
Design and Implementation of an Out-of-Band
Virtualization System for Large SANs

Guangyan Zhang, Jiwu Shu, Wei Xue, and Weimin Zheng

Abstract—Out-of-band virtualization intrinsically has the potential to provide high performance and good scalability. Unfortunately,

existing out-of-band virtualization systems have some limitations, such as restrictions to specific platforms and/or hardware. In this

paper, we present a new out-of-band virtualization system, MagicStore, which is not limited to any specific hardware and supports

three widely used host platforms: Windows, Solaris, and Linux. First, MagicStore uses the SLAS2 approach to scale round-robin

striped volumes efficiently. Second, it survives panics and power failures robustly through a combination of lazy synchronizations,

ordered writes, and REDO logging. Third, it also incorporates typical legacy storage quickly by analyzing partition tables and

reconstructing logical volumes. Our evaluation results from representative experiments demonstrated that MagicStore has the ability to

provide high performance, to introduce low processor overhead, and to have good scalability.

Index Terms—Storage area network, out-of-band virtualization, scaling striped volumes, metadata integrity, legacy storage.

Ç

1 INTRODUCTION

1.1 Motivation

STORAGE virtualization [1] creates an abstraction of the
storage resources, which allows a system to execute its

I/O to blocks of generic storage, without needing to know
exactly where or how the data is stored. It enables the
competence of a logical volume to go beyond the limits of
single physical devices. Therefore, virtualization can take
full advantage of storage resources in a large storage area
network (SAN) to provide higher quality of service (QoS),
that is, larger storage capacity, higher I/O performance, and
better data availability [2].

Storage virtualization in SAN environments is categor-
ized into these groups based on the execution location:
1) Host-based virtualization: Most operating systems have
their own volume managers. Host-based virtualization is
not confined to specific hardware. However, it often brings
larger overhead to hosts and does not support hetero-
geneous host platforms. 2) Storage-based virtualization:
Many storage devices, such as RAID, provide virtualized
logical unit numbers (LUNs). Storage-based virtualization
has no negative impact on host performance. However, it
makes virtualized devices limited in size and unable to
cascade and, hence, impairs the scalability of storage
devices. 3) Network-based virtualization: Virtualization
occurs on the storage network between hosts and storage.
Network-based virtualization both overcomes the scalabil-
ity limitation of storage-based virtualization and offloads
some of the work associated with virtualization from hosts.

According to whether storage virtualization sends
control information in the form of metadata along the same
path as the data transport or not, network-based virtualiza-
tion is subcategorized into in-band virtualization and out-
of-band virtualization. In the in-band architecture, the
virtualization appliance itself is prone to becoming a
bottleneck for storage transactions as the traffic load from
multiple hosts increases. Conversely, out-of-band virtuali-
zation has the potential to provide high performance and
good scalability since it places the appliance outside the
primary path between hosts and storage.

There have already been several virtualization systems
that use the out-of-band architecture. Examples of such
systems include HP VersaStor [3], StoreAge SVM [4], and
others [5], [6], [7]. Unfortunately, most of these systems
suffer from some or all of the following limitations:

1. Platform dependence. Most out-of-band virtualiza-
tion systems are customized for their own products
by different vendors and, hence, are dependent on
specific platforms and/or hardware. To the best of
our knowledge, there is no out-of-band virtualiza-
tion system that is implemented through pure
software and that supports multiple heterogeneous
platforms.

2. Scaling striped volumes. Scaling a round-robin
striped volume can help both enhance the
I/O performance and enlarge the storage capacity
of a system. So far, however, most existing systems
do not support online scaling. The few (for
example, TH-VSS [7]) that include this function are
inefficient and cannot be scaled for large-scale
storage.

3. Incorporating legacy storage. For a data center
where an out-of-band virtualization system will be
deployed, it is very useful to incorporate a large
legacy storage system rapidly. Existing systems can
only copy the entire data on legacy volumes to
virtualized volumes. As a result, the incorporating
process is very time consuming.

1654 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

. The authors are with the Department of Computer Science and Technology,
Room 8-201, East Main Building, Tsinghua University, Beijing 100084,
PR China. E-mail: zhang-gy04@mails.tsinghua.edu.cn
{shujw, xuewei, zwm-dcs}@tsinghua.edu.cn.

Manuscript received 6 June 2006; revised 10 Jan. 2007; accepted 1 June 2007;
published online 28 June 2007.
Recommended for acceptance by X. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0219-0606.
Digital Object Identifier no. 10.1109/TC.2007.70765.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

1.2 Contribution

In this paper, we present and evaluate a new out-of-band

virtualization system, MagicStore, which is not restricted

within any specific hardware. Its virtualization appliance is

implemented in Linux and virtualization agents are

implemented for three platforms commonly found in data

centers: Windows, Solaris, and Linux. This paper presents

three major contributions of this new system:

1. Scaling round-robin striped volumes. Scaling a
striped volume needs to redistribute almost all of
the data chunks1 on the volume online so as to
preserve the round-robin order. MagicStore uses the
SLAS2 approach, which takes advantage of the
reordering window characteristic, to scale round-
robin striped volumes efficiently.

2. Surviving panics and power failures. Some virtualiza-
tion transactions require modification of virtualiza-
tion metadata, which results in the challenge of
keeping the metadata consistent. MagicStore can
survive panics and power failures robustly through
a combination of lazy synchronizations, ordered
writes, and REDO logging.

3. Incorporating large legacy storage. MagicStore ob-
tains the volume layout by analyzing partition tables
on legacy disks and generates virtualization meta-
data to reconstruct a logical volume for each
partition. Therefore, MagicStore can incorporate a
large legacy storage quickly.

1.3 Road Map

The rest of this paper is organized as follows: Related work

is the subject of Section 2. Section 3 presents the design of

the MagicStore system. The implementation of MagicStore

is described in Section 4. Section 5 evaluates the MagicStore

system through detailed experiments. Finally, Section 6

summarizes our research and discusses future work.

2 RELATED WORK

Almost every mainstream operating system has a single-

host-version volume manager, for example, the dynamic

disk manager in Windows [8], Logical Volume Manager

(LVM) in Linux [9], and so on. Since these are inadequate

for SAN environments where multiple hosts share storage

devices, some volume managers supporting cluster envir-

onments have been designed, such as CLVM [10], the

SANtopia volume manager [11], and Cluster EVMS [12].

