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Abstract—As reliability requirements are increasingly important in both clusters and data centers, RAID-6, which can tolerate any two

concurrent disk failures, has been widely used in modern storage systems. However, most existing RAID-6 codes cannot provide

satisfied performance on both degraded reads and partial stripe writes, which are important performance metrics in storage systems.

To address these problems, in this paper we propose a new RAID-6 MDS erasure code called Short Code, in order to optimize the

degraded reads and partial stripe writes. In Short Code, we propose a novel short horizontal parity chain, which assures that all disks

contribute to degraded reads while the continuous data elements are more likely to share the same horizontal chain for optimizing

degraded reads. On the other hand, Short Code distributes all diagonal parities among disks for optimizing partial stripe writes. The

proposed Short Code not only owns the optimal storage efficiency, but also keeps the optimal complexity for both encoding/decoding

computations and update operations. The experiments show that Short Code achieves much higher speed on degraded reads and

partial stripe writes than other popular RAID-6 codes, and provide acceptable performance on single disk failure recoveries and normal

reads. Specifically, compared to RDP code, Short Code provides 6.1 to 26.3 percent higher speed on degraded reads and 36.2 to 80.3

percent higher speed on partial stripe writes with the same number of disks.

Index Terms—RAID-6, MDS erasure codes, degraded reads, partial stripe writes

Ç

1 INTRODUCTION

MODERN storage systems, such as GFS [1], Windows
Azure [2], and OceanStore [3], usually distribute data

across hundreds of thousands of storage devices. For the
concerns on both reliability and availability, the tolerance of
disk failures is usually required. In recent years, Redundant
Arrays of Independent Disks (RAID) have been widely used
to provide high reliability and high performance. As a vari-
ant of RAID, RAID-6 that can tolerate the concurrent failures
of any two disk, receives a lot of attentions [4] and [5].

There exist many RAID-6 implementations based on var-
ious erasure codes. One of the popular realizations is to use
the Maximum Distance Separable (MDS) [6] codes, which
are a class of erasure codes that achieve the optimal storage
efficiency. According to the parity distribution, RAID-6
MDS codes can be divided into horizontal codes and verti-
cal codes. Horizontal codes, such as RDP code [7] and
EVENODD code [8], are usually constructed over kþ 2 logi-
cal disks, where the first k disks store user’s data, and the
last two disks (usually labeled P disk and Q disk, respec-
tively) keep the parities. Vertical codes, such as X-Code [9],
usually distribute their parities across all disks.

With the number of equipped disks increasing, disk fail-
ures become normal things rather than exceptions. Among
different failure patterns, single disk failure is the most fre-
quent failure and takes up to 99.75 percent of disk failure
recoveries [10]. For single disk failures, two critical opera-
tions that influence the performance: recovering the lost infor-
mation from the failed disk and degraded reads to respond users’
read requests [11], [12], because the slow recoveries degrade
the system’s performance and reliability as well as the slow
degraded reads degrade users’ experiences when they
request to access their data. In some level, degraded reads
are important than single failure recoveries, because previ-
ous studies [13], [14] indicate that more than 90 percent of
failures are triggered by disks temporarily unavailable
(such as system upgrades and network connection snaps)
and with no data lost. On the other hand, partial stripe writes,
where writes occur on a portion of a stripe, is another criti-
cal performance metric in today’s storage systems, particu-
larly in write-intensive applications. In this paper, we
assume that the contiguous data chunks are stored on dif-
ferent disks in storage systems to exploit parallel I/O. This
assumption also exists in some previous studies [11], [15]
and follows the original RAID layout [16]. However, exist-
ing RAID-6 codes cannot provide satisfied performance on
both degraded reads and partial stripe writes.

For degraded reads, horizontal codes usually provide bet-
ter performance than vertical codes, because the continuous
data elements that need to be read in horizontal codes are
usually share horizontal parity chains. On the other hand,
horizontal codes also have a limitation that the diagonal par-
ity disk (the Q disk) cannot contribute to degraded reads,

� The authors are with the Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing 100084, China.
E-mail: mooncape1986@126.com, shujw@tsinghua.edu.cn,
{luo09, hqd13}@mails.tsinghua.edu.cn, zhirong.shen2601@gmail.com.

Manuscript received 11 Sept. 2015; revised 12 May 2016; accepted 23 May
2016. Date of publication 6 June 2016; date of current version 19 Dec. 2016.
Recommended for acceptance by C. Metra.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2016.2576461

IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 1, JANUARY 2017 127

0018-9340� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



while all disks of vertical codes can help degraded reads.
Since the RAID-based storage systems usually read data in
parallel, one more contributed disk effectively speeds up the
degraded read performance. Therefore, if we could
take advantage of both horizontal codes and vertical codes,
the degraded read performance can be further improved.

