
SLAS: An Efficient Approach to Scaling
Round-Robin Striped Volumes

GUANGYAN ZHANG, JIWU SHU, WEI XUE, and WEIMIN ZHENG

Tsinghua University

Round-robin striping, due to its uniform distribution and low-complexity computation, is widely
used by applications which demand high bandwidth and massive storage. Because many systems
are nonstoppable when their storage capacity and I/O bandwidth need increasing, an efficient and
online mechanism to add more disks to striped volumes is very important. In this article, it is pre-
sented and proved that during data redistribution caused by scaling a round-robin striped volume,
there is always a reordering window where data consistency can be maintained while changing the
order of data movements. Furthermore, by exploiting the reordering window characteristic, SLAS
is proposed to scale round-robin striped volumes, which reduces the cost of data redistribution
effectively. First, SLAS applies a new mapping management solution based on a sliding window
to support data redistribution without loss of scalability; second, it uses lazy updates of mapping
metadata to decrease the number of metadata writes required by data redistribution; third, it
changes the order of data chunk movements to aggregate reads/writes of data chunks. Our results
from detailed simulations using real-system workloads show that, compared with the traditional
approach, SLAS can reduce redistribution duration by up to 40.79% with similar maximum re-
sponse time of foreground I/Os. Finally, our discussion indicates that the SLAS approach works for
both disk addition and disk removal to/from striped volumes.

Categories and Subject Descriptors: H.3.2 [Information Storage and Retrieval]: Information
Storage; H4.2 [Information Systems Applications]: Types of Systems

General Terms: Algorithms, Management

Additional Key Words and Phrases: Striped volume, online scaling, reordering window, sliding win-
dow, lazy updates, I/O aggregation

ACM Reference Format:
Zhang, G., Shu, J., Xue, W., and Zheng, W. 2007. SLAS: An efficient approach to scaling round-
robin striped volumes. ACM Trans. Storage 3, 1, Article 3 (March 2007), 39 pages. DOI =
10.1145/1227835.1227838 http://doi.acm.org/ 10.1145/1227835.1227838

This research was supported by the National Natural Science Foundation of China under Grant
Nos. 60433040 and 10576018; the National Grand Fundamental Research 973 Program of China
under Grant No. 2004CB318205; and Program for New Century Excellent Talents in University.
Authors’ addresses: Department of Computer Science and Technology, Tsinghua University,
100084 Beijing, P. R. China; email: zhang-gy04@mails.tsinghua.edu.cn, {shujw, xuewei,zwm-dcs}@
tsinghua.edu.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permission@acm.org.
C© 2007 ACM 1553-3077/2007/03-ART3 $5.00 DOI = 10.1145/1227835.1227838 http://doi.acm.org/
10.1145/1227835.1227838

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

2 • G. Zhang et al.

1. INTRODUCTION

1.1 Motivation

The increasing performance gap between disk and memory [Yu et al. 2000]
causes disks to remain an I/O bottleneck of the whole computer system. Striping
data across multiple disks can provide effective load balancing of small I/Os and
parallel transfers for large I/Os and, therefore, bring significant performance
benefits. However, one of the most important problems in current systems is
that applications often demand increasingly higher I/O performance and larger
storage capacity [Ghandeharizadeh and Kim 1996]. Striping can solve the prob-
lem in a very simple way by simply adding more disks to striped volumes. On
the one hand, adding disks increases the bandwidth because more parallelism
can be obtained. On the other hand, more disks means more capacity since the
redundancy overhead is not raised by the addition of new disks.

There are two well-known striping policies, round-robin policy [Schindler
et al. 2004; Chen and Patterson 1990] and random policy [Alemany and
Thathachar 1997; Goel et al. 2002]. Round-robin policy stripes the data across
the disk set in a round-robin fashion, while random policy disseminates the
data across the disk set randomly. Random striping appears to be more flex-
ible when adding new disks or deleting existing disks. Unfortunately, due to
its poor performance and lack of qualified randomized hash function, random
striping is not so satisfactory a solution as expected. Conversely, round-robin
striping, because of its uniform distribution and low-complexity computation,
is widely used by applications which demand high bandwidth and massive stor-
age. A typical example is that round-robin striping can be done in most disk
arrays, logical volume managers, and file systems. Because many systems are
nonstoppable when their storage capacity and I/O bandwidth need increasing,
an efficient and online mechanism to add more disks to round-robin striped
volumes is very important.

Currently, scaling round-robin striped (RR-striped) volumes is usually done
in one of the following ways.

—Offline redistribution. To add disks, the application has to be stopped first,
then all data chunks1 on the volume are redistributed across the original and
new disks with a reconfiguration tool like raidreconf [Stergaard 2001], and
finally the application can be reloaded. Apparently, this solution can improve
both access bandwidth and storage capacity, but it has a long downtime that
may not be affordable in many systems.

—Online concatenation. With a toolkit like LVM2 [Lewis 2005], an RR-striped
volume can be extended by concatenating another set of disks onto the end of
the first set. This makes it unnecessary to move data chunks on the volume
but has the drawback that only storage capacity is increased and access
bandwidth is not improved.

1The chunk is the basic unit of data striping in RR-striped volumes, and the chunk size (a.k.a. the
“stripe unit size”) is a multiple of the basic disk block size.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 3

Fig. 1. Senario for online redistribution (a new disk is added).

In short, both offline redistribution and online concatenation have their obvi-
ous drawbacks. Therefore, scaling an RR-striped volume necessitates that the
data on the volume be redistributed across the original and new disks without
interruption to the activity of the applications.

In this article, we investigate the problem of scaling RR-striped volumes on-
line and propose an efficient approach. Round-robin striping mainly includes
widely-used RAID-0, RAID-4, and RAID-5. We first concentrate on the situ-
ation where some disks are added into a RAID-0 volume, then propose our
approach, and evaluate it in detail. Further, we conclude that our approach
can be extended for not only disk removal from a RAID-0 volume but also disk
addition/removal in a RAID-4 or RAID-5 volume through discussion.

1.2 Challenge and Strategy

Although scaling RR-striped volumes seems to be a good solution, the process
of disk addition is a difficult technical challenge for two reasons. First, almost
all data chunks have to be moved to preserve the round-robin order when new
disks are added. Second, many computer systems used in e-business, scientific
computation, or Web environments depend on the uninterrupted availability of
data stored in their storage systems.

Figure 1 shows the senario for online redistribution where the data mover
performs data redistribution caused by scaling a striped volume, and the I/O
processor serves foreground I/O requests. Solving the problem of scaling RR-
striped volumes can be accomplished by finding an efficient approach to redis-
tributing the data, so that:

—data redistribution can be completed in a short time,
—small performance overhead is brought to foreground I/Os, and
—data consistency can be guaranteed during the scaling process.

Without the guidance of the characteristics in data redistribution, the tradi-
tional approach to scaling RR-striped volumes online makes data redistribution

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

4 • G. Zhang et al.

costly. First, it manages mapping information with the mapping table [Kim
et al. 2001] that expands with the volume size; second, it writes mapping meta-
data onto the disk for each data chunk movement; third, it reads or writes only
one data chunk via each I/O.

In order to present a better solution to the problem of scaling striped vol-
umes, we shall analyze the data redistribution process first. Data redistribu-
tion requires (1) reads and writes of data chunks and (2) updates of mapping
metadata. Although it is impossible to decrease the number of data chunks
moved while preserving the round-robin order, [Seo and Zimmermann 2005],
is it also impossible to reduce the reads/writes of data chunks and updates of
mapping metadata? We focused on reducing the cost of data redistribution by
decreasing the number of chunk reads/writes and that of metadata updates
without enlarging the negative impact on foreground I/Os.

1.3 Contributions of This Article

This article makes two main contributions in solving the problem of scaling
RR-striped volumes.

(1) Presenting and proving a reordering window characteristic in scaling RR-
striped volumes. We found and proved that during the data redistribution
process, there always exists a reordering window where data consistency
can be maintained, while changing the order of data movements. Some
useful conclusions can be drawn from the concept of a reordering window
such as the following.
a) For almost every data chunk, its mapping information does not have to

be updated as soon as it is copied to its new location in order to guarantee
data consistency.

b) If and only if data chunks coexist in the same reordering window is the
order of their movements changeable.

c) A data chunk in a reordering window may have two valid replicas when
the chunk has been copied to its new location and has not been written
since it was copied.

With the importance of these conclusions in solving the problem of scal-
ing RR-striped volumes, the reordering window characteristic provides a
theoretical basis for solving this problem.

(2) Proposing an efficient approach to scaling RR-striped volumes. Taking ad-
vantage of the reordering window characteristic, we propose SLAS (an
acronym for Sliding window, Lazy updates and movement Scheduling), an
efficient approach to scaling RR-striped volumes. The approach includes
three major strategies.
a) SLAS applies a new mapping-management solution based on a slid-

ing window, which not only occupies a very small space but also en-
ables newly added disks to be gradually available to serve I/O re-
quests during the scaling process. The mapping-management solution
makes it convenient for SLAS to make use of the reordering window
characteristic.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 5

b) SLAS uses lazy updates of mapping metadata to decrease the number
of metadata writes required by data redistribution. Supported by the
reordering window characteristic, lazy updates of mapping metadata
can still keep data consistent.

c) SLAS also changes the order of data chunk movements to read/write
multiple data chunks via an I/O. This can reduce the cost of data re-
distribution because I/O aggregation can decrease the number of disk
seeks.

