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Abstract—Large-scale erasure-coded storage systems have a serious performance problem due to I/O congestion and disk media
access congestion caused by read-modify-write operations involved in small-write operations. All the existing technologies based on
the conventional disk can provide very limited performance improvement. This paper presents a new Disk Architecture with Composite
Operation (DACO), whose disk media access interface consists of three kinds of operations: READ, WRITE, and Composite Operation
(CO). The CO adopts a sector-based pipeline technology to implement block-level data modify operations, and thus, can replace the
read-modify-write operations involved in small-write operations. When the DACO is adopted in a large-scale erasure-coded storage
system with ¢ fault tolerance, ¢ 1/Os and ¢ disk media access operations can be reduced in each small-write operation, respectively.
This alleviates both I/O congestion and disk media access congestion in nature, and thus, can remarkably improve the performance of
large-scale erasure-coded storage systems. A simulation study shows that the DACO can provide significant performance
improvement: reducing the average I/O response time by up to 31.16 percent even in the worst case where ¢ = 1. This paper also
discusses the important implementation issues of the DACO and investigates the additional cost involved in the DACO.

Index Terms—Disk architecture, erasure code, small-write problem, storage system.

1 INTRODUCTION

Aswe enter the data-intensive computing era, large-scale
storage systems that employ a large number of disks in
a clustered or distributed manner have become very
important and ubiquitous. Recently, with the sharp increase
of capacity, data loss has become a serious problem in such
large-scale disk-based storage systems, because of concur-
rent disk failures [1], [2] together with multiple unrecover-
able sector errors [3], [4], [5]. There have been many
technologies proposed to provide sufficient reliability
against data loss. They can be divided into two categories:
k-way mirroring technologies and erasure-coding technol-
ogies [6]. k-way mirroring technologies provide k — 1 fault
tolerance' by storing k duplicates of user data. They thus
have very low storage efficiency (i.e., the ratio of user data to
the total of user data plus redundancy data) and can
consume a large amount of additional power. In contrast,
erasure-coding technologies need only a small amount of
additional capacity to store the parity that is used for fault
tolerance and can provide optimal or approximately
optimal storage efficiency. Correspondingly, they consume
only a small amount of additional power. Because of their

1. k — 1 fault tolerance means that the maximum number of fault disks
that can be reconstructed is k — 1.

o The authors are with the Institute of High-Performance Computing,
Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China.

E-mail: Imq06@muails.tsinghua.edu.cn, shujw@tsinghua.edu.cn.
Manuscript received 30 Oct. 2008; revised 3 Sept. 2009; accepted 13 Dec.
2009; published online 14 Jan. 2010.

For information on obtaining reprints of this article, please send e-mail to:

tc@computer.org, and reference IEEECS Log Number TC-2008-10-0534.

Digital Object Identifier no. 10.1109/TC.2010.22.

0018-9340/10/$26.00 © 2010 IEEE

high storage efficiency and low power consumption,
erasure-coding technologies have become an attractive
trend for fault tolerance in large-scale disk-based storage
systems and have recently been widely adopted in RAID
subsystems [7], [8] and various fault-tolerant storage
systems, such as OceanStore [9], Glacier [10], FAB [11],
PASIS [12], [13], RobuSTore [14], Pergamum [15], Cleversafe
[16], Allmydata [17], and Permabit [18]. In this paper, we
call such storage systems erasure-coded storage systems.

However, erasure-coded storage systems have a serious
small-write problem, which confuses system designers all
along. In an erasure-coded storage system with ¢ fault
tolerance,” when a small-write operation updates a data
strip, it should update all the ¢ parity strips in the same stripe
using read-modify-write operations. This process can in-
volve 2(t + 1) I/Os and 2(t + 1) disk media access opera-
tions, respectively. It thus increases both I/O congestion and
disk media access congestion by approximately a factor of
2(t 4 1). This can badly hurt storage performance, especially
in large-scale high-performance computing systems that run
data-intensive applications, such as Data-Intensive Super
Computing (DISC) systems [19]. Moreover, with the growth
of the capacity of erasure-coded storage systems and the
increase of their fault tolerance, this small-write problem
will become more serious.

In order to solve this small-write problem, several
technologies [7], [20], [21], [22], [23], [24] based on the
conventional disk have been proposed for small-scale
erasure-coded storage systems (such as RAID 5° [7]).
Since all these existing technologies do not change the

2. An erasure-coded storage system with ¢ fault tolerance is a storage
system that adopts an erasure code with ¢ fault tolerance.

3. In RAID 5, a Single Parity Check (SPC) code, which can be regarded as
an erasure code with one fault tolerance, is adopted.

Published by the IEEE Computer Society
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read-modify-write mode in small-write operations, they
can provide very limited performance improvement.
Exactly speaking, they can improve some visible perfor-
mance only in small-scale erasure-coded storage systems
whose small-write problem is not very serious because of
their low fault tolerance. However, in large-scale erasure-
coded storage systems with high fault tolerance, since the
small-write problem is much more serious, the perfor-
mance improvement of these existing technologies will
become negligible. To cope with this challenge, we will
develop a new approach to solve the small-write problem
in large-scale erasure-coded storage systems.

