, the execution of the READ command is
accomplished.

Because the interaction between the FETDand the STML is
implemented through a standard API function call, the two

levels can be designed separately,which greatly helps reduce
the complexity. Only the FETD level must be modified to fit
different network protocols, while the other parts of the SCSI
Target can remain unchanged when different transfer
protocols are applied. Generally speaking, the two-level
framework not only is compatible with all kinds of servers,
but also greatly reduces the cost of SCSI protocols.

The following section demonstrates the main data
structure and the FETD and STML’s control flow of read/
write commands.

3.1.2 The Main Data Structure

The main data structure used in FETD/STML is as follows:
The Target_Emulator is a global variable and is also the
interface between the FETD and the STML. The template
designed as Scsi_Target_Template is the data structure of
the FETD/STML interface function and Target_Scsi_Cmnd
provides the data structure that describes the SCSI
command. The Target_Scsi_Message describes the data
structure of the SCSI message state and the Scsi_Target_
Device describes the data structure of the SCSI target
device. By operating with these data structures, an entire
network storage system is constructed.

Target_Emulator is the main data structure and its
related variables are as follows:

. Target_Scsi_Cmnd*cmd_queue_start/cmd_queue_
end: the global command queue, which stores all the
SCSI commands and their states as well as other
information.

. Target_Scsi_Message*msgq_start/msgq_end: the
global information and command queue, storing all
the target management commands and their states
as well as other information. For management
simplicity, we put the exception process command
and management command in this queue for single
processing.

In addition to the primary data structure described
above, there is also a request queue, a response queue, and
an iocb (IO Control Block) queue of the device command
queue, as well as other queues for various functions.

3.1.3 Design of the Interface between STML and FETD

The target is divided into two layers in the system’s
architecture: the FETD layer and the STML (Fig. 5). They
connect to each other by some API functions. The main
functions of the target are defined as follows:

1. The main functions of the FETD provided by the
STML:

. int register_target_template (Scsi_Target_
Template*)

. int deregister_target_template (Scsi_Target_
Template*)

These two functions are the register interface of
the FETD. The parameter scsi_target_template is the
most important template and contains the API
functions that the FETD provides the STML. By
using these functions, the STML can call back the
FETD for event handling.
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. Scsi_Target_Device* register_target_front_end
(Scsi_Target_Template*)

. int deregister_target_front_end (Scsi_Target_
Device*)

These two functions implement the FETD’s

registration into the STML.

. Target_Scsi_Cmnd *rx_cmnd (Scsi_Target_
Device *device, __u64 target_id, __u64 lun,
unsigned char *scsi_cdb, int len)

The most basic function is called when the FETD

receives an SCSI command. It is used to insert an

SCSI CDB command into the global SCSI command

queue. When the FETD layer receives an SCSI

command, it calls this function to deliver the SCSI

command to the STML layer.

. int scsi_rx_data (Target_Scsi_Cmnd *the_
command)

scsi_rx_data is used for the FETD layer to deliver

the data to the STML layer. In the write operation,

the command and the data are delivered separately.

The FETD layer prompts this function to inform the

STML layer that the data of the_command is ready

and the STT thread will be resumed to execute this

command.

. int scsi_target_done (Target_Scsi_Cmnd* the_
command)

The FETD layer alerts this function to indicate

that the command execution is over, modifying the

command status, resuming the STT thread, and then

deleting the command. When the function returns,

all the information concerning the command is

eliminated.

. int scsi_release (Target_Scsi_Cmnd*)

The FETD layer alerts this function when it wants

to abort some command midway.

. Target_Scsi_Message* rx_task_mgmt_fn
(Scsi_Target_Device*,int,void*)

The FETD layer notifies this function to insert the
task management command and exception com-
mand into the corresponding queue.

2. The functions for the STML provided by the FETD.
The functions for the STML provided by the

FETD are defined in the Scsi_Target_Template, refer-
ring to the data type: struct STT.