They only apply to clusters running a single operating

system, but, in fact, more than one operating system runs in

most data centers.
IBM SAN Volume Controller [13] and DataCore SAN-

Symphony [14] are typical in-band virtualization systems.

Because all data are transported through the virtualization

appliance, the latency of reads and writes increases.

Moreover, the virtualization appliance is prone to becoming

an I/O bottleneck of the whole system.

Out-of-band virtualization systems mainly include
HP VersaStor [3], StoreAge SVM [4], V:drive [5], and
SANfs-VM [6]. These systems are dependent on specific
platforms and/or hardware. For instance, HP VersaStor
only applies to specified host bus adapter (HBA) cards
because its agent is implemented in the HBA firmware [3].
When V:drive or SANfs-VM is used, only Linux can run on
the hosts.

Gonzalez and Cortes [15] proposed an algorithm for
scaling RAID5 volumes which has an easily controlled
overhead. The algorithm enables the newly added disks to
be gradually available to serve user requests during the
scaling process. As far as online redistribution of data on
striped volumes is concerned, Ghandeharizadeh and Kim
[16] proposed that a system should employ both lazy and
eager reorganizations: Lazy reorganization is used to
minimize the amount of wasted disk bandwidth by
reorganizing the blocks that are staged in memory by a
media display; eager reorganization prevents the system
from wasting the idle disk bandwidth by employing it to
reorganize files that are not referenced by a media display.
Among all of the previous systems, only the SANtopia
volume manager [11] and TH-VSS [7] can scale a striped
volume online. However, they manage mapping informa-
tion with a mapping table that expands with the volume
size. This restricts their scalability.

The TH-VSS system [7] employs a mirroring mechanism
to ensure that the data on striped volumes is not corrupted
in the scaling process. However, it requires all of the disks
in the original striped volume to have a large unused
storage space. Ordered operations of copying a data chunk
and updating the mapping information [17] can ensure the
consistency of striping. However, this mechanism requires
one write of mapping information for each data chunk
movement, which results in a large cost of data redistribu-
tion. In [18], we presented the reordering window char-
acteristic in the scaling process and proposed the SLAS
approach to scale striped volumes in a disk array. The
difference in the architecture between a disk array and an
out-of-band virtualization system makes SLAS unable to
work in MagicStore. With the help of the reordering
window characteristic, we propose the SLAS2 approach to
scale striped volumes efficiently in an out-of-band virtua-
lization system. The detailed difference between SLAS and
SLAS2 is discussed in Section 3.

3 MAGICSTORE DESIGN

3.1 System Architecture

MagicStore is made up of the manager on the virtualization
appliance and the agent software on each client (Fig. 1). The
manager knows the states of physical devices and manages
virtualization metadata. Instructed by the manager, the
agent creates logical volume devices and performs address
mapping from the logical address space to the physical
address space. Each agent is connected to the manager over
an Ethernet network.

The agent consists of a mapper module, a batman thread
in the kernel space, a loadconf utility, and a configuration
file in the user space. The mapper is a lightweight driver

ZHANG ET AL.: DESIGN AND IMPLEMENTATION OF AN OUT-OF-BAND VIRTUALIZATION SYSTEM FOR LARGE SANS 1655

1. The chunk is the basic unit of data striping in striped volumes and its
size is a multiple of the basic disk block size.

that sits between the file system and the disk driver. It maps
the I/O requests sent to logical volumes to the correspond-
ing physical disks. When the mapper is loaded, it creates
the batman, a kernel thread that receives and executes
virtualization instructions from the manager. The batman
might also be implemented in the user space, but frequent
data copying between the kernel space and the user space
will definitely impair system performance [19]. The config-
uration file mainly contains the information to commu-
nicate with the manager, such as the IP address and
listening port of the manager. The loadconf utility is used to
ask the mapper to reload the configuration information.

The manager consists of three cooperative modules: a
metadata manager, a system monitor, and a data mover.
The metadata manager manages virtualization metadata,
sends virtualization instructions to agents, and processes
mapping requests from agents. It organizes virtualization
metadata with a three-layered model separating physical
volumes, volume groups, and logical volumes [9]. Logical
volumes may be allocated to hosts with access permissions.
The system monitor collects the state information of the
whole system dynamically. Only when the manager has
accurate information about the state of a system can it
perform virtualization management correctly. For instance,
fabric zoning [20] may make a host unable to access some
storage devices. Consequently, it is invalid for the manager
to allocate to a host the storage resources on the devices
unaccessible to it. The data mover moves data according to
a given policy. For example, data redistribution for scaling a
striped volume is performed by the data mover. In addition,
the manager enables the applications on itself to access any
logical volume by loading the agent software.

3.2 System Start-Up and I/O Processing

Fig. 2 shows how the MagicStore system starts up and how
one I/O request from a client is processed by the system step
by step. The manager scans physical disks to obtain the
virtualization metadata on start-up. After booting, the agent
on each client scans physical disks to get their disk identifiers
(UUIDs), retrieves virtualization metadata from the manager,
and creates virtual storage devices accordingly.

As for each logical volume, the mapper can use two

modes to conduct address mapping: the cache mode and

the noncache mode. By default, the mapper maps I/O

requests in the cache mode. In this mode, the mapper holds

the mapping information of a logical volume and calculates

the address mapping for each I/O locally without commu-

nicating with the manager.
When a virtualization transaction such as online resizing

requires modification of the metadata of a logical volume

that has been allocated to a client, the manager first revokes

1656 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

Fig. 1. Architecture of the MagicStore system.

Fig. 2. Workflow of system start-up and I/O processing.

the metadata from the client to make the logical volume
work in the noncache mode. In this mode, the mapper
sends a mapping request to the manager for each I/O. After
the transaction is finished, the manager grants the new
metadata to the client and makes the logical volume switch
back to the cache mode.