For partial stripe writes, horizontal codes usually behave
poorly due to the fact that the parity elements are stored in
parity disks. Though most vertical codes, such as X-Code,
provide good I/O balancing on partial stripewrites, they usu-
ally suffer frommore write accesses than horizontal codes. In
addition, some vertical codes like H-Code [15] contain hori-
zontal parity chains and provide good performance on partial
stripe writes, but they still cannot provide satisfied perfor-
mance on degraded reads, because the diagonal parities con-
tained in each row cannot contribute to degraded reads.

To address these problems, in this paper we propose a
novel RAID-6 MDS erasure code named Short Code, in order
to improve both degraded read performance and partial
stripewrite performancewhile provide acceptable single disk
failure recovery performance and normal read (read without
disk failure) performance. Different from previous MDS
codes, Short Code uses short horizontal parity chains, in order
to assure that all disks contribute to degraded reads and con-
tinuous data elements aremore likely to share the same parity
chain. Though deploying all horizontal parity elements in the
same disk may cause the unbalanced I/O accesses, rotating
the maps from logic disks to physical disks like RAID-5 will
effectively alleviate this problem [17]. For improving the per-
formance on partial stripe writes, Short Code distributes the
diagonal parity elements across all disks. Our contributions
can be summarized as follows:

� We propose a novel RAID-6 MDS erasure code
termed Short Code with new parity chains and new
parity distributions, to improve the performance on
degraded reads and partial stripe writes.

� We conduct a series of analysis on our proposed
Short Code. The results illustrate Short Code pro-
vides the optimal storage efficiency, encoding/
decoding computational complexity, and update
complexity.

� We implement Short Code based on Jerasure 1.2 [18],
and evaluate its performance in a real storage sys-
tem. The experiment results show that Short Code
achieves good performance on degraded reads and
partial stripe writes, and provides acceptable perfor-
mance on single disk failure recoveries and normal
reads. Specifically, compared to RDP code, Short
Code gains 6.1 to 26.3 percent higher speed on
degraded reads, 36.2 to 80.3 percent higher higher
speed on partial stripe writes, 3.1 to 13.7 percent
higher speed on single disk failure recoveries, and
5.2 to 27.8 percent higher speed on normal reads
with the same number of disks.

The rest of this paper continues as follows: The next sec-
tion states the background and the problem in existing
RAID-6 codes. Section 3 presents the details and the optimal
properties of Short Code. We focus on the experimental
evaluations in Section 4. Finally, we conclude this paper in
the last section.

2 BACKGROUND AND PROBLEM STATEMENT

Though various kinds of RAID-6 MDS codes have been pro-
posed in literature, most of them still don’t provide satisfied
performance on degraded reads and partial stripe writes. In
this section, we present these problems in detail and
describe our motivations. Firstly, we introduce some terms
and notations that are frequently used in this paper.

2.1 Terms and Notations

Element. A chunk of data or parity information, which is the
fundamental unit in RAID-6 architecture. The data elements
store original data information, while the parity elements
keep redundant information.

Stripe. A maximal set of elements that are dependent on
each other in terms of redundancy relations [19]. A stripe is
usually described as a two dimensions array, where each
column represents a logical disk. In this paper, we use Ci;j

to denote the element that locates on the ith row and jth col-
umn of the two dimensions array. Figs. 1a and 1b illustrate
the layout and the parity chains of a stripe in RDP code.

Row. A maximum set of elements which belong to the
same row of the above two dimensions array. In Fig. 1a,
{C0;0, C0;1, . . ., C0;7} compose a specific row.

Continuous Data Elements. A series of data elements that
can be handled in a read/write operation. In order to take
the maximum advantage of parallel I/O, we follows the
assumption in [15] that the contiguous data chunks are
stored on different disks. This assumption follows the defi-
nition of RAID [16] and be usually used in recent works
[11]. Based on this assumption, in Fig. 1a {C0;4, C0;5, C1;0,
and C1;1} are continuous data elements.

Parity Chain. A parity chain is composed of a parity ele-
ment and other corresponding elements that are used to
compute this parity element. In Fig. 1a {C0;0, C0;1, . . ., C0;6} is
a specific parity chain.

Horizontal Parity Chain. A kind of parity chain that con-
tains a parity element and some continuous data elements.
The parity element of horizontal parity chain is called hori-
zontal parity element. Since the horizontal parities in exist-
ing RAID-6 codes are simply calculated by all data elements
of each row, in some papers the “horizontal parity” has
been called “row parity” as well.

Diagonal Parity Chain. Another kind of parity chain where
the data elements are dispersed. Each diagonal parity chain
contains a diagonal parity element and its related elements,
where the diagonal parity element is computed by those
related elements.

