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Abstract—Users of cloud storage usually assign different redundancy configurations (i.e., ðk;m;wÞ) of erasure codes, depending on

the desired balance between performance and fault tolerance. Our study finds that with very low probability, one coding scheme

chosen by rules of thumb, for a given redundancy configuration, performs best. In this paper, we propose CaCo, an efficient Cauchy

coding approach for data storage in the cloud. First, CaCo uses Cauchy matrix heuristics to produce a matrix set. Second, for each

matrix in this set, CaCo uses XOR schedule heuristics to generate a series of schedules. Finally, CaCo selects the shortest one from all

the produced schedules. In such a way, CaCo has the ability to identify an optimal coding scheme, within the capability of the current

state of the art, for an arbitrary given redundancy configuration. By leverage of CaCo’s nature of ease to parallelize, we boost

significantly the performance of the selection process with abundant computational resources in the cloud. We implement CaCo in the

Hadoop distributed file system and evaluate its performance by comparing with “Hadoop-EC” developed by Microsoft research. Our

experimental results indicate that CaCo can obtain an optimal coding scheme within acceptable time. Furthermore, CaCo outperforms

Hadoop-EC by 26.68-40.18 percent in the encoding time and by 38.4-52.83 percent in the decoding time simultaneously.

Index Terms—Cloud storage, fault tolerance, Reed-Solomon codes, Cauchy matrix, XOR scheduling
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1 INTRODUCTION

CLOUD storage is built up of numerous inexpensive and
unreliable components, which leads to a decrease in

the overall mean time between failures (MTBF). As storage
systems grow in scale and are deployed over wider net-
works, component failures have been more common,
and requirements for fault tolerance have been further
increased. So, the failure protection offered by the standard
RAID levels has been no longer sufficient in many cases,
and storage designers are considering how to tolerate larger
numbers of failures [1], [2]. For example, Google’s cloud
storage [3], Windows Azure Storage [4], OceanStore [5],
DiskReduce [6], HAIL [7], and others [8] all tolerate at least
three failures.

To tolerate more failures than RAID, many storage sys-
tems employ Reed-Solomon (RS) codes for fault-tolerance
[9], [10]. Reed-Solomon coding has been around for deca-
des, and has a sound theoretical basis. As an erasure code,
Reed-Solomon code is widely used in the field of data stor-
age. Given k data blocks and a positive integer m, Reed-
Solomon codes can encode the content of data blocks into m

coding blocks, so that the storage system is resilient to any
m disk failures. Reed-Solomon codes operate on binary
words of data, and each word is composed of w bits, where
2w � kþm. In the rest of this paper, we denote a combina-
tion of k, m, and w by a redundancy configuration ðk;m;wÞ,
where k data blocks are encoded into m coding blocks, with
the coding unit of w-bit words. Reed-Solomon codes [9]
treat each word as a number between 0 and 2w � 1, and
employ Galois Field arithmetic over GF(2w). In GF(2w), addi-
tion is performed by bitwise exclusive-or (XOR), while
multiplication is more complicated, typically implemented
with look-ups to logarithm tables. Thus, Reed-Solomon
codes are considered expensive.

Cauchy Reed-Solomon (CRS) codes improve Reed-Solo-
mon codes by using neat projection to convert Galois Field
multiplications into XOR operations [11]. Currently, CRS
codes represent the best performing general purpose erasure
codes for storage systems [12]. In addition, CRS coding oper-
ates on entire strips across multiple storage devices instead
of operating on single words. In particular, strips are parti-
tioned into w packets, and these packets may be large. Fig. 1
illustrates a typical architecture for a cloud storage system
with data coding. The redundancy configuration of the
system is k ¼ 4 andm ¼ 2. With CRS codes, k data blocks are
encoded intom coding blocks. In such a way, the system can
tolerate anym disk failureswithout data loss. Note that those
k data blocks andm coding blocks should be stored on differ-
ent data nodes. Otherwise, the failure of one node may lead
tomultiple faults in the same group of n ¼ kþm blocks.

Amatrix-vector product,AX ¼ B, is central to CRS codes.
All elements of A, X, and B are bits. Here, A is defined as a
Cauchy matrix, X stands for data strips, and B stands for
strips of coding information. Since the act of CRS coding
involves only XOR operations, the number of XORs required
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by a CRS code impinges directly upon the performance of
encoding or decoding. While there are other factors that
impact performance, especially cache behavior and device
latency, reducing XORs is a reliable and effective way to
improve the performance of a code. For example, nearly all
special-purpose erasure codes, from RAID-6 codes (e.g.,
EVENODD [13], RDP [14], X [15], and P [16] codes) to codes
for larger systems (e.g., STAR [17], T [18], andWEAVER [19]
codes), aim at minimizing XOR operations at their core. The
goal of this paper is to find a best-performing coding scheme
that performs data codingwith the fewest XOR operations.

1.1 The Current State of the Art

Many efforts have been devoted to achieve this goal. Initially,
people discover that the density of a Cauchy matrix dictates
the number of XORs [20]. For this reason, an amount of work
has sought to design codes with low density [12], [20], [21].
Moreover, some lower bounds have been derived on the
density of MDS Cauchy matrices. In the current state of the
art, the onlyway to discover lowest-density Cauchymatrices
is to enumerate all thematrices and select the best one. Given
a redundancy configuration ðk;m;wÞ, the number of matri-

ces is ( 2w

kþm)(
kþm
k ), which is clearly exponential in k and m.

Therefore, the enumeration method for the optimal matrix
makes sense only for some small cases.

When scheduling of XOR operations is introduced, the
density of thematrix does not have a direct effect on the num-
ber of XORs [22]. Huang et al. addressed the issue of identify-
ing and exploiting common sums in the XOR equations [23].
They conjectured that deriving an optimal schedule based on
common sums is NP-Complete, and gave a heuristic based on
Edmonds maximum matching algorithm [24]. Plank et al.
attacked this open problem, deriving two new heuristics
called Uber-CHRS and X-Sets to schedule encoding and
decoding bit-matriceswith reducedXORoperations [25].

For data of different importance, one might provide dif-
ferent degrees of redundancy. In other words, users of
cloud storage usually assign different redundancy configu-
rations (i.e., ðk;m;wÞ) of CRS codes, depending on the
desired balance between performance and fault tolerance. It
is still an open problem how to derive a Cauchy matrix and
one of its schedules so as to obtain the fewest XOR opera-
tions for a given redundancy configuration.

