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Abstract—As a powerful unsupervised learning method, Generative Adversarial Network (GAN) plays an essential role in many

domains. However, training a GAN imposes four more challenges: (1) intensive communication caused by complex train phases of

GAN; (2) much more ineffectual computations caused by peculiar convolutions; (3) more frequent off-chip memory accesses for

exchanging intermediate data between the generator and the discriminator; and (4) high energy consumption of unnecessary fine-

grained MLC programming. In this article, we propose LrGAN, a PIM-based GAN accelerator, to address the challenges of training

GAN. We first propose a zero-free data reshaping scheme for ReRAM-based PIM, which removes the zero-related computations. We

then propose a 3D-connected PIM, which can reconfigure connections inside PIM dynamically according to dataflows of propagation

and updating. After that, we propose an approximate weight update algorithm to avoid unnecessary fine-grain MLC programming.

Finally, we propose LrGAN based on these three techniques, providing different levels of accelerating GAN for programmers.

Experiments show that LrGAN achieves 47.2�, 21.42�, and 7.46� speedup over FPGA-based GAN accelerator, GPU platform, and

ReRAM-based neural network accelerator respectively. Besides, LrGAN achieves 13.65�, 10.75�, and 1.34� energy saving on

average over GPU platform, PRIME, and FPGA-based GAN accelerator, respectively.

Index Terms—Processing in memory, generative adversarial network, approximate computing, non-volatile memory

Ç

1 INTRODUCTION

TREMENDOUS success has been fueled by supervised deep
learning in image classification, speech recognition, and

so on [23], [26], [32], [34], [52], [61], [63]. However, non-triv-
ial amount of training datasets with millions of lables pre-
vents high-accuracy supervised deep learning from being
employed in many domains where massive labels are either
unavailable or costly to collect through human effort.

By automatically generating richer synthetic datasets with-
out labeling data sets, semi-supervised learning [9], [28] and
unsupervised learning [18], [21], [25] are promising to extend
the intelligence of deep learning. On the frontier, GAN is the
most popular unsupervised learning method, effectively
working in many domains, such as video prediction [21],
autonomous driving [22] and photo resolution upgrading [35].

Though GAN is powerful to generate items without
labeling training sets by human, its network structure is
more complex than traditional NN’s to efficiently execute
on hardware. The generator model and discriminator model
of GAN collaboratively work in a minimax manner, to
achieve stronger GAN with higher accuracy. To uphold the

interaction between the two models, massive amount of
intermediate data is required to be communicated between
the two models frequently. Since there are quite limited on-
chip memory space to store intermediate data, GAN train-
ing will introduce additional pressure on off-chip memory
accesses, which consume nearly two orders of magnitude
more energy than a floating point operation [20]. Thus,
these huge data movements become a bottleneck of the sys-
tem design for GAN.

To solve the memory wall problem in GAN training,
researchers proposed ReRAM-based Processing In Memory
(PIM) [7], [15], [40], [59], [62], which exhibits energy efficiency
in reducing memory access cost compared with CPUs and
GPUs. Besides, it can complete a Matrix-Multiply-Vector
(MMV) operation in almost only one read cycle with low
energy consumption. Since MMV operations dominate the
computation patterns in GAN training, ReRAM-based PIM
technologies have the potential to reduce memory access cost
and accelerate GAN training efficiently.

However, GAN has two main features which are differ-
ent from traditional neural networks: (1) zero-insertion dur-
ing training phase; (2) intricate dataflow patterns between
the two models. These two features degrade the efficiency
of the PIM-based accelerator for GAN. First, zero-insertion
adds a heavy burden on storage. Also, I/O traffic becomes
the system bottleneck because (1) the interaction between
generator and discriminator requires more communication
via I/Os in PIM. (2) complex dataflow of GAN exists irregu-
lar data dependencies. Therefore, limited I/O bandwidth
stalls GAN training. Moreover, ReRAM-based PIM employs
Multi-Level Cell (MLC), which consumes a large amount of
energy during programming, hindering the low-power
ReRAM-based GAN training.

� Haiyu Mao and Jiwu Shu are with the Department of Computer Science
and Technology, Tsinghua University, Beijing 100084, China.
E-mail: mhy15@mails.tsinghua.edu.cn, shujw@tsinghua.edu.cn.

� Mingcong Song and Tao Li are with the Department of Electrical and
Computer Engineering, University of Florida, Gainesville, FL 32603 USA.
E-mail: songmingcong@ufl.edu, taoli@ece.ufl.edu.

Manuscript received 26 Sept. 2019; revised 14 July 2020; accepted 19 July
2020. Date of publication 22 July 2020; date of current version 8 Sept. 2021.
(Corresponding author: Jiwu Shu.)
Recommended for acceptance by A. Karanth.
Digital Object Identifier no. 10.1109/TC.2020.3011122

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 9, SEPTEMBER 2021 1427

0018-9340 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 26,2021 at 05:36:39 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7393-4504
https://orcid.org/0000-0002-7393-4504
https://orcid.org/0000-0002-7393-4504
https://orcid.org/0000-0002-7393-4504
https://orcid.org/0000-0002-7393-4504
https://orcid.org/0000-0002-7362-2789
https://orcid.org/0000-0002-7362-2789
https://orcid.org/0000-0002-7362-2789
https://orcid.org/0000-0002-7362-2789
https://orcid.org/0000-0002-7362-2789
mailto:mhy15@mails.tsinghua.edu.cn
mailto:shujw@tsinghua.edu.cn
mailto:songmingcong@ufl.edu
mailto:taoli@ece.ufl.edu


To address these challenges in PIM-based GAN archi-
tecture, we first propose a novel, software-managed Zero
Free Data Reshaping (ZFDR) scheme to remove all the
zero-related operations produced by GAN. Then, we pro-
pose a reconfigurable 3D connection architecture, which
not only efficiently fits complex dataflows of GAN, but
also supports efficient ReRAM reads and writes and hides
the I/O overhead to a great extent. What’s more, we pro-
pose an approximate weight update algorithm to eliminate
the high energy-consuming portion of programming an
MLC. Finally, we propose LrGAN1 (based on Ler-
GAN [48]), a ReRAM-based 3D connection GAN accelera-
tor with low energy consumption, which carefully maps
the data processed by ZFDR to the 3D-connected PIM. By
doing so, it not only achieves higher I/O performance but
also enables I/O connection configuration flexibly for the
complex dataflows in GAN training. Experiments show
that LrGAN achieves 47.2�, 21.42�, and 7.46� speedup
over FPGA-based GAN accelerator, GPU platform, and
ReRAM-based neural network accelerator respectively.
Moreover, LrGAN achieves 13.65�, 10.75�, and 1.34�
energy saving on average over GPU platform, PRIME, and
FPGA-based GAN accelerator, respectively.

The main contributions of this paper are as follows:

1) We elaborate three steps of zero-inserting that enable
transposed convolution operations in GAN and fur-
ther analyze the amount of zeros in GAN training.
To address problems caused by massive zeros in
ReRAM-based PIM, we propose Zero-Free Data
Reshaping to remove zero-related operations. ZFDR
is flexible to support different paddings, strides and
kernel sizes, capable of handling both existing GANs
and future GANs with larger stride (e.g., stride of 3).

2) We present the dataflows of training GAN in detail
and propose a novel reconfigurable 3D-connected
PIM to handle the complicated dataflows. Our 3D
connection supports efficient data transferring of
both propagation and updating. It is worth mention-
ing that, to the best of our knowledge, we are the first
to study efficient connections in ReRAM-based PIM.