2.2 Related Work

There exist a lot of RAID-6 implementations, of which a typ-
ical class of implementations is to use various MDS erasure
codes, including Reed-Solomon code [20], Cauchy Reed-
Solomon code [21], RDP code [7], EVENODD code [8], Lib-
eration code [17], Liber8tion code [22], Blaum-Roth code
[23], X-Code [9], HDP code[4], B-Code [24], P-Code [37],
Balanced P-Code [38], H-Code [15], Cycle code [25], and
C-Code [35]. Some non-MDS erasure codes and some new
kinds of erasure codes such as Hover code [26], WEAVER
code [27], LRC code [13], Flat XOR-Code [28], Generalized
X-Code [29], SD code [33] and STAIR code [34] are other
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RAID-6 candidates. Furthermore, some network codes such
as Zigzag code [31] and NCCloud [30] can be used for
RAID-6 implementations, and achieve good performance
on single disk failure recoveries. Particularly, Zigzag code is
promising to achieve theoretical optimal performance for
single failure recoveries, but doesn’t address the problems
on degraded reads and partial stripe writes. In this paper,
we just focus on RAID-6 MDS array codes, which can be
further categorized as horizontal codes and vertical codes.

Horizontal MDS Array Codes for RAID-6. Traditional
RAID-6 horizontal array codes have k logical data disks and
two parity disks, where the first parity disk usually stores
the horizontal parity elements. EVENODD code is a typical
horizontal code. In EVENODD code, horizontal parity ele-
ments are computed by the XOR sum of each row’s data ele-
ments, and the diagonal parity elements are calculated by
the data elements on diagonals. RDP code is another typical
horizontal code for providing the optimal encoding/decod-
ing computation complexity. In RDP code, the generation of
horizontal parity elements is the same as EVENODD code
(as Fig. 1a shows), while diagonal parity elements are gener-
ated by both data elements and horizontal parity elements
on diagonals (as shown in Fig. 1b). Liberation, Liber8ation,
and Blaum-Roth are lowest-density codes and achieve the
near-optimal update complexity.

Vertical MDS Array Codes for RAID-6. Vertical array codes
often distribute parity elements across disks, such as X-
Code, Cycle code, C-Code, and HDP Code. A stripe of X-
Code can be represented as a p� p two dimensions array (p
needs to be a prime number), where the first ðp� 2Þ rows
store data elements, and the last two rows keep parity ele-
ments. There are two kinds of parity elements in X-Code:
diagonal parity elements which are generated by the XOR
sum of diagonal data elements and stored in the ðp� 1Þth
row, and anti-diagonal parity elements which are generated
by anti-diagonal data elements and stored in the pth row.
Cycle code is another vertical code that supports the num-
ber of disks with ðp� 1Þ or 2� ðp� 1Þ. Unlike typical verti-
cal codes, HDP code uses both horizontal parity chains and
diagonal parity chains, in order to optimize I/O load bal-
ancing and the disk failure recoveries. In the following of
this paper, we treat both typical diagonal parity chains and
anti-diagonal parity chains as diagonal parity chains.

2.3 The Degraded Read Problem in Existing RAID-6
MDS Array Codes

When a disk fails, since the failure is not always detected as
soon as it occurred and the recovery process is often trig-
gered by the act of man, the storage system usually recovers
the lost information after a period of degraded running,

Fig. 1. The problems in anRDP codewith 8-disks (The last disk don’t contribute to degraded reads, and encounters a high burden in partial stripe writes).
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while degraded reads are used to respond users’ read
requests during this time. Since the users’ experience is a
significant performance metric for storage systems, the per-
formance on degraded reads is an important metric as well.
However, most of existing RAID-6 codes cannot provide
satisfied performance on degraded reads.

Figs. 1c and 2c show two examples of degraded reads in
RDP-Code and X-Code when the second disk becomes tem-
porarily unavailable. In these cases, when a user requests to
read 10 data elements (starting with C0;0), RDP code just
needs to read 12 elements in total, while X-Code requires to
retrieve 15 elements. What’s more, it is easy to observe that
all disks in X-Code contribute to degraded reads, while the
diagonal parity disk in RDP code cannot help degraded
reads. Since the RAID-based storage systems usually read
data in parallel, one more contributed disk will effectively
speed up the performance.

In Summary, horizontal codes like RDP code usually
need to read less elements, while vertical codes such as X-
Code have more contributed disks. Some vertical codes
such as H-Code code have horizontal chains, but they also
lay two parities in each row and one of them cannot contrib-
ute to degraded read, thus degrade the performance.

Though parity disk failures for horizontal codes don’t
degrade the read speed, they won’t affect the overall perfor-
mance due to the fact that the possibility of parity disk fail-
ures is very low. Therefore, if there existing an erasure code
that just lays one horizontal parity in a row, the degraded
read performance will be further improved.