1.2 The Contribution of This Paper

The contribution of this paper is two-fold. First, through a
number of experiments and numerical analyses, we get
some beneficial observations as follows (See Section 6.1 for
more details).

� Given a redundancy configuration ðk;m;wÞ, the
shortest XOR schedule that one can get with a differ-
ent Cauchy matrix has an obviously different size.

� For a given redundancy configuration, there is a
large gap in the coding performance when using dif-
ferent coding schemes.1

� None of existing coding schemes performs best for
all redundancy configurations ðk;m;wÞ.

� For a given redundancy configuration, it is with
very low probability that one coding scheme
chosen by rules of thumb can achieve the best
coding performance.

Second, based on the preceding observations, we
propose CaCo, an efficient Cauchy Coding approach for cloud
storage systems. CaCo uses Cauchy matrix heuristics to
produce a matrix set. Then, for each matrix in this set, CaCo
uses XOR schedule heuristics to generate a series of sched-
ules, and selects the shortest one from them. In this way,
each matrix is attached with a locally optimal schedule.
Finally, CaCo selects the globally optimal schedule from all
the locally optimal schedules. This globally optimal sched-
ule and its corresponding matrix will be stored and then
used during data encoding and decoding. Incorporating all
existing matrix and schedule heuristics, CaCo has the ability
to identify an optimal coding scheme, within the capability
of the current state of the art, for an arbitrary given redun-
dancy configuration.

By leverage of CaCo’s nature of ease to parallelize, we
boost significantly the performance of the selection process
with abundant computational resources in the cloud. First,
for different Cauchy matrix heuristics, the calculations of
every matrix and the corresponding schedules have no data
dependency. Therefore, the computational tasks of CaCo are
easy to partition and parallelize. Second, there are enough
computational resources available in the cloud for the paral-
lel deployment of CaCo. Therefore, we can perform CaCo in
parallel and accelerate the selection of coding schemes.

Since data encoding only follows the schedules deter-
mined, we can execute CaCo in advance to get and store the
optimal schedule before encoding. When writing data, we
directly use the corresponding schedule for encoding. Then
we store the generated erasure codes instead of writing
multiple replication to achieve the data redundancy in the
cloud storage system.

We implement CaCo in the Hadoop distributed file
system (HDFS) and evaluate its performance by comparing
with “Hadoop- EC” developed by Microsoft research [26].
Our experimental results indicate that CaCo can obtain an
optimal coding scheme for an arbitrary redundancy config-
uration within an acceptable time. Furthermore, CaCo out-
performs “Hadoop-EC” by 26.68-40.18 percent in the

Fig. 1. A distributed architecture for a cloud storage system with data
coding, where k ¼ 4, andm ¼ 2.

1. To make our description brief, we use the term “coding scheme”
to denote a combination of a matrix heuristic and a schedule heuristic
in the rest of this paper.
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encoding time and by 38.4-52.83 percent in the decoding
time simultaneously.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2
briefly reviews research background and the related work.
In Section 3, an overview of the CaCo approach is given. In
Section 4, we describe how CaCo accelerates selection with
parallel computing. In Section 5, we show an implementa-
tion of CaCo in a cloud storage. In Section 6, we present the
evaluation results on a real system. Finally some conclu-
sions and comments on future work are given in Section 7.

2 BACKGROUND AND RELATED WORK

In this section, we first give a general overview of Cauchy
Reed-Solomon Coding. Then, we provide a description in brief
of the research and related work on generating Cauchy
matrices and encoding with schedules. From these descrip-
tions, we can make clearer the motivation of our work.

2.1 Cauchy Reed-Solomon Coding

Reed-Solomon codes [9] are based on a finite field, often called
Galois field.When encodingdata using RS codes, to implement
a Galois filed arithmetic operation (addition or multiplica-
tion) requires many computations, so the performance is
often unsatisfactory. CRS [11] codes modify RS codes and
give two improvements. First, CRS codes use a Cauchymatrix
instead of a Vandermonde matrix [27]. Second, CRS codes
convert Galois fieldmultiplications into XOR operations.

The key to CRS codes is construction of Cauchy matrices,
and we can achieve that in the following way. Given a
redundancy configuration ðk;m;wÞ where kþm � 2w, let
X ¼ fx1; . . . ; xmg, Y ¼ fy1; . . . ; ykg, and X \ Y ¼ Ø, so that
each xi and yj is a distinct element of GF ð2wÞ. Then we cal-
culate the Cauchy matrix in element ði; jÞ using 1=ðxi þ yjÞ
(the addition and division are defined over Galois field)
[11], [22]. Since the elements of GF(2w) are the integers from
zero to 2w � 1, each element e can be represented by a w-bit
column vector, V ðeÞ, using the primitive polynomial over
Galois Field [10]. Furthermore, each element e of GF(2w) can
be converted to a ðw� wÞ binary matrix, MðeÞ, whose
ith (i ¼ 1; . . . ; w) column is equal to the column vector

V ðe2i�1Þ [28]. Thus according to the value of w, we can
transform the Cauchy matrix into a ðmw� kwÞ binary
matrix, denoted as A.

We divide every data block X and erasure codes block B
into w trips. In this way, when there exists “1” in every row
of A, we can do XOR operations on the corresponding data
in X, to obtain the elements of B. As Fig. 2 shows, the era-
sure codes require 11 XOR operations.

In a storage system using erasure codes, data are
encoded to obtain data redundancy when data are written.
Therefore, to improve the overall performance of a system,
we should reduce the cost of erasure coding, i.e., the num-
ber of XOR operations. There are two encoding strategies to
achieve this goal.

� Encoding data using Cauchy matrices directly. As Fig. 2
shows, the density of a Cauchy matrix decides the

number of XOR operations and the encoding
performance.

� Encoding data using schedule. The sequence of XOR
operations in the schedule decides the encoding
performance.