3) We propose an approximate weight update algorithm
to avoid energy-inefficient operations in the fine-grain
MLC programming. The hardware which supports
the approximate update scheme has a negligiblemodi-
fication on the circuit of data-comparison-write.

4) We propose LrGAN based on ZFDR, approximate
weight update and 3D-connected PIM. We make
slight modifications on the software (via providing
interfaces for ZFDR) and memory controller (via cre-
ating a finite-state machine for data mapping and
configuration of switches) to enable LrGAN to com-
bine ZFDR and 3D-connected PIM well. Also, we
enable programmers to use heterogeneous levels of
acceleration according to demands.

The rest of this paper is organized as follows. We first
introduce ReRAM-based PIM and GAN in Section 2. Then

we analyze the challenges of using PIM to accelerate GAN
training in Section 3. We present our ZFDR, approximate
weight update algorithm and 3D-connected PIM in Sec-
tion 4. The design of LrGAN is in Section 5. Section 6 evalu-
ates the proposed algorithms, 3D-connected PIM and
LrGAN system. Finally, we present related works and con-
clusions in Sections 7 and 8 respectively.

2 BACKGROUND

This section first introduces ReRAM-based PIM and how it
can be utilized to implement NNs efficiently, then presents
GAN and its features.

2.1 ReRAM-Based PIM

ReRAM stands out from other non-volatile memories
(NVMs) since it has high density, relatively low write
latency [68], and low write energy [49]. Moreover, it has
high endurance (> 1010 [36], [37], up to 1012 [27], [37],
much higher than that of PCM , which is 107 � 108 [56]). If a
network needs to be trained for 105 times [43], ReRAM-
based PIM can train 105 � 107 such networks. Due to these
benefits of ReRAM, recent studies [14], [15], [59], [62] mod-
ify it as the hardware of PIM to accelerate the inference and
training of NNs.

ReRAM-based PIM consists of ReRAM arrays and
peripheral circuits. Note that, ReRAM arrays can be config-
ured to either support MMVs (called CArrays in this paper),
or be used as traditional storage (called SArrays in this
paper). When ReRAM arrays are configured as CArrays,
they store weights of NNs and conduct MMVs by feeding
corresponding inputs (briefly shown in Fig. 1). ReRAM-
based PIM also has buffer which is composed of ReRAM
cells and connected to CArrays directly. Such buffer is
called BArray and enables CArray to access it randomly,
hiding the memory access time when performing computa-
tion [15]. Equipped with CArrays, BArrays and peripheral
circuits to support various basic computations, ReRAM-
based PIM can be used to accelerate NNs efficiently.

2.2 Generative Adversarial Network

The Generative Adversarial Network (GAN) consists of two
components: a discriminator and a generator. The discrimi-
nator learns to decide whether a sample is from the real
data set or the generator. The generator aims to generate a
sample close to the real data to confuse the discriminator.
Therefore, in GAN, the two components play a minimax
game to compete with each other iteratively. A minibatch
stochastic gradient descent method can be used to train this

Fig. 1. Mapping MMV to ReRAM crossbar.

1. “Lr” comes from removing “o” from “zero” which represents
removing 0, changing “z” to “l” to represent shortening wire connec-
tion, and deleting “e” to represent energy-saving.
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model, where in each training iteration, a minibatch of m
noise samples fn1; n2; . . . ; nmg and m true examples
fx1; x2; . . . ; xmg are sampled from a prior noise distribution
peðnÞ and real data distribution pdðxÞ, respectively. We use
Gðn; ugÞ to denote the generative model that generates sam-
ples from noises with parameters ug and DðxÞ to denote the
discriminative model that represents the probability that x
comes from the real data distribution pdðxÞ. In order to
optimize the discriminator, it needs to be updated by
ascending its stochastic gradient using Equation (1), which
means that the discriminator can assign correct labels to
both training examples from D and samples from G. In
order to maximize the generator, GAN uses Equation (2)
to update it by descending its gradient, which tries to con-
fuse the discriminator to predict the samples as data from
the real data distribution. In conclusion, GAN will con-
verge eventually so that the generator can generate an
example which is similar to a real one.

rud

1

m

Xm
i¼1
½logDðxiÞ þ log ð1�DðGðniÞÞÞ� (1)

rug

1

m

Xm
i¼1

log ð1�DðGðniÞÞÞ: (2)

We take themost popular Deep Convolutional Generative
Adversarial Network (DCGAN) [57] as an example to fur-
ther introduce GAN. The framework of DCGAN is shown in
Fig. 2. There are some differences between traditional Con-
volutional Neural Network (CNN) and DCGAN in training
phase. In forward propagation phase of discriminator,
DCGAN employs strided convolution (S-CONV) instead of
pooling. As shown in Fig. 2, the generator has an inverse
structure of discriminator, and it employs transposed convo-
lution (T-CONV) in forward propagation phase.

Fig. 3 shows dataflows of training DCGAN and Table 1
shows notations for explanation of training DCGAN. Over-
all, training DCGAN involves two major parts: one is

forward propagation and the other is backward propaga-
tion. The backward propagation has two main sub-tasks:
error transferring and r weight calculation. When training
the discriminator, the generator produces m fake samples
using m noises (m is the batch size and a noise (input) is
denoted as a vector with 100 elements shown in Layer1 of
Fig. 2). This step is denoted by G

!
, where DCGAN conducts

T-CONV. Then, one batch of real samples and one batch of
fake samples are fed into the discriminator. This step is
denoted by D

!
, where DCGAN conducts S-CONV. Next,

DCGAN computes the error of output layer rzL using the
loss function Equation (1), where L is the last layer of
the discriminator. After that, DCGAN feeds rzL back to the
network and begins the backward propagation, which con-
sists of two stages D

 
and Dw
 �

. First, rzL is fed back layer by
layer in D

 
using Equation (3) (� denotes an element-wise

multiplication). Therefore, in D
 
, the T-CONV takes rzlþ1

and zl cached by D
!

as inputs then outputsrzl.

rzl ¼ ðWlþ1ÞTrzlþ1 � g0 ðzlÞ: (3)

Conducting Dw
 �

needsrzl transfered by D
 

and the interme-
diate al�1 cached by D

!
. Equation (4) shows the computation

in Dw
 �

, denoted as W-CONV of discriminator since it is dif-
ferent from both S-CONV and T-CONV.

rWl ¼ al�1rzl: (4)

After Dw
 �

, the discriminator is updated with rWl. When
training the generator, the generator generates m samples
and feeds them into the discriminator. After conducting D

!
,

according to the Equation (2), the error of the output layer
in discriminator is sent to D

 
. With the intermediate zl

cached by D
!
, D
 

can calculate errors and send them to
error propagation of generator (denoted as G

 
). With rzl

sent by G
 

and the intermediate al�1 cached by G
!
, Gw
 �

can

Fig. 2. DCGAN outline.

Fig. 3. Dataflows of training discriminator and generator of DCGAN.

TABLE 1
Notations Used for Explanation of Training DCGAN

Symbol Description

Wl Kernel weights for lth layer
rWl Derivative of kernel weights for lth layer
zl Value of (WlÞTxþ b
rzl Derivative of z for lth layer
g Active function
al Value of gðzlÞ
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calculate rWl of generator. After that, the generator is

updated with rWl.

3 CHALLENGES

Although GAN has two networks, each of which resembles
CNN, it manifests some differences from traditional CNN.
In this section, we discuss challenges for PIM-based NN
accelerator to execute GAN.