2.4 The Partial Stripe Write Problem in Existing
RAID-6 Array MDS Codes

Partial stripe writes to continuous data elements are com-
mon in storage system, particularly in write-intensive appli-
cations like online storage systems. Since these systems
usually upload the local data with any size into erasure
coded systems in real time, which usually trigger one to a
half stripe of data element’s update and causes partial stripe
writes frequently occurring. However, most of RAID-6 era-
sure codes suffer from high I/O cost or low write speed on
partial stripe writes. We now illustrate these problems as
follows.

Figs. 1d and 2d give two examples of partial stripe writes
in RDP-Code and X-Code with eight continuous data ele-
ments (starting with C0;0). It is easy to see that though RDP
code only requires to update 8 extra parity elements, there

Fig. 2. The problems in an X-Code with 7-disks (The system need to extra read/write more elements than horizontal codes for degraded reads and
partial stripe writes).
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are six elements gathering on the diagonal parity disk (disk-
7) causing a bottleneck and significantly degrading the
whole system’s performance, because the write speed is
due to the slowest disk. On the other hand, X-Code provides
good balancing on partial stripe writes, but it needs to
update more parity elements (in this case is 14) due to the
fact that continuous data elements are hard to share the
common diagonal parity chain.

In summary, most vertical codes such as X-Code usually
suffer from high I/O cost, while horizontal codes like RDP
code provide unbalanced I/O on partial stripe writes.
Though some dynamic balancing methods (such as rotating
the maps from logical disks to physical disks like RAID-5)
are able to reform the I/O balancing under intensive write
operations for horizontal codes, these methods are not appli-
cable for improving the partial stripe write speed due to the
fact that they are designed among different stripes but the
problem is occurred inter-stripe. Therefore, for each stripe, if
we can keep the horizontal parities in a specific disk and dis-
tribute all diagonal parities among disks, the partial stripe
write performancewill be significantly improved.

3 SHORT CODE

In this section, we present the detailed designs of our pro-
posed Short Code. Unlike other MDS codes, the horizontal
parity elements of Short Code are computed by the XOR
sum of some continuous data elements rather than all data
elements of each row. In Short Code, all horizontal parity
elements are stored in a specific parity disk, while diagonal
parity elements are distributed across disks.

3.1 Layout and Construction Rules

A stripe of Short Code consist of ðn� 2Þ � ðn� 1Þ data ele-
ments and 2� ðn� 1Þ parity elements (total is n� ðn� 1Þ
elements) distributed on n logic disks. Like most RAID-6
vertical codes, the amount of disks n needs to be a prime
number. The storage efficiency ratio of Short Code is
ðn� 2Þ=n, because the total number of elements in one
stripe is n� ðn� 1Þ and the number of data elements in one
stripe is ðn� 2Þ � ðn� 1Þ. For example, when n ¼ 7; 11; 13,

the storage efficiency ratio of Short Code is 5=7, 9=11, 11=13,
respectively. Fig. 3 shows an example of Short Code with 7
disks. In this case, each disk contains 6 elements. There are
two kinds of parity elements: horizontal parity elements
which are stored in the last disk (such as C0;6, C1;6, � � �, C5;6),
and diagonal parity elements which are distributed across
the first n� 1 disks (such as C5;0, C5;1, � � �, C5;5).

Horizontal Construction Rules. Different from other
MDS codes, the horizontal parities of Short Code are gen-
erated by some continuous data elements rather than all
data elements of each row. The horizontal construction
rules can be represented in mathematics as follows (nota-
tion � means XOR operation, and <> means modular
arithmetic operation).

Ci;n�1 ¼ �n�3

j¼0
Cbi�ðn�2Þþj

n�1 c;hi�ðn�2Þþjin�1
;

ð04 i4n� 2Þ:
(1)

For easy to understanding, the horizontal construction
rules can be represented in the following five steps:

� define the next element of Ci;jCi;j as: if j4n� 3, the next
element is Ci;jþ1; otherwise, the next element is Ciþ1;0

(i.e., the first data element of the next row).
� denote C0;0 as the 0th element, the next element (C0;1)

as the 1th element, then the next as 2th element, etc.,
until the last data element (Cn�3;n�2) is denoted.

� label the 0th to ðn� 3Þth element as number ‘0’, the
ðn� 2Þth to ððn� 2Þ þ ðn� 3ÞÞth element as number
‘1’, and so on, until all data elements are labeled.

� sequentially label each element of the last disk as ‘0’,
‘1’, . . ., ‘n�2’.

� For each labeled number, calculate the XOR sum of
its corresponding data elements, and then store the
sum in its related parity element.