Our basic idea is to change the read-modify-write mode
in small-write operations. As we know, in today’s disk-
based storage systems, the disk media access interface
consists mainly of simple READ and WRITE operations. As
mentioned in [25], more expressive interfaces, together with
extended versions of today’s Operating Systems (OSes) and
firmware specializations, would allow the OSes and storage
devices to cooperate to achieve performance and function-
ality that neither can be achieved alone. Thus, in this paper,
we propose a new Disk Architecture with Composite
Operation (DACO), whose disk media access interface is
more expressive and consists of three kinds of operations:
READ, WRITE, and Composite Operation (CO). The CO
adopts a sector-based pipeline technology (wWhose fundamental
unit of processed data is set to be a sector) to implement
block-level data modify operations.* Unlike in the conventional
disk, a block-level data modify operation then can be
implemented by only a CO rather than a read-modify-write
operation in the DACO. When we use the DACO in a large-
scale erasure-coded storage system with ¢ fault tolerance,
only ¢t +2 I/0s and t + 2 disk media access operations will
be involved in each small-write operation, respectively. This
alleviates both I/O congestion and disk media access
congestion caused by small-write operations in nature,
and thus, can remarkably improve the performance of
large-scale erasure-coded storage systems.

The main contributions of this paper are as follows:

e We provide an overview of the disk architecture of
the DACO and also describe the implementation
details of the CO. We deduce that the time required
for the CO very approximates to that required for
the general WRITE. We also reveal an interesting
conclusion that the DACO can provide more
performance improvement in the erasure-coded
storage system whose 1/O workload includes more
random small writes.

e We demonstrate the performance potential of the
DACO by carrying out a trace-driven simulation
study [26]. We also investigate the effects of different
factors on the performance improvement of the
DACO. Numerical results show that the DACO can
reduce the average I/O response time by up to
31.16 percent even in the worst case where ¢t = 1. We
also claim that if applied to large-scale erasure-coded

4. Block-level data modify operations are opposite to file-level data modify
operations. Their primary difference is that block-level data modify
operations are nonsemantic operations on disk data blocks, while file-level
data modify operations are semantic operations on files.
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storage systems with higher fault tolerance, the
DACO can provide more performance improvement.

e  We discuss two important implementation issues of
the DACO: head positioning servomechanism and
failure handling during the CO. We also investigate
the additional cost involved in the DACO and then
claim that the DACO is the most cost-effective choice
for large-scale erasure-coded storage systems.

This paper is organized as follows: In the next section,
we first present the necessary background and related
work. We provide an overview of the DACO in Section 3.
Performance potential is then demonstrated in Section 4. In
Section 5, we discuss the implementation issues. We also
investigate the additional cost involved in the DACO in
Section 6. Finally, we conclude this paper in Section 7.

2 BACKGROUND AND RELATED WORK

2.1 Erasure-Coded Storage Systems and
Small-Write Problem

There are many erasure codes [6] proposed for storage
systems. According to whether they can provide optimal
storage efficiency, these existing erasure codes can be
divided into two categories: Maximum Distance Separable
(MDS) codes® (such as Reed-Solomon codes [28], [29], [30],
[31], EVENODD [32], X-code [33], STAR [34], and Liberation
codes [35]) and non-MDS codes (such as WEAVER codes
[36] and GRID codes [37]). In this paper, we will focus our
discussion primarily on MDS codes because they are typical
representatives among all the existing erasure codes. More-
over, among these MDS codes, since horizontal codes (such as
Reed-Solomon codes, EVENODD, STAR, and Liberation
codes) that store data and parity on separate strips can be
implemented more flexibly than wvertical codes (such as
X-code) in which each strip within a stripe contains both
data and parity, horizontal codes seem to be more popular
in practice. Thus, we will focus our attention on horizontal
MDS codes. Throughout this paper, when referring to
erasure codes, we always mean horizontal MDS codes.

In an n-of-(n+t) erasure-coded storage system with
t fault tolerance, a stripe consists of n +t strips, including
n data strips (i.e., Dy, Ds,..., and D,) and t parity strips
(i.e., P, P5,..., and P;), which meet the following binary
linear equations:

(X110D)@® (X120 D) @+ @ (X1 © Dp) = P,
(X210D1)® (X220 D9)® - P (X, © D) = By, )

(Xt‘l © Dl) @ (Xt‘Q ®© DQ) DD (thn © Dn) = Ba

where X;; (1 <i<tand 1< j<n)is a binary coefficient
matrix, ® represents a binary matrix multiplication opera-
tor, and @ represents a binary matrix addition operator.

When a small-write operation updates a data strip D;
(1 £ j < n), it should update all the ¢ parity strips (i.e., P,
Py, ..., and P,) in the same stripe using read—modify—;l/(\lfrite
operations. During this process, the old data strip D; is

5. MDS codes are the family of erasure codes that attain the Singleton
bound [27], and thus, can provide optimal storage efficiency.
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new

first read from the disk. After that, the new data strip D;
is then written to the original location on the disk. This
increases the response time of the write operation by
approximately a fadctoerof two. Me:ianwhlle all the t old
., and P, ) are read from other

new

t disks separately. Then, ¢ new parity strips (i.e., P,

new new .
Py,..., and P, ) are calculated by the expression

parity strips (i.e., P, P,..

new old

P=1Incr; @ P, (i=1,2,...,1), (2)

where I ner; represents the increment on P; and is equal to
Xij @(D 5] 77Dm) Finally, t new parity strips are written to
the original ¢ locations on the ¢ disks separately. This
process involves 2(¢ + 1) I/Os in total, and thus, increases
I/O congestion by approximately a factor of 2(¢+1).
Correspondingly, it involves 2(¢t+ 1) disk media access
operations in total, and thus, increases disk media access
1). Therefore,

small-write operations can badly hurt storage performance,

congestion by approximately a factor of 2(¢ +

especially in large-scale erasure-coded storage systems
with high fault tolerance.