3.1 Redundant Zero-Related Operations

Since DCGAN employs S-CONV, its training introduces
considerable zero-insertion, increasing burden on both stor-
age and bandwidth. In order to explain how redundant
zeros are introduced and restrain the efficiency, we first
introduce some notations used in this paper in Table 2 and
take CONV1 of the generator in Fig. 2 as an example of T-
CONV. As shown in Fig. 4, Iw ¼ Il ¼ 4 and Ow ¼ Ol ¼ 8.
The converse convolution of CONV1 is the same as CONV8
in Discriminator, so S

0 ¼ 2, S ¼ 1, P
0
w ¼ P

0
l ¼ 2, Pw ¼ Pl ¼ 2.

Also, CONV1 and CONV8 have the same size of kernel
weight. To conduct CONV1, we first insert one zero
between every two adjacent input numbers horizontally
and vertically (Step 1), then add one zero at the end of input
(Step 2) and finally use zero padding of 2 (Step 3). After
that, we convolute it with 512 kernels, whose Ww = Wl = 5
andWh is 1,024. Eventually, we obtain an output whose size
is 8� 8� 512. In this example, we store and transfer 147,456
input values while only 16,384 of them are useful. More-
over, we conduct 1,638,400 multiplications while 295,936 of
them are useful, whose efficiency is only 18.06 percent.

In general, Iw ¼ Il, Ow ¼ Ol, Pw ¼ Pl and P
0
w ¼ P

0
l . So we

denote them as I, O, P and P
0
, respectively, and their

relationship is described in Equation (5).

Oþ 2P
0 �W

S0
¼ ðI � 1Þ � � �R (R is the remainder): (5)

Generally, to conduct a convolution in the generator, we
first insert S

0 � 1 zeros between every two input numbers,
then we add R zeros at the end and finally we use zero pad-
ding of P (where P ¼W � P

0 � 1). Based on the operations
above, we can calculateNiz w and Nzero.

Niz w ¼ Niz l ¼ ðS0 � 1Þ � ðI � 1Þ þR (6)

Nzero ¼ ðNiz w þ Iw þ PwÞ � ðNiz l þ Il þ PlÞ � Iw � Il: (7)

From Equations (6) and (7) we can observe that with the
increase of S

0
and P , the issue of redundant zeros in T-

CONV becomes more severe.
Similar to T-CONV, W-CONV of a generator needs to

insert zeros into inputs. However, W-CONV of a discrimi-
nator needs to insert zeros to both inputs and kernels. We
take a W-CONV connecting Layer11 and Layer10 in Fig. 2
as an example. For simplicity, we take one input feature
map to illustrate the difference of zero-insertion between
W-CONV and T-CONV in the example.

As shown in Fig. 6, in the forward propagation, given a
8� 8 input, we first pad it with 2, then convolve it with a 5�
5 kernel, and finally obtain a 4� 4 output. In the backward
propagation, we denote r Output as dz in Equation (3),
whose shape is the same as the output. We first insert zeros
to r Output and regard r Output as a kernel weight. Then,
we convolute the given 8� 8 input with the kernel weight
to obtainrWeight.

For W-CONV of the discriminator, the relationship
between input and output can be described as Equation (8).

I þ 2P �W

S
¼ ðO� 1Þ � � �R ðR is remainderÞ: (8)

TABLE 2
Notations Used for Explanation of Convolution Operations

Symbol Description

Iw, Il, Ih Width, length, height of input
Ow, Ol, Oh Width, length, height of output
Ww,Wl,Wh Width, length, height of kernel weight
Nw Number of kernel weights
S Stride size of convolution
S
0

Stride size of converse convolution
Pw, Pl Padding on width, length
P
0
w, P

0
l Padding on width, length of converse

convolution
Niz w Number of insert zeros on width
Niz l Number of insert zeros on length
Nzero Number of zeros

Fig. 4. Steps of adding zeros in inputs of CONV1.

Fig. 5. Convolution on inserted zeros inputs with stride of 1.

Fig. 6. Example of W-CONV of discriminator.
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Furthermore, the relationship between Niz w and Niz l of the
kernel weight can be described as Equation (9).

Niz w ¼ Niz l ¼ ðS � 1Þ � ðO� 1Þ þR: (9)

According to Fig. 6, Nzero in W-CONV of the discriminator
equals to the sum of the number of zeros used for input
padding and the number of zeros used for r insertion. It
can be described using Equation (10).

Nzero ¼ ½ðNiz w þOwÞ � ðNiz l þOlÞ �Ow �Ol�
þ ½ðIw þ PwÞ � ðIl þ PlÞ � Iw � Il�:

(10)

For W-CONV of the discriminator, Nzero also increases
either S or P increases according to Equations (9) and (10).

3.2 Inefficient I/O Connection

For training where massive memory reads/writes are
required to update kernel weights, PipeLayer [62] employs
efficient H-tree wire routing. However, the dataflows of
GAN training are more complicated than that of traditional
NNs. We take a simple GAN (3-layer generator and 3-layer
discriminator) as an example to show details of dataflows
(training discriminator in Fig. 7 and training generator in
Fig. 8). Thus, if we train a GAN by mapping phases to H-
tree connection architecture, it will experience a large num-
ber of long routings.

Fig. 9 shows two GAN examples N1, N2 training on the
H-tree routing banks. Each bank has 16 tiles and each tile is
composed of several CArrays, BArrays and SArrays. There
are two kinds of routing nodes: (1) multiplexing node, con-
necting data wires of the same width; (2) merging node,
through which the width of data wire is divided into two
halves. In the examples shown in Fig. 9, N1 is a relatively
small GAN, while N2 may be a bigger GAN or a small GAN
with high parallelism (i.e., duplicating kernel weights for
several times). In other words, the space utilized by training
a GAN is decided by the size of GAN itself and the number
of kernel weight duplications. When we map a GAN, we
can separately training discriminator and generator as N1

shows. This introduces more space while reduces total data
movements compared with the map without duplication
like the mapping pattern of N2. However, all of these map-
ping patterns suffer from long routings, as examples

marked in green and red arrows shown in Fig. 9. With net-
work size and number of duplications increasing, this prob-
lem becomes more severe. We can relieve this problem by
adding some connections between the routing nodes whose
parent nodes are different, as the connection pattern used in
by MAERI [33]. Since the dataflow of GAN training is much
more complicated, simply doing so will not achieve desir-
able performance of speedup.

3.3 High Energy-Consuming Write Scheme of MLC

ReRAM-based PIM [14], [15], [59], [62] employsMLC instead
of SLC for the following three reasons. (1) Using SLC-based
NVMarray to conduct a vector-matrixmultiplication requires
more time for intermediate data processing. (2) The SLC-
based array not only has latency overhead for processing
intermediate data but also introduces larger peripheral circuit
to process intermediate data. (3) MLC-based NVMhas higher
memory density thanMLC-basedNVM.

Although MLC has these three advantages over SLC, its
programming is more complex than that of SLC, which only
conducts a single SET or RESET operation. Fig. 10 depicts
the procedure for programming an MLC, which is also
known as “Program-and-Verify” (P&V). First, a SET-sweep
pulse is applied to program the cell to its lowest resistance
state. This is followed by a RESET to initialize the cell to a
total RESET state. Next, P&V applies an SET pulse and then
verifies that a specified resistance has been achieved, itera-
tively. The protracted programming procedure mentioned
above accounts for MLC’s long write latency and high
energy consumption. Based on this programming scheme,
we can also figure out that altering values varies time and
energy consumption.