This caching mechanism of mapping metadata brings
higher performance due to the reduction of network
communication and provides better scalability since most
I/O requests do not disturb the manager. In most cases,
mapping metadata is not modified and MagicStore works
in the cache mode. This can eliminate the overhead of
network communication because no mapping request is
sent to the manager. In this situation, whether the metadata
server is implemented in pure software or using a hardware
appliance makes no difference. Even if there is a perfor-
mance difference between hardware appliances and Magic-
Store, the difference takes effect only when the mapping
metadata is modified. Moreover, when the mapping
metadata of a logical volume is modified, the other volumes
can still be mapped in the cache mode.

The caching mechanism of mapping metadata also
decreases the possibility that the manager becomes a single
point of failures. In most cases, all of the clients map logical
volumes in the cache mode. Therefore, they can still work
well even when the manager fails. One exception is that
some clients are mapping logical volumes in the noncache
mode when the manager fails. One solution is to use dual
managers in either load-balancing or failover mode, as
many appliance vendors have done [1].

3.3 SLAS2 Approach to Scaling Striped Volumes

Solving the problem of scaling round-robin striped volumes
can be accomplished by finding an efficient approach to
redistributing the data. In addition to reads and writes of
data chunks, data redistribution requires updates of
mapping metadata to guarantee data consistency. Our
focus is to improve the efficiency of data redistribution
from two aspects: 1) reads and writes of data chunks and
2) updates of mapping metadata.

We found that, during the data redistribution process,
there always exists a reordering window where consistency
can be maintained while changing the order of data
movements. Given a request to add m disks to a striped
volume made up of n disks, if the size of the reordering
window at Chunk x is represented as ROW(n, m, x), we
proved that ROWðn;m; xÞ ¼ m� bx=nc [18]. Taking a state
of data redistribution for adding one disk into a two-disk
striped volume (Fig. 3) as an example, when Chunks 8, 9,
10, and 11 are moved in an arbitrary order, no valid chunk
will be overwritten. If Chunk 12 is also taken into account,
when Chunk 12 is moved before Chunk 8, the former will
overwrite the latter. Therefore, ROWð2; 1; 8Þ ¼ 4.

Further, suppose that the system fails when Chunks 9

and 11 have been copied to their new locations and the
mapping metadata has not been updated (see Fig. 4). Their
original replicas will be used after the system reboots. As

long as Chunks 9 and 11 have not been written since they
were copied, the data remains consistent.

The reordering window characteristic provides a theore-

tical underpinning for solving the problem of scaling
striped volumes in an out-of-band virtualization system.

The following conclusions can be drawn from the concept
of a reordering window:

. If and only if data chunks coexist in the same
reordering window is the order of their movements
changeable.

. For almost every data chunk, even if mapping
information is not updated immediately after it is
copied to its new location, data consistency is still
guaranteed.

. A data chunk may have two valid replicas when the
chunk has been copied to its new location and has
not been written since it was copied.

Taking advantage of the above conclusions, we propose

SLAS2 (to be differentiated from SLAS in [18]), an efficient
approach to scaling round-robin striped volumes in an out-
of-band virtualization system. Before a striped volume is

scaled, the mapping mode of the volume is switched to the
noncache mode. The data mover in the manager performs

data redistribution with the SLAS2 approach, which is
described as follows:

. The data mover maintains a sliding window locally
as mapping metadata, which occupies a very small
space.

. The data mover uses lazy updates of mapping
metadata to decrease the number of metadata writes
required by data redistribution.

. The data mover also changes the order of data chunk
movements so as to access multiple successive
chunks via a single I/O.

. If a data chunk has two valid replicas that exist on
two disks, read requests to the chunk are alternated
between the two disks.

The traditional mapping-management solutions, that is,

mapping function [9], [10] and mapping table [6], [11],
either do not support the online redistribution of data or are

inadequate for large-scale storage environments. SLAS2
uses a new mapping management solution based on a

ZHANG ET AL.: DESIGN AND IMPLEMENTATION OF AN OUT-OF-BAND VIRTUALIZATION SYSTEM FOR LARGE SANS 1657

Fig. 3. A state of data redistribution (Disk 2 is newly added).

Fig. 4. If data chunks are copied to their new locations and metadata is

not yet updated when the system crashes, data consistency is still

maintained (the reason is that the data in their original locations are valid

and available).

sliding window [17]. The key idea is to introduce the
concept of a sliding window into the mapping function.
Like a small mapping table, a sliding window describes the
mapping information of a continuous segment of the
striped volume. During data redistribution, only the data
within the range of the sliding window are redistributed.

The data mover does not update the sliding window in
memory onto a local disk until it has to do so to keep
consistency. Data chunks are copied to new locations in
some order, but writes of mapping metadata are done only
under one of two circumstances: 1) When all of the data
chunks in the sliding window have been copied to new
locations, the window offset and the window size on the
disk are updated and 2) when the first write to a data chunk
in the sliding window arrives after the chunk is copied to its
new location, the sliding window is updated and then the
write request is served.

The data mover changes the movement order of data
chunks in a sliding window so as to aggregate reads/writes
of multiple data chunks. Taking the data redistribution state
shown in Fig. 5 as an example, we get ROWð2; 1; 19Þ ¼ 9.
The data mover issues an I/O request to read Chunks 20,
22, 24, and 26, and another one to read Chunks 19, 21, 23, 25,
and 27. Thus, two instead of nine I/Os are required to read
these chunks. When all of these chunks have been read into
a memory buffer, the data mover issues a first I/O request
to write Chunks 21, 24, and 27, a second one to write
Chunks 19, 22, and 25, and a third one for Chunks 20, 23,
and 26 (see Fig. 6). In this way, only three instead of nine
write requests are issued.

A chunk in the sliding window has two valid replicas if it
has been copied to its new location and has not been written
since it was copied. If the two replicas do not exist on the
same disk, read requests to the chunk are alternated
between the two disks.

Although the SLAS approach working in a disk array
[18] shares the same theoretical underpinnings with SLAS2,
there are some technical differences between them which
are summarized as follows:

. The architecture of a disk array is in-band in nature,
so the data mover can make use of the content of the
data accessed by user requests. Conversely, Magic-
Store exploits the out-of-band architecture. Hence,
the data mover residing in the metadata server has
no chance to get the accessed data. The difference in
the architecture makes SLAS unable to work in
MagicStore.