Fig. 3a shows an example of the horizontal construction
rules in a 7-disks Short Code. It is easy to see that the
ðn� 2Þth to ððn� 2Þ þ ðn� 3ÞÞth element are C0;5, C1;0, C1;1,
C1;2, and C1;3 (with the same number ‘1’), while their corre-
sponding parity element is C1;6. Therefore, C1;6 can be

Fig. 3. The layout and construction rules of Short Code.
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calculated by the XOR sum of these data elements, i.e.,
C1;6 ¼ C0;5 � C1;0 � C1;1 � C1;2 � C1;3. Furthermore, We use
Hi to denote each specific horizontal parity chain and give
the following definition:

Hi ¼
n
Ci;n�1; Cbi�ðn�2Þ

n�1 c;hi�ðn�2Þin�1
; . . . ;

Cbi�ðn�2Þþðn�3Þ
n�1 c;hi�ðn�2Þþðn�3Þin�1

o
;

ð04i4n� 2Þ:
Obviously, this definition is another representation

form of Equation (1), because each Hi contains and just
contains all elements of each equation in Equation (1).
We consider a specific HiHi is irrelevant with disk jj if and
only if Hi doesn’t contain any element of disk j, and
give the following lemma to help understand horizontal
parity chains.

Lemma 1. Hi (04i4n� 2) is irrelevant with disk n� 2� i,
and the data elements of Hi are the last i elements of row i� 1
and the first n� 2� i elements of row i.

Proof. As shown in Equation (1), each horizontal parity
chain contains n� 2 continuous data elements that start
with Cbi�ðn�2Þ

n�1 c;hi�ðn�2Þin�1
and locate on different disks.

Since Short Code contains n� 1 data disks, each horizon-
tal parity chain is irrelevant with exact one data disk. We
now discuss this lemma in two cases:

Case 1: i ¼ 0.
In this case, Cbi�ðn�2Þ

n�1 c;hi�ðn�2Þin�1
is actual C0;0, thus the

data elements of H0 are actual the first n� 2 elements of

row 0. Since the first n� 2 elements of row 0 belong to

disk 0 to n� 3, H0 is irrelevant with disk n� 2, which

equals n� 2� i.
Case 2: 14i4n� 2.
In this case, due to i� ðn� 2Þ ¼ ði� 1Þ � ðn� 1Þþ

ðn� 1� iÞ and 0 < n� 1� i < n� 1, Cbi�ðn�2Þ
n�1 c;hi�ðn�2Þin�1

can be simplified to Ci�1;n�1�i. Therefore, the data ele-
ments of Hi are Ci�1;n�1�i; Ci�1;n�i; . . . ; Ci�1;n�2 (the last i
elements of row i� 1), and Ci;0; Ci;1; . . . ; Ci;n�3�i (the first
n� 2� i elements of row i). Since these data elements
are taken out from disk n� i� 1; n� i� 2; . . . ; n� 2 and
0; 1; . . . ; n� 3� i,Hi does not contain disk n� 2� i. tu
We can easily observe that the number of data elements

of each horizontal parity chain is less than those of each
row, which is different from other RAID-6 MDS codes. In
this paper we call this kind of parity chains Short Horizontal
Parity Chain.

Diagonal Construction Rules. the diagonal construction
rules can be presented as

Cn�2;i ¼ �n�3

j¼0
Cj;hn�2þi�jin�1

;

ð04i4n� 2Þ:
(2)

Each diagonal parity chain contains a parity element and
n� 2 data elements that are located on a diagonal line with
slope of �1. For example, as Fig. 3b shows, we can easily
observe that the parity element C5;1 and the data element

C4;2, C3;3, C2;4, C1;5, and C0;0 are located on the same diago-
nal line, thus C5;1 can be computed by the XOR sum of these
data elements.

3.2 Reconstruction Process

In this section, we discuss how does Short Code recovery
from single disk failures and double disk failures.

Recovery from Single Failures. According to the construc-
tion rules, each horizontal parity chain or diagonal parity
chain at most contains one element in each disk. Therefore,
when a single disk fails, we can recover each lost element
based on its corresponding horizontal parity chain or diago-
nal parity chain, either.

Algorithm 1. The Algorithm for Recovering Double Fail-
ures in Short Code

1: Identify the two failed disks f1 and f2 (04f1 < f24n� 1).
2: if f2 ¼¼ n� 1 then
3: Recover all failed elements in f1 based on Equation (2);
4: Recover all failed elements in f2 based on Equation (1);
5: else
6: Recovery Cn�2�f2;f1 and Cn�3�f1;f2 by Equation (1);
7: Two cases run synchronously:
8: Case 1: starting with Cn�2�f2;f1 repeat
9: Recover a missing element based on Equation (2);
10: Recover another lost element based on Equation (1);
11: until The parity element Cn�1;f2 has been recovered.
12: Case 2: starting with Cn�3�f1;f2 repeat
13: Recover a missing element based on Equation (2);
14: Recover another lost element based on Equation (1);
15: until The parity element Cn�1;f1 has been recovered.
16: end if

Recovery from Double Failures. We denote the two failed
disks as f1 and f2, where 04f1 < f24n� 1. If f2 ¼ n� 1,
we can recover all the lost elements of f1 based on the diago-
nal parity chains, because each diagonal chain only contains
exact one element in disk 0 to disk n� 2. Afterward, we can
recover all the missing elements of f2 by recalculating all
the horizontal parity information.