Table 3 is retrieved from [53]. It records the worst case
of latency and the average energy consumption for pro-
gramming 3-bit MLC (eight resistance states). An MLC
costs more time and energy to program a cell to middle
resistance states (e.g., state 3, 4 in 3-bit MLC) since it
requires additional tuning iterations. Moreover, time and
energy consumption spike with 4-bit MLC due to the finer-
grained tuning procedure. Unfortunately, training GAN
requires cells with more resistance levels, which improves

Fig. 7. Dataflow of training discriminator.

Fig. 9. Networks mapped to H-tree connected tiles.

Fig. 8. Dataflow of training generator. Fig. 10. Programming scheme of MLC.
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performance and memory density. Since NVM-based PIM
lacks flexibility when compared with FPGA and GPU, it
should ensure both high performance and low energy con-
sumption. Thus, MLC’s energy inefficient write scheme
has become a challenge for GAN training with ReRAM-
based PIM.

4 OUR PROPOSED SOLUTIONS

In this section, we propose our solutions to address the
three challenges analyzed in Section 3.

4.1 PIM-Based Zero-Free Scheme

In order to address the problem mentioned in Section 3.1, we
propose a novel software managed, memory controller sup-
ported scheme called Zero-Free Data Reshaping to remove
zero operations. This scheme consists of two components: (1)
T -CONV ZFDR for T-CONVs; (2)W -CONV -S ZFDR for W-
CONVof stride convolution.

We first take CONV1 (Fig. 5) as an example to explain
our T-CONV ZFDR scheme. We usually convert convolu-
tions into MMVs in PIM-based computation, so we first
reshape kernel weights into vectors. The reshape operation
is different from the general one since we only extract kernel
weights that multiply non-zero inputs, as shown in Fig. 11.
After reshaping all the 512 weight kernels into a 512� 4096
matrix, we map this weight matrix into the Carray and feed
the corresponding 4,096 inputs, then we obtain 512 results.
All of above operations correspond to one convolution oper-
ation with 512 kernel weights. After the first convolution
operation shown in Fig. 11, we slide kernel weights with
stride of 1. When sliding, the useful kernel weights change.
Fig. 12 gives an example of how useful kernel weights
change when sliding. Thus, in Step 3, the weight matrix can
be reused since it is the same with that in Step 1. We find
that some reshaped weight matrices are reused when ker-
nels slide on the edge of input map and more reshaped
weight matrices are reused when kernels slide inside the
input map.

In summary, we store 25 kinds of reshaped weight
matrix in this case (also the same in CONV2, CONV3 and
CONV4). Notwithstanding this ZFDR scheme introduces
more space to store weights, it improves parallelism greatly.

For example, it only needs 9 cycles (one MMV uses one
cycle) to complete CONV1. While without ZFDR, it will
take 64 cycles. Moreover, if we duplicate kernel weights
directly (without ZFDR), and we want to conduct CONV1
in 9 cycles, we need to store at least 179,200 weights. It
means that in order to achieve the same performance as
ZFDR, duplicating weights directly not only consumes 75
percent more storage, but also transfers 9� inputs.

In order to extend our ZFDR scheme to a general case,
we first define the Loop Length (LL) using the following
equation.

LL ¼
I � S

0 þ ðS0 � 1Þ P 	 S
0 � 1

I � S
0

P < S
0 � 1; P þR 	 S

0 � 1
I � S

0 � ðS0 � 1Þ P < S
0 � 1; P þR < S

0 � 1

8<
: :

(11)

Then we divide the T-CONV ZFDR scheme into three
cases as follows. Case 1: Reshape kernel weights that conduct
convolution on the corner of input map. This case has ððI � 1Þ �
S
0 þ 1þRþ 2P � LLÞ2 sets of reshaped weights, and each

kind of weights is non-reusable. Case 2: Reshape kernel
weights that conduct convolution on the edge of input map. We
define R1, R2 using Equations (12) and (13)

R1 ¼ P P < S
0 � 1

P � ðS0 � 1Þ else

�
(12)

R2 ¼ ðP þRÞ � ðS0 � 1Þ P þR 	 S
0 � 1

P þR else:

�
(13)

Then number of reshaped kernel weights in this case is R1 �
S
0 � 2þR1 � S

0 � 2, and each reshaped kernel weight can

be reused by t times (t 2 f LL�Wþ1
S
0

j k
, ð LL�Wþ1

S
0

j k
þ 1Þg). Case

3: Reshape kernel weights that conduct convolution inside the
input map. This case has S

0 � S
0
reshaped weights, and each

reshaped weight can be reused by t times (t 2 f LL�Wþ1
S
0

j k2
,

ð LL�Wþ1
S
0

j k
þ 1Þ2, LL�Wþ1

S
0

j k
� ð LL�Wþ1

S
0

j k
þ 1Þg).

The pattern of W-CONV-S ZFDR is similar to that of T-
CONV ZFDR. The difference is, for W-CONV of stride con-
volution, we remove zeros from r output, reshape it as
weight, then conduct convolution on input map to receive
r weight. W-CONV-S ZFDR has three cases as follows.
Case 1: Reshape zero-insertion routput that conducts convolu-
tion at the corner of input map. This case has P

S

� �2 þ P�R
S

� �2 þ
2 P

S

� �
P�R
S

� �
number of reshaped r outputs and each of them

is non-reusable. Case 2: Reshape zero-insertion r output that
conducts convolution on the edge of input map. This case has
2 P

S

� �þ 2 P�R
S

� �
number of reshaped r outputs, and each of

them can be reused by I � ðO� 1ÞS times. Case 3: Reshape

TABLE 3
Programming Latency and Energy of MLC ReRAM Cell

Target 0 1 2 3 4 5 6 7

TWCðnsÞ 15.2 46.8 98.3 143 150 101 52.7 12.1
EaveðpJÞ 2.0 6.7 19.3 35.1 35.6 19.6 8.5 1.5

Fig. 11. Example of zero free data reshaping.

Fig. 12. Example of how useful weights change when sliding.
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zero-insertion r output that conduct convolution inside the input
map. This case has only one zero-insertion r output whose
size is equal to r output, and it can be reused by ½I� ðO�
1ÞS�2 times.

Since both T-CONV ZFDR and W-CONV-S ZFDR have
three similar types, we name them as CornerReshape,
EdgeReshape and InsideReshape respectively. Note that
CornerReshape has no reuse of reshaped weights while
InsideReshape tends to have more reuses than
EdgeReshape does. This involves an unbalance in runtime
because InsideReshape takes a long time to execute while
CornerReshape is idle in most of the time. Such unbalance
not only exists in the executing stage, but also in the I/O
transmission, because I/O connected to InsideReshape is
busy while that connected to CornerReshape is slack. In
order to address this problem, we duplicate EdgeReshape
and InsideReshape for Re times and Ri times respectively.

4.2 3D-Connected PIM for GAN Training

In order to solve the problem elaborated in Section 3.2, we
propose a 3D-connected PIM, aiming to efficiently fit data-
flows of GAN training.

Fig. 13 shows an original H-tree data wire connection in a
bank with 16 tiles (light grey squares). Green and blue
squares are multiplexing nodes, while red and yellow
squares are merging nodes. To better illustrate our 3D con-
nection architecture, we draw the connections as a binary
tree and mark different connection layers with different col-
ors. First, we add wires between two nodes whose parent
nodes are different in one layer, such as the wire between
the middle two blue nodes shown in Fig. 13. Then we pile
up three banks and add vertical wires between two corre-
sponding nodes. For each two vertical connected nodes, the
width of wire between them is the same as the width of
wire connected to their parent nodes. Due to the pin band-
width limitation, we modify the routers by adding switches.