. SLAS stores the sliding window in a component
disk of the striped volume, whereas SLAS2 stores

it in a local disk of the manager. Metadata updates
in SLAS cause a disturbance to the sequence of
disk seeks required by user data accesses. Differ-
ently, SLAS2 updates mapping metadata on a local
disk of the manager, which thoroughly eliminates
the disturbance.

. When the data written by a user I/O overlaps with
the data that has been read into memory and has not
been copied to new locations by the data mover,
SLAS and SLAS2 have different processing steps. In
SLAS, the I/O processor can update the in-memory
data piggyback, so the I/O aggregation is free of any
negative impact. In SLAS2, however, because the
data mover cannot get the update data, the related
chunk is written to the new location before the
mapping information is returned to the agent. Thus,
the early write breaks the aggregated large write into
multiple pieces.

. The in-memory data for I/O aggregation in SLAS
can be used to serve read requests, whereas the in-
memory data in SLAS2 cannot be seen by user I/Os
at all.

The SLAS2 approach has some important advantages.
First, a sliding window occupies a very small space, so
SLAS2 provides better scalability. Second, one write of the
sliding window can commit multiple mapping changes of
data chunks, so lazy updates can decrease the number of
metadata writes effectively. Third, I/O aggregation enables
SLAS2 to have a larger redistribution throughput due to the
decrease of disk seeks. Finally, alternating read requests to a
chunk in the sliding window between two disks can shorten
user I/O latencies.

3.4 Metadata Integrity Maintenance

To enable an out-of-band virtualization system to survive
panics and power failures, it is necessary to maintain the
integrity and consistency of virtualization metadata. When
modifying the virtualization metadata of a logical volume,
the manager revokes the metadata from the related client.
Therefore, only the metadata integrity on the manager side
needs to be ensured. MagicStore uses a combination of lazy
synchronizations, ordered writes, and REDO logging to
achieve this goal.

Each physical volume in a volume group holds a replica
of the metadata describing the volume group. Storing the
metadata on physical disks can bring more benefits than
storing it on the manager locally. It bundles physical disks
and logical volumes they describe together and uses
multiple metadata replicas in each volume group to
enhance the metadata reliability. In order to reduce the

1658 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

Fig. 5. Aggregate reads (multiple successive chunks are read via an I/O).

Fig. 6. Aggregate writes (multiple successive chunks are written via

an I/O).

overhead of metadata updates, MagicStore uses a lazy
synchronization scheme to update multiple replicas in a
volume group. The manager chooses two replicas as
primary databases from those with the highest version
numbers and accesses only these two replicas during
virtualization transactions. Any other replica in the group
is synchronized when the manager is not busy. Two
replicas are chosen as primary databases in order not to
leave a single point of failures.

When a virtualization transaction, for example, data
migration for load balancing, requires movement of a
physical chunk, the consistency between the virtualization
metadata and the underlying physical data has to be
maintained. The manager uses the method of ordered
writes to guarantee consistency. Here, the physical chunk is
first copied to its new location and the mapping informa-
tion is then written to the disk. Even if the power fails in
between, the physical chunk in the original location will be
used because the mapping information has not been
updated. Nevertheless, the opposite order is problematic.

Some virtualization transactions write multiple metadata
blocks. For example, creating a logical volume will write
both the volume group entry and the logical volume entry.
MagicStore uses REDO logging to ensure that writes to
multiple metadata blocks in a single virtualization transac-
tion are atomic. In this case, the operation is logged before
the metadata can be updated. In the event of a crash, it
scans through and replays the log when the manager
reboots. Thus, the metadata remains consistent.

3.5 Incorporating Legacy Storage

In typical legacy storage systems, a physical disk is divided
into several volumes through the partitioning technique
and each volume stores a bulk of data. To make an out-of-
band virtualization system incorporate the storage re-
sources in a legacy storage system, the traditional method
creates a logical volume for each legacy volume and then
copies the entire content of the legacy volume. As for a large
data center like the NCCS, copying the data is quite time
consuming [21] and even makes the application services
unavailable during the process.

Since the traditional method is expensive, we propose an
effective method for incorporating typical legacy storage,
which is described in Fig. 7. The amount of the data moved
by our method is equal to the size of the metadata database
and is independent of the capacity of the disk. We let s
denote the size of the metadata database. If there are
k legacy disks to incorporate, then only s� k data needs to
be moved. Therefore, our new method can incorporate a
large legacy storage system quickly.

If a legacy disk returns to the legacy system, only the
data on the space Si needs to be moved to the reserved
location RLi (see Fig. 7). However, if the traditional method
is used, this also needs to move all of the data on the disk.

4 MAGICSTORE IMPLEMENTATION

In this section, we first present how client agents on
different platforms are implemented. Then, we give the
implementation details of the metadata server, including
our method for incorporating legacy storage. Finally, we

describe how the SLAS2 approach is implemented in the
out-of-band architecture.

4.1 Client Agent Implementation

In Windows 2000/XP/2003 [8], the DriverEntry routine of
the mapper driver initializes the batman thread, which
creates a disk device object to represent each logical
volume. When an I/O request packet (IRP) arrives, a
dispatch routine maps it to the physical address space and
allocates several derived IRPs. The routine then registers a
completion routine for each derived IRP and, finally, sends
the derived IRP to the physical disk driver.

In Solaris 10 [22], the mapper driver first creates the
batman thread in the attach routine. To represent a logical
volume, the batman creates a minor device. When a logical
volume is accessed, the strategy routine maps the logical
address to the physical address. Then, it clones derived
buf(s) and registers a completion routine for each one.
Finally, the strategy routine sends each derived buf to the
physical disk driver.

The implementations in Linux 2.4 and Linux 2.6 [23] are
similar. The only difference is that their units of address
mapping are a bh and a bio, respectively. In Linux 2.4, for
example, the request routine in the mapper driver performs
address mapping and rewrites the b_rdev field to specify a
physical volume. Then, it registers a completion routine for
the bh and returns a positive value. Here, the generic_
make_request routine chooses the physical disk driver
according to the new major number.

