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HiNFS: A Persistent Memory File System with Both
Buffering and Direct-Access

YOUMIN CHEN, JIWU SHU, JIAXIN OU, and YOUYOU LU, Tsinghua University

Persistent memory provides data persistence at main memory with emerging non-volatile main memories

(NVMMs). Recent persistent memory file systems aggressively use direct access, which directly copy data

between user buffer and the storage layer, to avoid the double-copy overheads through the OS page cache.

However, we observe they all suffer from slow writes due to NVMMs’ asymmetric read-write performance

and much slower performance than DRAM.

In this article, we propose HiNFS, a high-performance file system for non-volatile main memory, to combine

both buffering and direct access for fine-grained file system operations. HiNFS uses an NVMM-aware Write

Buffer to buffer the lazy-persistent file writes in DRAM, while performing direct access to NVMM for eager-

persistent file writes. It directly reads file data from both DRAM and NVMM, by ensuring read consistency

with a combination of the DRAM Block Index and Cacheline Bitmap to track the latest data between DRAM and

NVMM. HiNFS also employs a Buffer Benefit Model to identify the eager-persistent file writes before issuing

I/Os. Evaluations show that HiNFS significantly improves throughput by up to 184% and reduces execution

time by up to 64% comparing with state-of-the-art persistent memory file systems PMFS and EXT4-DAX.
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1 INTRODUCTION

Emerging fast, byte-addressable non-volatile memories (NVMs), such as phase change memory

(PCM) (Doller 2009; Lee et al. 2010; Burr et al. 2010), resistive RAM (ReRAM), and memristor (Yang

and Williams 2013), are promised to be employed to build fast, cheap, and persistent memory
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systems. Attaching NVMs directly to processors produces non-volatile main memories (NVMMs),

exposing the performance, flexibility, and persistence of these memories to applications (Zhang

and Swanson 2015; Zhang et al. 2015). Moreover, these devices are expected to become a common

component of the memory/storage hierarchy for laptops, PCs, and servers in the near future (Con-

dit et al. 2009; Qureshi et al. 2009; Lee et al. 2009; Zhou et al. 2009; Chen et al. 2011; Jiang et al.

2012; Jung et al. 2013).

Given the anticipated high-performance characteristics of emerging NVMMs, recent re-

search (Dulloor et al. 2014; Condit et al. 2009; Wu and Reddy 2011; DAX 2014) shows that the

overheads from the generic block layer and copying data between the OS page cache and the

NVMM storage significantly degrade the system performance. To avoid these overheads, state-of-

the-art NVMM-aware file systems, such as BPFS (Condit et al. 2009), PMFS (Dulloor et al. 2014),

EXT4-DAX (DAX 2014; EXT 2014), and so on, bypass the OS page cache and the generic block

layer. Specifically, all of them directly copy data between the user buffer and the NVMM stor-

age without going through the OS page cache, implying that all requests incur prompt access to

NVMM.

Unfortunately, one major drawback of NVMM is the slow writes (Volos et al. 2011; Chen et al.

2011; Huang et al. 2014). The asymmetric read-write performance of NVMM indicates that, while

DRAM and NVMM have similar read performance, the write operations of existing NVMM tech-

nologies, such as PCM and ReRAM, incur longer latency and lower bandwidth compared to

DRAM (Suzuki and Swanson 2015; Zhang and Swanson 2015). Therefore, direct access to NVMM

can lead to suboptimal system performance as it exposes the long write latency of NVMM to the

critical path. Furthermore, our experiments of running existing NVMM-aware file systems on a

simulated NVMM device show that the overhead from the direct write access can dominate the

system performance degradation.

The relatively large write performance gap between DRAM and NVMM indicates that buffering

writes in DRAM is important for improving the NVMM system performance, because (1) writes to

the same block may be coalesced, since many I/O workloads have access locality (Min et al. 2012;

Roselli et al. 2000; Ruemmler and Wilkes 1993; Ou et al. 2014), and (2) writes to files that are later

deleted do not need to be performed. In addition, writes in file systems typically involve a trade-

off between performance and persistence, and applications usually have alternative approaches to

persisting their data (Nightingale et al. 2006; Harter et al. 2011).

However, simply using DRAM as a cache of NVMM is inefficient due to the double-copy over-

heads in the critical path among the user buffer, the DRAM cache, and the NVMM storage (Dulloor

et al. 2014; DAX 2014). On one hand, reading data to a block not present in the DRAM cache causes

the double-copy overhead in the read path, because the operating system needs to first copy the

data from the storage layer to the DRAM cache, and then copy it from the DRAM cache to the

user buffer. On the other hand, synchronous writes or synchronization operations, such as fsync,

also lead to the double-copy overheads in the write path. For instance, if an application issues a

write operation to block A followed by a fsync operation to persist block A, it incurs double data

copies for block A. (The operating system first copies it to the DRAM cache at the write operation,

and then copies it to the storage layer at the fsync operation.) The double-copy overheads can

substantially impact the system performance when the storage device is attached directly to the

memory bus and can be accessed at memory speeds (Dulloor et al. 2014; DAX 2014; Wu and Reddy

2011; Condit et al. 2009).

To address these problems, we propose HiNFS, a high-performance file system for non-volatile

main memory. The goal of HiNFS is to hide the long write latency of NVMM whenever possi-

ble but without incurring extra overheads, such as the double-copy or software stack overheads,

thereby improving the system performance. Specifically, HiNFS buffers the lazy-persistent file
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writes (i.e., write operations that are allowed to be persisted lazily by file systems) in DRAM

temporarily to hide the long write latency of NVMM. To improve the fetch/writeback perfor-

mance of a buffer block, HiNFS manages the DRAM buffer at a fine-grained granularity by lever-

aging the byte-addressable property of NVMM. In addition, HiNFS interacts between the DRAM

buffer and the NVMM storage using a memory interface, rather than going through the generic

block layer, to avoid the high software stack overhead. To eliminate the double-copy overheads

from the critical path, HiNFS performs direct access to NVMM for the eager-persistent file writes

(i.e., write operations that are required to be persisted immediately), and directly reads file data

from both DRAM and NVMM as they have similar read performance. However, writing data to

DRAM and NVMM alternatively imposes a challenge for ensuring read consistency. Meanwhile,

it also requires the file system to identify the eager-persistent writes before issuing the write

operations.