We implemented a detailed simulator that uses disksim as a slave module
to simulate disk accesses. Under several real-system workloads like Cello-92,
TPC-C, and Cello-96, we evaluated the traditional approach and our SLAS ap-
proach. The experimental results demonstrate that, compared with the tradi-
tional approach, SLAS shortens redistribution duration by up to 40.79% with-
out enlarging the maximum response time of foreground I/Os. Additionally,
the SLAS approach also guarantees data consistency and, therefore, enables
striping to survive panics and power failures.

Finally, we prove that there is also the reordering window characteristic in
disk addition/removal in a RAID-4 or RAID-5 volume. Therefore, our SLAS
approach can be extended for scaling a RAID-3 or RAID-5 volume.

1.4 Roadmap to the Remainder of this Article

The remainder of this article is organized as follows. Section 2 examines the
research background and related work. The problem of scaling striped volumes
and the traditional approach are described in Section 3. Section 4 presents the
reordering window characteristic in the data redistribution process. Section
5 proposes SLAS, an effective solution to the problem of scaling RR-striped
volumes. Section 6 evaluates the SLAS approach through detailed simula-
tion experiments. The extendability of our SLAS approach is discussed in Sec-
tion 7. Finally, Section 8 summarizes our research and discusses future research
work.

2. BACKGROUND AND RELATED WORK

2.1 Widely-Used Round-Robin Striping

Many disk arrays and logical volume managers stripe data across their disks
in a round-robin fashion. There have been some efforts on how to utilize RR-
striped volumes to obtain better I/O performance. Most of them concentrate
on choosing a chunk size to provide effective load balancing of small I/Os and
parallel transfers for large I/Os [Schindler et al. 2004; Chen and Patterson 1990;
Livny et al. 1987]. A typical choice for the chunk size is 32-64KB [Hennessy
and Patterson 2003; Wilkes et al. 1996]. In addition, staggered striping [Berson
et al. 1994] minimizes the percentage of disk bandwidth that is wasted when the
storage server consists of heterogeneous media objects with different bandwidth
requirements. Nevertheless, all such efforts do not solve the problem of scaling
RR-striped volumes.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

6 • G. Zhang et al.

2.2 Limitations of Random Striping

Disk addition into RR-striped volumes online remains a difficult technical chal-
lenge, thus random striping is now gaining the spotlight in the data placement
area. Random allocation [Alemany and Thathachar 1997; Goel et al. 2002]
across the disk set appears to have better scalability, but it has some limi-
tations. The simulation report in Alemany and Thathachar [1997] shows that a
single copy of the data in random striping may result in some hiccups of the con-
tinuous display. Although a randomized hash function called SCADDAR [Goel
et al. 2002] is proposed, the function does not preserve the randomness of data
layout after several disk additions or deletions [Seo and Zimmermann 2005].
Since random striping is not so satisfactory as expected, round-robin striping
is still an important data organization method.

2.3 Disk Addition into RR-Striped Volumes

The mapping-function solution [Teigland and Mauelshagen 2001] does not sup-
port online data redistribution caused by scaling RR-striped volumes. The map-
ping table [Kim et al. 2001] can handle such online redistribution, but its size
increases with the volume size. Our mapping management solution, based on
a sliding window [Zhang et al. 2005], not only enables newly added disks to be
gradually available to serve I/O requests during the scaling process, but also
occupies a very small space.

Shahram and Dongho [1996] proposed that a system should employ both
eager and lazy reorganizations to redistribute data online. However, this pol-
icy requires a large amount of extra disk storage (60% of the total capacity
of original disks at most) to maintain multiple copies of migrated chunks.
The TH-VSS system [Xiao et al. 2005] employs a mirroring mechanism to
ensure that the data on striped volumes is not corrupted during online re-
distribution. The system is difficult to apply because it requires that all the
disks in the original striped volume have a large unused storage space. Unlike
these systems, SLAS requires no additional disk space, and data consistency is
guaranteed.

The HP AutoRAID [Wilkes et al. 1996] migrates data between RAID-1 and
RAID-5, depending on its current access frequency. It allows an online capacity
expansion and automatically takes advantage of the additional space by allo-
cating more mirrored storage. But the system cannot add new disks into an
existing RR-Striped (RAID-5) volume online.

2.4 Rate Control in Data Movement

Gonzalez and Cortes [2004] proposed an algorithm for increasing the capacity
of RAID5, which has an easily controlled overhead. There are still some other
efforts focusing on the rate control problem of online data migration. Lu et al.
[2002] and Verma et al. [2005] proposed a control-theoretic approach to control
the rate of data migration. Dasgupta et al. [2005] formulated the data migration
problem as a reward maximization problem and presented an approach to mi-
grating data. The goal of rate control is to gain a reasonable trade-off between

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 7

Table I. Symbolic Notations

Symbol Meaning
Am

n a request to add m disks into a striped volume made up of n disks
Rm

n a request to remove m disks from a striped volume made up of n disks
S(n,m,x) the disk-scaling state of Am

n or Rm
n at Chunk x

ROW(n,m,x) the size of the reordering window of Am
n or Rm

n at Chunk x
G(n,m,x) the operation granularity of Am

n or Rm
n at Chunk x

OD(x) the ordinal number of the disk which Chunk x lies on before scaling
OE(x) the ordinal number of the physical chunk which Chunk x lies on before scaling
ND(x) the ordinal number of the disk which Chunk x lies on after scaling
NE(x) the ordinal number of the physical chunk which Chunk x lies on after scaling

the migration objectives and the I/O performance requirements. However, the
purpose of our SLAS approach is to reduce the cost of data redistribution caused
by scaling RR-striped volumes.

3. PROBLEM DESCRIPTION AND TRADITIONAL APPROACH

3.1 Problem Description

Given an RR-striped volume made up of n disks, a request to add m disks
and transform the n + m disks into a new RR-striped volume, during the time
when RAID storage is still functional, is termed a disk-scaling request and is
represented as Am

n . A disk-scaling request requires almost all data chunks to
be redistributed online to preserve the round-robin order.

The problem of scaling RR-striped volumes can be described as follows.
Given a disk-scaling request Am

n , the goal is to find an effective approach to
data redistribution so that the objectives of Objective 1 and Objective 2 are
met under the restriction of Restriction 1.

Objective 1. The data redistribution can be completed in a short time.
Objective 2. The data redistribution can make a very small negative impact

on the performance of foreground I/Os.
Restriction 1. Data consistency is guaranteed during redistribution so that

striping can survive panics and power failures.

Table I summarizes the symbolic notations used in this article.

3.2 Traditional Approach

The traditional approach to the problem of scaling RR-striped volumes uses
the mapping-table solution to manage mapping information [Kim et al. 2001].
After getting the access permission of the mapping table, the data mover copies
a data chunk to its new location and writes the corresponding metadata onto
the disk repeatedly. Because the I/O processor reads the mapping table to locate
underlying physical storage and the data mover writes the mapping table to
reflect data movements, reader-writer locks have to be provided for the mapping
table to guarantee data consistency. As a trade-off between I/O parallelism and
locking overhead, the traditional approach divides the whole mapping table
into several regions and provides a reader-writer lock for each region.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

8 • G. Zhang et al.

The general steps the traditional approach follows are as follows.

Data mover
1. repeat until all the data is redistributed

1.1) acquire writer lock for the related region
1.2) for 1 to n do

1.2.1) read another next chunk from its original location
1.2.2) write this chunk to its new location
1.2.3) update mapping metadata on the disk for the movement

1.3) release the writer lock acquired for these movements

I/O Processor
Suppose that data b is accessed

1. acquire all reader locks for the regions that data b overlaps
2. according to mapping metadata, access each chunk in its original

or new location for data b
3. release all reader locks acquired for this I/O

Without the guidance of the reordering window characteristic, the data
mover in the traditional approach moves only one data chunk via a pair of
read and write accesses because changing the movement order of any other
fixed number of data chunks will cause overwriting of valid chunks. This makes
data redistribution costly. First, it writes mapping metadata onto the disk once
for each chunk movement. Second, it reads or writes only one data chunk via
an I/O.

4. A REORDERING WINDOW DURING DATA REDISTRIBUTION

Our initial thought is to solve the problem of scaling striped volumes by
scheduling the data redistribution process. If data chunk movements have to
be completed in a strict one-by-one sequence, the data redistribution process
will be unschedulable. Fortunately, we find that during the data redistribution
process, there is always a reordering window where no valid data chunk will
be overwritten while changing the order of data movements. Because any
chunk-copying in a reordering window does not overwrite any valid data, even
if the power fails before the mapping metadata is updated, only some chunk
reads/writes are wasted, and data consistency is not destroyed since the chunk
in its original location is valid. Therefore, a reordering window is a window
where data consistency can be maintained while changing the order of chunk
movements.

Definition 1. Given a disk-scaling request Am
n and a chunk x, the fact that

Chunk x ′ (for ∀x ′{0 ≤ x′ < x}) has been moved and Chunk x ′′ (for ∀x ′′{x ′′ � x})
has not been moved is called a disk-scaling state and is represented as
S(n, m, x).

A transition from one disk-scaling state to another is called a disk-scaling
operation. It transforms from one disk-scaling state S(n,m,x) to another
state S(n,m,x ′), while moving (x ′ − x) data chunks to new locations. Here,
the positive integer (x ′ − x) is called the operation granularity. The unit of
operation granularity is a data chunk.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 9

Fig. 2. Illustration of S(2,1,8). (Disk 2 is newly added.)

Fig. 3. Guarantee of data consistency. (Chunks 9 and 11 have been copied to their new locations.)