We take two nodes as examples shown in Fig. 13 (original
wires are colored grey and added wires are in yellow). For
the node circled in blue, it has one switch, which can con-
nect wire h, wire d or wire f , and two wires connected to
child nodes are fixed as original. For the light gray node cir-
cled in green, it has two switches, which can connect wire u,
wire d or wire f . Note that, only nodes in Bank 2 have two
switches, which enable the nodes to connect both upper/
down nodes at the same time. We create a state set s set for
each switch, and we have s set 
 fparent; horizontal;
upper; downg. Moreover, we add an adder into the each
node, which can be also bypassed. Thus, we build a 3D
data wire connection unit (3DCU), which can be config-
ured into two modes: Smode for normal memory read/
write and Cmode for computing. In Smode, the connections
are static and configured as H-tree pattern. While in
Cmode, the connections are dynamically reconfigured
according to dataflows.

With 3DCU, we can build our 3D-connected PIM for
training GANs. Fig. 14 ellaborates how to use 3DCUs to
train a GAN. First, we connect two 3DCUs (fB1; B2; B3g,
fB4; B5; B6g) together. Banks in these two 3DCUs are all
connected to the bus in traditional way. Moreover, B1 and
B4, B3 and B6 can be connected to each other directly,
bypassing the bus and CPU.

After connecting two 3DCUs, we first present the way of
training discriminator in Fig. 14. Note that we only present
the critical concept paths, omitting other paths like
data transferring of r weight calculation inside the bank.
When training discriminator, B2 and B3 are not used and
stay in Smode, working as traditional memory. We first
map G

!
to B1 and D

!
to B4. After that, we configure

fB1; B4; B5; B6g into Cmode. We show the dataflows of
training discriminator with Px (P reperesents the point
marked on dataflows in Fig. 14, x is the number of the
point). P1 ! P2 is the dataflow of G

!
, and the zigzag line

represents that during G
!
, we may transfer data from one

tile to another tile through horizontal connections. P2 ! P3

transfers outputs of generator to discriminator through the
bypass bus connection. P3 ! P4 shows the dataflow of D

!
.

During P3 ! P4, when we complete the computation of one
layer, we map the corresponding part of Dw

 �
and D

 
to B5

and B6 respectively. Note that we continue forward propa-
gation of the discriminator when we map Dw

 �
and D

 
. For

example, we conduct P11 ! P12 and P9 ! P8 simulta-
neously. We start the backward propagation by transferring
error from P4 to P5. During the backward propagation, we

Fig. 13. 3D connection based on original H-tree connection.

Fig. 14. Dataflows of GAN training using 3DCUs.
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need the results from both D
!

(P8 ! P7, P11 ! P12) and D
 

(P6 ! P7, P13 ! P12) to conduct Dw
 �

. Also, we need the result
from D

!
(P9 ! P10) to conduct D

 
. After backward propaga-

tion, we configure fB4; B5; B6g into Smode. Through reading
B5 and some calculations in CPU, we update discriminator
bywriting new kernel weights toB4.

The right part of Fig. 14 illustrates the dataflows of training
generator. Note that, after training discriminator, B1 is in
Cmode, while others are in Smode. Thus, we first switch others
toCmode. At the same time, we can conduct G

!
shown as P1 !

P2, andmap Gw
 �

, G
 

toB2,B3 simultaneously. Then we output

results of G
!

to D
!

marked as P2 ! P3 and start D
!

through
P3 ! P4. Simultaneously, wemap D

 
toB6. After that, we start

backward propagation by transferring error from P4 to P5. The
error is transferred to generator through P5 ! P8 ! P9, and
during this period, the result in D

!
is used for D

 
, such as P6 !

P7. After transferring error to G
 
, we start G

 
and Gw
 �

in an inter-
leaving way. Similar as dataflows in backward propagation of
discriminator, we need P11 ! P12 and P10 ! P12 to conduct
Gw
 �

first and then we need P13 ! P14 for G
 
. Afterwards, we

use P1 ! P16 and P15 ! P16 to complete Gw
 �

. Finally, in the
sameway of updating discriminator, we switch fB1;B2;B3g to
Smode andupdate generator.

In general, we map generator to one or several 3DCUs
and map discriminator to corresponding 3DCUs connected
to generator. The top layer is usually for forward propaga-
tion and the second, third layers are usually for r weight
calculation, error transfer respectively. We locate r weight
calculation in the second layer since it needs data trans-
ferred from either phases, while error transfer only needs
data from forward propagation. What’s more, in order to
reduce data movement, we should make sure each part of
phase is vertical alignment. Take computation between
Layer1 and Layer2 in Fig. 8 as an example. The left figure
shown in Fig. 15 is an original way of data mapping. The
green and red parts are bigger than the blue one, because
we apply ZFDR scheme on them, duplicating kernel
weights for several times. For the blue one, it applies the
normal kernel weight mapping pattern. This naive data
mapping introduces non-negligible data movements, like
blue lines marked in the left figure. We can solve this prob-
lem by splitting kernel weights and enable each part to han-
dle corresponding vertical partial results (shown in the
middle figure of Fig. 15). Thus, we only need small-step
data movements like C ! D. It’s worth mentioning that
green parts, red parts and blue parts are not vertical align-
ment perfectly. They may have small-step data movements
horizontally, but it’s much better than original data map-
ping shown in the left figure. The method in Step 1 is space-
saving but less parallelism. Also, we can duplicate weights
after splitting, like Step 2 shows. This improves the parallel-
ism but turns out to be space consuming. The detailed
design will be introduced in Section 5.

4.3 Approximate Weight Update of GAN Training

In this sub-section, we propose an approximate weight
update algorithm to mitigate the problem of high overhead
caused by MLC programming (Section 3.3).

First, we are glad to observe that GANs can adapt to
approximate computing. When we modify the low-signifi-
cance bits of some weight values during GAN training, the
quality of the samples generated by the trained generator
remains stable. For example, we first train DCGAN in the
standard procedure with the dataset bedroom in Lsun [70].
We use a 16-bit precision value to train the discriminator
and generator iteratively. We train them 25 times with
50,000 iterations in each training round. Then we modify 20
percent weight values by changing their four low-signifi-
cant bits randomly during the DCGAN training procedure.
The pictures of bedrooms generated by these two trained
generators are shown in Fig. 17. The pictures generated
from the modified training (Fig. 17b) and pictures generated
from the standard training (Fig. 17a) look similar. To quanti-
tatively compare these two trained GANs, we introduce FID
in [46], a score to quantify the quality of the pictures gener-
ated. Experiments show that the difference between the FID
of the original DCGAN and the FID of the modified-trained
DCGAN is only 0.3. This means that the modified-trained
DCGAN is virtually as good as the original one.

Algorithm 1. Approximate Weight Update

Input: permission of approximate weight update to the bit-
line: permission, set of values to be approximated:
½tdown; tup�, current value: c value, value to write:
w value

1: if w value == c value then
2: Skip the write operation;
3: else
4: if permission == FALSE or w value 62 ½tdown; tup� then
5: Conduct normal MLC-write operation;
6: else
7: Conduct SET-sweep and RESET operations;

while c value 62 ½tdown; tup� do
8: Conduct SET and VERIFY operations;

With training modified, we propose Approximate Update,
an approximate weight update algorithm for GAN training.
The key idea of Approximate Update is to avoid the energy-

Fig. 15. Data mappings on 3D-connected PIM.