2.2 Technologies for Improving Small-Write
Performance

In order to improve small-write performance, several
technologies [7], [20], [21], [22], [23], [24] have been proposed
for small-scale erasure-coded storage systems (such as
RAID 5 [7]). They can be grouped into two categories:

1. Group A: This group of technologies improve the
performance by optimizing the order of the I/O
sequence [7], [20], [21], [22]. Among them, buffering
and caching [7] are two general methods for I/O
optimization. However, they are not proposed
specially for small writes and can take effect only
when the I/O sequence has very good temporal and
spatial localities. Moreover, our DACO does not
conflict with them and can be combined with them to
further improve the performance. There are also
some technologies [20], [21], [22] proposed specially
for improving small-write performance. Some im-
prove the performance by floating the parity to the
nearest unallocated blocks on the disk [20]. However,
to exploit unallocated blocks immediately following
the parity being read, the stored data must be
modified and remapped. This sometimes can badly
destroy the logical continuity of the data. Others (like
parity logging [21]) improve the performance by
delaying the read of the old parity and the write of the
new parity [21], [22]. Delaying these operations
allows dispersive small parity updates to be grouped
together into contiguous larger parity updates that
can be performed more efficiently. However, they can
take effect also only when the I/O sequence has very
good temporal and spatial localities. Moreover, their
approach is orthogonal to that of the DACO, which
uses CO operations to replace read-modify-write
operations involved in parity updates, and thus, they
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Fig. 1. Three implementation levels of a small-write operation.
(a) Group A. (b) Group B. (c) DACO.

can be combined with the DACO to further improve
the performance. Since this group does not change
I/Ointerface (see Fig. 1a), and thus, cannot reduce the
numbers of I/Os and disk media access operations
involved in each small-write operation (see Fig. 2),
their performance improvement is very limited,
especially in busy I/O subsystems with a large
number of random small I/O requests. This results
in the emergence of the next group.
2. Group B: This group of technologies embed proces-
sors and a substantial amount of memory into the
disk controller, but do not change the disk drive [23],
[24]. In these technologies, parity modify operations
are migrated from the disk driver into the disk
controller (see Fig. 1b). These technologies introduce
XOR commands [23], [24] into the I/O interface and
then can reduce the number of I/Os involved in each
small-write operation by ¢t in an erasure-coded
storage system with ¢ fault tolerance (see Fig. 2a).
However, since they do not change disk media
access interface (see Fig. 1b), and thus, cannot reduce
the number of disk media access operations in-
volved in each small-write operation (see Fig. 2b),
their performance improvement is also very limited,
especially in busy disk media access subsystems.
All these existing technologies provide limited perfor-
mance improvement. They can improve some visible
performance only in small-scale erasure-coded storage
systems whose small-write problem is not very serious
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Fig. 2. Numbers of 1/Os and disk media access operations involved in
each small-write operation in an erasure-coded storage system with
different fault tolerance when we use different categories of technologies

to improve small-write performance. (a) Number of 1/Os. (b) Number of
disk media access operations.

because of their low fault tolerance. However, in large-scale
erasure-coded storage systems with high fault tolerance,
the small-write problem becomes much more serious, and
the performance improvement of these existing technolo-
gies will become negligible. Moreover, with the increase of
fault tolerance, the small-write problem will become more
serious (see Fig. 2), and the performance improvement of
these existing technologies will become more negligible.

To cope with this challenge, we propose a new disk
architecture (namely DACO) designed specially for large-
scale erasure-coded storage systems. In the DACO, parity
modify operations are further migrated from the disk
controller into the disk drive (see Fig. 1c). When the DACO
is adopted in an erasure-coded storage system with ¢ fault
tolerance, t I/Os and ¢ disk media access operations can be
reduced in each small-write operation, respectively (see
Fig. 2). This alleviates both I/O congestion and disk media
access congestion in nature, and thus, can remarkably
improve the performance of large-scale erasure-coded
storage systems. Moreover, with the increase of fault
tolerance, the performance benefit of the DACO will become
more remarkable (see Fig. 2). This characteristic makes the
DACO very attractive in large-scale erasure-coded storage
systems with high fault tolerance.
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2.3 A Brief Historical Retrospect of Multiple
Arm/Head Disks

As will be shown in the next section, one of the interesting
aspects of the DACO is the use of two heads mounted on
the same arm on each platter surface. In this subsection, we
first give a brief historical retrospect of multiple arm/head
disks and then discuss the difference between the DACO
and these multiple arm/head disks.

Multiple arm/head disks once existed in the market
from early 1970s to early 1990s. The first disk architecture
with two arms was the IBM 3340 disk drive [38], [39]
developed in 1973, in which only one arm was capable of
moving each time. Later, the possibility of multiple arms
that are capable of moving independently was explored in
[40]. Then, the IBM 3380 disk drive [41] with four arms that
embodied this feature was released in 1981. There was also
the Chinook disk drive [42] with two arms produced by
Conner Peripherals, Inc., from late 1980s to early 1990s. All
these multiple arm/head disks were off production later
due to the cost of manufacturing and the availability of disk
arrays. In recent years, with the price per megabyte in hard
disk drive sharply declining [43], multiple arm/head disks
have been suggested and researched again in patent
literatures [44], [45] and academic research papers [46],
[47], [48], [49], [50], [51] so as to meet the urgent demand of
high-performance storage systems. The results in the 2008
ISCA paper by Sankar, Gurumurthi, and Stan [51] even
show that an intradisk parallelism® design that uses multiple
arm assemblies can facilitate breaking-even with, or even
surpassing the performance of a disk array, while consum-
ing significantly lower power than the disk array. This is a
complete trend reversal from the multiple arm/head disks
of decades past. This also reveals that the time of multiple
arm/head disks has come again.