This article makes four contributions:

—We reveal the problem of the direct access overheads by quantifying the copy overheads

of state-of-the-art NVMM-aware file systems on a simulated NVMM device. Based on our

experimental results, we find that the overhead from the direct write access dominates the

system performance degradation in most cases.

—We propose an NVMM-aware Write Buffer policy to hide the long write latency of NVMM by

buffering the lazy-persistent file writes in DRAM temporarily. To eliminate the double-copy

overheads, we use direct access for file reads and eager-persistent file writes.

—We ensure read consistency by using a combination of the DRAM Block Index and Cacheline

Bitmap to track the latest data between DRAM and NVMM. We also design a Buffer Benefit

Model to identify the eager-persistent file writes before issuing the write operations.

—We implement HiNFS as a kernel module in Linux kernel 3.11.0 and evaluate it to demon-

strate the benefits gains from fine-grained combination of buffering and direct access.

The remainder of this article is organized as follows. Section 2 discusses the problem in state-

of-the-art NVMM-aware file systems and analyzes their direct access overheads. We present the

design and implementation of HiNFS in Sections 3 and 4, respectively. We then present the eval-

uation results of HiNFS in Section 5. Finally, we discuss related work in Section 6 and conclude in

Section 7.

2 BACKGROUND AND MOTIVATION

2.1 Problem in NVMM-aware File Systems

State-of-the-art NVMM-aware file systems, like BPFS (Condit et al. 2009), SCMFS (Wu and Reddy

2011), PMFS (Dulloor et al. 2014), and EXT4-DAX (EXT 2014), eliminate the OS page cache, which

access the byte-addressable NVMM storage device directly. As an example, a write() syscall

copies the written data from the user buffer to the NVMM device directly without going through

the OS page cache and the generic block layer.

While this approach avoids the double-copy overheads, direct access to NVMM also exposes its

long write latency to the critical path, leading to suboptimal system performance. In addition, to

ensure data persistence and consistency, file systems either employ a cache bypass write interface1

1Different from the DRAM buffer cache, the CPU cache is hardware controlled, which is cumbersome for the file system

to track the state of the written data. As a result, existing NVMM-aware file systems, such as PMFS, use a cache bypass

interface (e.g., copy_from_user_inatomic_nocache()) to enforce that the written data becomes persistent before the

associated file system metadata does, because they wouldn’t be able to control the writeback from the processor caches to

the NVMM storage without using an expensive clflush operation.
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or use a combination of the clflush and mfence instructions behind write operations to explicitly

flush data from the CPU caches to the NVMM device to enforce ordering (Dulloor et al. 2014; Wu

and Reddy 2011), because existing cache hierarchies that were designed for volatile memory may

reorder writes to improve the performance. For this reason, write latency is usually in the critical

path, which cannot be tolerated by the CPU caches when NVMM is used as a persistent storage

device rather than a volatile memory device (Pelley et al. 2014; Lu et al. 2014, 2015). Although

BPFS’s epoch-based caching architecture offers an elegant solution, it requires complex hardware

modifications, which involve non-trivial changes to cache and memory controllers (Condit et al.

2009). In our work, we would therefore like to design an NVMM system without any hardware

modifications.

In this article, we mainly investigate how to design a high-performance file system for NVMM

by hiding the long write latency of NVMM but without introducing extra overheads. Our work is

based on several assumptions shown as follows.

—First, we assume that NVMM devices are attached directly to the memory bus alongside

DRAM, and the operating system is able to distinguish the NVMM devices from the DRAM

ones (Cooperation 2015).

—Second, we use the clflush/mfence instructions to enforce ordering and persistence, and

assume that the clflush instruction guarantees that the flushing data actually reaches

the persistent point (i.e., NVMM device). While Intel has proposed new instructions

(CLWB/CLFLUSHOPT/PCOMMIT) to improve the cacheline flush performance and the CPU

cache efficiency (Cooperation 2016), these approaches are still unavailable in existing hard-

ware. This article, therefore, does not take them into consideration.

—Finally, HiNFS is mainly optimized for file-based I/O (i.e., read and write system calls) rather

than memory-mapped I/O, as many important applications rely on traditional file I/O inter-

faces to access file data. However, HiNFS still supports direct access for memory-mapped

I/O similar to existing NVMM-aware file systems (e.g., PMFS), which means that it does not

sacrifice the performance of memory-mapped I/O. For the remainder of the article, we refer

to file write simply as write and file read simply as read.

2.2 The Direct Access Overheads of NVMM-aware File Systems

In this section, we will show that the overhead from the direct write access in existing NVMM-

aware file systems can dominate the system performance degradation, and hence it is essential to

reduce such overhead whenever possible.

To quantify the direct access overheads of existing NVMM-aware file systems, we run the

fio (FIO) microbenchmark on PMFS (Dulloor et al. 2014),2 and use the perf profiling utility to ob-

tain a breakdown of the time spent on running the benchmark. We use DRAM to emulate NVMM

by introducing an extra configurable delay to NVMM writes to emulate NVMM’s slower writes

relative to DRAM. More technical details about our experimental setup are given in Section 5.1.

Each test is run for 60s, and the results are shown in Figure 1. In all tests, we set the read/write

ratio to 1:2 by default. In this figure, the time breakdown is organized into three categories: (1) Read

Access refers to the overhead of copying data from the NVMM storage to the user buffer for read

requests; (2) Write Access represents the overhead of copying data from the user buffer to the

NVMM storage for write requests; and (3) Others is the overhead excluding the Read Access and

2We choose PMFS (Dulloor et al. 2014) as a case study of the baseline system, because it along with EXT4-DAX (EXT 2014)

are the only available open-source NVMM-aware file systems at present. We also perform the same tests on EXT4-DAX,

and it shows similar results. While BPFS (Condit et al. 2009) and SCMFS (Wu and Reddy 2011) are not open-source, we

believe our observations also apply to them as they both perform direct access to NVMM.
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Fig. 1. Time breakdown of running the Fio Benchmark on PMFS.