The manager and the agents communicate via a light-
weight UDP. The batman creates a UDP server in the kernel
space to watch for virtualization instructions from the
manager. Likewise, the mapper creates a UDP client and
sends a mapping request to the manager for each incoming
I/O when the target volume works in the noncache
mapping mode.

4.2 Metadata Server Implementation

The manager is implemented in the user space on the Linux
platform. It issues I/Os to the disks by accessing block

ZHANG ET AL.: DESIGN AND IMPLEMENTATION OF AN OUT-OF-BAND VIRTUALIZATION SYSTEM FOR LARGE SANS 1659

Fig. 7. New method for incorporating typical legacy storage.

devices directly. MagicStore provides three mapping
schemes from logical volumes to physical volumes: linear
mapping, striped mapping, and mirrored mapping. To
enable the manager and clients to recognize a physical
volume uniquely, the metadata manager writes a label and
a UUID onto the reserved location of each target device. The
metadata manager puts a physical volume into an appro-
priate volume group according to its property in band-
width, latency, and reliability.

To incorporate a legacy disk, the metadata manager first
reads the master boot record on its first sector to retrieve the
partition information. It also reads the information of
extended partitions, if any. Then, the metadata manager
moves the data from the location where the metadata
database will be placed to the space allocated on the
physical volume newly added for the incorporation. Finally,
the metadata manager initializes the legacy disk into a
physical volume by writing virtualization metadata onto it,
puts the two physical volumes into a volume group, and
reconstructs a logical volume for each partition according to
the partition table.

To achieve centralized monitoring and provide good
flexibility, the system monitor uses a two-layered architec-
ture, including an object manager and three providers. The
three providers get state information of storage devices,
fabric links, and hosts through an HBA API, a switch API,
and a host interface, respectively. All state information will
be provided to the object manager as uniform objects. The
object manager monitors the occurrence of events and
performs some actions.

4.3 SLAS2 Implementation

On scaling a striped volume, the metadata manager
initializes a read/write lock for each entry in the sliding
window. Then, it creates the data mover thread to
redistribute the data on the volume.

When an I/O mapping request arrives, the metadata
manager performs address mapping and returns the results
to the client directly if the I/O does not overlap with the
current sliding window. Otherwise, the metadata manager
locks a new mutex and creates a logical I/O thread. After
acquiring related read-write lock(s) for reading, the logical
I/O thread returns the mapping result to the client and then
locks the previous mutex. Because the mutex has already
been locked by the metadata manager, the thread blocks
until the mutex becomes available. After an I/O is
completed, the mapper on the client tells the metadata
manager to unlock the mutex if a logical I/O thread has
acquired related read-write lock(s) for the I/O. Since the

mutex is available now, the logical I/O thread stops

blocking and unlocks related read-write lock(s).
The data mover thread stores the metadata in the local

file during the scaling process and uses lazy updates of

mapping metadata to decrease the number of metadata

writes. To perform I/O aggregation, the data mover first

takes two steps for each disk in the original volume:

1) Given the size of the reserved memory for I/O aggregation,

it calculates the size of successively readable data on the disk

and 2) it acquires related read-write lock(s) for writing, reads

all of the data via a single I/O, and, finally, unlocks related

read-write lock(s). After all of the data that the reserved

memory can hold are read, the data mover takes another two

steps for each disk in the new volume: 1) Given the size of the

reserved memory, it calculates the size of successively

writable data on the disk and 2) it acquires related read-write

lock(s) for writing, picks up the data that will be written to the

disk from the reserved memory into the write buffer, writes

all of the data via a single I/O, and, finally, unlocks related

read-write lock(s).

5 EXPERIMENTAL EVALUATION

We first measured the performance of client agents in the

cache mode by comparing the performance of logical

volumes managed by MagicStore with that of plain volumes

managed by the original operating systems. Second, we

demonstrated the performance difference between the cache

mode and the noncache mode. Third, we examined the

scalability of the metadata server implemented in pure

software. Finally, we evaluated the features of MagicStore,

including scaling striped volumes and incorporating legacy

storage. Although a set of performance evaluation results

based on a comparison with hardware out-of-band virtuali-

zation systems could be more convincing, we did not do so

because it was very difficult for us to obtain such a hardware

virtualization system.
The testbed used in these experiments is described as

follows: The agents for different platforms and the manager

were installed on some machines whose configurations are

shown in Table 1. Via a Brocade Silk Worm 3800 FC switch,

these machines were connected with an FC disk array

controlling several Seagate ST3146807FC disks. All of these

machines were also connected via a 100 Mbps Ethernet. We

used Iometer [24] to generate representative workloads.

Iometer can generate different workloads of various

characteristics, including the read/write ratio, the request

size, and the maximum number of outstanding requests.

1660 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

TABLE 1
Configuration of the Machines

5.1 Performance of Client Agents

We began our performance evaluation of MagicStore with
measuring the performance of its client agents in the cache
mode. We expected that the client agents would add little
overhead despite performing extra address mapping for
each I/O. On different platforms, we tested the perfor-
mance of plain volumes, linear volumes, and striped
volumes with a file system mounted. We configured
Iometer to generate the workloads that used random
addresses with the transfer request size doubled from
8 Kbytes to 4 Mbytes. All of the workloads consisted of
20 percent writes and 80 percent reads since Vogels found
that 79 percent of accesses to files were read-only [25].

The bar graph in Fig. 8 plots the throughput of linear
volumes and plain volumes on the Windows, Linux 2.4, and
Solaris platforms as the request size increases along the
x-axis. We find that the performance of linear volumes is
quite close to that of plain volumes on all of the platforms.
On average, the performance declines introduced by linear
volumes were 0.3 percent on the Windows platform,
2.1 percent on the Linux 2.4 platform, and 0.4 percent on
the Solaris platform.

The line and symbol graph in Fig. 8 plots the comparison
in CPU utilization between linear volumes and plain
volumes. It shows that, while performing address mapping
for linear volumes, the client agents introduced a very small
increase of CPU utilization, about 0.017 percent, 0.116 per-
cent, and 0.777 percent, respectively, on the Windows,
Linux 2.4, and Solaris platforms.