All these multiple arm/head disks proposed in related
work are based on the fact that putting multiple heads in the
disk drive would allow multiple areas of the disk to be
accessed simultaneously, and thus, could greatly improve
storage performance. In addition, all these disks, except the
Dual-Actuator Logging Disk (DALD) proposed in [50], adopt
multiple complex integrated read/write heads that are
mounted on separate arms. We will see later in the next
section that the DACO adopts only a simple read head and a
simple write head that are mounted on the same arm. This
simplifies the disk drive design, and thus, reduces the
additional hardware cost, which will be discussed in detail in
Section 6. Although the DALD also adopts only a simple read
head and a simple write head, the two heads are mounted on
separate arms. Moreover, since its objective is to minimize
the access latency of synchronous writes, it is not suitable for
the small-write problem. Finally, the DACO does not conflict
with all these multiple arm /head disks and can be extended
by adding some additional integrated read /write heads into
the disk drive to further improve the performance.

3 Disk ARCHITECTURE WITH COMPOSITE
OPERATION

This section provides an overview of our DACO. It starts

with the definition of Composite Operation (CO). The disk

6. Disk drives using intradisk parallelism can exploit parallelism in the
I/0 request stream.
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Fig. 3. Two implementation levels of a block-level data modify operation.
(a) Conventional disk. (b) DACO.

architecture of the DACO is then described in the second
subsection. The third subsection discusses the time required
for the CO. Finally, it ends with a discussion on the time
reduced by the DACO in a parity update scenario.

3.1 Composite Operation Definition

In the conventional disk, a block-level data modify
operation is implemented by a read-modify-write process,
as shown in Fig. 3a. From this figure, we can see that a
block-level data modify operation can involve two disk
media access operations, one READ and one WRITE, and
will take, on average, a seek and 3/2 rotations. Thus, in a
large-scale erasure-coded storage system with ¢ fault
tolerance, a small-write operation can involve 2(¢ + 1) disk
media access operations, including ¢ 4+ 1 READs to read old
data and parity strips and ¢ + 1 WRITEs to write new data
and parity strips.

We propose that a block-level data modify operation can
be implemented at a lower level. As shown in Fig. 3b, the
modify operation can be implemented in the disk drive, and
then, only one disk media access operation is involved in
each modify operation, only taking, on average, a seek and
1/2 rotation. This disk media access operation can be
regarded as the composite operation of READ and WRITE,
and so is called Composite Operation (CO). With the introduc-
tion of the CO, a small-write operation will then involve only
t + 2 disk media access operations, including one READ to
read old data strip, one WRITE to write new data strip, and
t COs to modify ¢ parity strips. This reduces ﬁ x 100% of
disk media access operations in each small-write operation.
When ¢t =1, the reduced proportion occupies 25 percent.
With the increase of the fault tolerance ¢, the reduced
proportion will increase approximately to 50 percent.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 10, OCTOBER 2010

Rotating Direction

A Front-Head

Arm

(Read Head)

Upper Surface
Platter

Lower Surface (Write Head) Actuator

Fig. 4. Disk drive in the DACO.

3.2 Disk Architecture Description

The disk media access interface of the DACO consists of
three kinds of operations: READ, WRITE, and CO. The
READ and WRITE operations are the same as those in the
conventional disk, while the CO operation is more complex.

In order to support the CO, each platter surface has two
associated heads in the disk drive (see Fig. 4): a front-head
and a back-head. The front-head is a simple read head,
while the back-head is a simple write head. As mentioned in
[40], the major difficulty with multiple arms is to simulta-
neously track multiple separate mechanical arms. This is
because in multiple arm disks, track-seeking and track-
following operations can occur at the same time, and the
mechanical interaction caused by the reaction force of the
track-seeking arm tends to degrade the positioning accuracy
of the track-following arm [49]. To avoid this problem, these
two heads are mounted on the same disk arm. This also
reduces the additional hardware cost. Then, these two
heads have the same seek time. In addition, in order to
support sectors’ error checking and correction (which has
evolved from the early peak detection to the imminent
iterative detection [52], [53]) during the CO and avoid
crosstalk, these two heads should keep a several-sector
distance from each other. Moreover, to achieve the accurate
positioning of the two heads, a dual-stage servomechanism
is introduced into the disk drive. This head positioning
servomechanism will be discussed in detail in Section 5.1. In
addition, an additional computing element is also employed
to implement the block-level data modify operation in
the disk drive. As will be shown later, since the modify
operation is an XOR operation, its implementation is very
simple and needs only a few simple gate circuits. Thus, the
computing element can be implemented in one of the disk’s
built-in Digital Signal Processors (DSPs) or microcontrollers
so as to minimize the additional hardware cost and
maximize the flexibility.

We implement the CO by adopting a sector-based pipeline
technology, whose fundamental unit of processed data is set
to be a sector. The reason is that a sector is the fundamental
unit of disk’s accessed data, on which error checking and
correction is performed in the disk drive’s read/write
channel. A CO pipeline is divided into three stages:

1. Stage R: Read one sector of the old data from the
disk platter using the front-head (note that the
sector’s error checking and correction is also
included in this stage);

2. Stage M: Modify the sector using the computing
element; and
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3. Stage W: Write the modified sector onto the disk

platter using the back-head.