Write Access overheads, which mainly includes overheads from user-kernel mode switch, file ab-

straction, and so on. From this figure, we observe that the direct write access is a major source of

overhead in most cases. We also notice that the proportion of write access time increases as the I/O

size becomes larger. One possible reason is that the data blocks are written back to non-volatile

main memory in the granularity of cache lines, and larger blocks require higher overhead in book-

keeping (i.e., the metadata to index which parts need to be persisted) and cache flush. While the

overhead of read operations are less likely to be affected by the I/O sizes, because they don’t in-

volve cache flushing and metadata update. When the I/O size is no less than 4KB, the direct write

access overhead can account for over 80% of the total overheads, which substantially degrades

the system performance. When the I/O size becomes smaller, such as 64B, the direct write access

overhead becomes relatively less significant than others, but still accounts for at least 16% of the

total overheads.

While file systems can optimize the performance of the write operations that are not required

to be persisted immediately, others, such as write operations enforced by synchronization oper-

ations, must enter the stable storage instantly to guarantee the data persistence required by user

applications. Thus, their NVMM access overheads cannot be avoided. To see if there is enough

room for optimizing those lazy-persistent writes, we perform another experiment that collects the

fsync bytes across various workloads. Figure 2 shows the results of the percentage of fsync bytes

with different workloads. More detailed descriptions of these workloads are given in Section 5. In

this figure, we observe that different workloads have different persistence requirements. For ex-

ample, TPC-C has over 90% fsync writes whereas LASR has no fsync writes. To conclude, a large

number of applications have a significant portion of lazy-persistent writes, which are consistent

with prior research results (Harter et al. 2011).

The above observations have interesting implications for the design of the file system for fast

NVMM. On one hand, the revealed direct write access overhead strongly suggests that we need

to reduce prompt writes to NVMM to improve the performance. On the other hand, we believe

that an elegant design should be flexible. In other words, it should not improve the performance

in some particular cases, while sacrificing the performance in other cases. For example, simply

using DRAM as a cache of NVMM may improve the performance for workloads having many

lazy-persistent writes, but this simple design will significantly degrade the system performance

for workloads containing many eager-persistent writes due to the double-copy overheads.
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Fig. 2. Percentage of Fsync Bytes with different workloads. The value atop each bar shows total bytes written.

3 HINFS DESIGN

In this section, we first describe the high-level system architecture comparison of existing file

systems and HiNFS. We then present an NVMM-aware Write Buffer policy to reduce prompt writes

to NVMM by buffering the lazy-persistent writes in DRAM temporarily. Finally, we discuss how

to eliminate the double-copy overheads resulted from conventional buffer management.

3.1 System Architecture

Figure 3(a) shows the system architecture of traditional block-based file systems on a RAMDISK-

like NVMM block device. This is the most straightforward way to use NVMM as a persistent

storage in which legacy file systems, such as ext2/ext4, can directly work on NVMM without

extra modifications by emulating it as a block device. In a block-based file system, each file I/O

usually requires two data copies, one between the block device and the OS page cache through the

generic block layer, and one between the OS page cache and the user buffer through the memory

interface. However, it has been recently reported that the overheads from the double-copy and the

generic block layer can significantly impact the NVMM system performance (Condit et al. 2009;

Dulloor et al. 2014; Wu and Reddy 2011; DAX 2014). As a result, state-of-the-art NVMM-aware

file systems, such as BPFS (Condit et al. 2009), PMFS (Dulloor et al. 2014), and so on, access the

NVMM device directly as shown in Figure 3(b). In these NVMM-aware file systems, each file I/O

requires only a single data copy, directly between the NVMM and the user buffer (a.k.a., direct

access). Unfortunately, the major drawback of this approach is that it does not consider NVMM’s

relatively longer write latency compared to DRAM. Specifically, each write operation leads to

prompt access to NVMM, which always expose the long write latency of NVMM to the critical

path, leading to suboptimal system performance. Therefore, to get the best system performance,

we propose another system architecture for the NVMM storage as shown in Figure 3(c). The design

objectives of HiNFS are twofold:

(1) Buffering to hide the long write latency of NVMM behind the critical path. HiNFS uses

an NVMM-aware Write Buffer policy to buffer the lazy-persistent writes in DRAM tem-

porarily. HiNFS design, including fine-grained buffer management and using a memory

interface to interact between DRAM and NVMM, is optimized for the NVMM storage

(Section 3.3).
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Fig. 3. Architecture comparison of different file systems for NVMM.

(2) Direct Access to eliminate the double-copy overheads. Although buffering can help hide

the long write latency of NVMM, it may introduce the double-copy overheads. For this

reason, HiNFS optimizes read and eager-persistent write by avoiding unnecessary data

copies. Read or eager-persistent write, in HiNFS, requires only a single data copy between

DRAM/NVMM and the user buffer (Section 3.4).

Moreover, the combination of Buffering and Direct Access is also beneficial to extending the

lifetime of NVMM devices. This is because multiple asynchronous updates to the same physical

block are more likely to be merged to a single write, hence, the write traffic to the NVMM devices

can be dramatically reduced.

3.2 Buffer Benefit Model

In a file system with both buffering and direct access, one challenge is how to determine whether

a I/O request is eager-persistent or lazy-persistent during I/O issues. The eager-persistent writes

include both synchronous writes that are explicitly tagged with sync (e.g., writes in a file opened

with O_SYNC flag) and asynchronous writes followed by sync operations (e.g., fsync, fdatasync).

ACM Transactions on Storage, Vol. 14, No. 1, Article 4. Publication date: March 2018.
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To predict whether a write request is eager-persistent HiNFS designs a Buffer Benefit Model for

prediction when a request arrives.

The Prediction Model. The Buffer Benefit Model performs prediction using history informa-

tion of the recent synchronization information. It is designed based on our observations from

various workloads that synchronization operations remain nearly the same within a short time

period in most cases. For example, one file marked as Eager-Persistent is either opened with

O_SYNC flag, or is always updated with a following sync operations in later time, and we call this

behavior as good locality.

With this policy, the model associates each data block with one bit, namely Eager-Persistent,

to indicate the synchronization state. In HiNFS, each 4KB data block needs one extra bit to indi-

cate its current state, implying that this overhead is small and can be acceptable. Moreover, we

store the block states in DRAM rather than in slow NVMM. If a data block is decided to be in

the Eager-Persistent state, then all the subsequent asynchronous writes to this data block are

considered as the eager-persistent writes. Otherwise, they are considered as the lazy-persistent

writes, which are issued to the DRAM buffer first.