As the figure shows, the CPU utilization on the three
platforms varies greatly. First, the CPU utilization on the
Linux 2.4 machine is much higher than that on the
Windows machine. This unexpected phenomenon is due
to one of the design pitfalls in the Linux 2.4 kernel: The
buffer head forces the kernel to break up potentially large
block I/O operations into many multiple bh structures [23].
This pitfall causes the client agent to perform address
mapping much more frequently. Due to the limitations of
the bh structure, the Linux 2.6 kernel uses the bio structure
as the basic container for a block I/O. As the latter
experimental results show, the CPU utilization of the client
agent on the Linux 2.6 machine is much lower. Second, the
CPU utilization on the Solaris platform increases with the
transfer request size sensitively. The main reason is that the
300 MHz CPU had to perform data copying between the
user space and the kernel space. As the throughput
increased with the transfer request size, the CPU utilization
became higher. However, this did not reflect the current
typical machine configurations. We will redo the experi-
ments once a Sparc machine with a higher configuration is
available.

All of the striped volumes in this set of experiments were
constructed of four disks with a stripe size of 32 Kbytes or
64 Kbytes. As shown in the bar graph in Fig. 9, although
there was a clear benefit in using striped volumes for both
the stripe sizes, the benefit was more apparent for the
64 Kbyte stripe size. In the case of 32 Kbytes, we achieved
around 88 percent performance improvement on the
Windows platform; the improvement on the Linux 2.4
platform was about 25 percent. When the stripe size was

64 Kbytes, performance was improved by 104 percent and

30 percent, respectively. This indicates that the stripe size

has an effect on the performance of a striped volume.
Due to its more complex algorithm, we imagined that

mapping for striped volumes would impose a higher

processing overhead than mapping for the previous linear

volumes. The line and symbol graph in Fig. 9 shows a

comparison of CPU utilization for striped volumes and

plain volumes on the Windows and Linux 2.4 platforms. In

the case of 32 Kbytes, striped volumes introduced 1.310 per-

cent and 0.278 percent CPU utilization increases on the

Windows and Linux 2.4 platforms, respectively. When the

stripe size was 64 Kbytes, the CPU utilization increases on

ZHANG ET AL.: DESIGN AND IMPLEMENTATION OF AN OUT-OF-BAND VIRTUALIZATION SYSTEM FOR LARGE SANS 1661

Fig. 8. Performance comparison between linear and plain volumes.

(a) On the Windows platform. (b) On the Linux platform. (c) On the

Solaris platform.

the two platforms were about 0.855 percent and 0.272 per-
cent, respectively. This indicates that the increase in CPU
utilization introduced by the client agents performing
address mapping for striped volumes was negligible. Our
results also show that the CPU utilization increase for the
stripe size of 64 Kbytes was less than that for the stripe size
of 32 Kbytes. This is caused by different request sizes for
each individual disk due to different stripe sizes.

Finally, we can observe a fluctuation of CPU utilization
curves with a peak at the request size of 512 Kbytes and
1 Mbyte on the Linux 2.4 machine. This may be because the
buffer head in Linux 2.4 forces the kernel to perform a
splitting-merging operation for each I/O. The increase in
the request size has two impacts: First, it results in a higher
operation complexity and, second, it decreases the opera-
tion frequency. When the request size is relatively small, the
first impact dominates, hence causing a higher CPU
utilization. After the request size reaches a critical point
(that is, 512 Kbytes or 1 Mbyte), the second impact
dominates and leads to a decrease in CPU utilization.

5.2 Performance Comparison between the Cache
and Noncache Modes

We use the caching mechanism of mapping metadata to
improve the performance and scalability of the system, so it
is interesting to see the actual performance difference
between the cache mode and the noncache mode. We used
four Iometer workers running on the Linux 2.6 machine to

generate random and sequential workloads, with the
request size varying from 4 Kbytes to 2 Mbytes. The target
volume was a striped volume across four disks. We
collected the response time of I/O requests and sampled
the CPU utilization of the client.

Fig. 10 gives a performance comparison between the two
mapping modes. Compared with the noncache mode, the
cache mode brought a reduction of 1.236 ms in average
response time and a decline of 0.13 percent in CPU utilization
under the random workload; it also provided a reduction of
0.084 ms in average response time and a decline of
0.58 percent in CPU utilization under the sequential work-
load. Here, the cache mode brought a small performance
enhancement because the manager served only one client. In
a large SAN environment, the improvement brought by the
caching mechanism will be more obvious. Furthermore, in
the cache mode, the metadata server is not involved in any I/
O. Consequently, the caching mechanism is helpful for
enhancing the system scalability.

5.3 Scalability of the Metadata Server

To demonstrate the scalability of the metadata server
implemented in pure software, we increased the number
of clients that communicated with the metadata server to
complete address mapping for each I/O. Each client ran on
Linux 2.6 and had a striped volume across two disks. The
Iometer running on each client used one or four workers to
generate random or sequential workloads with 4 Kbyte and

1662 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

Fig. 9. Performance comparison between striped and plain volumes.

(a) On the Windows platform. (b) On the Linux platform.
Fig. 10. Performance comparison between the cache and noncache

modes. (a) Random workload. (b) Sequential workload.

64 Kbyte request sizes. We collected the round-trip time of
mapping requests in the kernel space of clients and sampled
the CPU utilization of the manager software. Fig. 11 shows
how the performance of the metadata server is affected by
the increase in the client number.

As far as each situation is concerned, it is shown that,
with the increase in the client number, the CPU utilization
of the manager software increased, whereas the average
round-trip time of mapping requests remained 300 �s or so.
The results indicate that, in the same situation, the CPU
utilization under the sequential workload is markedly
higher than that under the random workload. This is
because more pressure is put on the manager due to the
better performance of sequential accesses to physical disks.
The results also show that the CPU utilization with the
4 Kbyte request size is obviously higher than that with the
64 Kbyte request size. This is because a small I/O size leads
to an increased total number of requests, which, in turn,
causes a higher mapping overhead.

When four clients used one worker to generate sequen-
tial workload with the 4 Kbyte request size, respectively, the
CPU utilization reached the maximum 2.4 percent. There-
fore, the metadata server has good scalability and the
MagicStore system is adequate for large SANs with the help
of the caching mechanism of mapping metadata.