3.1.4 Process of Executing the Read/Write Command

The functions for each SCSI command are based on the data
structures and functions defined above to achieve network
storage. The processing flows for read and write commands
are listed as follows:

1. Read command: The processing flow is illustrated in
Fig. 6. Read commands are divided into nine steps as
follows:

a. Scsi mid-level alerts the interface function queue-
command, sending the Scsi_Cmnd formatted
read command to the initiator. After the initiator
driver receives the command, it encapsulates the
command into a Command_Entry instance and
inserts it into the request queue.

b. The iocb is delivered from the initiator to the
target through the network. The target driver
alerts the interrupt service function, gets the iocb
from the response queue, and inserts the iocb
into the device’s iocb queue.

c. The interrupt service function notifies the
process_thread thread to process the iocb queue.
If the command is a new one, the function
accesses the handle_new_cmnd function, sending
the Target_Scsi_Cmnd as the parameter of func-
tion rx_cmnd to the STML layer.

d. The handle_new_cmnd function returns and the
process_thread thread is suspended.

e. After the STML layer has processed the com-
mand, the target returns the struct Target_
Scsi_Cmnd to FETD and sets the command
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status to PROCESSED in the device command
queue. Then, the target creates an iocb instance,
including the information that the data has been
transmitted, and inserts it into the request
queue.

f. The data transmission between the initiator and
the target is processed through the firmware.

g. The initiator sends the confirm message or the
ACK message to inform the target that the data
is received.

h. After acquiring an asynchronous event by the
interruptor, the target sets the command status
to DEQUEUE in the device command queue,
then initiates the STML interface function
scsi_target_done. In the scsi_target_done function,
the hand_to_front_end function is prompted to
renew an iocb instance, including the command-
completed status, and insert it into the request
queue. At this point, the target’s job is over.

i. The initiator’s response queue gets the iocb
instance that was sent by the target and calls
the interrupt service function and the mid-level
interface function indicated by the scsi_done of
the scsi_cmnd object. At this point, the initiator’s
job is over.

2. Write command: The processing flow is illustrated
in Fig. 7. Write commands are processed in nine
steps as follows:

a. Scsi mid-level initiates the interface function
queuecommand, sending the Scsi_Cmnd formatted
write command to the initiator. After the
initiator driver receives the command, it en-
capsulates the command into a Command_Entry
instance and inserts it into the request queue.

b. The iocb is delivered from the initiator to the
target through the network. The target driver
accesses the interrupt service function, gets the
iocb from the response queue, and inserts the
iocb into the device’s iocb queue.

c. The interrupt service function notifies the
process_thread thread to process the iocb queue.
If the command does not exist, the function
initiates the handle_new_cmnd function, sending
the Target_Scsi_Cmnd as the parameter of the
rx_cmnd function to the STML layer.

d. The handle_new_cmnd function returns to the
target and the process_thread thread is suspended.

e. After the STML layer has processed the com-
mand, the target prompts the interface function
rdy_to_xfer to receive the data. Then, the target
renews an iocb instance, including the informa-
tion that informs the initiator that the target is
ready to receive the data, and inserts it into the
request queue.

f. The data transmission between the initiator and
the target is processed through the firmware.
The initiator sends the data to the FETD layer.
The FETD layer sends the data to the STML
layer using the scsi_rx_data function.

g. The initiator sends the confirm message or the
ACK message to inform the target that the data
has been received.

h. After acquiring an asynchronous event by the
interruptor, the target sets the command status
to DEQUEUE in the device command queue,
then sends the STML interface function scsi_
target_done. In the scsi_target_done function, the
hand_to_front_end function is prompted to renew
an iocb instance, including the command-com-
pleted status, and inserts it into the request
queue. At this point, the target’s job is over.

i. The initiator’s response queue receives the iocb
sent by the destination and performs the
interrupt service function and the mid-level
interface function indicated by the scsi_done of
the scsi_cmnd object. At this point, the initiator’s
job is over.

The execution of the commands above demonstrates that
the design and the implementation of the system is proper.
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Both the hardware connection and the software perfor-
mance have achieved the expected objective.

3.2 Intelligent and Uniform Storage Management
Software

The SCSI path and the data path are implemented entirely
in the Linux Kernel and, at the same time, the TH-MSNS
provided intelligent storage management software systems
are at the application level to exchange information with the
users. Today, some storage network-based storage manage-
ment software is neither universal, they are specifically
designed for certain storage networks or devices, nor are
they standardized, so different management software is not
interoperable [12], [13], [14]. In order to standardize system
management, the Distributed Management Task Force
(DMTF) proposed a management specification proposal of
software design: the Common Information Model (CIM)
and the Web-Based Enterprise Management (WBEM)
Initiative [15], [16], [17]. TH-MSNS management software
adopts distributed architecture and consists of five layers,
including the browser, HTTP server, object manager,
provider, and agent. It implements several management
functions, such as object management, device automated
discovery, access control, and log functions. The manage-
ment software is independent of the operating system,
meets the CIM/WBEM specifications, is compatible with
various kinds of protocols, and has strong interoperability
with other management software that meets the CIM/
WBEM specifications. The framework of the TH-MSNS
storage management software is illustrated in Fig. 8.