Definition 2. Given a disk-scaling state S(n, m, x), of a disk-scaling request
Am

n , the window of data chunks, whose size equals MAX
δ

{δ |, where δ is a
nonnegative integer; for ∀x ′∀x ′′{x ′, x ′′ ∈ [x, x +δ) and x ′ < x ′′}, Chunks x ′ and x ′′

cannot be overwritten by each other no matter in what order they are moved.},
is called the reordering window of Am

n at Chunk x. The size of the reordering
window is represented as ROW(n, m, x).

Example 1. To clarify the concept of a reordering window, we take the
disk-scaling request A1

2 as an example. Figure 2 illustrates the disk-scaling
state S(2,1,8). When Chunks 8, 9, 10, and 11 are moved in arbitrary order,
no valid chunk will be overwritten. If Chunk 12 is also taken into account,
when Chunk 12 is moved before Chunk 8, the former will overwrite the latter.
Therefore, ROW(2,1,8)=4.

Further, suppose that Chunks 9 and 11 have been copied to their new loca-
tions (see Figure 3), the power fails, or the system crashes before the mapping
metadata is updated. The original replicas of Chunks 9 and 11 will be used
after the system reboots. Only if Chunks 9 and 11 have not been written since
they were copied, will data consistency still be guaranteed.

In the same way, we can get the results as follows.

ROW(2,1,0)=0; ROW(2,1,1)=0; ROW(2,1,2)=1; ROW(2,1,3)=1;
ROW(2,1,4)=2; ROW(2,1,5)=2; ROW(2,1,6)=3; ROW(2,1,7)=3;
ROW(2,1,8)=4; ROW(2,1,9)=4; ROW(2,1,10)=5; ROW(2,1,11)=5;
ROW(2,1,12)=6; ROW(2,1,13)=6; ROW(2,1,14)=7; . . .

Inducing the above results, we get ROW(2,1,x) = �x / 2�. Generally speaking,
ROW(n,m,x) can be gained according to Lemma 1.

LEMMA 1. ROW (n,m,x) = m × �x/n�.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

10 • G. Zhang et al.

PROOF. As for S(n, m, x), let OD(x) = d , OE(x) = e, where both d and e start
at 0. We have e = �x/n� , d = x%n. Let us assume that the logical chunk x ′

will be placed on chunk e of disk d in the new configuration, then ND(x′) = d ,
NE(x′) = e, and x ′ = e × (n + m) + d = �x/n� × (n + m) + (x%n). Further, we
have δ = x ′ − x = �x/n� × (n + m) + x%n − x = m × �x/n�. In the following,
we prove that δ is just the size of the reordering window of Am

n at Chunk x by
contradiction.

First, we assume that, ∃ xa ∃ xb{xa, xb ∈ [x, x + δ) and xa < xb}; when data
chunks xa, xb are moved in some order, one will be overwritten by the other.}.
It is evident that no chunk will be overwritten if Chunk xa is moved first. So,
Chunk xb is moved first and overwrites Chunk xa. Therefore, xb = �xa/n�× (n+
m) + (xa%n). Since xa ≥ x, we have xb ≥ x ′ = x + δ. This result contradicts our
initial assumption that xb ∈ [x, x + δ). Therefore, for ∀xa∀xb{xa, xb ∈ [x, x + δ)
and xa < xb}, data chunks xa and xb cannot be overwritten by each other no
matter in what order they are moved.

Additionally, for arbitrary nonnegative integer δ′{δ′ > δ}, we have x, x ′ ∈
[x, x + δ′). If Chunk x ′ is moved before Chunk x, it will overwrite Chunk x.

According to Definition 2, δ is the size of the reordering window of Am
n at

Chunk x. That is, ROW(n,m,x) = δ = m × �x / n�.

According to Lemma 1, ROW(2,1,x) = �x / 2�. This result accords with
Example 1.

Deduction 1. Given n and m, ROW(n,m,x) increases with x in a step manner.

Deduction 2. During data redistribution caused by scaling RR-striped
volumes, all data chunks which do not coexist in the same reordering window
cannot be moved in arbitrary order because this will cause valid data to be
overwritten.

The reordering window characteristic provides a theoretical basis for solving
the problem of scaling RR-striped volumes. For example, the following conclu-
sions can be drawn from the concept of a reordering window:

(1) For almost every data chunk, its mapping information does not have to be
updated immediately after it is copied to its new location, while meeting
the restriction of data consistency.

(2) If and only if data chunks coexist in the same reordering window is their
movement order changeable.

(3) A data chunk may have two valid replicas when the chunk has been copied
to its new location and has not been written since it was copied.

(4) Multiple data chunks in a reordering window can be moved concurrently
for scaling the striped volumes.

These conclusions are of great importance to solving the problem of scaling
striped volumes. For instance, the first three conclusions are used in our SLAS
approach.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 11

5. OUR SOLUTION TO SCALING STRIPED VOLUMES

Using the reordering window characteristic, we propose an efficient approach
to scaling striped volumes called SLAS. First, SLAS uses a new mapping-
management solution based on a sliding window, which not only occupies a
very small space, but also enables newly added disks to be gradually avail-
able to serve I/O requests during the scaling process. Second, SLAS uses lazy
updates of mapping metadata to decrease the number of metadata writes re-
quired by data redistribution. Finally, SLAS also changes the order of data
chunk movements to read/write multiple data chunks via an I/O.

5.1 Mapping Management

Mapping metadata is used to map a logical address of a striped volume to a
physical address of an underlying physical disk. There have been some tra-
ditional solutions to mapping management. However, they are inadequate for
scaling striped volumes online in large-scale storage environments. The discov-
ery of the reordering window helps improve mapping-management for striped
volumes. Our SLAS approach applies a new mapping-management solution
based on a sliding window, which requires a very small space and makes it
possible to take full advantage of the reordering window characteristic.

5.1.1 Limitations of Traditional Solutions to Mapping Management.
There are already two traditional solutions to mapping management: mapping
function [Teigland and Mauelshagen 2001] and mapping table [Kim et al. 2001;
Lim et al. 2003]. Mapping function takes a logical address referenced by an I/O
request as the input parameter and the corresponding physical address as the
output parameter. The mapping-function solution only stores the mapping func-
tion and therefore occupies a very small space. With this technique, however,
foreground I/O operations are limited at data redistribution. The I/O operation
which occurs during the data redistribution cannot find the correct location of
relevant data because the data can exist in either its original or new location.

A mapping table for a striped volume is a one-dimensional array of the form
MT[t]. Each entry in the mapping table contains a physical disk identifier and
a chunk offset in the physical volume. The mapping-table solution can handle
data redistribution and foreground I/O operations at the same time since it can
keep track of the movement of data. However, unlike the mapping function,
which only stores its own function, the mapping table occupies a large space
that expands with the volume size. Moreover, the smaller the chunk is, the
larger the mapping table is. A typical volume manager is implemented in the
kernel space of a host. Maintaining large amounts of mapping information in
the host memory may reduce the amount of main memory available for I/O
cache and further impair the I/O performance of the host.

5.1.2 Our Mapping Management Solution Based on a Sliding Window. Ac-
cording to Deduction 2, data chunk movements caused by scaling striped vol-
umes are relatively sequential. This makes it possible to save the space stor-
ing mapping information. We propose a new mapping-management solution
based on a sliding window. The key idea behind the solution is to introduce the
concept of a sliding window into the mapping function. Our solution is equal to

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

12 • G. Zhang et al.

Fig. 4. Mapping management based on a sliding window for the data redistribution caused by A1
2.

the mapping-function solution when data redistribution is not needed, while a
sliding window is introduced when the data needs to be redistributed. The slid-
ing window is similar to a small mapping table, and it describes the mapping
information of a continuous segment of the striped volume.

Figure 4 illustrates the mapping-management solution based on a sliding
window for the data redistribution caused by A1

2. Before the data redistribution,
the original mapping function is used, and 2 disks are used to serve requests.
During the data redistribution, only data within the range of the sliding window
are redistributed. The foreground I/O requests, sent to the logical address in
front of the sliding window, are mapped through the original function; those sent
to the address behind the sliding window are mapped through the new function;
and those sent to the address in the range of the sliding window are mapped
through the sliding window. After all of the data in the sliding window are
moved, the window slides ahead by one window size. Thus, the newly added disk
is gradually available to serve foreground I/O requests. The data redistribution
of the whole volume is completed when the sliding window reaches the end of
the original striped volume. From then on, the address mapping of the whole
volume is performed through the new mapping function and 3 disks are used
to serve requests.

It should be noted that a sliding window is different from a reordering win-
dow. The former is a mapping-management solution for striped volumes, while
the latter is a characteristic in the process of scaling RR-striped volumes. It can
be shown from Section 5.2 that the mapping-management solution based on a
sliding window is convenient for making use of the reordering window charac-
teristic to solve the problem of scaling striped volumes. To meet the restriction
of data consistency, the size of a sliding window (i.e. operation granularity)
should not be greater than that of the corresponding reordering window.

If the maximum of the operation granularity is set to Max Granularity, we
can dynamically get G(n,m,x), the operation granularity of a disk-scaling oper-
ation whose starting disk-scaling state is S(n,m,x), according to the following
equation:

G(n,m,x) = min(ROW(n,m,x), Max Granularity). (1)

Because ROW(n,m,x) increases with x in a step manner (see Deduc-
tion 1), G(n,m,x) will equal Max Granularity eventually. Therefore, setting
Max Granularity is also called choosing an operation granularity.

The mapping-management solution based on a sliding window enables the
newly added disks to be gradually available to serve requests during the

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 13

Fig. 5. Aggregate reads for S(2, 1, 19).

disk-scaling process. Additionally, it brings higher performance and better scal-
ability because a sliding window occupies a very small space and its size is
independent of the size of the whole striped volume.