2.2 Constructing Cauchy Matrices

While using a binary Cauchy matrix for CRS coding, the
number of XORs depends on the number of ones in the
matrix. So, in order to get better performance, the number
of ones in the binary Cauchy matrix should be as few as
possible. To discover an optimal matrix from numerous
Cauchy matrices, the simplest way is to enumerate them.
Given a redundancy configuration ðk;m;wÞ, we can con-

struct ( 2w

kþm)(
kþm
k ) Cauchy matrices, each of which can be

used for encoding. Therefore, the enumeration method is
applicable only when the values of k, m, and w are small.
Otherwise, the running time for enumerating all the matri-
ces will be unacceptable, because the number of Cauchy
matrices is a combinatorial problem. Some heuristics such
as Original [11], Optimizing Cauchy [20] and Cauchy Good
[29] can generate a good matrix which contains fewer ones
for larger w, but it may not be the optimal one.

To construct a Cauchy matrix, called GCðk;m;wÞ, the
Optimizing Cauchy heuristic first constructs a ð2w � 2wÞ
matrix, denoted as ONESðwÞ, whose element ði; jÞ repre-
sents the number of ones in the binary matrix Mð1=ðiþ jÞÞ.
Fig. 3a shows the matrix ONESð3Þ. Then we select two
disjoint sets X ¼ fx1; . . . ; xmg and Y ¼ fy1; . . . ; ykg from
f0; 1; . . . ; 2w � 1g, as follows.

� When k ¼ m and k is a power of two, for k > 2,
GCðk; k; wÞ contains the elements of GCðk=2; k=2; wÞ,
and GCð2; 2; wÞ always contains the column
set Y ¼ f1; 2g. For example, GCð4; 4; 3Þ is shown
in Fig. 3b.

� When k ¼ m and k is not a power of two, we define
GCðk; k; wÞ by constructing GCðk0; k0; wÞ first, where
k0 > k and k0 is a power of two. Then we delete
redundant rows and columns alternately until we
get a k� k matrix. As Fig. 3c shows, GCð3; 3; 3Þ is
defined by deleting one row and one column from
GCð4; 4; 3Þ.

� When k 6¼ m, we define GCðk;m;wÞ by constructing
GCðminðk;mÞ;minðk;mÞ; wÞ first, and then add
some rows or columns correspondingly. As Fig. 3d
shows, we construct GCð4; 3; 3Þ by adding one col-
umn to GCð3; 3; 3Þ.

With theCauchy Good heuristic, we first construct a Cauchy
matrix called GM. Then divide (defined over Galois field)

Fig. 2. Erasure coding using Cauchy Reed-Solomon codes.
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every element ofGM such as in column j byGM0;j, such that
GM is updated and the elements of row 0 are all “1”. In the
rest of the rows, such as row i, we count the number of ones,
recorded as N . Then we divide the elements of row i by
GMi;j, and respectively count the number of ones, denoted as
Nj (j 2 ½0; k� 1�). Finally, select the minimum from fN;N0;

. . . ; Nk�1g and do the operations that generate it. Thuswe suc-
ceed in constructing amatrix usingCauchy Good heuristic.

The two heuristics above can produce a binary matrix
which contains fewer ones; however, it may not be the opti-
mal one in the numerous Cauchy matrices. The research on
how to reduce the number of XOR operations in the process
of erasure coding has revealed that the number of ones in a
Cauchy matrix has lower bounds [4]. Therefore, only by
reducing the density of the Cauchy matrix, it is difficult to
improve the encoding performance greatly.

2.3 Encoding with Scheduling

While performing data encodingwith a given Cauchymatrix,
we can use intermediate results to reduce duplication of cal-
culations. Therefore, strategically scheduling these XOR oper-
ations can bring into CPU savings, since fewer XORs are
performed. Fig. 4 shows an example of simple scheduling.
With the schedule S of the matrix A determined, it just
requires six XOR operations to generate all erasure codes ele-
ments, less than 11 times when encoding using Cauchymatri-
ces directly. The idea of scheduling makes the times of XOR
operations break the limit of the number of ones in Cauchy
matrix [30], thereby reducing the times of XOR operations
and accelerating subsequent erasure coding.

There are some scheduling heuristics for a Cauchy
matrix as follows.

� CSHR [31]. It uses the erasure codes previously
generated to calculate subsequent erasure coding
elements to avoid repeated computations.

� Uber-CSHR [32]. It is an improvement onCSHR. It uses
not only erasure coding elements, but also the interme-
diate results generated to accelerate subsequent
computations.

� X-Sets [32]. It identifies and makes use of the
common XOR operations while generating erasure
codes to avoid repeated computations. We calcu-
late a certain common XOR operation and store
the result, such that the subsequent computations
can use it directly. There are many ways to select
exactly which common XOR operation first into
schedule, such as MW, MW-SS, MW-Matching,
MW2, Uber-XSet, and Subex.

It is still an open problem to derive a schedule from a
Cauchy matrix that minimizes the number of XOR opera-
tions. Current algorithms for seeking schedule, such
as CSHR, Uber-CSHR, and X-Sets, are heuristics, which
could not guarantee to get the optimal solution. Huang
et al. conjectured that deriving an optimal schedule based
on common sums is an NP-Complete problem [23].

2.4 Observations and Motivation of Our Work

Cloud systems always use different redundancy configu-
rations (i.e., ðk;m; wÞ), depending on the desired balance
between performance and fault tolerance. Through the
preceding discussions and a number of experiments and
analyses, we get some observations as follows.

� For different combinations of matrix and schedule,
there is a large gap in the number of XOR operations.

� No one combination performs the best for all redun-
dancy configurations.

� With the current state of the art, from the ( 2w

kþm)(
kþm
k )

Cauchy matrices, there is no method discovered to
determine which one can produce the best schedule.

� Giving a Cauchy matrix, different schedules gener-
ated by various heuristics lead to a great disparity
on coding performance.

� For a given redundancy configuration, it is with very
low probability that one coding scheme chosen by
rules of thumb performs the best.

In view of the problems above, it is necessary to discover
an efficient coding approach for a cloud storage system.
And this approach is desired to be able to identify the opti-
mal coding scheme in the current state of the art, for an
arbitrary given redundancy configuration.

3 CACO OVERVIEW

Given a redundancy configuration ðk;m; wÞ, our goal is to
find a Cauchy matrix, whose schedule is desired to be the

Fig. 3. Example of producing Cauchy matrices with the optimizing
Cauchy heuristic [20].