In the three components of the storage management
software, the object manager is the kernel component. The
object manager consists of four modules: the kernel
manager, the provider interface, the solid storage module,
and the HTTP/XML mapping modules.

From the view of the storage management software, the
entire environment that is managed consists of a set of
interrelated objects and their definition and management is
the kernel manager’s main task. In the TH-MSNS system,
the CIM mode is used to define and manage the basic class
of the various related objects. When the users apply the
management software for a certain storage network, various
managed objects can derive from the CIM basic class; thus,
the various kinds of management software can be aware of
each other. By determining the managed objects and their

attributes and building associations among the objects, the
whole intelligent storage system is abstracted as a set of
interrelated, layered objects and, then, the object mode of
the intelligent storage system is constructed. In addition to
the object management function, the function of the kernel
manager is also expanded and some other functions are also
added to the system, including access control, log, report,
warning, and automated discovery of the device connected
to the intelligent storage system. With the intelligent
management system, the TH-MSNS system is easier to
manage and maintain. The intelligent storage network
consists of a network link device, a storage device, and
management software. In contrast to traditional storage
management software, the TH-MSNS system provides two
kinds of management modes: the GUI and the WEB page
mode. The management interface is able to manage the
storage resources, Fiber Channel card, Fiber Channel
Switch, and SCSI-RAID card uniformly and easily. Through
the Web service, the administrator can directly manage the
storage resources and monitor the storage system on a
common console. The storage software regards the device
on the storage network as its own managed object and, thus,
the system meets the CIM/WBEM specifications, is easy to
transplant, and is compatible with other systems.

4 RESULTS OF TESTING AND ANALYSIS

OF THE TH-MSNS

From the Fiber Channel-based TH-MSNS system imple-
mented above, we constructed a server system, the
TH-Cluster, for which a uniform data storage service was
provided. Its performance in reading or writing data was
tested by the TH-MSNS system.

The configuration of the system test environment is
illustrated in Table 1.

We used an Intel IOmeteor 2003 to test the performance
of the TH-MSNS. The testing data blocks were 4KB, 16KB,
32KB, 64KB, 128KB, and 512KB. The sequential read/write
operations and the random I/O operations (read operations
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Fig. 8. The framework of the TH-MSNS storage management software.

TABLE 1
Main Configuration of the System Test Environment



constituted 80 percent of all operations) were generated by

six 32-bit servers. Figs. 9, 10, 11, 12, and 13 show the

throughput, I/O average response time, and the CPU

utilization of our system.
Fig. 9 and Fig. 10 show the sequential read/write

performance changes slightly with varying increments of

the transfer size. The read throughput reaches more than

100MB/s and the write throughput exceeds 120MB/s and

the best performance reaches 125.299MB/s. With the

increase of the transfer size, the random read/write

throughput continues to increase until it reaches

50.413MB/s, and the latency increases slightly. The CPU

utilization changed slightly during the experiments, but it

never reached 10 percent. These results show that the

system performance is perfect.

5 CONCLUSIONS AND FUTURE WORK

This study included the implantation of a SAN based on the
FCP protocol. The system has the functions that a standard
SAN would have, such as effective data backup and
recovery, data sharing and virtualization, standard software
for management, and support for various platforms.
Because of the limitation of the length of this paper, these
functions and their implementation are introduced in
another paper [18].

Comparing this system with similar research and
products, our system proved to have the following
characteristics:

1. The software design introduces layer-based software
architecture. This simplifies the system’s ability to be
extended for different SCSI devices and network
communication protocols and makes the system
flexible.

2. All of the software is run on the OS’s kernel space,
implemented by a core module. Thus, the number of
memory copies between the user level and the
kernel level is cut down, increasing the system’s
efficiency.

3. The system follows the mainstream protocol criter-
ion. It can be connected and extended easily.

4. The nodes processing the I/O operations employ an
SMP processor and several FC adaptors can be
plugged in. Therefore, to increase the efficiency of
transmission and I/O throughput, multithread
technology should be imposed. A parallel scheduler
and the optimization of I/O routes in an environ-
ment with many initiators and many targets are
areas that require further research.
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Fig. 9. Throughput results for sequential read operations.

Fig. 10. Throughput results for sequential write operations.

Fig. 11. Throughput result for random read/write operations.

Fig. 12. The average response time.

Fig. 13 CPU utilization.
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