In the Buffer Benefit Model, the DRAM write latency is denoted as Ldr am , and the NVMM write

latency is expressed as Lnvmm . Ncw indicates the total number of cacheline writes between the

previous and current synchronization operation of a data block, while Ncf is the total number

of cacheline flushes from DRAM to NVMM of a data block, which are performed by the current

synchronization process rather than the background writeback threads. Then, buffering is more

efficient than non-buffering for this block only if it satisfies the following inequality:

Ncw ∗ Ldr am + Ncf ∗ Lnvmm < Ncw ∗ Lnvmm . (1)

This inequality means that the total execution time if writing to DRAM first is less than that if

writing to NVMM directly for a data block. If a block satisfies this inequality, then it will be set to

the Lazy-Persistent state. Otherwise, it would be set to the Eager-Persistent state.

When the file system is mounted, all the existing or newly created data blocks are initialized

to the Lazy-Persistent state before the arrival of their first synchronization operations. After

that, we dynamically decide the data block states at each file operation. At each synchronization

operation,3 we calculate to see if the related data blocks, which are required to be persisted to

NVMM in the current synchronization operation, satisfy the above inequality. If a data block can-

not satisfy this inequality, then the state of this block is set to Eager-Persistent, which means

that any subsequent asynchronous writes to this data block go directly to NVMM. Otherwise,

we set the block state to Lazy-Persistent. Moreover, the state of a data block is switched from

Eager-Persistent to Lazy-Persistent if it has not met a synchronization operation for a cer-

tain period of time, which is set to 5s by default and can be adjusted. It is worth noting that we

achieve this by deciding the data block state at the time of writing this block using the last syn-

chronization time of its dependent file,4 rather than scanning all the data blocks at each fixed time,

as it is lightweight to record the file synchronization time.

To get the value of Ncf of a buffer block, we maintain a ghost buffer to measure the total number

of cacheline flushes from DRAM to NVMM of a buffer block during each synchronization oper-

ation. Ghost buffer assumes that every write goes to the DRAM buffer first but maintains only

the buffer index metadata rather than the actual data. This leads to low memory overhead, which

requires less than 1% of the total DRAM buffer space.

3In the current implementation, HiNFS only regards the fsync system call as the synchronization operation. While the

msync operation is also a synchronization point in HiNFS, it is related to mmap I/O rather than file I/O.
4As the synchronization operation, such as fsync, is based on the file granularity, HiNFS adds a new field to the file

metadata structure to record the last synchronization time of its related data blocks.
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Fig. 4. The accuracy rate of the Buffer Benefit Model using the most recent synchronization information for

different workloads.

Prediction Accuracy. To see whether using the most recent synchronization information of a

block to predict the state of its next synchronization operation is accurate, we measure the accu-

racy rate of our model using various workloads. The results are shown in Figure 4. We select five

workloads that contain the synchronization operations and the descriptions of these workloads

are shown in Section 5. Moreover, we measure it during the synchronization operations for each

block. That is, if both the current and previous synchronization operation for a block satisfy or vio-

late Inequality Equation (1), it is accurate; Otherwise, it is inaccurate. In this figure, we can see that

the accuracy ratio is close to 90% even in the worst case (i.e., Usr0). These results demonstrate that

the synchronization information of a block remains nearly the same within a short time period,

and thus our Buffer Benefit Model is effective in most cases.

Note that the Buffer Benefit Model is only a heuristic prediction model, but it is enough to provide

satisfiable prediction accuracy. Many unimportant factors are not taken into consideration, such

as the overhead of CPU cache misses when data in DRAM buffer is written back to NVMM. This

is because (1) we assume that the NVMM access latency is much higher than that of DRAM, thus

the read back latency is insignificant compared to other parts, and (2) the asynchronous I/Os that

followed by synchronization operations are more likely to be reside in the CPU cache, so the cache

miss ratio is relatively low. According to the prediction accuracy in Figure 4, we conclude that our

Buffer Benefit Model works both concisely and effectively.

3.3 NVMM-aware Write Buffer Policy

To buffer the lazy-persistent writes, we propose an NVMM-aware Write Buffer policy to store them

in DRAM temporarily, to hide the relatively long write latency of NVMM behind the critical path.

Figure 5 shows an overview of HiNFS. When a write request is serviced, the Eager-Persistent Write

Checker module would decide whether the current write operation is a lazy-persistent or eager-

persistent write, based on the Buffer Benefit Model discussed in the previous section. If it is a

lazy-persistent write, then HiNFS would like to issue this write request to the fast DRAM buffer,

thereby eliminating the overhead of writing the NVMM. In the buffering, HiNFS only buffers file

data blocks. Metadata blocks are not buffered currently to ease consistency implementations.

3.3.1 DRAM Block Index. HiNFS builds per-file B-tree in DRAM to index the DRAM blocks.

The per-file indexing structure is feasible, because eager-persistent writes have good locality ac-

cording to discussions in Section 3.2. Figure 6 shows the details of the DRAM Block Index in HiNFS.

In the DRAM Block Index, the key of the index is the logic file offset, which is aligned to the DRAM
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Fig. 5. HiNFS overview.

Fig. 6. DRAM Block Index.

block size, and the value field is the Index Node shown in Figure 6. The Index Node is a 40byte

value, which contains a 16byte LRW Link pointers, a 8byte Cacheline Bitmap (for the Cacheline

Level Fetch/Writeback (CLFW) in the following section), a 8byte DRAM block number, and its cor-

responding 8byte NVMM block number. The NVMM block number in the value field enables the

background writeback threads to flush the DRAM block to the corresponding NVMM block ad-

dress. The root pointer of the B-tree is stored in the kernel’s VFS inode structure. Moreover, all the

index nodes are allocated from DRAM and linked to a global LRW (Least Recently Written) list,

the head of which is located in the kernel’s VFS super block structure.

Note that the DRAM Block Index structure is located in DRAM entirely rather than in NVMM,

to enable fast index operations and effectively track the status of each file data block. However,

the memory space consumed by the DRAM Block Index is insignificant, because (1) Each Index

ACM Transactions on Storage, Vol. 14, No. 1, Article 4. Publication date: March 2018.
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Node in the leaf nodes has the size of 40bytes, which is less than 1% of a 4KB data block; (2) Only

Lazy-Persistent files have their DRAM Block Index kept in DRAM, thus further reduces the

memory consumption.