5.4 Scaling Round-Robin Striped Volumes

The purpose of this group of experiments is to quantita-
tively characterize the overhead of online redistribution
with the SLAS2 approach. We added one disk into a striped
volume across three disks and used one or four Iometer
workers to generate random workloads, with the request
size varying from 4 Kbytes to 2 Mbytes. In all of these
experiments, the sliding window sizes were set to 1,024 and
the reserved memory for I/O aggregation could hold
40 chunks. We collected the response time of user I/Os on
Linux 2.6 during the scaling process and the time for
performing data redistribution. To provide a comparison,
we also measured the response time of user I/Os sent to a
four-disk striped volume working in the noncache mode
without scaling.

Fig. 12 shows the comparison in average response time
without and during the scaling and also gives the data
redistribution time. When one Iometer worker was used,
the online redistribution increased I/O latency by 3.26 ms;
when four workers were used, the increase was 6.65 ms. As
the I/O size increased, the redistribution time obviously
increased. When one Iometer worker was used, the
redistribution time varied from 344 sec to 778 sec; when
four workers were used, it increased from 449 sec to 998 sec.
Though not shown in the figure, we should point out that
the redistribution time became remarkably longer when the
reserved memory for I/O aggregation shrank to holding
only four chunks. Due to the reduction of metadata updates
and the aggregation of data accesses, SLAS2 can perform
data redistribution in a shorter time with small foreground
I/O latencies.

5.5 Incorporating Legacy Storage

To evaluate the performance benefits of our method for
incorporating legacy storage, we measured the time for the
manager to incorporate a legacy volume whose size ranged

ZHANG ET AL.: DESIGN AND IMPLEMENTATION OF AN OUT-OF-BAND VIRTUALIZATION SYSTEM FOR LARGE SANS 1663

Fig. 11. Scalability of the metadata server. (a) Random workload and

one worker. (b) Random workload and four workers. (c) Sequential

workload and one worker. (d) Sequential workload and four workers.

from 10 Gbytes to 100 Gbytes with the traditional method
and our method. As for the traditional method, which
copies the entire content of the legacy volume, we neglected
the time for creating a logical volume and only collected the
time for copying the entire content.

Table 2 compares the performance of incorporating
legacy storage with the two methods. As shown in the
table, the traditional method required linearly increasing
time to incorporate a legacy volume as the volume size
increased. For a 100 Gbyte legacy volume, the traditional
method even required 3,337 sec (about 56 minutes).
Conversely, our method required a very short time and
stabilized between 337 ms and 608 ms. Suppose that a data
center incorporates a mass of legacy storage (for example,
100 146 Gbyte legacy disks), the traditional method will be
badly time-consuming and will result in an unacceptable
downtime, whereas our method will complete the incor-
poration quickly.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present and evaluate the design and

implementation of an out-of-band virtualization system,

MagicStore, which is implemented through pure software

and supports three platforms: Windows, Solaris, and Linux.

Some conclusions about MagicStore can be drawn from our

experimental results:

. The client agents add little overhead despite

performing address mapping for each I/O.
. The metadata server has good scalability, and

MagicStore is adequate for large SANs with the help

of the caching mechanism of mapping metadata.
. MagicStore can complete data redistribution re-

quired by scaling a striped volume in a short time

with small user I/O latencies.
. MagicStore can incorporate large legacy storage

quickly.

In the out-of-band architecture, the absence of a

virtualization appliance in the data access path also

presents a security question: How do we prevent a client

from accessing the blocks it does not own? Because the

appliance has no chance to do verification, storage devices

have to execute some form of cryptography or authentica-

tion on every I/O. For example, the capability-based

methods [26], [27] require intelligent disks with a powerful

processing capability and an evolved Small Computer

System Interface (SCSI) command set. Since this require-

ment exceeds the capabilities of modern disk drives, we

have not implemented access authentication in the current

MagicStore. When first-generation intelligent disks are

available, we will develop a method for managing access

authentication in MagicStore. Our preliminary idea is that

the client asks the manager for a ticket vouching for the

client’s ability to access certain data on physical disks. The

client passes such a ticket to the disk, which verifies the

manager’s approval.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

for their suggestions on improving this paper. This work

was supported by the National Natural Science Foundation

of China under Grants 60433040 and 10576018, the National

Grand Fundamental Research 973 Program of China under

Grant 2004CB318205, and the Program for New Century

Excellent Talents in University.

1664 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

Fig. 12. Performance of the SLAS2 approach. (a) One test worker.

(b) Four test workers.

TABLE 2
Incorporation Time Comparison between the Traditional Method and Our Method

REFERENCES

[1] T. Clark, Storage Virtualization: Technologies for Simplifying Data
Storage and Management. Addison-Wesley Professional, Mar. 2005.

[2] R. Barker and P. Massiglia, Storage Area Network Essentials: A
Complete Guide to Understanding and Implementing SANs,
C.A. Long, ed., p. 346, John Wiley & Sons, Oct. 2001.

[3] S. Sturgeon and T. Anderson, QLogic Adopts Compaq VersaStor
Technology for Storage Virtualization. QLogic Corp., http://
www.qlogic.com/news-events/details/releases_details.
asp?id=624, 2007.

[4] “SVM—Storage Virtualization Manager,” eng. white paper,
StoreAge Networking Technologies Corp., http://www. storeage.
com/media/upload/Datasheet%20-%20SVM%20with%20Data%
20Path%20Module.pdf, Sept. 2004.

[5] A. Brinkmann et al., “V:Drive—Costs and Benefits of an Out-of-
Band Storage Virtualization System,” Proc. 12th NASA Goddard,
21st IEEE Conf. Mass Storage Systems and Technologies (MSST ’04),
pp. 153-157, Apr. 2004.

[6] S.-H. Lim et al., “Resource Volume Management for Shared File
System in SAN Environment,” Proc. 16th Int’l Conf. Parallel and
Distributed Computing Systems (PDCS ’03), 2003.

[7] D. Xiao, J. Shu, W. Xue, and W. Zheng, “TH-VSS: An Asymmetric
Storage Virtualization System for the SAN Environment,” Proc.
Int’l Conf. Computational Science, vol. 3, pp. 399-406, 2005.