Fig. 16. Circuit of approximate update.
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consuming SET operations in MLC writings without dimin-
ishing GANs’ accuracy. Algorithm 1 shows the pseudo-
code of the approximate weight update.

The Approximate Update works with the permission indi-
cating whether the bitline allows approximate computing.
This is decided by the significance of the values. The
½tdown; tup� is set according to the pre-trained results to ensure
the GAN’s accuracy. In Algorithm 1, lines 1-2 show the
data-comparison-write module, which skips the write when
the writing value equals the value of the cell. Then, lines 4-5
describe the conditions in which Approximate Update cannot
be performed. Finally, lines 7-8 illustrate the procedure of
Approximate Update, in which ½tdown; tup� includes values that
require more fine-grained SET operations. The Approximate
Update eliminates this time- and energy-intensive procedure
by introducing crose-grained SET operations to enable
c value in ½tdown; tup� instead of forcing c value = w value.

Fig. 16 depicts the circuit supporting Approximate Update,
which is built on the data comparison write circuit. The red
part of Fig. 16 is the only part that differs from the data com-
parison write, because, in addition to determining whether
two values are equal, it also judges whether the current
value is in the given interval. Furthermore, the Direct_write
signal is controlled by line 4 in Algorithm 1.

5 LRGAN DESIGN

In this section, we present how the Zero-Free Scheme in Sec-
tion 4.1 and 3D Connected PIM in Section 4.2 work together
in LrGAN. Fig. 18 elaborates the outline of LrGAN design
in five parts.

Program. In the program stage, we program a network,
describing it layer by layer. For example, in the lth layer, we
use the size of input (input size l), size of kernel weight
(weight size l) and size of output (output size l) to describe
it. Moreover, stride includes the stride of generator and
stride of discriminator and so does padding. Structure
replica degree describes the degree of duplication in each
phase of training GAN. It has three degrees, low,middle and
high. Programmers can easily use these three parameters
which represent low to high parallelisms, without knowing
how to duplicate kernel weights to increase parallelism,
which will be performed by the compiler.

Interface. We realize ZFDR by providing two interfaces.
One is ZFDR T for T-CONV ZFDR and the other is
ZFDR WS for W-CONV-S ZFDR. These two functions do
not reshape data directly but create place holders and data-
flows for further removing zeros, just like the way of tradi-
tional NN frameworks. Their parameters are passed from

Fig. 17. Comparison of pictures generated by the normal training and the training with modifying 4 low significant bits of 20 percent weight values.

Fig. 18. Outline of LrGAN (an architecture combined techniques of ZFDR and 3DCUs).
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programming a network. These two functions also process
the network layer by layer. The interface component in
Fig. 18 shows the most complex situation: the generator of
this GAN has both T-CONV and S-CONV, and the dis-
criminator has T-CONV. The generator needs ZFDR T for
G
!

(marked in blue), both ZFDR T and ZFDR WS for Gw
 �

(marked in orange), and ZFDR T for G
 

(marked in pur-
ple). The discriminator needs ZFDR T for D

 
and Dw

 �
(marked in yellow and green). Under normal situation
where the generator has T-CONV and the discriminator
has S-CONV, ZFDR T is needed for G

!
, Gw
 �

and D
 
, and

ZFDR WS is for Dw
 �

.
Compiler. After reshaping data, we start to map them

through a compiler. Mapping data has two parts. One is
mapping generator and the other is mapping discriminator.
In the case of the generator with both T-CONV and S-
CONV, we map G

!
, Gw
 �

, G
 
, Dw
 �

and D
 

by using Zero Free
Data Mapping scheme (ZFDM), while we use normal data
mapping scheme (DataMapping) to map D

!
(shown in the

compiler component of Fig. 18). In the case of the generator
with only T-CONV, we use DataMapping for G

 
and D
!
, and

ZFDM for the remaining phases. ZFDM has two main
parameters: data reshaped by ZFDR and the number of rep-
licas transferred from programming.

We take G
!

to further elaborate ZFDM scheme. gf
reshaped is data reshaped by ZFDR during generator for-
ward propagation. replica gf is a vector which records the
number of replicas in CornerReshape, EdgeReshape and
InsideReshape. We name items in replica gf as replica c,
replica e and replica i. Also, we calculate the average reuse
time of each case and name them as reuse c, reuse e and
reuse i. We do this because the reusing time of weights
inside each case shows little difference. Assume that the
time MMV consumed in CArray is tm, then the total time of
computation tc total in a layer is tm � reuse i

replica i (the execution
time of parallel tasks is decided by the longest task). We
assume the time of transferring data from one tile to its
neighbor is tt, then transferring results of a layer to its next

layer consumes at least ð layer size
CArray size

l m
� 1Þ � tt, named tt total

(layer size is decided by replica c, replica e and replica i).
We fix replica c as 1 since reuse c is 1, and define the maxi-
mum value replica emax, replica imax ¼ LL� replica emax to
let tt total � tc total (LL is the loop length defined in
Section 4.1). Based on parameters defined above, we can
define replica gf as Table 4 shows.

To summarize, we duplicate kernel weights considering
three factors: (1) Programmers’ demand (space demands).When
the free space is small or programmers would like to use
small memory space to train a GAN, they can set
replica degree as low, and vise versa. (2) Improving the perfor-
mance. More replicas indicate higher parallelism, which
means higher performance. (3) Avoiding I/O to become a

bottleneck. More replicas may incur more communications
among tiles, so we must avoid heavy communications from
hindering performance. For other phases in ZFDM, parame-
ters can be obtained in the same way of G

!
does.

Then we take D
!

to further introduce DataMapping
scheme. df reshaped is data reshaped by normal reshaping
scheme during forward propagation phase of discriminator.
For replica df , we define it as Equation (14) shows, where
szf is size of kernel weights after duplication in D

!
and sn is

size of kernel weights before duplication in D
!
.

replica df ¼
1 replica degree ¼ low
szf
2�sn

j k
replica degree ¼ middle

szf
sn

j k
replica degree ¼ high

8>><
>>: : (14)

Memory Controller. Memory controller records the infor-
mation transferred from the compiler, such as number of
replicas and data mappings. What’s more, it records states
of switches, which are deduced by data mappings. These
records come into a finite state machine, marked in blue
rectangle in Memory Controller (Fig. 18). The finite state
machine offers states for dataflow controller and switch
controller to control 3DCUs. Also, these two controllers
receive signals from 3DCUs and update the finite state
machine. Thus, the memory controller can manage the data
mapping and configure switches according to the dataflows
dynamically.

ReRAM-Based PIM. The part communicating with mem-
ory controller is ReRAM-based PIM. It is also the main
hardware that supports our LrGAN. It is configured with
several 3DCU pairs introduced in Fig. 14 in Section 4.2.
Each tile in 3DCU contains SArray, CArray and BArray,
using the design in PRIME [15], which has been already
introduced in Section 2.1. The ReRAM crossbars in a
CArray (marked in light pink in Fig. 18) employ the design
of that in ISAAC [59], since they can support 16-bit precision
data while PRIME can not. Based on the tile equipped with
basic NN computation and storage ability, our proposed
3DCU pairs can work well.

6 EVALUATION

In this section, we first introduce our experimental setup
and benchmarks used to evaluate the proposed designs. We
then present our evaluation results in terms of performance,
energy, and overhead.