We then discuss the case of 04f1 < f24n� 1. Accord-
ing to Lemma 1, two data elements Cn�2�f2;f1 and Cn�3�f1;f2

can be directly recovered by horizontal parity chains,
because their related horizontal parity chains are only rele-
vant with exact one failed disk. Afterwards, based on
Cn�3�f1;f2 and its related diagonal parity chain, we can

recover a lost element (Chn�3�f1þðf2�f1Þin�1;f1
), and then

reconstruct the next element based on horizontal parity
chains. Following this method and starting with Cn�2�f2;f1

and Cn�3�f1;f2 , we can reconstruct all failed elements based

on Algorithm 1.
Fig. 4 shows an example for recovery from disk 2 and 3

concurrent failures in 7-disks Short Code. As it shows, we
first recover the two starting elements C2;2 and C2;3 (Identi-
fying by the star icons) based on horizontal parity chains
(the same number ‘2’ and ‘3’) respectively, and then recon-
struct C1;3 based on C2;2 and its related diagonal parity
chain (the same letter ‘E’). Following this method, we can
reconstruct all failed elements following C2;2 ! C1;3 !
C1;2 ! C0;3 ! C0;2 ! C5;3 and C2;3 ! C3;2 ! C3;3 ! C4;2 !
C4;3 ! C5;2.
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3.3 The Optimal Properties

The Optimal Storage Efficiency. As introduced in Section 3.1, a
stripe of Short Code have ðn� 2Þ � ðn� 1Þ data elements
and 2� ðn� 1Þ parity elements. Therefore, the storage effi-
ciency of Short Code is ðn� 2Þðn� 1Þ / ½ðn� 2Þðn� 1Þþ
2ðn� 1Þ� ¼ ðn� 2Þ=n, which is the optimal storage effi-
ciency for RAID-6 codes [6].

The Optimal Encoding Computational Complexity. From the
construction rules, Short Code needs n� 2 data elements to
compute each parity element, thus the total number of XOR
operations for encoding all parity elements is 2ðn� 1Þ
ðn� 3Þ, because there exist 2ðn� 1Þ parity elements and
each parity element should be calculated by n� 3 XOR
operations from n� 2 data elements. On the other hand,
since a stripe of Short Code contains ðn� 1Þðn� 2Þ data ele-
ments, the amount of XOR operations per data element is
2ðn� 1Þðn� 3Þ=ðn� 1Þðn� 2Þ ¼ 2� 2=ðn� 2Þ, which is the
optimal encoding computational complexity in RAID-6
MDS codes [7].

The Optimal Decoding Computational Complexity. Accord-
ing to Algorithm 1, Short Code needs to use all 2ðn� 1Þ
parity chains to recover all failed elements from double
disk failures, where each parity chain contains n� 1 ele-
ments. In order to recover one lost element, we should to
calculate the XOR sum of all n� 2 survived elements
caused n� 3 XOR operations. Since one column of Short
code contains n� 1 elements, when two concurrent disk
failure occurs, the total number of failed elements is
2ðn� 1Þ. Therefore, the decoding computation complexity
of Short Code is 2ðn� 1Þ ðn� 3Þ=½2ðn� 1Þ� ¼ ðn� 3Þ per
failed element, which is the optimal computation decoding
complexity in RAID-6 MDS code [15].

The Optimal Update Complexity. In Short Code, each data
element only belongs to one horizontal parity chain and one
diagonal parity chain, while the parity elements are indepen-
dent on each other. Therefore, for each data element’s update,
Short Code just needs to update exact two parity elements,
which is the optimal update complexity in RAID-6 [9].

4 EXPERIMENT EVALUATIONS

In this section, we conduct a number of experiments to eval-
uate the performance in different RAID-6 MDS array codes
under the metrics of degraded reads, partial stripe writes,
single disk failure recoveries, and normal reads. We imple-
ment each code based on Jerasure-1.2 library [18], which is

an open source library and commonly used in erasure code
community [32]. We select typical horizontal codes (RDP
code, EVENODD code, and Liberation code) and typical
vertical codes (X-Code and Balanced P-Code) for compari-
son. We evaluate the real performance when RAID-6 codes
are deployed on the number of disks n ¼ 5; 7; 11; 13 (limited
by the construction rules, Balanced P-Code is deployed on
n� 1 disks). Furthermore, in order to clarify the gap
between Short Code and other codes, most of our evaluation
results normalize the value of RDP code as one.