Fig. 4. Erasure coding with an optimal schedule.
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shortest. In this paper, we propose CaCo, a coding
approach that incorporates all existing matrix and sched-
ule heuristics, and therefore is able to discover an optimal
solution for data coding in a cloud storage system, within
the capability of the current state of the art.

3.1 Selecting a Matched Coding Scheme

The key idea of CaCo is to select a Cauchy matrix, and
one of its schedules whose size is desired to be mini-
mized, for a redundancy configuration ðk;m; wÞ. As
shown in Fig. 5, CaCo consists of four steps as follows.

� Generating Cauchy matrices. CaCo uses p different
heuristics to produce a set of Cauchy matrices,
denoted as Sm ¼ fm0;m1; . . . ;mp�1g.

� Constructing schedules for each matrix. For each
matrix mið0 � i < pÞ in the set Sm generated in the
first step, CaCo uses q various heuristics to obtain
a set of schedules, denoted as Ss;i ¼ fsi;0; si;1;
. . . ; si;q�1g.

� Selecting the locally optimal schedule for each matrix. For
each matrix mið0 � i < pÞ in the set Sm, CaCo selects
the shortest schedule from the set Ss;i, denoted as si.

After this step, we get a set of matrices and their
shortest schedules, denoted as S ¼ fðm0; s0Þ;
ðm1; s1Þ; . . . ; ðmp�1; sp�1Þg.

� Selecting the globally optimal solution. Finally, CaCo
selects the shortest schedule sjð0 � j < pÞ from the
set fs0; s1; . . . ; sp�1g. Thus, ðmj; sjÞ is the globally opti-
mal solution to obtain the best encoding performance.

3.1.1 Generating Cauchy Matrices

Selecting the best one from Cauchy matrices using the enu-
meration method is a combinatorial problem. Given a
redundancy configuration ð10; 6; 8Þ, the magnitude of the

matrices to be constructed can be up to 1029, and it is unreal-
istic to enumerate them. We can not even determine which
one of the matrices will produce better schedules. In the
CaCo approach, we choose only a certain number of them
for scheduling.

Considering the performance, we tend to choose the
binary Cauchy matrices with fewer ones. We use some
heuristics introduced in Section 2.2, such as Original, Cauchy
Good andOptimizing Cauchy, to define a set of Cauchy matri-
ces, namely, Sm ¼ fm0;m1; . . . ;mp�1g. To increase the diver-
sity of the Cauchy matrices, we design a Greedy heuristic.

Our greedy heuristic to generate a light Cauchy matrix is
described as follows.

� Constructing the matrix ONES. First, CaCo constructs
a matrix named ONES, whose element ði; jÞ is
defined as the number of ones contained in the
binary matrixMð1=ðiþ jÞÞ.

� Choosing the minimal element. Second, CaCo chooses
the minimal element from the matrix ONES. Suppos-
ing the element is ðx1; y1Þ, we initialize X to be fx1g,
and Y to be fy1g.

� Determining the set Y. Besides the element ðx1; y1Þ,
CaCo chooses the top k� 1 minimums from row x1.
Then, CaCo adds the corresponding k� 1 column
numbers to Y , and we have Y ¼ fy1; y2; . . . ; ykg.
Fig. 6c shows the results.

Fig. 5. A graphical representation of the overall framework.
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� Determining the set X. For each row r (r 6¼ x1) in the
matrix ONES, CaCo calculates Cr ¼

P
y2Y ðr; yÞ.

Then, it chooses the top m� 1 minimums from the
set fCr; r 6¼ x1g, adds the corresponding m� 1 row
numbers to X, and finally gets the set X ¼ fx1;
x2; . . . ; xmg, as shown in Fig. 6d.

3.1.2 Constructing Schedules for Each Matrix

For each matrix mið0 � i < pÞ in the set Sm, we pass the
parameters including k, m, w and pointer of the matrix to
the function do scheduleðint k; int m; int w; int� matrixÞ
to perform q heuristics in the function, such as Uber-CSHR,
X-Sets, and so on. In this manner, we get a set of schedules,
denoted as Ss;i ¼ fs0;i; s1;i; . . . ; sq�1;ig. If there appears a
good heuristic for scheduling at a later date, we can add it
to the function do schedule.

3.1.3 Selecting Locally Optimal Schedule for Each

Matrix

For each matrix mið0 � i < pÞ in the set Sm, we select the
shortest schedule from the set Ss;i, denoted as si, so that we
get a set of matrices and their shortest schedules, denoted
as S ¼ fðm0; s0Þ; ðm1; s1Þ; . . . ; ðmp�1; sp�1Þg.

For mi in the set Sm, we can encode data in an order of
XORs given by si. In this way, the times of XOR opera-
tions no longer have direct relationship with the density
of the matrix. Therefore, scheduling excludes the influ-
ence of the lower limit of the number of ones in the
matrix, so the performance improves significantly.

3.1.4 Selecting the Globally Optimal Solution

From the collection of combinations of Cauchy matrix and
schedule, namely fðm0; s0Þ; ðm1; s1Þ; . . . ; ðmp�1; sp�1Þg, we
choose the combinations with the shortest schedule. On this
basis, for better performance, we tend to select the one

containing the fewest ones in the matrix to be ðmbest; sbestÞ.
Once selected, sbest can be used for encoding data.

3.1.5 Remark

The design of CaCo not only proves efficacious in the
improvement of performance, but also has good scalability.
First, CaCo incorporates all existing matrix and schedule
heuristics so that it is able to discovery a comparable solu-
tion. Compared to the enumeration algorithm, CaCo has
much lower complexity. Second, if there are new heuristics
for generating Cauchy matrices or scheduling to be derived
in the future, we can easily add them to CaCo. If some other
matrices are later found better for scheduling, we can add
them to the set Sm.

3.2 Encoding and Decoding with a Selected Scheme

Each redundancy configuration ðk;m;wÞ is attached with a
combination of ðmbest; sbestÞ, so we can select and store them
once and for all. Every time we encode data, we just fetch
the sbest from the memory at a minimum cost. Thus we do
not need to spend much time on the computation of sched-
uling any more, and the efficiency of data encoding will be
greatly improved.

If anym data blocks or coding blocks fail, we can recover
the original data by decoding the remaining valid blocks.
First, according to the chosen matrix mbest for data encoding
and the specific situation of data corruption in the same
group of kþm blocks, we can generate a matrix md for
decoding. Then we discover the optimal schedule for md

using the same approach mentioned in Sections 3.1.2 and
3.1.3. We denote the schedule as sd, and use it for decoding.