6.1 Experimental Setup

We compare LrGAN with (1) GANs running on GPU
platform; (2) FPGA-based GAN accelerator [50]; and (3)
GANs running on modified ReRAM-based NN accelerator:
PRIME [15]. We use the NVIDIA Titan X as our GPU plat-
form and choose the Xilinx VCU118 board for implementing
FPGA-based GAN accelerator. The hardware configurations
we used for PRIME and LrGAN are listed in Table 5. The
configurations of ReRAMare from [16], [53], [69].

For LrGAN configuration, we use 4-bit for each ReRAM
cell, and 16-bit for input, weight and output (i.e., same as
[62]). The size of ReRAM array is 128� 128 cells. We config-
ure half of a tile for CArray (64 MB), 1/64 of the tile for BAr-
ray (2 MB) and the remaining 62 MB for SArray. We use

TABLE 4
Value of replica gf
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CACTI-6.5 [51], CACTO-IO [29] to model our interconnects
and off-chip connects respectively.

6.2 Benchmarks

We employ 8 state-of-the-art GAN networks as our bench-
marks, shown in Table 6. To describe the topologies of
GANs, we use f , c and t to denote fully-connected, convolu-
tion and transposed convolution layers respectively. For
example, the 512c5k2s denotes a convolution layer with 512
input feature maps, using 5� 5� 512 kernels with a stride
of 2, while 2s in 512t5k2s denotes a transposed convolution
layer with a stride of 1/2. The 100f denotes a fully-con-
nected layer with 100-unit input and f1 denotes a fully-con-
nected layer with 1-unit output. The t3 represents that after
T-CONV, there are 3 output feature maps. For simplicity, if
several layers share the same size of kernel or stride, we
consolidate those common factors at the end, for example
100f-(1024t-512t-256t-128tÞð5k2s)-t3, where layers 1024t,
512t, 256t, and 128t share the common kernel size of 5 and
stride size of 2.

6.3 Results

We fully train the networks in Table 6 with the batch size of
64, and the results are shown as follows.

We first examine the effectiveness of our proposed
ZFDR and 3D connection mechanisms. We then compare
the performance and energy between LrGAN and alterna-
tive PIM design such as PRIME. Moreover, we compare
LrGAN with FPGA-based GAN accelerator and GAN run-
ning on GPU platform. Note that we use 2D and 3D to rep-
resent H-tree and 3D connection design, respectively, and
investigate configurations with different degrees of duplica-
tion (i.e., low, middle and high).

Fig. 19 shows the performance of ZFDR in different
GAN phases. We use NS to represent normalized space,
which means that PRIME uses the same CArray space as
our design. ZFDR achieves distinct speedup on DCGAN,
cGAN, 3D-GAN, GPGAN and DiscoGAN, which reflects
that there are large portions of zeros in these GANs. What’s
more, ZFDR saves up to 5.2� SArray space for storing
inputs (in the case of DCGAN), and saves 3.86� SArray
space on average. Note that DiscoGAN-4pairs has 5 phases
using ZFDR because its generator has both S-CONV and T-
CONV. Moreover, there is no speedup on discriminator of
MAGAN-MNIST, because its layers are fully-connected.

When we evaluate the entire process of training GANs
with H-tree connection, the speedup of ZFDR almost disap-
pears. This is resulted from the overhead of data transfers.
Fig. 20 shows the performance of our 3D connection design
compared with H-tree connection. We observe that with
our 3D connection design, the speedup of ZFDR is much
more visible. Moreover, with 3D connection, duplication
(low degree) achieves much higher performance speedup
than ZFDR with no duplication, while duplication achieves
little speedup with H-tree connection.

TABLE 5
Hardware Configurations

TABLE 6
Topologies of GAN Benchmarks

(f :fully-connected c: convolution t:transposed convolution k:kernel s:stride).

Fig. 19. Performance comparison on phases used ZFDR with PRIME.

Fig. 20. Performance comparison between 3D-connection and H-tree
connection with ZFDR.
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Fig. 21 compares the performance between ZFDR and
normal reshaping (marked as NR) with 3D connection. The
results show that with 3D connection, ZFDRwith (without)
duplication achieves 5.11� (2.77�) speedup on average,
while normal reshaping only yields 1.31� speedup, indicat-
ing that both our 3D connection design and ZFDR are criti-
cal to accelerate GAN execution.

Experiments above show that ZFDR and 3D connection
can achieve high speedup when they work together. We fur-
ther show the performance of LerGAN which combines
these two techniques. It’s worth to mention that we use Ler-
GAN and LrGAN to represent the PIM architecture without
and with the approximate update scheme, respectively. We
train the discriminator and generator of each GAN for ten
iterations and calculate the average time of each iteration.
We compare different duplication degrees of LerGAN with
PRIME, shown in Fig. 22. First of all, with our design
applied without approximate updating, DCGAN has more
speedup than 3D-GAN and GPGAN because it has a larger
kernel size than others, which leads to a larger proportion
of multiplications with zeros. Besides, MAGAN-MNIST
shows nearly no speedup since its discriminator is fully-
connected and its generator is small with only one T-CONV.

Fig. 23 shows the results of energy saving. Note that Ler-
GAN-low-NS achieves 28.47� energy saving on average.
This energy saving owes much to our zero-free and 3D con-
nection design, since they reduce the amount of data as well
as the data movements requiring long wires. Besides, with
the increase of duplications, LerGAN exhibits less energy
saving, since more duplications leads to (1) more memory
writes when updating GANs; and (2) more complex and
energy-consuming switch configurations.

We then evaluate the performance and energy saving of
Approximate Update. We set permissions of (4xþ 3)th and

(4xþ 4)th columns as TRUE, and others are FALSE
(0 � x � 31). For (4xþ 3)th columns, ½tdown; tup� is [6, 9], and
½tdown; tup� is [4, 11] in (4xþ 4)th columns. It is worth to men-
tion that these configurations obtained through various
experiments are not optimal. We leave how to find the opti-
mal solution as our future work.

Figs. 24 and 25 depict the speedup and energy saving
results of LrGAN with Approximate Update compared with
PRIME and lerGAN without Approximate Update. In both of
them, AWU represents approximate weight update algo-
rithm. From Fig. 24 we can figure out that Approximate
Update are unable to achieve speedup because the latency of
each write operation is decided by the longest latency of
programming cells in a row. Since the (4xþ 1)th and
(4xþ 2)th columns employ normal programming model,
they keep the longest latency unchanged. However, Approx-
imate Update can achieve 1.4� energy saving on average as
shown in Fig. 25, which finally achieves 40� energy saving
on low-duplication mode when compared with PRIME.
This mainly benefits from avoiding high energy-consuming
fine-grain programming scheme.

We also compare LrGAN with the FPGA-based GAN
accelerator and GPU platform. Figs. 26 and 27 show the per-
formance and energy consumption of aforementioned
architectures, respectively. In terms of the performance,
since our approximate update scheme has no speedup on

Fig. 21. Performance comparison between ZFDR and normal reshape
with 3D-connection.

Fig. 22. Performance comparison between LerGAN and PRIME (without
approximate weight update).

Fig. 23. Energy saving comparison between LerGAN and PRIME (with-
out approximate weight update).

Fig. 24. Performance comparison between LerGAN and LrGAN.