Fig. 5 shows the implementation details of the CO. Since
the data stored on the disk can be regarded as a sector
sequence, we assume that the old data consists of N sectors.
The external data then should have the same length. After
seeking and rotating, the front-head arrives at the start
position of the old data and then begins to read them. After
the first sector of the old data is read from the disk platter,
the disk drive checks the sector’s correctness using one of
error checking and correction technologies, such as the
Iterative Detection Read Channel (IDRC) technology re-
cently developed by Hitachi Global Storage Technologies
(GST) [52]. If this sector is justified to be correct, the
computing element then modifies it using the first sector of
the external data. The first sector of the modified data is
then passed to the back-head. When the back-head arrives
at the start position of the old data, it writes the first sector
of the modified data onto the disk platter. Since the modify
operation is an XOR operation, its implementation is very
simple, and thus, the rate of data modifying is much higher
than that of data reading. After the computing element
modifies the first sector of the old data, it waits for the
second sector of the old data to be read from the disk
platter. When the second sector of the old data arrives, this
process is repeated as above until the last sector of the
modified data is written onto the disk platter. Then, the
CO operation is completed.
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3.3 Time Required for the CO

We now discuss the time required for the CO (denoted by
Tco). Fig. 6 gives the space-time diagram of the CO. We use
TwriTe to denote the time required for the general WRITE
operation. We also use Tycqy to denote the delay between
the two heads during the CO. From this figure, we can see
that the time required for the CO is

Tco = TwriTe + Tielay- (3)

Recently, the spindle speed of hard disks has reached
15,000 Revolutions Per Minute (RPM) in high-performance
disk drives (such as the Seagate Cheetah hard drive family
[54]) and will continually increase in the future. This can
result in only 4 ms per revolution. In addition, as we know,
today’s hard disks with the use of Zoned Bit Recording (ZBR)
[55] can have thousands of sectors in a single track. Since the
front-head and the back-head in the DACO keep only a
several-sector distance from each other, the delay between
the two heads can then be in the time scale of 0.01s ms.
However, in modern disks, the time required for the general
WRITE operation is often in the time scale of 10s ms, which
can be about 1,000 times as long as the delay between the two
heads. We have Tjqy < Twrrre. Then, from Eq. (3), we can
deduce that

Tco = TwriTE- 4)

Therefore, the time required for the CO very approx-
imates to that required for the general WRITE.

3.4 Time Reduced by the DACO in a Parity Update
Scenario

Having known the time required for the CO, we then give
some examples to demonstrate how much time can be
reduced by the DACO in a parity update scenario. Suppose
there are three parities to be updated. As shown in Fig. 7, if
these three parities are distributed in the same track, one
rotation can be reduced by the DACO; if these three parities
are distributed in two separate tracks, two rotations can
be reduced by the DACO; or if these three parities are
distributed in three separate tracks, three rotations can be
reduced by the DACO. From this figure, we can immedi-
ately deduce the following conclusion:

Conclusion 3.1. In a parity update scenario, if the parities to
be updated are distributed in m tracks, m rotations can
then be reduced by the DACO.

The above conclusion reveals an interesting phenomenon
that the DACO can reduce more time in the parity update
scenario where the parities to be updated are distributed
more dispersedly (i.e., in more separate tracks). Thus, the
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Fig. 7. Some examples to demonstrate how much time can be reduced
by the DACO in a parity update scenario.

DACO not only can provide significant performance
improvement in the erasure-coded storage system whose
I/0 workload exhibits some degrees of sequentiality and
locality, but also can provide even more performance
improvement in the erasure-coded storage system whose
I/0 workload includes more random small writes.

In this section, we have provided an overview of the
DACO. Although the DACO is designed specially for
reducing the performance loss caused by the introduction
of erasure-coding technologies in which block-level modify
operations are XOR operations, it can also be extended for
reducing the performance loss caused by the introduction of
other kinds of block-level technologies (such as block-level
security technologies [56]) in which block-level modify
operations are also logical operations. In fact, the modify
operation in the DACO’s computing element could be any
other logical operation (such as AND, OR, NOT, NAND,
NOR, or XNOR) that can be implemented in the same
manner as an XOR operation. However, this topic is beyond
the scope of this paper and will be studied in our future work.

4 PERFORMANCE POTENTIAL

In this section, we demonstrate the performance potential of
the DACO. We first introduce the evaluation methodology
and then present and analyze the numerical results.

4.1 Evaluation Methodology

We carried out a trace-driven simulation study [26] to
demonstrate the performance potential of the DACO. Since
with the fault tolerance increasing, the performance benefit
of the DACO will become more remarkable, we took the
worst case where the fault tolerance is ¢ = 1 as an example
to demonstrate the performance potential of the DACO in
our simulation study.

We built a simulator, based on the state-of-the-art disk
simulator, DiskSim version 3.0 [57], to simulate erasure-
coded storage systems constituted of DACOs. In the
simulator, we assume that the time required for the CO is
equal to that required for the general WRITE. This
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assumption is obviously reasonable from what has been
discussed in Section 3.3.

The base disk model used in the simulation is the
Quantum Atlas 10K (9.1 G, 10,025 RPM), for which publicly
available configuration parameters have been calibrated
against real-world drives. Note that although the Quantum
Atlas 10K is somewhat old (released in 1999), it is the latest
disk model available in the DiskSim version 3.0. A simulation
study with the use of the Quantum Atlas 10K can still
demonstrate the performance potential of the DACO.

In the simulation, we used 8+ 1 disks to organize a
striped erasure-coded disk array with ¢ =1 (note that
although we used a disk array here that belongs to the
category of small-scale erasure-coded storage systems, it
can still help us to understand the performance potential of
the DACO), in which each stripe consists of eight data strips
and one parity strip, and all parity strips are rotated among
all the 8 + 1 disks. In addition, we set the size of the stripe
unit to be 32 KB.