We use the B-tree structure for the DRAM Block Index, because we would like to reuse the B-

tree data structure from the PMFS (Dulloor et al. 2014) implementation as HiNFS is implemented

based on it. While other index structures, such as hash table, can also be employed by HiNFS,

the difference between B-tree and them may be only several bytes of DRAM access for each 4KB

block access, the overhead of which is far less than that of the data copy operations. Therefore, we

believe that the data structure selection for the DRAM Block Index is not a critical issue, and thus

there will be little performance difference between the index implementations of B-tree and other

structures for HiNFS.

3.3.2 Fine-Grained Buffer Block Fetch and Writeback. Conventional buffer management in the

OS page cache maintains the DRAM buffer space at the block granularity (i.e., 4KB). This coarse-

grained buffer management is inefficient for HiNFS. On one hand, an unaligned lazy-persistent

write to a block not present in the DRAM buffer causes the operating system to synchronously

fetch the block from the NVMM storage into the DRAM buffer before the write is applied. Such

fetch-before-write requirement impacts the system performance, because the fetching process can

block the writing process (Campello et al. 2015). On the other hand, a whole buffer block would

be flushed to storage even though only a few bytes of data are written to this block, causing a

significant impact on the foreground application performance for two main reasons. First, when

the DRAM buffer has no free blocks, the foreground lazy-persistent writes may stall until the

background writeback threads reclaim enough free DRAM buffer space. Second, the background

writeback threads can also compete the limited NVMM write bandwidth with the foreground

eager-persistent writes. As a result, it is essential to improve the fetch/writeback performance

of a buffer block to achieve higher system performance.

To address the above issue, we propose Cacheline Level Fetch/Writeback (CLFW), which tracks

the writes to the DRAM blocks on the basis of processor’s cache lines. In CLFW, data is fetched

from or flushed to NVMM in a fine-grained way rather than the block level. To do so, we use

a Cacheline Bitmap (as shown in Figure 5) to track the state of each cacheline within a DRAM

block. In this scheme, when a dirty DRAM block is selected for eviction, the writeback thread will

check the Cacheline Bitmap of this block. Only if the P bit is 1 (i.e., the Pth cacheline is dirty),

the cacheline should be written back to the NVMM. For an unaligned lazy-persistent write to a

block not present in the DRAM buffer, we only need to fetch the corresponding cachelines instead

of the whole block into the DRAM buffer. For example, for the baseline system with 4KB DRAM

block size and 64B cacheline size, if a user writes to the 0∼112B region of a block, traditional

system needs to fetch the whole block (0∼4096B) into the DRAM buffer, while CLFW only needs

to fetch the second cacheline of this block (64∼128B) into the DRAM buffer. In summary, CLFW

significantly reduces the wasteful data-fetch and data-flush for workloads containing many small

block-unaligned lazy-persistent writes, thereby improving the performance in these cases.

3.4 Elimination of the Double-Copy Overheads

As fast NVMM is attached directly to the processor’s memory bus and can be accessed at memory

speeds, extra data copies would be inefficient for NVMM systems, which can substantially degrade

their performance (Dulloor et al. 2014; Wu and Reddy 2011; Condit et al. 2009; DAX 2014). As a

result, it is essential to avoid such overheads whenever possible. To this end, we find two key

reasons to cause the double-copy overheads resulted from conventional buffer management. This

section describes them and discusses how we overcome them separately. It is worth noting that
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all the double-copy overheads, we pay attention to in this article, mainly refer to those that occur

in the critical I/O path, as they are the key factors of affecting the system performance.

3.4.1 Direct Read. In conventional buffer management, reading data to a block not present

in the DRAM buffer causes the operating system to fetch the block into the DRAM buffer first

and then copy the data from the DRAM buffer to the user buffer, thereby leading to the double-

copy overhead in the read path. To address this issue, HiNFS directly read data from both DRAM

and NVMM to the user buffer, as they have similar read performance. Such direct copy pol-

icy is more efficient than conventional two-step copy policy as it eliminates unnecessary data

copies.

The read consistency needs to be ensured for read operations to find the latest data blocks,

when writing data to either DRAM or NVMM. To find the up-to-date data for a read operation,

HiNFS first checks the DRAM Block Index to see if the corresponding block is in DRAM. If not,

then it uses the file system block index to get the corresponding NVMM block address, and then

performs this read operation to NVMM directly. Otherwise, it further checks the Cacheline Bitmap

of the corresponding DRAM block to see which parts of data are in the DRAM block and which

parts of data are in the NVMM block, and then copies the corresponding parts of data to the user

buffer from both the DRAM and NVMM blocks on the basis of the Cacheline Bitmap. To minimize

the number of memory copy (i.e., memcpy) operations, a single memcpy operation is used to copy

the data in the consecutive cachelines, the corresponding bits of which in the Cacheline Bitmap

have the same value, to the user buffer.

3.4.2 Direct Eager-Persistent Write. To further avoid the double-copy overhead in the write

path, we issue the eager-persistent writes to NVMM directly rather than copying them to DRAM

first. This is because writing them to DRAM not only causes unnecessary copy overheads, but

also pollutes the buffer space, which may evict other valuable buffer blocks. In HiNFS, the eager-

persistent writes are defined as the following two cases:

(1) Synchronous writes. This happens when the file system is mounted with the sync option

or the written file is opened with the O_SYNC flag.

(2) Asynchronous writes followed by explicit synchronization operations. We divide this scenario

into two cases. If enough asynchronous writes can be coalesced before the arrival of the

next explicit synchronization operation, in which case buffering is more efficient than

direct access, then we still regard them as the lazy-persistent writes. Otherwise, they are

considered as the eager-persistent writes.

As HiNFS needs to choose either direct or buffer write mode for a write request, it is important

to identify the eager-persistent writes before issuing the write operations. It is straightforward to

identify case (1), because we can check the file system state by reading the file system super block

and the file opening state by reading the file inode. To identify case (2), HiNFS uses the Buffer

Benefit Model to predict the eager-persistent writes in advance.