4.1 Environment

All our experiments are run on a machine with Intel Xeon
X5472 processor and 8 GB of RAM. All the 16 SAS disks are
setting in a disk array. The disk type is Seagate/Savvio 10
K.3, and the model number is ST9300603SS. Each disk has
300 GB capability and 10,000 rpm. The operation system of
the machine is Red Hat with Linux fs91 3.2.16.

4.2 Degraded Read Evaluation

We evaluate the degraded read performance by two
aspects: the degraded read speed and the influence of differ-
ent read size, in order to illustrate that Short Code achieves
good performance on degraded reads.

Degraded Read Speed. We evaluate the degraded read
speed based on a series of experiments: since each RAID-6
code contains n (n denote the number of data disks) different
data disk failure cases, we build 200 experiments for every
possible failure case. In each experiment, we generate two
random numbers as the start point and the read size, where
the start point may be an arbitrary data element in the stripe,
and the value of read size is from 1 to 20 elements [11].

Fig. 5 illustrates the average degraded read speed in dif-
ferent RAID-6 codes. As the figure shows, Short Code gains
6.1 to 26.3 percent higher degraded read speed than hori-
zontal codes. This is because each row of Short Code con-
tains n� 1 data elements and one horizontal parity
elements, but each row of horizontal codes contains n� 2
data elements, one horizontal parity element, and one diag-
onal parity element. Since only data elements and horizon-
tal parity elements contribute to degraded reads and all
disks in RAID architecture are read in parallel, one more
contributed disk makes Short Code provide higher speed
on degraded reads than horizontal codes. On the other

Fig. 4. Recovery from disk 2 and disk 3 concurrent failures.

Fig. 5. The degraded read speed for different RAID-6 codes.
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hand, Short Code achieve 19.3 to 39.1 percent higher
degraded read speed than X-Code and 33.7 to 39.5 percent
higher read speed than Balanced P-Code, because the con-
tinuous data elements in X-Code and Balanced P-Code are
hard to share the common parity chains.

X-Code provides 15.4 to 21.7 percent lower speed than
RDP code in all cases except n ¼ 5, because all survived
disks in X-Code contribute to degraded reads while the Q
disk in horizontal codes cannot help to degraded reads.
When n equals to 5, one more contributed disk is more sig-
nificant than the less elements that need to be read. In other
cases, the degraded read speed of X-Code is much lower
than horizontal codes.

The Influence of Read Size. In order to analyze the influence
of read size for degraded read speed, we evaluate the read
size from 1 to 20 data element for each erasure pattern and
each potential start element when n ¼ 7, and show the aver-
age degraded read speed for each read size in Fig. 6. Com-
pared to horizontal codes, Short Code provides 0.1 to 0.4
percent higher degraded read speed when the read size
equals to 1, 6, 13, and achieves 5.7 to 29.8 percent higher
speed for other cases of read size. Compared to X-Code and
Balanced P-Code, Short Code provides up to 46.5 and 45.8
percent higher degraded read speed for all tested cases. The
results matches Fig. 5 closely and illustrates that Short Code
performs well on degraded reads.

4.3 Partial Stripe Write Evaluation

We run 2,000 experiments to evaluate the partial stripe
write performance. For each experiment, we randomly gen-
erate two numbers as start point and write size, where the
start point is an arbitrary data element in the stripe. Since
some erasure codes besides our Short Code achieve the opti-
mal update complexity and all MDS codes have the optimal
full stripe write performance, the evaluated write size is
from two to a half stripe of data elements (e.g., in 7-disks X-
Code, the write size is from 2 to 17). We use both write
speed and write cost to evaluate the performance, because
large write cost will easily accelerate the burn-in of many
storage devices, for example, SSD.

Partial Stripe Write Speed. We evaluate the real partial
stripe write speed for different RAID-6 codes, and show the
results in Fig. 7. As the figure shows, the partial write speed
in Short Code is 36.2 to 80.3 percent higher than RDP code,
40.1 to 86.9 percent higher than EVENODD code, 32.8 to

84.4 percent higher than Liberation code, 6.8 to 19.5 percent
higher than X-Code, and 11.0 to 23.6 percent higher than
Balanced P-Code.

Partial Stripe Write Cost. We define the partial stripe write
cost as the ratio between the number of total elements (that
need to be written) and the number of data elements (that
need to be written). For example, as Fig. 2d shows, in order
to handle the 8 elements’ partial stripe write, the system
totally needs to write 22 elements, thus the partial stripe
write cost is 22=8 ¼ 2:75. Fig. 8 shows the average partial
stripe write cost in different RAID-6 codes, where Short
Code is a little lower write cost than the tested horizontal
codes and Balanced P-Code. X-Code suffers from high write
cost, which may accelerate the burn-in of some crisp devi-
ces, like SSD.