[8] D.A. Solomon and M.E. Russinovich, Inside Microsoft Windows
2000, third ed. Microsoft Press, Aug. 2000.

[9] D. Teigland and H. Mauelshagen, “Volume Managers in Linux,”
Proc. Usenix Ann. Technical Conf., pp. 185-198, June 2001.

[10] H. Mauelshagen, “Linux Cluster Logical Volume Manager,” Proc.
11th Int’l Linux System Technology Conf., Sept. 2004.

[11] C.-S. Kim, G.-B. Kim, and B.-J. Shin, “Volume Management in
SAN Environment,” Proc. Eighth Int’l Conf. Parallel and Distributed
Systems (ICPADS ’01), pp. 500-505, 2001.

[12] R. Pai, “EVMS Cluster Design Document Version 2.0,” http://
evms.sourceforge.net/clustering/, 2007.

[13] J.S. Glider, C.F. Fuente, and W.J. Scales, “The Software Archi-
tecture of a SAN Storage Control System,” IBM Systems J., vol. 42,
no. 2, 2003.

[14] DataCore Software, “DataCore SANsymphony 6.0—The Perfect
Complement to Virtualized Server Infrastructure,” www.data
core. com/downloads/SANSymphony%206%200%20Product%20
Profile%20-%20March%202007%20-%20Final.pdf, Mar. 2007.

[15] J.L. Gonzalez and T. Cortes, “Increasing the Capacity of RAID5 by
Online Gradual Assimilation,” Proc. Int’l Workshop Storage Network
Architecture and Parallel I/Os, Sept. 2004.

[16] S. Ghandeharizadeh and D. Kim, “On-Line Reorganization of
Data in Scalable Continuous Media Servers,” Proc. Seventh Int’l
Conf. Database and Expert Systems Applications, D.G. Feitelson and
L. Rudolph, eds., pp. 751-768, 1996.

[17] G. Zhang, J. Shu, W. Xue, and W. Zheng, “MagicStore: A New
Out-of-Band Virtualization System in SAN Environments,” Proc.
IFIP Int’l Conf. Network and Parallel Computing (NPC ’05), pp. 379-
386, Nov.-Dec. 2005.

[18] G. Zhang, J. Shu, W. Xue, and W. Zheng, “SLAS: An Efficient
Approach to Scaling Round-Robin Striped Volumes,” ACM Trans.
Storage, vol. 3, no. 1, article 3, Mar. 2007.

[19] M. Vilayannur, R.B. Ross, P.H. Carns, R. Thakur, A. Sivasubra-
maniam, and M. Kandemir, “On the Performance of the POSIX
I/O Interface to PVFS,” Proc. 12th Euromicro Conf. Parallel,
Distributed, and Network-Based Processing (PDP ’04), p. 332, 2004.

[20] C. Beauchamp and J. Judd, Building SANs with Brocade Fabric
Switches, C.B. Nolan and K. Glennon, eds., p. 208. Syngress
Publishing, Inc., Jan. 2001.

[21] E. Salmon, A. Tarshish, S. Patel, M. Saletta, M. Rouch, R. Caine, J.
Paffel, L. Burns, E. Vanderlan, N. Palm, and D. Duffy,
“Hierarchical Storage Management at the NASA Center for
Computational Sciences: From Unitree to SAM-QFS,” Proc. 12th
NASA Goddard, 21st IEEE Conf. Mass Storage Systems and
Technologies (MSST ’04), pp. 101-107, 2004.

[22] Sun Microsystems, Inc., Part No: 816-4854-10, “Writing Device
Drivers,” pp. 199-214-255-274,http://docs-pdf.sun.com/816-
4854/816-4854.pdf, Jan. 2005.

[23] R. Love, Linux Kernel Development, Z. Brown ed., pp. 212-215.
SAMS, Developer Library Series, Sept. 2003.

[24] Intel Corp, “Iometer,” http://www.iometer.org, July 2004.
[25] W. Vogels, “File System Usage in Windows NT 4.0,” Proc. 17th

ACM Symp. Operating Systems Principles, pp. 93-109, Dec. 1999.

[26] G.A. Gibson, D.F. Nagle, K. Amiri, J. Butler, F.W. Chang, H.
Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka, “Cost-
Effective, High-Bandwidth Storage Architecture,” Proc. Eighth
Conf. Architectural Support for Programming Languages and Operating
Systems, 1998.

[27] B.C. Reed, D.D.E. Long, E.G. Chron, and R.C. Burns, “Authenti-
cating Network Attached Storage,” IEEE Micro, vol. 20, no. 1, Jan./
Feb. 2000.

Guangyan Zhang received the bachelor’s and
master’s degrees in computer science from Jilin
University in 2000 and 2003, respectively. He is
now a doctoral candidate in the Department of
Computer Science and Technology at Tsinghua
University. His current research interests include
mass storage, parallel file systems, computer
networks, and distributed systems.

Jiwu Shu received the PhD degree in computer
science from Nanjing University in 1998. In
2000, he finished his postdoctoral position
research at Tsinghua University and has been
teaching at Tsinghua University since then. He is
now a professor in the Institute of High Perfor-
mance Computing Technology, Department of
Computer Science and Technology, Tsinghua
University. His current research interests include
storage area networks, parallel and distributed

computing and networking, algorithm analysis and design and parallel
processing techniques, and cluster systems and communication.

Wei Xue received the PhD degree in electrical
engineering from Tsinghua University, China, in
2003. In 2003, he joined the faculty of the
Department of Computer Science and Technol-
ogy at Tsinghua University. His research inter-
ests include cluster computing and network
storage.

Weimin Zheng received the master’s degree
from Tsinghua University in 1982. He is the
director of the Institute of High Performance
Computing Technology, Department of Compu-
ter Science and Technology, Tsinghua Univer-
sity, China. Since 1982, he has been working at
Tsinghua University in the area of parallel and
distributed processing. His research covers
parallel computer architecture, parallel and dis-
tributed computing, AI-oriented computer archi-

tecture, compiler techniques, and runtime system design for parallel
processing systems and grid computing and network storage.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: DESIGN AND IMPLEMENTATION OF AN OUT-OF-BAND VIRTUALIZATION SYSTEM FOR LARGE SANS 1665

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