The write consistency needs to be ensured between DRAM and NVMM. In other words, up-

dates to a same block in either DRAM or NVMM need to be ordered to NVMM. To ensure the

consistency, when a write operation is identified as the eager-persistent write, if it is in case (1),

then we further check if the written block is present in the DRAM buffer before directly accessing

the NVMM. If so, then we still write the data to the corresponding DRAM block, and explicitly

evict it from the DRAM buffer before returning to users. Fortunately, this case rarely happens,

unless the file opening or file system state is altered frequently. If it is in case (2), then we can

always perform direct access to NVMM as long as the written block is in the Eager-Persistent
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state, because the latest data of this block is guaranteed to be persisted to NVMM, since the last

synchronization operation of this block.

4 IMPLEMENTATION

HiNFS is implemented based on the PMFS (Dulloor et al. 2014) file system in Linux kernel 3.11.0.

HiNFS shares the file system data structures of PMFS but adds a new DRAM buffer layer and

modifies the file I/O execution paths. In this section, we mainly discuss some details related to the

implementation.

4.1 Buffering and Persistence

In HiNFS, allocation and replacement for the DRAM buffer are block-oriented. By default, the

DRAM block size is 4KB, which equals to the default block size of the NVMM storage. Currently, we

use the LRW (Least Recently Written) policy, a variant of the LRU (Least Recently Used) algorithm,

for the replacement of the DRAM buffer blocks due to the simplicity and efficiency of the LRU

policy over decades (Coffman and Denning 1973; Denning 1968). Specifically, we maintain the

LRW list to keep track of the recency of write references of blocks in the DRAM buffer. That

is, all the DRAM blocks are sorted by their last written time. When a DRAM block is written, it

would be moved to the MRW (Most Recently Written) position. It is worth noting that this does

not limit HiNFS of using other sophisticated buffer replacement policies, such as Least Frequently

Used (LFU) (Willick et al. 1993), Adaptive Replacement Cache (ARC) (Megiddo and Modha 2003),

2Q (Johnson and Shasha 1994), and so on. Different buffer replacement policies have different

buffer write hit ratios, which decide how many writes can be coalesced before a buffer block is

written back to the NVMM. However, these policies also increase the complexity of the buffer

design, and the adding software overhead is non-trivial for the NVMM system. For this reason,

we believe that the LRW-based policy is a good candidate to help us improve the performance, as

a large majority of file system workloads show strong locality and high I/O skewness (Min et al.

2012; Roselli et al. 2000; Ruemmler and Wilkes 1993; Ou et al. 2014). We leave the research of using

different buffer replacement policies in the future.

To ensure data persistence, HiNFS creates multiple independent kernel threads at mount time to

flush the dirty DRAM blocks to the NVMM periodically in background. The flushed DRAM blocks

can be released to secure free DRAM blocks for further buffering. There are two different cases of

waking up the background writeback threads:

(1) The first case occurs when there are less than Lowf free DRAM blocks, where Lowf is a

pre-defined threshold. In HiNFS, Lowf is set to 5% of the total DRAM blocks by default

and is configurable.

(2) The second case is that the background thread wakes up every 5s and periodically writes

the updated data from the DRAM buffer to the NVMM storage.

When a writeback thread is woken up, it first selects the victim DRAM blocks from the LRW

position of the LRW list. These victim DRAM blocks are then written back to the corresponding

NVMM block addresses via a memory interface (e.g., memcpy()), rather than going through the

generic block layer. After that, these DRAM blocks can be reclaimed for future write operations.

The writeback thread reclaims several DRAM blocks at a time until the number of free DRAM

blocks surpasses the Hiдhf threshold, which is set to 20% of the total DRAM blocks by default

and can be adjusted. Then, the background writeback thread continues to scan the rest LRW list

to write back any dirty DRAM blocks that were updated more than 30s ago. In addition, HiNFS

flushes all the DRAM blocks to the NVMM when unmounting the file system.
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4.2 System Consistency

To maintain file system consistency, traditional journaling file systems provide multiple levels of

consistency using different journaling modes (e.g., writeback, ordered data, or journal data mode).

However, the current implementation of HiNFS only provides ordered data mode, which means

that it only guarantees the data updates become persistent before the related metadata updates. To

achieve this, HiNFS reuses the PMFS’s journaling mechanism, which only journals the file system

metadata at the cacheline granularity (Dulloor et al. 2014). Note that HiNFS does not buffer any

file system metadata (e.g., inode or directory entry).

Different from the journaling mechanism in PMFS, HiNFS needs to keep the persistence or-

dering of the lazy-persistent writes. To do this, each lazy-persistent write operation will create a

new transaction. The file system data blocks in the lazy-persistent write operation are buffered

to DRAM first without being journaled to NVMM. These data blocks in DRAM are tracked using

a transaction handler. In contrast, the file system metadata and its undo log entries are written

to NVMM directly using the PMFS’s logging scheme. To guarantee the ordered mode journaling

invariant, HiNFS does not write the commit log entry to the NVMM log space until the related

DRAM data blocks are persisted to NVMM. Additionally, HiNFS ensures ordering and persistence

using the clflush and mfence instructions. Each writeback operation of a data block is followed

by the clflush/mfence instructions so that the subsequent commit log entry will not be persisted

to NVMM before this data block.

To be able to identify the partially written log entries during recovery, HiNFS includes a valid

flag in each cacheline size log entry and leverages the architectural guarantee in the processor

caching hierarchy that writes to the same cacheline are never reordered, to indicate the integrity

of a log entry, the approach of which is similar to that of PMFS (Dulloor et al. 2014). To achieve

this, the valid flag is written last when writing a log entry so that it will not become persistent

before the data of this log entry.

4.3 Direct Memory-mapped I/O (mmap) Support

One of the key features of state-of-the-art NVMM-aware file systems (e.g., PMFS) is that they

can support direct memory-mapped I/O, thus removing unnecessary data copies. HiNFS also sup-

ports this feature. When mmap a file, HiNFS first flushes all the dirty DRAM blocks of this file to

NVMM and then sets the states of all its related data blocks to Eager-Persistent, which remain

unchanged until this file is munmapped. Then, it directly maps the file data into the application’s

virtual address space so that users can access NVMM directly. However, the mmap write opera-

tions are not guaranteed to be persistent until the arrival of the next msync operation, as they are

performed to the CPU caches first before being persisted to the NVMM storage.