5.2 Our SLAS Approach

By using the reordering window characteristic, we can work out some ap-
proaches to scaling striped volumes. In this section, we first give the NPP ap-
proach in which a disk-scaling operation cannot be preempted by a foreground
I/O operation, and we analyze its limitations. Further, we propose the SLAS
approach in which a disk-scaling operation is preemptive. It should be noted
that a disk-scaling operation moves all the data chunks in a sliding window.
There are two main ideas in SLAS to improve the redistribution efficiency. The
first idea is to decrease the number of metadata writes. The second idea is to
aggregate multiple reads/writes of data chunks into an I/O.

5.2.1 The NPP Approach Using the Nonpreemptive Policy. Our initial
idea to make use of the reordering window characteristic to scale a striped
volume is the NPP (an acronym for NonPreemptive Policy) approach, in which
disk-scaling operations are nonpreemptive, that is, a disk-scaling operation
moves all the data chunks in a sliding window uninterruptedly, and then
updates mapping metadata onto the disk. During the whole operation, all
foreground I/O requests whose target addresses are within the sliding window
will queue for processing.

A disk-scaling operation will not be interrupted, so those data chunks in the
current sliding window can be moved in arbitrary order. NPP changes the move-
ment order of data chunks in a sliding window so as to aggregate reads/writes
of multiple data chunks. Take the disk-scaling state S(2,1,19) as an example
to make the aggregation technique clear; we get ROW(2,1,19) = 9. As shown in
Figure 5, NPP issues an I/O request to read Chunks 20, 22, 24, and 26, another
I/O request to read Chunks 19, 21, 23, 25, and 27. Thus the NPP approach
requires two I/Os instead of nine to read these chunks.

When all these chunks have been read into memory, NPP issues an I/O re-
quest to write Chunks 21, 24, and 27, a second one to write Chunks 19, 22, and
25, a third one for Chunks 20, 23, and 26 (see Figure 6). In this way, only three
instead of nine write requests are issued.

In the previous case, nine chunks will reside in memory at some time, so
the memory space to hold nine chunks will have to be reserved. The set of

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

14 • G. Zhang et al.

Fig. 6. Aggregate writes for S(2, 1, 19).

the data chunks that the reserved memory can hold is called a subwindow.
In fact, the size of reserved memory is tunable. Suppose that the size of the
subwindow is six, the first six chunks (i.e., Chunks 19 to 24) will first be read
into memory. Then the first aggregate read request will read Chunks 20, 22,
and 24; the first write request will write Chunks 21 and 24. To move all these
nine chunks, four reads and six writes will be required. Given the number of
the disks constructing a striped volume, the ordinal number of a start logical
chunk, and the size of a subwindow, we can calculate the offset and size of an
aggregate read/write for each disk.

Because the NPP approach only needs to judge whether the target address of
a foreground I/O request is in the sliding window, it maintains a window offset
and a window size instead of the whole sliding window. The offset and the size
are protected by a reader-writer lock because the I/O processor needs to read
them while the data mover needs to write them.

The general steps the NPP approach follows are as follows.

Data mover
1. initialize the first sliding window
2. repeat until all the data is redistributed

2.1) acquire writer lock for the sliding window
2.2) for each sub-window of data chunks in the current sliding window

2.2.1) for each disk in the original configuration
2.2.1.1) read data chunks in the sub-window aggregately

2.2.2) for each disk in the new configuration
2.2.2.1) write data chunks in the sub-window aggregately

2.3) update mapping metadata for the movement of the sliding
window

2.4) release the writer lock acquired for this sliding window
2.5) initialize the next sliding window

I/O Processor
Suppose that data b is accessed

1. if data b is before the sliding window
1.1) access data b in its original location

2. if data b is after the sliding window
2.1) access data b in its new location

3. if data b overlaps the sliding window
3.1) acquire reader lock for the sliding window
3.2) access the portion of data b before the sliding window in its original

location, and access the other portion of data b in its new location
3.3) release reader lock acquired for this I/O

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 15

As for the NPP approach, it is a dilemma to choose an operation granularity
to meet both the redistribution duration objective and the I/O performance
objective. If the operation granularity is set to 1, it will result in a larger cost of
data redistribution for two reasons. First, one write of mapping metadata onto
the disk is required for each data chunk movement. Second, there is no chance
to aggregate reads/writes of data chunks.

Increasing the operation granularity allows multiple chunk movements to be
processed with only one write of mapping metadata onto the disk and multiple
chunks to be read/written in an aggregate I/O. This can reduce the cost of data
redistribution. In other words, by increasing the operation granularity, the re-
distribution duration objective can be better met. In addition, when increasing
the operation granularity, the restriction of data consistency remains guaran-
teed. Even if the system crashes in a disk-scaling operation, data copying in a
disk-scaling operation cannot overwrite any valid data because the operation
granularity is not greater than the size of the reordering window; data in the
sliding window cannot be updated by any foreground I/O due to the nonpre-
emptive policy, therefore, data consistency can be guaranteed. Unfortunately,
the larger the operation granularity is, the more difficult it is to meet the I/O
performance objective. Increasing the operation granularity will cause more I/O
requests to queue up at the sliding window, which will build up the foreground
I/O latency.

In a word, the NPP approach is not a satisfactory solution to the problem of
scaling striped volumes.

5.2.2 The SLAS Approach Using the Preemptive Policy. Due to the non-
preemptive policy, the NPP approach has an insurmountable limitation. Our
improvement on the NPP approach is the SLAS approach using the preemptive
policy. Similar to NPP, SLAS also changes the movement order of data chunks
in a sliding window in order to aggregate reads/writes of multiple data chunks
(see Section 5.2.1). Unlike NPP, SLAS can serve foreground I/O requests be-
tween aggregate chunk reads/writes in a disk-scaling operation. Because the
foreground I/Os, coming between SLAS may be write requests whose target data
is in the current sliding window, SLAS cannot simply write mapping metadata
after all chunks in the sliding window are moved. SLAS uses lazy updates of
mapping metadata to decrease the number of metadata writes caused by data
redistribution. While NPP only stores the offset and the size of the sliding win-
dow, SLAS stores all of the contents of the sliding window besides the offset
and the size.

The technique of lazy updates of mapping metadata is that during a disk-
scaling operation, the sliding window will not be updated onto the disk until
it has to be updated to meet the restriction of data consistency. Data chunks
are copied to new locations in some order, but updates of mapping metadata
are done only under one of two circumstances: (1) when all the data chunks in
the sliding window have been copied to new locations, the window offset and
the size on the disk are updated; (2) when the first write to a data chunk in the
sliding window arrives after the chunk is copied to its new location, the sliding
window is updated and then the write request is served.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

16 • G. Zhang et al.

As a by-product of the preemptive policy and read/write aggregation, SLAS
has an opportunity to use two tricks to enhance the performance of foreground
read I/Os. The first trick is that if a foreground I/O reads a data chunk that
has been read in memory for read/write aggregation, the data can be read from
memory immediately. The second trick is described as follows. It can be ac-
quired from the reordering window characteristic that chunk x in the sliding
window has two valid replicas if it has been copied to its new location and has
not been written since it was copied. If the two replicas do not exist on the same
disk (i.e., ND(x) �= OD(x)), read requests to Chunk x are alternated between
the two disks. Although data prefetching and alternating reads from multiple
replicas are both widely-used solutions, it is the reordering window charac-
teristic that enables SLAS to reap the benefits of data prefetching and read
alteration without any additional labor to prepare in-memory data or multiple
replicas.

Another issue to be considered is the data structures that need to be main-
tained on the disk. The offset and the size of the sliding window needs to be
stored, and three more bits also need to be stored for each chunk in the slid-
ing window to denote, respectively, whether the corresponding chunk has been
read in memory, copied to its new location or whether its new replica has been
updated. Consequently, 1KB of disk space can store the mapping metadata for
2,698 (1KB/ 3bits = (1024∗8)/3 = 2698) chunks.

The general steps the SLAS approach follows are as follows.

Data mover

1. initialize the first sliding window
2. repeat until all the data is redistributed

2.1) for each sub-window of data chunks in current sliding window
2.1.1) for each disk in the original configuration

2.1.1.1) acquire writer locks for the chunks in the sub-window
that locate on the disk

2.1.1.2) read data chunks in the sub-window aggregately
2.1.1.3) write a memory record to indicate these data chunks

has been read in memory
2.1.1.4) release the writer locks acquired for this aggregate

read
2.1.2) for each disk in the new configuration

2.1.2.1) acquire writer locks for the chunks in the sub-window
that locate on the disk

2.1.2.2) write data chunks in the sub-window aggregately
2.1.2.3) write a record to indicate these data chunks has been

copied to new locations
2.1.2.4) release the writer locks acquired for this aggregate

write
2.1.3) clean up the memory records indicating these data chunks

are in memory
2.2) update mapping metadata for the current window
2.3) initialize the next sliding window

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 17

I/O Processor

Suppose that data b is accessed
1. if data b is before the sliding window

1.1) access data b in its original location
2. if data b is after the sliding window

2.1) access data b in its new location
3. if data b overlaps the sliding window

3.1) acquire reader locks for the data chunks of data b in the
sliding window

3.2) if this is a read request
3.2.1) read the portion of data b before the sliding window from

its original location
3.2.2) read the portion of data b after the sliding window from

its new location
3.2.3) for each chunk x of data b in the sliding window

3.2.3.1) if chunk x is in memory
3.2.3.1.1) read chunk x from memory

3.2.3.2) if chunk x is not copied yet
3.2.3.2.1) read chunk x from original location

3.2.3.3) if chunk x is copied to new location and is written
since it is copied

3.2.3.3.1) read chunk x from new location
3.2.3.4) if chunk x is copied to new location and is not

written since it is copied
3.2.3.4.1) read chunk x from the lightly-loaded one of

the two disks
3.3) if this is a write request

3.3.1) write the portion of data b before the sliding window to its
original location

3.3.2) write the portion of data b after the sliding window to its
new location

3.3.3) if any chunk of data b in the sliding window is copied and
is not written since it is copied

3.3.3.1) update mapping metadata on the disk to indicate
the movement

3.3.4) for each chunk x of data b in the sliding window
3.3.4.1) if chunk x is in memory

3.3.4.1.1) write chunk x to the replica on memory
3.3.4.2) if chunk x is not copied yet

3.3.4.2.1) write chunk x to original location
3.3.4.3) if chunk x is copied to new location

3.3.4.3.1) write chunk x to new location
3.4) release reader locks acquired for this I/O

The preemptive policy not only eliminates the problem of many I/O requests
queuing up at the sliding window which is intrinsic to the nonpreemptive policy,
but also makes it possible to reduce the cost of data redistribution and the
response time of foreground I/O requests through some optimizations.