3.3 Discussions

In the framework, when we select the Cauchy matrix, we
only consider the cost of data encoding, without consider-
ing the decoding cost. In fact, in most cases, the influence of
decoding efficiency on the overall performance is negligible.
Every time we write data into the storage, we need to
encode data and obtain the erasure codes. On the other
hand, only when an error occurs, we decode the erasure
codes to recover the original data. In an actual storage sys-
tem, the data error rarely occurs, so we should place more
weight on the efficiency of encoding.

In some cases of high error rate of data, the failure of data
occurs more frequently, and the frequency of decoding
increases. To obtain higher accuracy, we take into account the
cost of both encoding and decoding when we select a coding
scheme. Assuming that each matrix generated or its inverse
matrix has a score determined by the cost of scheduling and
the number of ones in the matrix, respectively denoted as
Scoree and Scored, we give each of them a weight to measure
their importance, such as a and 1� a. Then we can get a new
evaluation formula for selectingmatrix, namely

Score ¼ a � Scoree þ ð1� aÞ � Scored:
The value of a depends on the error rate of data in an actual
system. If the error rate is low enough, we can set the value
of a to be 1.

In Section 3.1, while selecting the optimal coding scheme,
we only consider the cost of data encoding, without

Fig. 6. Example of generating Cauchy matrices using Greedy heuristic,
with k ¼ 5,m ¼ 2, w ¼ 3.
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considering the decoding cost. To obtain higher accuracy,
we take into account the cost of both encoding and decod-
ing. For each matrix generated or its inverse matrix, we
define a score by the cost of scheduling and the number of
ones in the binary Cauchy matrix, respectively denoted as
Scoree and Scored. We give each of them a weight to mea-
sure their importance, i.e., a and 1� a. Then we can get a
new evaluation formula for selecting matrix, namely

Score ¼ a � Scoree þ ð1� aÞ � Scored:

The value of a depends on the error rate of data in an actual
system.

Every time we write data into the storage, we need to
encode data and obtain the erasure codes. Only when an
error occurs, we decode the erasure codes to recover the
original data. In an actual storage system, the data error
rarely occurs, so we should place more weight on the effi-
ciency of encoding. If the error rate is low enough, we can
set a as 1. On the other hand, in some cases of high error
rate, data decoding occurs more frequently, so the influence
of decoding efficiency on the overall performance will be
greater, and the value of a should be decreased.

4 ACCELERATING SELECTION WITH PARALLEL

COMPUTING

In order to accelerate the selection of coding schemes, we
perform CaCo in parallel by distributing the computational
tasks to individual nodes in a cluster. For different heuris-
tics, the calculations of Cauchy matrices and schedules are
completely independent. Therefore, it would be feasible
and effective to distribute the tasks of generating matrices
and schedules to different processors.

Fig. 7 summarizes the mechanism of performing the
framework over a distributed system.

1) The Coordinator dispatches computational tasks. The
Coordinator receives the parameters passed in, such
as the redundancy configuration ðk;m;wÞ, and the
number of Workers. Then the Coordinator sends
some parameters to Workers, such as ðk;m;wÞ, HM
(heuristic for generating a Cauchy matrix), and the
other parameters required. In this procedure, we
should concern about load balance among Workers.

2) Workers execute heuristics for generating matrices and
schedules. Workers receive the message from the
Coordinator, and obtain a Cauchy matrix using the

heuristic HM. Then Workers schedule for the matrix
with multiple heuristics, and select the locally opti-
mal schedule respectively, and finally send the
selected combination of ðmi; siÞ to the Coordinator.

3) The Coordinator assembles results from Workers and
selects the optimum. The Coordinator collects the com-
binations that Workers send back, and from them,
by comparison of the size of the schedules and the
density of the binary Cauchy matrices, selects the
optimal combination to be ðmbest; sbestÞ.

In most cases, CaCo is applied to the cloud storage sys-
tem with multiple nodes in the cluster. So there are readily
available machines that we can use for the deployment of
distributed environments.

5 IMPLEMENTATION IN HDFS

This section mainly describes how we implement CaCo’s
selection of the optimal coding scheme for a given redun-
dancy configuration ðk;m;wÞ, and how we use the selected
coding scheme for data encoding in the Hadoop distributed
file system.

5.1 Parallel Deployment of CaCo in MPI

We deploy CaCo in MPICH with the release version 3.0.4
[33], so that the selection of the best coding scheme can be
accelerated in parallel over the distributed system. MPICH
is a high-performance and widely portable implementation
of the Message Passing Interface (MPI) standard.

Our distributed environment is built up with multiple
nodes, containing one node as Coordinator for dispatching
computational tasks and assembling results, and other
nodes asWorkers for generating matrices and schedules.

For every redundancy configuration ðk;m;wÞ, the Coor-
dinator generates and sends different identifiers of matrix
heuristics to Workers via message passing function MPI_-
Send. According to the given heuristic identifier, each
Worker generates a Cauchy matrix and then selects a locally
best schedule. Implementation of Optimizing Cauchy heuris-
tic references PLANK’s work about CRS Coding [20], and
the Original matrix is defined by BLOMER [11], and Cauchy
Good heuristic is a part of the Jerasure library [29], and the
schedule heuristics reference the open source programs of
Uber-CSHR and X-Sets [32], and we design and implement
the Greedy heuristic to increase the diversity of Cauchy
matrices.

Once a Worker completes its computational task, it
immediately reports to the Coordinator via message passing
function MPI_Send and requests another task. In this way,
our cluster achieves load balancing and makes the computa-
tional resources well function.

While all the computational tasks are completed, the
Coordinator assembles all the generated combinations and
discovers the global optimum. Finally, we store the selected
combination for subsequent data coding.

5.2 Employing CaCo in HDFS

To achieve data redundancy, HDFS requires triple replica-
tion. In CaCo, we use erasure codes instead of triple replica-
tion of data to guarantee the fault tolerance of the system.
To implement CaCo, we should modify the architecture of

Fig. 7. A schematic diagram of the framework executing in distributed
environments.
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HDFS to certain extent. For example, the illustration of write
operation with CaCo is shown in Fig. 8, and we can
conclude the procedure to several steps as follows.