We used several real-world traces from different systems
to drive our simulator. They were originally collected by the
Storage Systems Department at HP Labs and are now made
available as open source [58]. The TPC-C traces were
collected in HP’s client/server TPC-C application running
at approximately 1,150 tpmC on a 100-warehouse database
in 1994. The TPC-D1 and TPC-D2 traces belong to the 300 GB
TPC-D Oracle traces from 1997. The Cello%96 traces were
taken from the Cello server over the period September 9 to
November 29, 1996, when Cello was a K410 class machine
(two CPUs) running HP-UX 10.10, with about 0.5 GB of main
memory. The Cello99 traces were taken from the Cello server
over the period January 14 to December 31, 1999, when Cello
was a K570 class machine (four CPUs) running HP-UX 10.20,
with about 2 GB of main memory. Note that although these
traces are somewhat old, they are still widely used in today’s
academic research papers due to the lack of newer publicly
accepted traces. Due to long simulation time and numerous
combinations of simulation tests, we used only a fraction of
these traces in the simulation. Specifically, we used the
traces on the most active devices. Table 1 summarizes the
key characteristics of the used portions of traces.

4.2 Numerical Results and Discussions

In this subsection, we present and analyze the simulation
results. Our purpose in introducing the DACO is to reduce
the number of disk media access operations and ultimately
to reduce the average I/O response time. Thus, we use the
average I/O response time as the evaluation metric.

We first made a group of simulation experiments to give
an overview of the performance improvement of the
DACO. In the simulation, we replayed the five traces listed
in Table 1 on two erasure-coded disk arrays constituted of
conventional disks and DACOs, respectively. These two
erasure-coded disk arrays were both configured as in the
previous subsection.

Fig. 8 gives the simulation results for both the conven-
tional disk and the DACO. From this figure, the following
two observations are in order:

e When some writes are included in the I/O work-
load, the DACO always has better performance than
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TABLE 1
The Key Characteristics of the Used Portions of Traces (IOPS: I/0Os Per Second)
Trace Name H TPC-C | TPC-D1 TPC-D2 | Cello96 | Cello99 |
Number of 1/Os 225200 25112 25022 411071 577694
Percentage of Writes 98.82% 0.00% 50.02% 85.56% 79.12%
I/O Request Rate 28.66 10PS 3.60 IOPS 5.86 IOPS 57.10 IOPS | 80.24 IOPS
I/0O Request Size 2KB~128KB | 16KB~64KB | 32KB~64KB | 1KB~52KB | 1KB~64KB

the conventional disk, due to the decrease of the
number of disk media access operations. Compared
with the conventional disk, the DACO can reduce
the average I/O response time by up to 29.23 percent
(in the case of the Cello99 traces).

e In the application with longer average I/O response
time, the DACO can reduce more average I/O
response time. This implies that the DACO can
provide more performance improvement in the
application that is more bottlenecked by the storage
subsystem.

The above two observations reveal that the performance
improvement of the DACO varies with the following two
factors: the percentage of writes and the degrees of 1/O
congestion and disk media access congestion. In an
erasure-coded disk array, the degrees of I/O congestion
and disk media access congestion concretely depend on the
following two factors: the I/O request rate (of the I/O
workload driving the disk array) and the number of disks
(employed in the disk array).

We then made three groups of simulation experiments to
investigate the effects of the above three factors (ie.,
percentage of writes, I/O request rate, and number of
disks) on the performance improvement of the DACO,
respectively. To accurately study each factor, we varied
only the parameter corresponding to the factor each time
and maintained all the other parameters as in the foregoing
group of simulation experiments.

4.2.1 Effects of Percentage of Writes

We first made a group of simulation experiments to
investigate the effects of percentage of writes on the
performance improvement of the DACO. Due to long
simulation time and numerous combinations of simulation
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Fig. 8. Comparison between the conventional disk and the DACO.

tests, we only chose the three traces with very different
percentages of writes: TPC-C, TPC-D2, and Cell0o99. In the
simulation, we changed these three traces by varying the
percentage of writes. When varying the percentage of
writes, we randomly changed some read operations into
write operations, or randomly changed some write opera-
tions into read operations.

Fig. 9a gives the simulation results for different percen-
tages of writes. From this figure, we can see that for the
I/0 workload with higher percentage of writes, the DACO
can reduce more average 1/O response time in most cases,
and this change tendency is often very remarkable. For
example, for the Cello99 traces with the percentage of writes
being 79.12 percent, the average I/O response time reduced
by the DACO is 12.08 ms, which is about four times as long
as that for the Cello99 traces with the percentage of writes
being 27.68 percent. Note that for the TPC-C traces, there is
a reverse change tendency on the average I/O response
time. The reason is that when we varied the percentage of
writes in the TPC-C traces, a large number of logically
sequential’ writes are separated into random small writes.
This also proves the fact mentioned in Section 3.4 that the
DACO can provide more performance improvement for the
I/0 workload with more random small writes.

4.2.2 Effects of I/O Request Rate

We then made a group of simulation experiments to
investigate the effects of 1/O request rate on the perfor-
mance improvement of the DACO. Similarly, we also used
the three traces: TPC-C, TPC-D2, and Cello99. In the
simulation, we changed these three traces by varying the
I/0 request rate.

Fig. 9 gives the simulation results for different I/ O request
rates. From this figure, we can see that for the I/O workload
with higher I/O request rate, the DACO can reduce more
average I/0 response time, and the improvement on the
average I/O response time can increase up to 30.04 percent
(in the case of the TPC-D2 traces with 23.42 IOPS). This
change tendency is sometimes very remarkable. For exam-
ple, for the TPC-D2 traces with 23.42 IOPS, the average I/O
response time reduced by the DACO is 10.68 ms, which is
more than 10 times as long as that for the TPC-D2 traces with
5.86 IOPS. This implies that the DACO can provide much
more performance improvement in the application with
busier I/0O traffic.

4.2.3 Effects of Number of Disks

We finally made a group of simulation experiments to
investigate the effects of number of disks on the performance
improvement of the DACO. In the simulation, we changed

7.1/0 requests are defined to be logically sequential if they are at adjacent
disk addresses or disk addresses spaced by the file system interleave factor.
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the organization of the erasure-coded disk array by varying
the number of disks. Since the TPC-C traces cannot run on the
disk array with 4 + 1 Quantum Atlas 10K disks, we here
chose the three traces: TPC-D2, Cell096, and Cell099.