Fig. 7 doesn’t matchwith Fig. 8, because the write speed is
determined by the slowest disk rather than the total write
cost. We show the average write cost on the heaviest loaded
disk in Fig. 9, which shows that Short Code, X-Code and Bal-
anced P-Code provide less write cost on the heaviest loaded
disk than other codes, and thus supply the higher write
speed. In addition, with the number of disks growing, the
limited bandwidth becomes another important factor for
write speed. E.g., though Short Code provides much lower
cost on the heaviest loaded disk, it only provides 80.3 percent
higher speed than RDP code when n ¼ 13, because the net-
work bandwidth is not enough to transfer the information
retrieved by disks in real time. In summary, combined with

Fig. 6. The degraded read speed with different read size when n=7. Fig. 7. The partial stripe write speed for different RAID-6 codes.

Fig. 8. The partial stripe write cost for different RAID-6 codes.
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lowwrite cost, Short Code providesmuch better performance
on partial stripe writes compared to other popular codes.

4.4 Further Discussion

We also evaluate the single disk failure recovery perfor-
mance and normal read performance by the metric of real
recovery speed and read speed, respectively. The aim of
these evaluations is to illustrate that Short Code also pro-
vides acceptable performance for these operations.

Single Disk Failure Recovery Speed. We build 20 stacks to
evaluate the single disk failure recovery speed, where each
stack contains n stripes. For each code, we test all n poten-
tial disk failure patterns (including both data disk failures
and parity disk failures) by U-Scheme in [36], because U-
Scheme is fit for any XOR-Based erasure codes and pro-
vides very good recovery performance over disk array.
Fig. 10 shows the average recovery speed for all n tested
failure patterns, which illustrates that Short Code achieves
a little higher recovery speed compared to the tested hori-
zontal codes and X-Code.

Balanced P-Code achieves very high recovery speed
when n ¼ 5 and n ¼ 7, but only provides a little lower
recovery speed than Short Code when n ¼ 11 and n ¼ 13,
because a stripe of Balanced P-Code only contains 2 rows
and 3 rows when n ¼ 5 and n ¼ 7, and the heaviest loaded
disk just need to afford 1 and 2 elements for recovery the
lost information of one stripe, respectively. With the

number of n growing, the ratio between the number of ele-
ments afforded by the heaviest loaded disk and the number
of elements in each row is growing as well, and thus the
recovery speed of Balanced P-Code is decreased, relatively.

On the other hand, the worse case of the test horizontal
codes and Short Code is parity disk erased, which need to
retrieve all survived data elements to reconstruct the lost
information, but the worse case of X-Code and Balanced P-
Code is data disk failure, which recovers more faster than
parity disk failure cases. However, since data elements usu-
ally more important than parity elements and the possibility
of parity disk failures is low, the recovery performance is
mainly due to the average speed over all erasure cases. In
summary, combine with the evaluation results above analy-
sis, we can conclude that Short Code achieves acceptable
single disk failure recovery performance.

Normal Read Speed. We conduct 2; 000 experiments for
each RAID-6 code to evaluate the normal read speed with-
out any erasure. For each experiment, we randomly gener-
ate the start point and read size, where the start maybe an
arbitrary data element and the range of read size is from 1
to 20 elements. Fig. 11 shows average read speed of all
tested codes. As shown, the read speed of Short Code is a
little higher than the tested horizontal codes, very similar as
Balanced P-Code, and a little lower than X-Code, which
illustrates Short Code provides acceptable normal read per-
formance as well.

5 CONCLUSION

In this paper, we propose a novel RAID-6 MDS erasure
code, called Short Code. A stripe of Short Code consist of
n� ðn� 1Þ elements evenly distributed on n logic disks,
where n is a prime number. Different from previous RAID-
6 codes, in Short Code, the number of data elements in each
horizontal parity chain is less than the number of data ele-
ments in each row, while the continuous data elements still
belong to adjacent horizontal chains. The diagonal parity
elements are generated by anti-diagonal data elements, and
distributed across disks. The properties analyses show that
Short Code achieves the optimal storage efficiency, the opti-
mal encoding/decoding computational complexity, and the
optimal update complexity. The experiment results show
that Short Code achieves good performance on degraded
reads, partial stripe writes, single disk failure recoveries

Fig. 9. The partial stripe write cost on the heaviest loaded disk for differ-
ent RAID-6 codes.

Fig. 10. The single disk failure recovery speed for different RAID-6 codes.

Fig. 11. The normal read speed for different RAID-6 codes.
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and normal reads, which illustrates Short Code is a good
candidate for RAID-6 implementation.
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