Algorithm 1:Write Operation with CaCo

1 The Client sends a write request to the NameNode.
2 The NameNode allocates some DataNodes to the Client.
3 Write the data blocks into DataNodes.
4 Make a copy of data and put it into DataQueue.
5 Encode data with the schedule selected by CaCo.
6 Write the coding blocks into DataNodes.
7 Data encoding finishes.
8 Remove the copies of data from DataQueue.

With erasure coding, we reduce the number of data cop-
ies from three to one. So, when a block is written, we only
allocate one DataNode to the Client.

After writing the data blocks to the allocated DataNo-
des, we store a copy of data into DataQueue to be
encoded. While there are k data blocks ready in Data-
Queue, we encode them with the schedule selected by
CaCo. After encoding, we get m coding blocks, and add
them to ParityQueue. Then, we allocate some DataNodes
for the coding blocks. Note that those k data blocks and
m coding blocks should be stored on different data nodes.
Otherwise, the failure of one node may lead to multiple
faults in the same group of n ¼ kþm blocks.

Finally, we remove the copies of data that have been
encoded, and thus the write operation with CaCo finishes.

In the read operation with CaCo, if there is not data
corruption in the requested blocks, the Client directly
retrieves the data. When failures of some nodes occur, we
need to decode the remaining valid blocks to rebuild the
original data, using the optimal schedule generated by
CaCo. Then, we supply the rebuilt data to the Client’s
read request.

6 PERFORMANCE EVALUATION

This section mainly presents results of a comprehensive
experimental evaluation comparing CaCo with the existing
data coding approaches. This performance study analyzes
their performance in terms of data encoding time and data
decoding time.

6.1 Evaluation Methodology

To evaluate CaCo’s performance in every aspect, we do a
set of experiments and analyses. First, while generating
the combinations of matrix and schedule in every heuris-
tic, we count the size of the generated schedules and the
number of ones in the Cauchy matrices, to prove that
CaCo can identify the optimal combination. Second, we
run the framework with various redundancy configura-
tions and accelerate it in MPI, to testify the feasibility of
parallelizing in CaCo. Finally, we implement CaCo in
HDFS and evaluate its performance of data encoding and
decoding by comparing with Hadoop-EC.

The test-bed used in these experiments consists of two
nodes, as described bellow. The first node, installed with
Linux kernel 2.6.35-22-generic, is equipped with Intel
Xeon E5-2620 2.00 GHz six-core processor and 32 GB of
memory. The other node, installed with Linux kernel
2.6.32-33-generic, is equipped with Intel Xeon E5606
2.13 GHz quad-core processor and 8 GB of memory. And
they both use EX4 file system.

6.2 Effectiveness of the Generated Schedules

The purpose of our first set of experiments is to quantita-
tively characterize the advantages of CaCo through a
comparison with all other coding schemes. One of them is a
combination of a Cauchy matrix heuristic and an XOR
schedule heuristic. The four Cauchy matrix heuristics used
in the experiments are Cauchy Good, Optimizing Cauchy,
Original, and Greedy. The eight XOR schedule heuristics
used in the experiments are Uber, MW, MW-SS, MW-
Smallest-Sum, MW-SQ, Uber-XSet, MW-Matching, and Subex.
There are 32 combinations of Cauchy matrix heuristics and
XOR schedule heuristics. In other words, we compare the
coding performance between the CaCo approach with 32
other coding schemes. The number of XOR operations
required by an erasure code has a direct relationship to the
performance of encoding or decoding. In this set of experi-
ments, we use the number of XOR operations to represent
the coding performance.

First, we explore the coding performance of CaCo and 32
other coding schemes with the redundancy configuration of
ðk;m;wÞ ¼ ð7; 3; 4Þ. As shown in Table 1, the Cauchy matrix
generated with the Cauchy Good heuristic has 130 ones. We
schedule this matrix with each of the eight XOR schedule

Fig. 8. Data flow of the write operation with CaCo.
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heuristics. The number of XORs per schedule varies from 70
to 86. So, the size of the local optimal schedule is 70. The
Cauchy matrix generated with the Optimizing Cauchy heu-
ristic has 143 ones. We schedule this matrix with each of the
eight XOR schedule heuristics. The number of XORs per
schedule varies from 75 to 88. So, the size of the local opti-
mal schedule is 75. The Cauchy matrix generated with the
Original heuristic has 187 ones. We schedule this matrix
with each of the eight XOR schedule heuristics. The number
of XORs per schedule varies from 85 to 101. So, the size of
the local optimal schedule is 85. With the Greedy heuristic,
the size of each of the Cauchy matrices fluctuate between
145 and 150. The number of XORs per schedule varies from
72 to 89. So, the size of the local optimal schedule is 72.
Finally, CaCo has a Cauchy matrix with the size of 130 ones,
and an XOR schedule with the size of 70.

Second, we examine the coding performance of CaCo
with the redundancy configuration of ðk;m;wÞ ¼ ð8; 4; 4Þ.
As shown in Table 2, as to the Cauchy matrix generated
with the Cauchy Good heuristic, the number of XORs per
schedule varies from 111 to 126. So, the size of the local
optimal schedule is 111. For the Cauchy matrix generated
with the Optimizing Cauchy heuristic, the number of XORs
per schedule varies from 115 to 144. So, the size of the
local optimal schedule is 115. For the Cauchy matrix gen-
erated with the Original heuristic, the number of XORs
per schedule varies from 126 to 143. So, the size of the
local optimal schedule is 126. With the Greedy heuristic,
the number of XORs per schedule varies from 109 to 136.
So, the size of the local optimal schedule is 109. Finally,
CaCo has a Cauchy matrix with the size of 232 ones, and
an XOR schedule with the size of 109.

Third, we examine the coding performance of CaCo with
the redundancy configuration of ðk;m;wÞ ¼ ð10; 5; 5Þ. As
shown in Table 3, as to the Cauchymatrix generatedwith the
Cauchy Good heuristic, the number of XORs per schedule
varies from 241 to 324. So, the size of the local optimal sched-
ule is 241. For the Cauchymatrix generatedwith theOptimiz-
ing Cauchy heuristic, the number of XORs per schedule varies
from 246 to 341. So, the size of the local optimal schedule is
246. For the Cauchy matrix generated with the Original
heuristic, the number of XORs per schedule varies from 267
to 345. So, the size of the local optimal schedule is 267. With
theGreedy heuristic, the number of XORs per schedule varies
from 253 to 333. So, the size of the local optimal schedule is
253. Finally, CaCo has a Cauchy matrix with the size of 495
ones, and an XOR schedule with the size of 241.