Fig. 9c gives the simulation results for different numbers
of disks. From this figure, we can see that with the number
of disks decreasing, the DACO can reduce more average
I/O response time. This change tendency is often very
remarkable. For example, for the Cello99 traces, the average
I/0 response time reduced by the DACO in the disk array
with 4 + 1 disks is 23.58 ms, which is about three times as
long as that reduced in the disk array with 12 +1 disks.
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Moreover, the improvement on the average I/O response
time can increase up to 31.16 percent (in the case of the
Cello99 traces running on the disk array with 4 + 1 disks).
This is because with the number of disks decreasing, the
I/O throughput also decreases, and the application
becomes more bottlenecked by I/O interface. Then, the
performance benefit of the DACO will become more
remarkable. This implies again that the DACO can provide
more performance improvement in the application that are
more bottlenecked by the storage subsystem.

In this section, we have demonstrated the performance
potential of the DACO in the case where the fault tolerance
is t = 1. Numerical results have shown that the DACO can
reduce the average I/O response time by up to 31.16 percent.
We believe that these results for ¢ =1 are enough for
demonstrating the performance potential of the DACO. We
thus have omitted the numerical results for ¢ > 1. In fact, as
mentioned in Section 3.1, with the increase of the fault
tolerance t, the proportion of disk media access operations
reduced by the DACO in each small-write operation will
increase from 25 percent approximately to 50 percent, and
the performance benefit of the DACO will become more
remarkable. Thus, if applied to large-scale erasure-coded
storage systems with higher fault tolerance, the DACO can
provide more performance improvement.

5 IMPLEMENTATION ISSUES

Having demonstrated the performance potential of the
DACO, we now discuss some important implementation
issues in this section.

5.1 Head Positioning Servomechanism

In the conventional disk, servo fields that contain position-
ing information are embedded on all tracks and are
interleaved with data fields. During head positioning, a
Magneto-Resistive (MR) sensor is used to sense the servo
information from the servo fields. The servo information is
then sent to the Voice Coil Motor (VCM) that is the torque
producing component of the head positioning servome-
chanism [59].

In the DACO, to achieve the accurate positioning of the
two heads that are mounted on the same arm, we propose a
dual-stage servomechanism (see Fig. 10) that evolves from
the dual actuator servo system [60] adopted in recent disk
drives. Similar to the dual actuator servo system proposed
in [60], our dual-stage servomechanism consists of a VCM
as a first-stage actuator and two second-stage actuators. The

Front-Head Linear Voice Coil
Motor,(VCM)
m

¥

s 7
-7 Track
- '
-« i ———
~ ’
>~

Second-Stage
Actuators

Platter
Back-Head

Fig. 10. Dual-stage servomechanism in the DACO.
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VCM is a coarse actuator used for long-range seek. There
are two types of VCM actuators proposed in the industry:
linear VCM and rotary VCM [59]. We here choose the linear
VCM for the DACO because its movement takes place along
a radius of the disk, thus requiring a simpler calibration
algorithm. The two second-stage actuators are finely
positioning actuators designed for the two heads, respec-
tively. As mentioned in [61], they could be piezoelectric
actuators or micromachined actuators.

When a CO request arrives, the VCM uses the servo
information gained from the front-head to move the arm
along a radius of the disk. Because the front-head is a read
head that can be used as a positioning sensor, no additional
MR sensor is needed. After coarse positioning, the two
heads are located around their expected positions. Then, the
two second-stage actuators begin to accurately locate the
two heads on their expected positions. During this process,
the back-head that is a write head should also be capable of
sensing the servo information. However, a write head is a
Thin-Film Inductive (TFI) recording head that does not
have this capability [59]. Thus, an additional MR sensor is
assembled in the back-head. It should be noted that this
additional MR sensor also enables the back-head (i.e., the
write head) to seek and position without involving the
front-head (i.e., the read head) during the WRITE operation.

5.2 Failure Handling during the CO

During the CO, various failures, which are caused by latent
sector errors® [3], power-off problems, transient faults, and
so on, may occur. Although their occurrence frequency is
very low, they could still result in data corruption. In this
subsection, we will develop some mechanisms to carefully
handle these failures for different cases.

In the case where a failure occurs before the back-head
begins to write the modified data, the CO will be canceled
in the disk drive. If the failure is caused by a latent sector
error, a data loss event will be reported to the host; else, the
CO will be retried later for failure recovery.

However, in the case where a failure occurs after the
back-head begins to write the modified data, since the CO is
a nonidempotent operation, it cannot be retried, otherwise
partially stale data will be produced (see Fig. 11). Then, the
failure handling is more complex:

1. If the failure is caused by a power-off failure, the CO
can be completed by supplying additional power.
This can be easily implemented by embedding an
additional small battery into the disk.

2. If the failure is caused by other problems (such as
latent sector errors or transient faults), a data corrup-
tion event will be reported to the host, and the host will
then handle it using high-level data redundancy
mechanisms.