Fig. 25. Energy saving comparison between LerGAN and LrGAN.
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LerGAN, we show the results of LrGAN (the speedup of
LerGAN is the same with that of LrGAN). LrGAN achieves
47.2� and 21.42� speedup on average over FPGA-GAN
and GPU, respectively. What’s more, DiscoGAN manifests
more speedup over others because (1) it has more T-
CONVs, which means more zeros. Our LrGAN with ZFDR
design shows higher performance; (2) the size of DiscoGAN
is bigger, leading to more off-chip memory accesses for
FPGA and GPU, which causes PIM-based LrGAN to per-
form better. Moreover, GANs with small sizes, such as
MAGAN-MNIST, and lacking T-CONVs, cause less
speedup. For the energy saving, LerGAN-low and LrGAN-
low save more energy than FPGA-based GAN accelerator
for GANs with small size but with more frequent T-CONVs
(the left five GANs in Fig. 26). However, for GANs with
small size and fewer T-CONVs (MAGAN-MNIST), Ler-
GAN shows slightly less energy saving than what FPGA-
GAN accelerator performs. This is because LerGAN con-
sumes more energy when updating networks. Conse-
quently, the extra energy cost can not be amortized by the
energy-saving opportunity. Thanks to our approximate
weight update algorithm, LrGAN has 1.34� energy saving
than the FPGA-GAN accelerator on average. Moreover, as
shown in Figs. 26 and 27, though more duplication (e.g.,
LrGAN-high) brings more speedup, it results in more
energy consumption.

6.4 Accuracy Loss

We employ Fr�echet Inception Distance (FID) in [46] to quan-
tify the quality of the pictures generated. FID is a score that
reflects the distance between a real and a fake item in the feature
level (the next-to-last layer). Therefore, a lower FID means
both higher quality and higher diversity of the generated
item. We can calculate FID by Equation (15).

FID ¼ mr � mg

�� ���� ��2þTrð
P

r þ
P

g � 2ðPr

P
gÞ

1
2Þ: (15)

In Equation (15), r and g represent real items and generated
items; m is the mean of the feature; Tr is the sum of all the

diagonal elements;
P

is the covariance matrix of features.
In experiments, it’s difficult for a human to decipher a gen-
erated item from a real one when the difference between the
two FIDs is less than 5.

We set the same noise to train each GAN when compar-
ing the standard training and the approximate training. The
accuracy loss calculated by FIDapp � FIDo is shown in
Table 7, which shows the accuracy of our proposed algo-
rithm is guaranteed.

6.5 Energy Distribution

Fig. 28 shows the overall energy distribution of LrGAN
executed across the experimented benchmarks. The energy
of computing dominates 73.77 percent of the total energy
in LrGAN since it has a large amount of ReRAM-tile-
related operations, while that of communication occupies
14.25 percent, benefited from our 3D-connected PIM design.
Moreover, we break down the energy distribution of a
ReRAM tile, as shown in Fig. 29. The results show that cell
switching (25.05 percent) andADC (56.54 percent) are the two
main energy-consuming contributors. Several studies [38],
[71] on materials contribute on reducing energy consumption
of cell switching and ADC. If LrGAN is equipped with 1-pJ
cell switching [71], and a more energy-saving ADC (e.g.,
60 percent [38]), it can achieve nearly 3� power reduction.

6.6 Overhead

The overhead of LrGAN has two parts: software overhead
and hardware overhead. For the software overhead caused

Fig. 26. Performance comparison among FPGA-based GAN accelera-
tor, GPU platform and LrGAN.

Fig. 27. Energy saving comparison among FPGA-based GAN accelera-
tor, GPU platform, LerGAN, and LrGAN.

TABLE 7
Accuracy Loss of Approximate Weight Update

Name FIDo FIDapp Difference

DCGAN 35.6 36.5 0.9
cGAN 64.0 64.7 0.7
3D-GAN 30.3 31.6 1.3
ArtGAN-CIFAR-10 32.5 33.0 0.5
GPGAN 40.7 41.5 0.8
MAGAN-MNIST 3.2 4.7 1.5
DiscoGAN-4pairs 29.4 29.9 0.5
DiscoGAN-5pairs 29.4 29.9 0.5

Fig. 28. The breakdown of energy consumption in LrGAN (overall).

Fig. 29. The breakdown of energy consumption of a ReRAM tile.
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by ZFDR and ZFDM, LrGAN spends 32.52 percent more
time than traditional methods on compiling. However, com-
pared with the total time spent on training a GAN(e.g., sev-
eral days), the overhead of few minutes incurred by the
software overhead can be ignored. For the hardware, we
add some switches, wires and modified circuit of Approxi-
mate Update. All of these cause 13.5 percent space overhead
compared with PRIME. However, this space overhead can
be justified by the higher performance (2.1� speedup) deliv-
ered by LrGAN, compared with PRIME using the same
space. What’s more, Approximate Update has only 0.9 percent
time and 0.2 percent energy overheads.

7 RELATED WORK

3D Network on Chip (NoC). There are several prior studiess
on 3D NoC [1], [8], [30], [39], [54], which are proposed for
shortening connections. However, their complex routing
algorithms are not suitable for GAN, while our succinct 3D
connection design fits GANwell.

NN Accelerators. Many recent works accelerate NN based
on FPGAs [3], [47], [60], [72], [74] and ASICs [2], [12], [19],
[24], [41], [44], [45], [58], [73]. Diannao family was proposed
based on Near-Data Processing (NDP) [11], [13], [17], [42],
which locates processors near the memory to reduce the
overhead of off-chip memory access. Our design is based on
ReRAM-based PIM, further reducing data movements.

ReRAM-Based NN Accelerators. PRIME [15] is an accelera-
tor on basic computations of inference like MMV computa-
tion. ISAAC [59] proposed a pipeline solution to accelerate
inference of CNNs. PipeLayer [62] further proposed a pipe-
line solution with intra-layer parallelism on both inference
and training of CNNs. TIME [14] proposed a ReRAM-based
training-in-memory architecture and further reduced the
frequency of ReRAM read/write. Our work proposes a
zero-free, 3D connected GAN accelerator.

GAN Accelerators. Song et al. [50] proposed FPGA-based
GAN accelerator. It uses well-designed dataflows to remove
zero operations and increase data reuse on FPGA. Amir
et al. proposed a SIMD-MIMD acceleration for GAN [4], [5],
[6], by removing zeros in GAN training. Chen et al. pro-
posed ReGAN, a ReRAM-based GAN accelerator using
pipeline [10] design. Our LrGAN design is PIM-based and
flexible to handle all zero-related scenarios in GAN training.

8 CONCLUSION

In this paper, we propose a high-performance, energy-
efficient PIM-based GAN accelerator: LrGAN. We design an
NVM-based PIM which outperforms the FPGA-based GAN
accelerator and GPU in both performance and energy con-
sumption when training GANs. This offsets the flexibility of
PIM, which is worse than FPGA and GPU. LrGAN has three
main techniques: (1) the Zero-Free Data Reshaping (ZFDR)
scheme designed for ReRAM-based PIM to remove computa-
tions with zeros; (2) the reconfigurable 3D connection in
PIM which eliminates the bottleneck of long data movement;
and (3) the approximateweight update schemewhich prevents
unnecessary energy-inefficient fine-grained MLC program-
ming. LrGAN also combines these techniques with minor
modifications of software andmemory controller. Experiments

show that LrGAN achieves 47.2�, 21.42�, and 7.46� speedup
over the FPGA-based GAN accelerator, GPU platform, and
PRIME respectively. Moreover, LrGAN delivers 13.65�,
10.75�, and 1.34� energy savings over the GPU platform,
PRIME, and the FPGA-basedGANaccelerator, respectively.
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