5 EVALUATION

In this section, we evaluate HiNFS to address the following questions:

(1) How does HiNFS perform against existing file systems?

(2) What are the benefits of eliminating the double-copy overheads?

(3) How is the scalability of HiNFS compared to other file systems?

(4) How is HiNFS sensitive to the variation of the I/O size of the workload, the DRAM buffer

size, and the NVMM write latency?

We use the Filebench microbenchmark (Fil) to address questions (1), (2), (3), and (4). We use

a variety of data-intensive traces and macrobenchmarks to further analyze questions (1) and (2).

Table 1 provides a description of all the workloads we evaluate.
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Table 1. Workloads and Descriptions

Type Workload Description
Fileserver Emulates a simple file server, which consists of creates, deletes,

appends, reads, and writes.
Webserver Emulates a web server, which performs file reads and log

appends.
Micro Webproxy Emulates a simple web proxy server with a mix of

create-write-close, open-read-close, and delete operations, as

well as log appends.
Varmail Emulates a mail server comprised of create-append-sync,

read-append-sync, read, and delete operations.

Macro

Postmark

(Katcher 1997)

Measures the performance of a file system used for e-mail and

web-based services.
TPC-C Emulates the activity of a wholesale supplier where a population

of users execute transactions against a database, we execute

DBT2 workload (DBT) on PostgreSQL 8.4.10 database system

with three warehouses.
Kernel-Grep Searching for an absent pattern under the Linux 3.11.0 kernel

source directory.
Kernel-Make Running make inside the Linux 3.11.0 kernel source tree.

Traces

Usr0 System call trace collected from research desktop by FIU (Use).
Usr1 System call trace collected from research desktop by FIU (Use) at

different time from Usr0.
LASR (LAS) System call trace collected from computers used for software

development by CS researchers.
Facebook MobiBench (LABORATORY 2013) facebook system call trace.

5.1 Experimental Setup

NVMM Emulator. As real NVMM devices are not available for us yet, we develop a simple perfor-

mance emulator based on the NVMM emulator used in the Mnemosyne (Volos et al. 2011) project

to evaluate HiNFS’s performance. Similar to prior projects (Volos et al. 2011; Huang et al. 2014;

Volos et al. 2014), our NVMM emulator introduces an extra latency for each NVMM store operation

to emulate the slower writes of NVMM relative to DRAM, while introducing no extra latency on the

NVMM load operations. We have two considerations in assuming that NVMM and DRAM have the

same read latency. First, we focus on the asymmetry of the read and write operations of NVMMs

in HiNFS, and our evaluations focus on showing the benefits of the write performance rather than

the read performance of HiNFS compared to state-of-the-art NVMM-aware file systems. Second,

emulating the NVMM read latency is complicated due to CPU features such as speculative execu-

tion, memory parallelism, prefetching, and so on, which is hard to make it accurate (Dulloor et al.

2014).

NVMM Latency Emulation: Our emulator emulates NVMM using DRAM. To account for

NVMM’s slower writes relative to DRAM, we introduce an extra configurable delay when writ-

ing to NVMM. We create delays using a software spin loop that uses the x86 RDTSCP instruction

to read the processor timestamp counter and spins until the counter reaches the intended delay.

Moreover, we add these delays after executing the clflush instruction. By default, we set the NVMM

write latency to 200ns (Volos et al. 2011).
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Table 2. Server Configurations for Quartz Measurement

CPU Intel Xeon E5-2680 v3, 2.5GHz, x2

CPU cores 48

DRAM 384GB

Operating system Ubuntu 12.04, linux 4.4.16, linux 3.11.0

NVMM Bandwidth Emulation: NVMM has significantly lower write bandwidth than

DRAM (Zhang and Swanson 2015; Suzuki and Swanson 2015). Assume that BNV MM indicates

NVMM’s write bandwidth and LNV MM is NVMM’s write latency. Then, we emulate the NVMM

write bandwidth by limiting the maximum number of the concurrent NVMM writing threads (de-

noted as Nw ), where Nw equals to (BNV MM/(1/LN V MM )). An NVMM writing thread would be

queued if the number of the current NVMM writing threads reaches Nw , and the waiting queue

will be woken up when one of the current NVMM writing threads completes. By default, the

maximum sustained write bandwidth of NVMM is set to 1GB/s, about 1/8 of the available DRAM

bandwidth on the unmodified system (Dulloor et al. 2014).

NVMMBD Emulator. To compare HiNFS against traditional block-based file systems, we con-

struct another emulator, NVMMBD, to emulate the NVMM-based block device. We modify Linux’s

RAM disk module (brd device driver) and use the above NVMM performance model to emulate

the NVMM latency and bandwidth.

Quartz Emulator. In latency emulation, both NVMM Emulator and NVMMBD Emulator works

with cache line granularity, and thereby introduce extra latency with larger I/O size. So we also de-

ploy Quartz (Volos et al. 2015) to run these benchmarks as comparison. Quartz is a NVM emulator

that is able to emulate a wide range of NVM latencies and bandwidth characteristics, and can also

be used to emulate the application execution on heterogeneous systems with both fast, regular

volatile DRAM and slower persistent memory. Quartz achieves this by calculating the hardware

performance monitoring counters (PMC) and add extra latencies with external signal interrupt.

Quartz partitions the application execution time into continuous epoches, and dynamically injects

software created delays at boundaries of each epoch. Quartz can also support multi-thread appli-

cations by capturing inter-thread events and adjusting the length of each epoch to keep accuracy.

HiNFS is designed to run on systems with both fast DRAM and persistent memory, so we choose

to deploy HiNFS on NUMA-enabled server, by reserving both local memory and remote mem-

ory with memmap command when the system is powered on. Then, HiNFS is initialized to use local

memory as buffer space and remote memory as data storage. When executing applications, Quartz

can automatically differentiate the local memory and remote memory and only add extra latency

to any access to remote memory.