Ordered operations of copying a data chunk and updating the sliding win-
dow can ensure data consistency of striping [Zhang et al. 2005]. But ordered
operations cause each chunk movement to require one write of the sliding
window, which results in a large cost of data redistribution. Luckily, the re-
ordering window characteristic enables data consistency to also be guaranteed
through lazy updates. One write of the sliding window can store multiple map

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

18 • G. Zhang et al.

changes of data chunks, so lazy updates can decrease the number of metadata
writes significantly. In the best case, a disk-scaling operation only requires
one write of the offset and the size without any write of the sliding window.
Therefore, lazy updates reduce the cost of data redistribution with guaranteed
consistency.

The reordering window characteristic makes the movement order of data
chunks in a sliding window changeable. Read/write aggregation based on move-
ment scheduling enables SLAS to have larger redistribution throughput. A typ-
ical choice for the chunk size is 32KB (EMC’s Symmetrix 8000 [Hennessy and
Patterson 2003]) or 64KB (HP AutoRAID [Wilkes et al. 1996]). So increasing
the size of reads/writes will enhance the I/O throughput.

Using in-memory chunks and alternating read requests help improve the
performance of read requests to data chunks in a sliding window. Generally
speaking, a large fraction of file accesses are read-only. For instance, in his
study of Windows NT 4.0 file system behavior, Vogels [1999] found that 79%
of accesses to files were read only. Especially for some specific applications
like media servers, nearly all the I/O accesses are read only. Thus, these two
tricks can to some extent compensate for the performance penalty that data
redistribution brings to foreground I/Os.

To sum up, the SLAS approach, which takes advantage of the reordering
window characteristic, is a satisfactory solution to the problem of scaling RR-
striped volumes. First, it meets the redistribution duration objective through
lazy updates of mapping metadata and aggregate reads/writes of data chunks.
Second, it meets the I/O performance objective through the preemptive policy
and by two tricks for improving read performance. Last but not least, it also
meets the restriction of data consistency.

6. EXPERIMENTAL EVALUATION

6.1 Evaluation Methodology

To evaluate the benefits of exploiting the SLAS approach in scaling RR-striped
volumes, we used detailed simulations with several disk traces collected in real
systems. Our simulators for different approaches were implemented in SimPy
[Vignaux and Muller 2005] and used Disksim [Bucy and Ganger 2003] as a
slave module to simulate disk accesses. We did not use the RAID simulator
implemented in disksim because it does not support online data redistribution.
Each simulator is logically divided into three different parts: a workload gener-
ator, an I/O processor, and a data mover. According to trace files, the workload
generator initiates an I/O request at the appropriate time so that a particular
workload is induced on the striped volume. The I/O processor, according to the
mapping metadata, forwards incoming foreground I/O requests to the corre-
sponding disks simulated by disksim. The data mover reorganizes the data on
the striped volume.

The simulated disk specification is that of the 7200RPM IBM Ultrastar 18ES
which is included in the disksim 3.0 code. Our experiments used the following
three real-system traces:

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 19

(i) Cello-92 was collected at Hewlett-Packard Laboratories in 1992 [Ruemm-
ler and Wilkes 1993]. It captured all low-level disk I/O performed on Cello,
which is a timesharing system used by a group of researchers at HP Labs
to do simulations, compilation, editing, and email. The trace includes the
accesses to 8 disks.

(ii) TPC-C contains the tracing of HP’s Client/Server TPC-C application run-
ning at approximately 1150tpmC on a 100 Warehouse database. The KI
trace points enqueue and queuedone were traced for approximately 4.2
M I/Os. The system was doing approximately 700 I/Os per second during
steady state.

(iii) Cello-96 is similar to Cello-92. The only difference is that this trace was
collected in 1996 and contains more modern workloads. It includes the
accesses to 20 disks from multiple users and miscellaneous applications.

In all experiments, the sliding window sizes for the NPP and SLAS ap-
proaches were set to 1,024. To provide a fair comparison, we also divided the
whole mapping table into 1,024 regions and used 1,024 reader-writer locks in
the traditional approach. Each simulation experiment lasted from the begin-
ning to the end of data redistribution. We focused on comparing redistribution
durations and maximum response times of foreground I/Os when different ap-
proaches were used. To achieve this goal, we collected the elapsed time when
every one twentieth of all the data chunks were moved. In addition, we collected
the response time of all foreground I/Os, divided the response time sequence
evenly into 2,000 sections, and got a local maximum response time (MRT) from
each section. The 2,000 local MRTs make up a local MRT series.

6.2 Advantages of the SLAS Approach

The purpose of our first experiment is to quantitatively characterize the advan-
tages of the SLAS approach through a comparison among the traditional, NPP,
and SLAS approaches. We simulated the data redistribution caused by a disk-
scaling request A1

8 where each disk had a capacity of 3.2GB. Each approach was
performed with the 32KB chunk size under a Cello-92 workload. The reserved
1.28MB memory for chunk read/write aggregation could hold 40 chunks.

The redistribution using each approach moved 8 × 100000 − 8 = 799,992
chunks. Figure 7 shows a plot of the elapsed times versus the numbers of moved
chunks using the three approaches. On each sampling point, the elapsed times
using the NPP and SLAS approaches are nearly identical, and they are obvi-
ously shorter than that using the traditional approach. When all the data is
redistributed, the durations using the traditional, NPP, and SLAS approaches
are 12,953.49, 10,471.39 and 10,471.57 seconds, respectively. That is, SLAS has
a 19.16% shorter redistribution duration than the traditional approach.

One of the main factors in reducing the redistribution duration using NPP
and SLAS is the decline of the metadata update times. We collected the meta-
data update times using the three different approaches which are shown in
Figure 8. The update times using NPP and SLAS were reduced to 0.1045%
and 0.1067% of that using the traditional approach. We believe that the extent

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

20 • G. Zhang et al.

Fig. 7. Elapsed times using the traditional, NPP, and SLAS approaches.

Fig. 8. Metadata update times using the traditional, NPP, and SLAS approaches.

of this decline has tight relations with the size of the sliding window (note:
0.1045% ≈ 1/

1024 and 0.1067% ≈ 1/
1024).

Another main factor in reducing the redistribution duration using NPP and
SLAS is the decline of the data chunk reads/writes for data redistribution.
We also collected the chunk reads/writes using the three different approaches
which are shown in Figure 9. The number of chunk reads using the traditional
approach is 4.92 times that using NPP and SLAS, and the number of chunk
writes using the traditional approach is 4.37 times that using NPP and SLAS.
In fact, each aggregate I/O reads 40 ÷ 8 = 5 chunks or writes 40 ÷ 9 ≈ 4.44
chunks on average using the NPP and SLAS approaches.

We compare the three approaches in meeting the redistribution duration
objective and analyze the causes for the similar difference in performance im-
provement for NPP and SLAS compared to the traditional approach. To deter-
mine which one of the three approaches meets the I/O performance objective
best, Figure 10 plots 2,000 local MRTs versus the completion times of the cor-
responding I/Os using the three approaches.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 21

Fig. 9. Read/write numbers for data redistribution using the traditional, NPP, and SLAS
approaches.

Although NPP has a shorter redistribution duration than the traditional
approach, its local MRTs are obviously longer than those of the traditional ap-
proach. The global MRT using NPP even reaches 14.06 seconds. The NPP ap-
proach will result in a large number of I/O failures due to response timeout. Of
course, the local MRTs will be lower with a decrease in the operation granular-
ity. But the decrease in the operation granularity will necessarily enlarge the
redistribution duration. Therefore, NPP is an unsatisfactory solution because
it is a dilemma to choose a satisfactory operation granularity for it.

Unlike NPP, even when the operation granularity is as large as 1,024, SLAS
has small local MRTs which are similar to those using the traditional approach.
Therefore, with both the redistribution duration objective and the I/O perfor-
mance objective better met, the SLAS approach is a better solution to the prob-
lem of scaling RR-striped volumes.

6.3 Benefit of Each Individual Contribution in the SLAS Approach

In Section 6.2, we evaluated the SLAS approach by a comparison with the tra-
ditional and NPP approaches and demonstrated the effects of metadata update
reduction and chunk read/write aggregation. To make it clearer where the ben-
efits of SLAS come from, we also evaluate each individual contribution in the
SLAS approach. Our methodology is to get rid of chunk read/write aggregation
from SLAS, leaving only lazy updates of mapping metadata. In each disk-scaling
operation, data chunks are read from their original location and written to their
new location one-by-one. The setup in the trace-driven simulation is the same
as that in Section 6.2.