For completeness, we also conducted some additional
experiments with eleven other redundancy configurations
ðk;m;wÞ. Table 4 summarizes a list of the best combinations
of a Cauchy matrix heuristic and an XOR schedule heuristic,
selected by CaCo, for different redundancy configurations.

Some conclusions that one may draw from the experi-
mental results are as follows.

� Given a Cauchy matrix, changing the XOR schedule
heuristic affects the coding performance signifi-
cantly. This observation is consistent with the results
from Plank et al. [25].

� Given a redundancy configuration ðk;m;wÞ, the
locally optimal schedule with a different Cauchy
matrix heuristic has an obviously different size. To
the best of our knowledge, this observation is not
shown in any other literature.

TABLE 1
The Effect of Different Cauchy Matrix and XOR Schedule for the Redundancy Configuration ðk;m;wÞ ¼ ð7; 3; 4Þ

Schedule Cauchy Good Optimizing
Cauchy

Original Greedy

ONEs XORs ONEs XORs ONEs XORs ONEs XORs

Uber

130

86

143

88

187

101 150 89
MW 74 77 88 145 77
MW-SS 74 77 86 145 74
MW-Smallest-Sum 74 77 88 145 77
MW-SQ 72 75 87 146 74
Uber-XSet 72 76 86 145 72
MW-Matching 70 75 85 146 74
Subex 73 77 86 146 72

TABLE 2
The Effect of Different Cauchy Matrix and XOR Schedule for the Redundancy Configuration ðk;m;wÞ ¼ ð8; 4; 4Þ

Schedule Cauchy Good Optimizing
Cauchy

Original Greedy

ONEs XORs ONEs XORs ONEs XORs ONEs XORs

Uber

213

126

232

144

292

143 236 136
MW 114 115 130 232 113
MW-SS 111 121 134 232 110
MW-Smallest-Sum 114 115 130 232 113
MW-SQ 115 119 126 232 109
Uber-XSet 112 116 129 232 113
MW-Matching 112 117 131 232 113
Subex 114 121 134 236 115
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� For a given redundancy configuration, there is a
large gap in the coding performance when using dif-
ferent combinations of a Cauchy matrix heuristic
and an XOR schedule heuristic.

� None of existing coding schemes performs best for
all redundancy configurations ðk;m;wÞ.

� CaCo always performs best for all redundancy con-
figurations ðk;m;wÞ.

� When setting an existing coding scheme by rules of
thumb, there is a probability of 3.13 percent to reach
the coding performance of CaCo.

In order to measure the performance gap between the
coding scheme generated by CaCo and that by the enumera-
tion approach, we have enumerated all Cauchy matrices,
and performed all the scheduling heuristics, used in the
CaCo approach, for each matrix. Then, we compare the cod-
ing scheme selected by CaCo with the optimal coding
scheme derived by the enumeration approach.

For the redundancy configuration ðk;m;wÞ ¼ ð7; 3; 4Þ, the
enumeration method provides a schedule of size 66, while
CaCo finds out a schedule of size 70. For the redundancy
configuration ð8; 4; 4Þ, the enumeration method provides a
schedule of size 101, while CaCo finds out a schedule of
size 109. Although the enumeration method can find out a
bit better coding scheme than CaCo, the running time is

unacceptable for a relatively large redundancy configura-
tion. For example, given a redundancy configuration
ð10; 5; 5Þ, the magnitude of the matrices to be constructed

can be up to 1012, and it is unrealistic to enumerate them.
We can conclude that compared with the enumeration
approach, CaCo can identify a good enough coding scheme
with much lower complexity.

6.3 Running Time of CaCo

In the preceding set of tests, we focus primarily on the effec-
tiveness of the generated schedules. In this set of experi-
ments, we examine the running time of CaCo.

We vary the redundancy configuration ðk;m;wÞ by stabi-
lizingm andw on 4 and increasing k from 6 to 12. For a given
redundancy configuration, we run CaCo for three times and
collect the average running time. In Fig. 9, we compare the
running time of CaCowhen one or fourWorkers are used.

First, as the figure shows, the running time of CaCo takes
on an upward trend as k increases along the x-axis. When
one Worker is used to compute all the selection tasks, the
running time increases from 43.26 to 529.68 s. When four
Workers are used to share the computing burden, the run-
ning time increases from 16.46 to 169.24 s. In other words,
the longest running time is 2.82 minutes. Second, for a given
redundancy configuration, the running time of CaCo
decreases significantly when four Workers are used. The
speedup ratio varies between 2.63 and 3.15.

TABLE 3
The Effect of Different Cauchy Matrix and XOR Schedule for the Redundancy Configuration ðk;m;wÞ ¼ ð10; 5; 5Þ

Schedule Cauchy Good Optimizing
Cauchy

Original Greedy

ONEs XORs ONEs XORs ONEs XORs ONEs XORs

Uber

495

324

504

341

642

345 539 333
MW 252 252 272 533 260
MW-SS 252 254 278 533 261
MW-Smallest-Sum 252 252 272 533 260
MW-SQ 241 246 267 533 253
Uber-XSet 252 262 275 539 259
MW-Matching 242 254 272 533 257
Subex 243 254 275 544 261

TABLE 4
The Best Combination of Cauchy Matrix and XOR Schedule for

Different Redundancy Configurations

k;m;w matrix schedule XORs

4, 4, 3 Cauchy Good Uber-XSet 31
4, 3, 4 Optimizing Cauchy MW 36
5, 3, 4 Optimizing Cauchy MW 49
6, 3, 4 Cauchy Good Uber-XSet 57
7, 3, 4 Cauchy Good MW-Matching 70
13, 3, 4 Cauchy Good MW-SQ 137
4, 4, 4 Optimizing Cauchy MW-SQ 42
5, 4, 4 Optimizing Cauchy MW-SQ 60
6, 4, 4 Cauchy Good MW-SQ 76
7, 4, 4 Greedy MW 94
8, 4, 4 Greedy MW-SQ 109
9, 4, 4 Cauchy Good Subex 123
10, 4, 4 Cauchy Good Uber-XSet 134
11, 4, 4 Cauchy Good MW-SQ 153
5, 5, 5 Optimizing Cauchy Uber-XSet 113
10, 5, 5 Cauchy Good MW-SQ 241