6 CosT CONSIDERATIONS

Since the significant performance benefit of the DACO is
obtained by extending the conventional disk drive with

8. A latent sector error occurs when a particular disk sector cannot be
read or written, or when there is an uncorrectable error detected by an
Error-Correcting Code (ECC) or an iterative ECC (such as a Low-Density
Parity Check (LDPC) code [62], [63], [64], [65], [66]). Any data previously
stored in the sector is lost.
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additional hardware, we immediately raise a question: How
much additional hardware cost can be involved in the DACQO?
Studies from the disk drive industry have shown that
although building a disk drive involves material cost, also
labor cost, and other overheads, the main portion of the disk
manufacturing cost comes from the materials [51], [67], [68].
Thus, we focus on the hardware material cost. Note that since
integrating the disk controller into the disk drive has become
a popular trend in the disk drive industry, we propose that
the DACO integrates its disk controller into its disk drive,
and the following discussion on the disk drive thus will also
involve the built-in disk controller. In the DACO, in order to
support the CO, each platter surface has two associated
heads: a front-head and a back-head. The front-head adopts
only an MR sensor, while the back-head integrates both a TFI
transducer and an MR sensor together. Compared with the
conventional disk in which the one and only head is an
integrated read/write head (that also includes a TFI
transducer and an MR sensor), the DACO employs only an
additional MR head, which is much simpler than an
integrated read /write head, and thus, can involve much less
additional cost than an additional integrated read/write
head. Besides, to accurately position the additional head, an
additional second-stage actuator is also involved in the
dual-stage servomechanism (see Fig. 10). We believe that this
dual-stage servomechanism can minimize the additional
hardware cost caused by the additional head. Meanwhile, the
disk controller should also be extended to manage and
control the additional head and its corresponding second-
stage actuator. This can be easily implemented by adding
some additional control circuits, including some additional
Digital Signal Processors (DSPs) to perform the additional
computation, into the disk controller. In addition, in order to
support the CO, a very simple computing element is also
employed to implement the block-level data modify opera-
tion in the disk drive. In order to minimize the additional
hardware cost and maximize the flexibility, this computing
element can be implemented in one of the disk’s built-in DSPs
or microcontrollers. At the same time, the disk controller
should also be extended to meet the real-time requirement in
performing the CO. This can also be easily implemented by
adding some additional control circuits (including some
additional DSPs) into the disk controller. Finally, besides
READ and WRITE commands, the interface of the disk
controller should also be extended to include CO commands.
Within the last 10-15 years, since the areal density of the disk
increased by average 60-100 percent per year, the price
per megabyte declined by average 37-50 percent per year,
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respectively [43]. Following this trend, the price per mega-
byte will decline to very low. Compared with the significant
performance benefit of the DACO, the additional hardware
cost involved in the DACO will become very acceptable.

In addition, unlike that of the conventional disk, the disk
media access interface of the DACO consists of READ,
WRITE, and CO. In order to adapt to this change, the
software interface that communicates with the DACO also
needs to be modified. However, since the CO is a block-level
data operation, the introduction of the CO will not affect the
implementations of the file system and the upper levels of
the operating system. We need to only slightly modify the
disk driver, by replacing each read-modify-write operation
involved in small-write operations by a CO operation. This
can be done simultaneously when we develop the disk
driver for large-scale erasure-coded storage systems. Com-
pared with the significant performance benefit of the
DACO, the additional software cost caused by the DACO
is also very acceptable.

Someone may also raise another question: Is it worthy to
spend the additional cost on the DACO, or is there any other
more cost-effective choice available for large-scale erasure-coded
storage systems? As mentioned in Section 2.1, large-scale
erasure-coded storage systems have a very serious perfor-
mance problem due to I/O congestion and disk media
access congestion caused by small-write operations, and
with the increase of their fault tolerance, this small-write
problem will become more serious and can hardly be
solved using the existing technologies based on the
conventional disk. Under this background, we propose
the DACO that extends the conventional disk with
additional hardware to solve this small-write problem. A
possible alternative is to use Solid-State Disks (SSDs), such
as flash [69] or MicroElectroMechanical System (MEMS)
[70]. Since the parity update is the major cause of the small-
write problem, we could use special SSDs to store the
parity. However, as mentioned in [51], the cost per
megabyte of flash and MEMS are orders of magnitude
higher than hard disks. Thus, it is much more cost-effective
to extend the conventional disk to solve the small-write
problem. Moreover, since flash easily wears out as we
increase the number of write operations [71], it is not
suitable for storing the parity that is frequently updated.
Therefore, we believe that the DACO is the best choice for
large-scale erasure-coded storage systems.

7 CONCLUSIONS

Erasure-coding technologies have recently been widely
adopted for fault tolerance in large-scale disk-based storage
systems. However, large-scale erasure-coded storage sys-
tems have a serious performance problem due to 1/O
congestion and disk media access congestion caused by
small-write operations, and with the increase of their fault
tolerance, this small-write problem will become more
serious and can hardly be solved using the existing
technologies based on the conventional disk. In this paper,
in order to solve this small-write problem, we present a Disk
Architecture with Composite Operation (DACO) designed
specially for large-scale erasure-coded storage systems.
When we use the DACO in a large-scale erasure-coded
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storage system with ¢ fault tolerance, ¢t I/Os and ¢ disk
media access operations can be reduced in each small-write
operation, respectively. This alleviates both I/O congestion
and disk media access congestion caused by small-write
operations in nature, and thus, can remarkably improve the
performance of large-scale erasure-coded storage systems.
A simulation study shows that the DACO can provide
significant performance improvement: reducing the average
I/0 response time by up to 31.16 percent even in the worst
case where t = 1. We believe that if applied to large-scale
erasure-coded storage systems with higher fault tolerance,
the DACO can provide more performance improvement. In
this paper, we also discuss two important implementation
issues of the DACO: head positioning servomechanism and
failure handling during the CO. Finally, we investigate the
additional cost involved in the DACO and then claim that
the DACO is the most cost-effective choice for large-scale
erasure-coded storage systems.

It is to be noted that the DACO proposed in this paper
can also be extended for reducing the performance loss
caused by the introduction of other kinds of block-level
technologies, such as block-level security technologies [56].
This will be studied in our future work.
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