Figure 11 shows a plot of 2,000 local MRTs versus the completion time of the
corresponding I/Os. The local MRTs using SLAS without read/write aggregation
are similar to those using the traditional approach (see Figure 10).

Figure 12 shows a plot of the elapsed time versus the number of moved
chunks using the three approaches. On each sampling point, the elapsed times
using SLAS without read/write aggregation are obviously between those us-
ing the traditional and SLAS approaches. Finally, when all the data is re-
distributed, the durations using the traditional, SLAS without aggregation,
and SLAS approaches are 12,953.49, 11,807.86 and 10,471.57 seconds, re-
spectively. That is, SLAS shows an improvement of 19.16% in redistribu-
tion duration; lazy updates of mapping metadata contributes 8.84% of the

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

22 • G. Zhang et al.

Fig. 10. Local Max-Response-Time series using the traditional, NPP, and SLAS approaches.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 23

Fig. 11. Local Max-Response-Time series using SLAS without read/write aggregation.

Fig. 12. Elapsed time using the traditional, SLAS w/o aggregation and SLAS approaches.

improvement, and the other 10.32% improvement is contributed by chunk
read/write aggregation.

6.4 Impact of the Volume Size

We studied the effects of the volume size by varying the volume size. We mea-
sured the performance of the traditional and SLAS approaches to perform disk-
scaling requests A1

4 and A1
2.

As far as A1
4 is concerned, Figure 13 plots the elapsed time versus the number

of data chunks already moved using the two approaches as the data redistri-
bution proceeded, and Figure 14 shows a plot of 2,000 local MRTs versus the

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

24 • G. Zhang et al.

Fig. 13. Elapsed time using the traditional and SLAS approaches for A1
4.

Fig. 14. Local Max-Response-Time series using the traditional and SLAS approaches for A1
4.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 25

Fig. 15. Elapsed times using the traditional and SLAS approaches for A1
2.

completion time of the corresponding I/Os for the two approaches. It can be
seen that the response time of foreground I/Os is similar. SLAS has a 24.29%
shorter redistribution duration than the traditional approach.

The corresponding elapsed time and local max response time series for A1
2

are shown in Figures 15 and 16. With the shorter response times of foreground
I/Os, SLAS has a 36.45% shorter redistribution duration than the traditional
approach.

To compare the performance of SLAS with different volume sizes, Figure 17
shows the improvement in redistribution duration by SLAS compared with the
traditional approach. All three cases add one disk into a striped volume with
the 32KB chunk size under the Cello-92 workload, the only difference among
them is that the original volumes are made up of 2, 4, or 8 disks, respectively.

It can be seen that the improvement in redistribution duration by SLAS
decreases slightly as the original size of the striped volume increases. This
phenomenon can be quite expected: in all our experiments; only one metadata
replica on one disk (i.e., Disk 0) was updated during redistribution. If there
was no access to Disk 0 since the last metadata update, the current metadata
update would have a low cost due to dispensing with a disk seek. When the
traditional approach is used, such a chance will increase as the number of disks
increases. Under the same workload, therefore, the effect of SLAS’s metadata
update reduction decreases with an increase of the volume size.

Although the improvement decreases slightly with an increase in the vol-
ume size, SLAS makes sense for different volume sizes in most cases for three
reasons. First, it can be shown from the previous analysis that when the work-
load becomes heavier, the decrease of the duration improvement will become
slighter. After all, the Cello-92 workload was traced in 1992 and therefore lightly
loading. Second, it should also be noted that more than one metadata replica
is updated to gain high availability of metadata in most cases. This will cause
metadata updates to have a larger share in the cost of data redistribution.
Third, large-scale storage systems do not simply use RR-striped volumes. In

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

26 • G. Zhang et al.

Fig. 16. Local MRT series using the traditional and SLAS approaches for A1
2.

the implementations of file systems for multimedia, for example, striping is
performed over at most a few tens of homogeneous disks [Chou et al. 2000].

6.5 Impact of the Chunk Size

Similarly, we evaluated the effect of changing chunk size on the performance of
SLAS. We measured the performance of the traditional and SLAS approaches to
perform A1

8 with the 16KB and 64KB chunk sizes under the Cello-92 workload.
As for the experiment with the 16KB chunk size, the reserved 1.28MB mem-

ory for chunk read/write aggregation can hold 80 chunks. Figure 18 shows a plot
of the elapsed times versus the numbers of moved chunks using the traditional,
SLAS without aggregation, and SLAS approaches. With the similar response
time of foreground I/Os, which is not shown for space reasons, SLAS has a
38.04% shorter redistribution duration than the traditional approach. 28.91%

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 27

Fig. 17. Effect of varying the volume size.

Fig. 18. Elapsed times with the 16KB chunk size.

of this improvement is contributed by lazy updates of mapping metadata, and
the other 9.13% is contributed by read/write aggregation of data chunks.

As for the experiment with the 64KB chunk size, the reserved 1MB memory
for chunk read/write aggregation can hold 16 chunks. Figure 19 shows a plot of
the elapsed times versus the numbers of moved chunks using the traditional,
SLAS without aggregation, and SLAS approaches. With the similar response
time of foreground I/Os, which is also not shown for space reasons, SLAS has
a 7.79% shorter redistribution duration than the traditional approach. 4.55%
is contributed by lazy updates of mapping metadata, and the other 3.24% is
contributed by read/write aggregation of data chunks.

To compare the performance of SLAS with different chunk sizes, Figure 20
shows the improvement in redistribution duration by SLAS compared with
the traditional approach. All the three cases add one disk into a eight-disk
striped volume under the Cello-92 workload; the only difference among them is
that the chunk sizes are 16KB, 32KB and 64KB and the reserved memory for

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

28 • G. Zhang et al.

Fig. 19. Elapsed times with the 64KB chunk size.

Fig. 20. Effect of varying the chunk size.

read/write aggregation of data chunks can, therefore, hold a different number
of data chunks.

It can be seen that the improvement by SLAS decreases as the chunk size
increases. We analyze the causes for the decrease as follows. On the one hand,
the traditional approach writes mapping metadata onto the disk once for each
chunk movement. The cost of metadata updates becomes a smaller portion of
the whole redistribution cost as the chunk size increases with the unvaried size
of mapping metadata to be updated (512 bytes in our experiments). Therefore,
the effect of SLAS’s metadata update elimination decreases with an increase of
the chunk size. On the other hand, given a fixed sized reserved memory, each
aggregative I/O reads/writes about 10, 5, and 2 data chunks, respectively, with
the 16KB, 32KB and 64KB chunk sizes. It is also obvious that I/O aggregation
has a smaller effect on the bigger reads/writes.

Although the improvement in redistribution duration by SLAS decreases
with an increase of the chunk size, it is not advisable to overcome the limita-
tions of the traditional approach by increasing the chunk size. The ultimate

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 29

Fig. 21. Elapsed times under the TPC-C workload.

goal of creating an RR-striped volume is not to scale it quickly but to improve
the I/O performance of a storage system. The chunk size must be chosen
according to the workload characteristics. A too large chunk size will make
multiple disks unable to serve I/O requests with an adequate parallelism. In
addition, the track size in our experiments is as small as 123.5–195KB. As
the track size of disks grows over time (200–350KB for 2002 disks) [Schindler
et al. 2004], read/write aggregation in SLAS will make sense for increasingly
larger chunk sizes. The reason is that aggregate reads/writes do not require
disk seeks except when the disk head moves from the final block of one track
to the first block of another track.

6.6 Impact of the Foreground Workload

Another factor that might affect the benefits of SLAS is the workload under
which data redistribution is performed. We also measured the performance of
the traditional and SLAS approaches to perform A1

2 with the 32KB chunk size
under the TPC-C and Cello-96 workloads.

As far as the TPC-C workload is concerned, Figure 21 plots the elapsed
times versus the number of data chunks that are already moved using the two
approaches as the data redistribution proceeded, and Figure 22 shows a plot of
2,000 local MRTs versus the completion times of the corresponding I/Os using
the two approaches. Under the TPC-C workload, with the similar response time
of foreground I/Os, SLAS shows an improvement of 33.60% in redistribution
duration.

The corresponding elapsed time and local max response time series under
the Cello-96 workload are shown in Figure 23 and Figure 24. With the similar
response time of foreground I/Os, SLAS has a 40.79% shorter redistribution
duration than the traditional approach.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

30 • G. Zhang et al.

Fig. 22. Local MRT series under the TPC-C workload.

The bar graph in Figure 25 compares the improvements in redistribution du-
ration by SLAS under the Cello-92, TPC-C and Cello-96 workloads. We can see
that the improvement varies when the workload is different, but the variation
is slight.

7. DISCUSSION ABOUT THE EXTENDABILITY OF SLAS

Widely-used RR-striped volumes can be categorized into three groups: RAID-0,
RAID-3, and RAID-5. We mainly discuss the issue of adding disks into a RAID-0
volume. This section will analyze such issues as removing disks from a RAID-0
volume and adding/removing disks into/from a RAID-4 or RAID-5 volume.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 31

Fig. 23. Elapsed times under the Cello-96 workload.

7.1 Removal of Disks from RAID-0 Volumes

Similar to adding disks into a RAID-0 volume, disk removal also necessitates
the data on the volume to be reorganized. The only difference is that disk re-
moval performs data redistribution from the end to the beginning of the volume
while disk addition does it in the opposite order. Therefore, if we can prove that
there is also a reordering window during redistribution for disk removal, our
SLAS approach can be used in disk removal with a little revision. In fact, such
a reordering window does exist.