Fig. 9. Running time of CaCo with different redundancy configurations.
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With those redundancy configurations used in this set of
experiments, the running time of CaCo are absolutely
acceptable. Although the computation complexity of CaCo
rises along with the increase of k, m, or w in the redundancy
configuration ðk;m;wÞ, we can use better parallelism to
reduce the running time of CaCo for two reasons. First, the
problem of selecting the best coding scheme is easy to be
parallelized. Second, there are enough computational
resources in a modern cloud storage system available for
running CaCo. On the other hand, we view running time as
secondary to the effectiveness of the schedules produced.
The reason is that real implementations will very likely pre-
compute and store the matrices and schedules rather than
compute them on the fly when encoding or decoding data.

6.4 Coding Performance in a Cloud System

Finally, we evaluate the performance of performing data
encoding and decoding in the cloud storage system with
the Cauchy matrices and XOR schedules generated by
CaCo. In order to quantitatively characterize the advantages
of CaCo, we make a comparison between CaCo and
Hadoop-EC [26]. Hadoop-EC is a Hadoop library with era-
sure codec functionalities, developed by Microsoft research.
Hadoop-EC uses the “Cauchy Good” heuristic in the Jera-
sure library [29] for erasure calculations.

Data encoding. We vary the redundancy configuration
ðk;m;wÞ by stabilizing m on 3 and w on 4, and increasing k
from 4 to 13. For a given redundancy configuration, we
encode data to produce parity data with CaCo and
Hadoop-EC, and collect the encoding time. In Fig. 10, we
compare CaCo and Hadoop-EC in the encoding time.

First, as the figure shows, the encoding times of CaCo
and Hadoop-EC take on an upward trend as k increases
along the x-axis. When Hadoop-EC is used in the cloud
system, the encoding time increases from 28.35 to 110.19
ms. When CaCo is used in the cloud system, the encoding
time increases from 18.24 to 65.92 ms. The reason behind
this phenomenon is that a larger k means more data
blocks, and further more XOR operations, involved in a
data encoding operation.

Second, for a given redundancy configuration, the
encoding time of CaCo is significantly smaller than that
of Hadoop-EC. The percentage of improvement varies
between 26.68 and 40.18 percent.

Data decoding. We vary the redundancy configuration
ðk;m;wÞ by stabilizing m on 3 and w on 4, and increasing k
from 4 to 13. For a given redundancy configuration, we
decode data to reproduce lost data with CaCo and Hadoop-
EC, and collect the decoding time. With these redundancy
configurations, simultaneous failures of at most three disks
can be tolerated. Computation complexities are different
when recovering from different situations of data corrup-
tion in the same group of kþm blocks.

We first examine the performance of CaCo when
recovering from a single drive failure. This is the most
common failure event and thus should be an interesting
case study. Fig. 11 plots the decoding times using CaCo
and Hadoop-EC when recovering from one data disk fail-
ure. First, the decoding times of CaCo and Hadoop-EC
take on an upward trend as k increases along the x-axis.
When Hadoop-EC is used in the cloud system, the decod-
ing time increases from 44.23 ms to 139.71 ms. When
CaCo is used in the cloud system, the decoding time
increases from 27.24 to 65.9 ms. The reason behind this
phenomenon is that a larger k means more data blocks,
and further more XOR operations, involved in a data
decoding operation. Second, for a given redundancy con-
figuration, the decoding time of CaCo is significantly
smaller than that of Hadoop-EC. The percentage of
improvement varies between 38.4 and 52.83 percent.

We then compare CaCo and Hadoop-EC in the decod-
ing time when recovering from failures of three data
disks. As shown in Fig. 12, the decoding times of CaCo
and Hadoop-EC take on an upward trend as k increases
along the x-axis. When Hadoop-EC is used in the cloud
system, the decoding time increases from 51.22 to 165.03
ms. When CaCo is used in the cloud system, the decoding
time increases from 39.44 to 112.59 ms. Furthermore, for a
given redundancy configuration, the decoding time of
CaCo is significantly smaller than that of Hadoop-EC.

Fig. 10. Performance comparison of data encoding between CaCo and
Hadoop-EC.

Fig. 11. Performance comparison of data decoding between CaCo and
Hadoop-EC when one data disk fails.
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The percentage of improvement varies between 20.56 and
31.78 percent.

In Fig. 10, we compare CaCo and Hadoop-EC in the
decoding time when recovering from failures of two data
disks and one coding disk. First, the decoding times of
CaCo and Hadoop-EC take on an upward trend as k
increases along the x-axis. When Hadoop-EC is used in
the cloud system, the decoding time increases from 33.68
to 121.04 ms. When CaCo is used in the cloud system, the
decoding time increases from 22.07 to 70.03 ms. Second,
for a given redundancy configuration, the decoding time
of CaCo is significantly smaller than that of Hadoop-EC.
The percentage of improvement varies between 30.38 and
42.14 percent.

7 CONCLUSIONS AND FUTURE WORK

Cloud storage systems always use different redundancy
configurations (i.e., ðk;m;wÞ), depending on the desired bal-
ance between performance and fault tolerance. For different
combinations of matrices and schedules, there is a large gap
in the number of XOR operations, and no single combina-
tion performs best for all redundancy configurations.

In this paper, we propose CaCo, a new approach that
incorporates all existing matrix and schedule heuristics,
and thus is able to identify an optimal coding scheme
within the capability of the current state of the art for a
given redundancy configuration. The selection process of
CaCo has an acceptable complexity and can be accelerated
by parallel computing. It should also be noticed that the
selection process is once for all. The experimental results
demonstrate that CaCo outperforms the “Hadoop-EC”
approach by 26.68-40.18 percent in encoding time and by
38.4-52.83 percent in decoding time simultaneously.

Finally, we readily acknowledge that reducing XORs is
not the only way to improve the performance of an era-
sure code. Other code properties, like the amount of data
required for recovery and degraded reads [34], [35], [36],
may limit performance more than the CPU overhead. We
look forward to addressing these challenges in the future.
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