Symmetric to disk addition, we give some basic definitions for disk removal:
Rm

n , S(n, m, x), and ROW(n, m, x). Here, Rm
n denotes a request to remove m

disks from an n-disk volume. To clarify the existence of a reordering window,
we take S(3, 1, 8) as an example. As shown in Figure 26, when Chunks 6, 7, and
8 are moved in arbitrary order, no valid chunk will be overwritten. If Chunk 5
is also taken into account, when Chunk 5 is moved before Chunk 7, the former
will overwrite the latter. So we get ROW(3,1,8) = 3.

Generally speaking, we can calculate the size of a reordering window for disk
removal as Lemma 2.

LEMMA 2. ROW(n, m, x) =
{

m × �x / n�, if x % n < n − m.

m × �x / n� + x%n − (n − m) + 1, else. .

PROOF. As for S(n, m, x), let OD(x) = d , OE(x) = e, where both d and e start
at 0. We have e = �x/n�, d = x%n. We shall break it into two cases: (1) disk d
will not be removed from the volume; (2) disk d will be removed.

(1) If disk d is not removed, then d = x% n < n − m.
In this case, another logical chunk x ′ will be placed on Chunk e of Disk d in

the new configuration. Thus ND(x ′) = d , NE(x ′) = e, then x ′ = e× (n−m)+d =
�x/n�×(n−m)+(x%n). Further, we have δ = x−x ′ = x−(�x/n�×(n−m)+x%n) =
m × �x/n�. In the following, we prove that δ is just the size of the reordering
window of Rm

n at Chunk x by contradiction.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

32 • G. Zhang et al.

Fig. 24. Local MRT series under the Cello-96 workload.

First, we assume that, ∃ xa ∃ xb{xa, xb ∈ (x − δ, x] and xa < xb} when other.}.
data chunks xa, xb are moved in some order, one will be overwritten by the
other.}. It is evident that no valid chunk will be overwritten if Chunk xb is
moved first. So, Chunk xa is moved first and overwrites Chunk xb. Therefore,
xa = �xb/n� × (n − m) + (xb%n). Since xb ≤ x, we have xa ≤ x ′ = x − δ. This
result contradicts our initial assumption that xa ∈ (x − δ, x]. Therefore, for
∀xa∀xb{xa, xb ∈ (x − δ, x] and xa < xb}, data chunks xa and xb cannot be over-
written by each other no matter in what order they are moved.

Additionally, for arbitrary nonnegative integer δ′{δ′ > δ}, we have x, x ′ ∈
(x − δ′, x]. If Chunk x ′ is moved before Chunk x, it will overwrite
Chunk x.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 33

Fig. 25. Effect of varying the workload.

Fig. 26. Illustration of S(3,1,8). (Disk 2 is removed.)

According to the definition of a reordering window, δ is the size of the reorder-
ing window of Rm

n at Chunk x. That is, if x% n < n-m, then ROW(n, m, x) = δ =
m × �x / n�.

(2) If disk d is removed, then d = x% n ≥ n − m.
In this case, no logical chunk will be placed on Chunk e of Disk d in the

new configuration. Let us assume that x1= MAX
y

{y | y is a nonnegative integer;
y < x, and Disk OD(y) is not removed.}, we have OD(x1) = n − m−1, OE(x1) = e.
Another logical chunk x ′ will be placed on Chunk e of Disk n − m−1 in the
new configuration. Thus ND(x′) = n − m−1, NE(x′) = e, and then x ′ = e × (n −
m) + n − m − 1 = �x/n� × (n − m) + n − m − 1. Further, we have δ = x − x ′ =
x − (�x/n� × (n − m) + n − m − 1) = m × ⌊

x / n
⌋ + x%n − (n − m) + 1. In the

following, we prove that δ is just the size of the reordering window of Rm
n at

Chunk x by contradiction.
First, we assume that, ∃ xa ∃ xb{xa, xb ∈ (x − δ, x] and xa < xb}. When other.}.

data chunks xa, xb are moved in some order, one will be overwritten by the
other.}. It is evident that no valid chunk will be overwritten if Chunk xb is
moved first. So, Chunk xa is moved first and overwrites Chunk xb. Therefore,
xa = �xb/n� × (n − m) + (xb%n) and Disk OD(xb) is not removed.

Note that Disk OD(xb) is not removed, since xb ≤ x, we have xb ≤ x1. Further,
we have xa ≤ x ′ = x − δ. This result contradicts our initial assumption that
xa ∈ (x − δ, x]. Therefore, for ∀xa∀xb{xa, xb ∈ (x − δ, x] and xa < xb}, data chunks
xa and xb cannot be overwritten by each other no matter in what order they are
moved.

Additionally, for arbitrary nonnegative integer δ′{δ′ > δ}, we have x1, x ′ ∈
(x − δ′, x]. If Chunk x ′ is moved before Chunk x1, it will overwrite Chunk x1.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

34 • G. Zhang et al.

Fig. 27. Illustration of S(3,1,8) for RAID-4. (Disk 2 is newly added, ‘p’ stands for a parity chunk.)

According to the definition of a reordering window, δ is the size of the re-
ordering window of Rm

n at Chunk x. That is, if x% n ≥ n − m, ROW(n, m, x) =
δ = m × �x/n� + x%n − (n − m) + 1.

Summarize these two cases, Lemma 2 is proved.

Now that a reordering window exists during redistribution for disk removal,
our SLAS approach can be used in disk removal from a RAID-0 volume with a
little revision. Thus, our SLAS approach works for both disk addition and disk
removal to/from a RAID-0 volume effectively.

7.2 Scaling RAID-4 and RAID-5 Volumes

RAID-0 boosts performance best but does not provide data security. Therefore,
some other RR-striped volumes like RAID-4 and RAID-5 are also used widely.
Here, we discuss whether our SLAS approach can be extended for scaling a
RAID-4 or RAID-5 volume. To achieve this goal, we need to make clear whether
there is also a reordering window during redistribution for scaling a RAID-4 or
RAID-5 volume.

A RAID-4 volume is identical to a RAID-0 volume except that a parity disk
is added to hold all parity chunks for the whole volume. Figure 27 illustrates
the disk-scaling state S(3, 1, 8) when one disk is added into a RAID-4 volume.
We can see that ROW(3, 1, 8) = 4. Similar to scaling a RAID-0 volume, there
is also a reordering window during redistribution for scaling a RAID-4 volume.
We can calculate the size of a reordering window for adding/removing disks
to/from a RAID-4 volume, respectively, by Lemma 3 and Lemma 4, which are
easily gained imitating the proofs of Lemma 1 and Lemma 2.

LEMMA 3. ROW(n, m, x) = m × �x / (n − 1)�.

LEMMA 4. ROW(n, m, x) ={
m × �x/(n − 1)�, i f x%(n − 1) < (n - 1) − m.

m × �x/(n − 1)� + x%(n − 1) − (n − 1 − m) + 1, else. .

Every write to a RAID-4 volume has to write new parity chunks to the parity
disk, so the parity disk is heavily loaded while data disks are relatively idle. This
will bring a negative impact on the performance of RAID-4. As an improvement
on RAID-4, RAID-5 distributes parity chunks across all the disks in a round-
robin fashion.

To demonstrate how to calculate the size of a sliding window for disk
addition in a RAID-5 volume, we take A1

3 as an example. Figure 28

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 35

Fig. 28. Data organization for a RAID-5 volume before adding a disk. (‘p’ stands for a parity
chunk.)

Fig. 29. Data organization for a RAID-5 volume after adding a disk. (Disk 3 is newly added, ‘p’
stands for a parity chunk.)

Fig. 30. Sequence representation of data organizations before and after adding a disk. (‘p’ stands
for a parity chunk.)

and Figure 29 illustrate data organizations in the original and new
configurations.

We can represent the two data organizations with two sequences as shown
in Figure 30, where sequence 0 represents the organization in the original
configuration, and sequence 1 represents the one in the new configuration. In
fact, to redistribute data is to overwrite the data of sequence 0 with the data of
sequence 1. We shall break it into four cases: (1) a data chunk overwrites a data
chunk; (2) a data chunk overwrites a parity chunk; (3) a parity chunk overwrites
a data chunk; (4) a parity chunk overwrites a parity chunk. According to the
concept of a reordering window, to calculate ROW(n, m, x), we need to take cases
(1) and (3) into account.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

36 • G. Zhang et al.

Before disk addition, for arbitrary chunk x, its possition p(x) in sequence 0
can be calculated as follows:

We let q = �x/(n × (n − 1))� and r = x% (n × (n − 1)).

(a) When r% (n − 1) + 1 ≥ n − �r/(n − 1)�,

p(x) = q × (n2 + n × m) + �r/(n − 1)� × (n + m) + r%(n − 1) + 1;

(b) When r% (n − 1) + 1 < n − �r/(n − 1)�,

p(x) = q × (n2 + n × m) + �r/(n − 1)� × (n + m) + r%(n − 1).

If we know the position p(x) of chunk x in sequence 0, we can also calculate
the chunk x′ in the same position in sequence 1 as follows:

We let q′ = �p(x) / (n + m)� and r′ = p(x)% (n + m).

(c) When r′ + 1 > n + m − q′ % (n + m),

x′ = q′ × (n + m − 1) + r′ − 1;

(d) When r′ + 1 ≤ n + m − q′ % (n + m),

x′ = q′ × (n + m − 1) + r′.

Finally, x ′ − x is just the size of the sliding window. That is, ROW(n, m, x) =
x ′ − x.

As far as disk addition in a RAID-5 volume is concerned, we do not present
the strict and detailed proof for space reasons. But we can see that there does
exist a reordering window during adding disks to a RAID-5 volume, and we have
the ability to calculate its size. The only difference between disk removal and
disk addition is that disk removal performs data redistribution in the opposite
order. Therefore we get a conclusion that there is also a reordering window
during removing disks from a RAID-5 volume.

Now that a reordering window exists during redistribution for disk addition/
removal in a RAID-4 or RAID-5 volume, our SLAS approach can be extended
for scaling a RAID-4 or RAID-5 volume with some revisions.

8. CONCLUSIONS AND FUTURE WORK

The contributions of this article are twofold. First, we present the concept of a
reordering window, which provides a theoretical basis for solving the problem of
scaling RR-striped volumes (including RAID-0, RAID-4, and RAID-5). Second,
taking advantage of the reordering window characteristic, we propose SLAS,
an efficient approach to scaling RR-striped volumes.

During data redistribution caused by scaling RR-striped volumes, there is
always a reordering window where data consistency can be maintained while
changing the order of data movements. Some conclusions drawn from the con-
cept of a reordering window are very important to solving the problem of scaling
striped volumes.

The SLAS approach uses a new mapping-management solution based on a
sliding window to support data redistribution without loss of scalability. More-
over, there are two main ideas in SLAS to improve the redistributing efficiency.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 37

The first idea is to use lazy updates of mapping metadata to decrease the num-
ber of metadata writes required by data redistribution. The second idea is to
change the order of chunk movements to aggregate reads/writes of data chunks.

Compared with the traditional approach, our SLAS approach similarly guar-
antees data consistency and does not enlarge the impact on the response time
of foreground I/Os. However, SLAS has the ability to shorten the redistribution
duration markedly. Our results from detailed simulations using real-system
traces indicate some conclusions as follows.

(1) SLAS can shorten the redistribution duration by up to 40.79% with similar
maximum response time of foreground I/Os.

(2) Both lazy updates of mapping metadata and chunk read/write aggregation
make a large contribution to the improvement.

(3) The improvement in redistribution duration by SLAS decreases slightly as
the number of the original disks in the striped volume increases.

(4) The improvement by SLAS decreases as the chunk size increases.
(5) The improvement varies when workloads are different, but the variation is

quite slight.

Finally, our discussion indicates that SLAS can not only be used in adding
new disks to a RAID-0 volume; it can also be extended to remove existing disks
from a RAID-0 volume and to add/remove disks to/from in a RAID-4 or RAID-5
volume.

One aspect of scaling RR-striped volumes that we have not addressed in this
article is how to ensure that foreground I/Os are not impacted significantly
while data redistribution is in progress. At present, the SLAS approach moves
data online in a best-effort manner as the traditional approach does, which
could bring an unpredictable performance influence to foreground I/Os in
loaded systems. In the future, we will do research on rate control in scaling
RR-striped volumes.

ACKNOWLEDGMENTS

The authors would like to thank Professor Greg Ganger at Carnegie Mellon
University who gave us some good advices in using the disksim simulator. We
appreciate Professor Nianmin Yao, our former colleague at Tsinghua Univer-
sity who helped us in Simpy programming. We are also grateful to Professor
Wenguang Chen at Tsinghua University for the constructive discussion and
thank HP storage system labs for providing us real traces. Special thanks to
the anonymous reviewers for their invaluable feedback.

REFERENCES

ALEMANY, J. AND THATHACHAR, J. S. 1997. Random striping news on demand servers. Tech. rep.
TR-97-02-02, University of Washington.

BERSON, S., GHANDEHARIZADEH, S., MUNTZ, R., AND JU, X. 1994. Staggered striping in multimedia
information systems. SIGMOD. 79–90.

BUCY, J. S. AND GANGER, G. R. 2003. The DiskSim Simulation Environment Version 3.0 Reference
Manual. Tech. rep. CMU-CS-03-102, Carnegie Mellon University.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

38 • G. Zhang et al.

CHEN, P. AND PATTERSON, D. 1990. Maximizing performance in a striped disk array. In Proceedings
of ACM SIGARCH Conference on Computer Architecture. Seattle, WA, 322–331.

CHOU, C. F., GOLUBCHIK, L., AND LUI, J. C. S. 2000. Striping doesn’t scale: How to achieve scal-
ability for continuous media servers with replication. In Proceedings of IEEE ICDCS. 64–
71.

DASGUPTA, K., GHOSAL, S., JAIN, R., ET AL. 2005. QoSMig: Adaptive rate-controlled migration of
bulk data in storage systems. In Proceedings of the International Conference on Data Engineering
(ICDE’05). 816–827.

GHANDEHARIZADEH, S. AND KIM, D. 1996. Online reorganization of data in scalable continuous
media servers. In Proceedings of the 7th International Conference on Database and Expert Systems
Applications. Zurich, Switzerland. Lecture Notes in Computer Science, DG. Feitelson and L.
Rudolph, Eds. 751–768.

GOEL, A., SHAHABI, C., YAO, S. Y., AND ZIMMERMANN, R. 2002. SCADDAR: An efficient randomized
technique to reorganize continuous media blocks. In Proceedings of the 18th International Con-
ference on Data Engineering (ICDE’02). Chaudhuri S., Carey M., and Garcia-Molina H., Eds. San
Jose, IEEE CS Press, 473–482.

GONZALEZ, J. L. AND CORTES, T. 2004. Increasing the capacity of RAID5 by online gradual as-
similation. International Workshop on Storage Network Architecture and Parallel I/Os. Antibes
Juan-les-pins, France.

HENNESSY, J. L. AND PATTERSON, D. A. 2003. Computer Architecture: A Quantitative Approach, 3rd
ed. Morgan Kaufmann Publishers, Inc., San Francisco, CA.

KIM, C. S., KIM, G. B., AND SHIN, B. J. 2001. Volume management in SAN environment. In Pro-
ceedings of the 8th International Conference on Parallel and Distributed Systems (ICPADS ’01).
500–505.

LEWIS, A. J. 2005. LVM HOWTO. http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-
formats/pdf/ LVM-HOWTO.pdf.

LIM, S. H., HWANG, J. Y., KIM, K. H., ET AL. 2003. Resource volume management for shared file
system in SAN environment. In Proceedings of the 16th International Conference on Parallel and
Distributed Computing Systems (PDCS).

LIVNY, M., KHOSHAFIAN, S., AND BORAL, H. 1987. Multi-disk management algorithms. ACM SIG-
METRICS Conference on Measurement and Modeling of Computer Systems. 69–77.

LU, C., ALVAREZ, G. A., AND WILKES, J. 2002. Aqueduct: Online data migration with performance
guarantees. In Proceedings of the 1st USENIX Conference on File and Storage Technologies
(FAST’02). 219–230.

RUEMMLER, C. AND WILKES, J. 1993. A trace-driven analysis of disk working set sizes. Tech. rep.
HPL–OSR–93–23, Hewlett-Packard Laboratories, Palo Alto, CA.

SCHINDLER, J., SCHLOSSER, S. W., ET AL. 2004. Atropos: A disk array volume manager for orches-
trated use of disks. In Proceedings of the 3rd USENIX Conference on File and Storage Technologies
(FAST’04). San Francisco, CA.

SEO, B. AND ZIMMERMANN, R. 2005. Efficient disk replacement and data migration algorithms for
large disk subsystems. ACM Trans. Storage 1, 3, 316–345.

STERGAARD, J. 2001. RAID Reconfiguration Tool. http://unthought.net/raidreconf/
TEIGLAND, D. AND MAUELSHAGEN, H. 2001. Volume managers in linux. In Proceedings of the 2001

USENIX Annual Technical Conference. 185–198.
VERMA, A., SHARMA, U., RUBAS, J., ET AL. 2005. An architecture for lifecycle management in very

large file systems. In Proceeding of the 22nd IEEE-13th NASA Goddard Conference on Mass
Storage Systems and Technology (MSST’05).

VIGNAUX, T. AND MULLER, K. 2005. SimPy Manual. http://simpy.sourceforge.net/SimPyDocs/
Manual.html. Nov. 2005.

VOGELS, W. 1999. File system usage in Windows NT 4.0. In Proceedings of the 17th ACM Sympo-
sium on Operating Systems Principles. 93–109.

WILKES, J., GOLDING, R., STAELIN, C., AND SULLIVAN, T. 1996. The HP AutoRAID hierarchical storage
system. ACM Trans. Comput. Syst. 14, 1, 108–136.

XIAO, D., SHU, J.W., XUE, W., AND ZHENG, W. M. 2005. TH-VSS: An asymmetric storage virtu-
alization system for the SAN environment. In Proceedings of the International Conference on
Computational Science. 399–406.

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

SLAS: An Efficient Approach to Scaling Round-Robin Striped Volumes • 39

YU, X., GUM, B., CHEN, Y., ET AL. 2000. Trading capacity for performance in a disk array. In
Proceedings of the 4th Symposium on Operating Systems Design and Implementation.

ZHANG, G. Y., SHU, J. W., XUE, W., AND ZHENG, W. M. 2005. MagicStore: A new out-of-band virtu-
alization system in SAN environments. In Proceedings of the IFIP International Conference on
Network and Parallel Computing (NPC’05). Nov. Lecture Notes in Computer Science, vol. 3779,
379–386.

Received May 2006; revised January 2007; accepted January 2007

ACM Transactions on Storage, Vol. 3, No. 1, Article 3, Publication date: March 2007.