We evaluate the performance of HiNFS against five existing file systems listed in Table 3. NOVA,

PMFS, and EXT4+DAX are the three available open-source NVMM-aware file systems that access

NVMM directly. EXT2/EXT4+NVMMBD are traditional block-based file systems, which are built

on the NVMMBD block device emulator. Both of them are mounted with default settings. All the

experiments are conducted on a x86 server with NVMM and NVMMBD emulators. The configura-

tions of the server are listed in Table 4. For all the experiments, each data-point is calculated using

the average of at least five executions. Besides, we measure the performance of these file systems

with Quartz for comparison and the configurations of the server are listed in Table 2. Quartz emu-

lator is only used to run filebench, as Quartz will disable some system calls and many benchmarks

will not work on top of it.
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Table 3. Existing File Systems for Comparison

NOVA (Xu and Swanson 2016) a log-structured file system with direct

access to NVMM

PMFS (Dulloor et al. 2014) a NVMM-aware file system with direct

access to NVMM

EXT4+DAX (EXT 2014) DAX is a kernel patch that supports

EXT4 for bypassing the OS page cache

EXT2+NVMMBD a traditional file system without journaling

EXT4+NVMMBD a traditional journaling file system

Table 4. Server Configurations

CPU Intel Xeon E5-2620, 2.1GHz

CPU cores 12

Processor cache 384KB 8-way L1, 1.5MB 8-way L2,

15MB 20-way L3

DRAM 16GB

NVMM Emulated with slowdown, the write latency

is 200ns, the write bandwidth is 1GB/s

Operating system RHEL 6.3, kernel version 3.11.0

5.2 Microbenchmarks

In this section, we run four types of workloads from the Filebench benchmark. Each workload is

run for 60s using 5GB pre-allocated files after clearing the contents of the OS page cache. Un-

less otherwise specified, all the experiments are run with multiple threads and the mean I/O

size is set to 1MB by default.5 Moreover, HiNFS is mounted with 2GB DRAM buffer size, while

EXT2/EXT4+NVMMBD are run with the available memory size being set to 8GB (5GB for storing

the dataset on the NVMMBD and 3GB for the system memory). We use the number of operations

per second, which is reported by the Filebench benchmark, as the performance metric.

We first evaluate the overall performance. Figure 7 shows the throughput normalized to that of

PMFS. As shown in the figure, HiNFS achieves (one of) the best performance among the five file

systems for all the evaluated workloads.

5.2.1 Overall Performance.

Fileserver. Comparing HiNFS with NOVA, PMFS, and EXT4+DAX, HiNFS gains performance

improvement by up to 127%, this is because almost all the writes in the Fileserver workload are

lazy-persistent, and HiNFS asynchronously persists them to NVMM, thereby hiding the long write

latency of NVMM behind the critical path. EXT2 and EXT4 significantly underperform PMFS,

NOVA and EXT4+DAX in this workload, as the benefits of the DRAM buffer are offset by the

overheads from the double-copy and the generic block layer.

Webproxy. This workload has strong access locality, and EXT2+NVMMBD and

EXT4+NVMMBD use the OS page cache to buffer the writes, we can see that only in this

case can they outperform PMFS, NOVA, and EXT4+DAX.

5We choose 1MB as the mean I/O size for two reasons. First, this is the default configuration of the Filebench benchmark.

Second, we adopt this configuration from the Aerie article (Volos et al. 2014). Sensitivity to different I/O sizes is also

evaluated in Section 5.2.4 and Figure 10.

ACM Transactions on Storage, Vol. 14, No. 1, Article 4. Publication date: March 2018.



4:18 Y. Chen et al.

Fig. 7. Overall Performance.

Webserver. Webserver is a read-intensive workload, EXT2 and EXT4 with NVMMBD show

3× lower performance than PMFS due to the unnecessary read copies between the DRAM buffer

and the NVMM storage. Comparatively, we can see that HiNFS, NOVA and PMFS achieve almost

the same performance for the Webserver workload, demonstrating the benefits of eliminating the

double-copy overheads.

Varmail. For the Varmail workload, we find that it contains a large part of synchronization

operations. Moreover, all the writes in this workload are append operations, which cannot be co-

alesced in the DRAM buffer before the arrival of a synchronization operation. Therefore, we can

see that HiNFS performs at par with PMFS and NOVA due to that HiNFS bypasses the buffer

for these eager-persistent writes. The eager-persistent writes also cause the double-copy over-

heads, which account for the bad performance of EXT2 and EXT4. However, EXT4+DAX shows

much lower performance than PMFS and NOVA in this case. This is because the Varmail workload

contains many metadata operations, and EXT4+DAX still follows the cache-oriented methods for

them, while PMFS follows direct access for both data and metadata. Different from PMFS, NOVA

optimize metadata operations by placing index tree in DRAM and directly accessing metadata in

NVMM, as a consequence, NOVA has the best performance amoung the six file systems in Varmail

workload.

NOVA has slightly higher throughput than PMFS but still underperform HiNFS in most cases,

because NOVA access NVMM directly like PMFS and EXT4+DAX, the result in our experiments

shows closer throughput between NOVA and PMFS compared to the data in NOVA article, as we

set the I/O size to 1MB and worker threads are varied between 1 to 10, however, in NOVA’s exper-

iments, write size is set to 16KB, and worker threads are set to 50, which lead to the performance

variation.

5.2.2 System Scalability. We also evaluate the system scalability of HiNFS and other file sys-

tems. Figure 8 shows the throughput for the four filebench workloads as we vary the number

of threads in a single client process. Surprisingly, HiNFS achieves the best scalability for all the

evaluated workloads.

Fileserver. For the Fileserver workload, the performance of PMFS, NOVA and EXT4+DAX are

gradually limited by the NVMM write bandwidth when going from 1 to 10 threads, while the

performance of EXT2/EXT4+NVMMBD is constrained by the overheads from the double-copy and
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Fig. 8. Throughput (operations per second) for 1–10 threads (NVMM emulator).

the generic block layer. Therefore, HiNFS scales better than the other five file systems as it buffers

and coalesces the writes before writing to NVMM. However, we find that HiNFS’s throughput

drops when the thread count goes from 2 to 8, this is because the buffer write hit ratio decreases as

the number of threads increases. Fortunately, the performance becomes stable beyond 8 threads,

and HiNFS still achieves nearly 1.5× higher performance than PMFS when going to 10 threads.

Webproxy. In fact, the performance of HiNFS basically depends on the write locality of the

workloads. With better write locality, such as Webproxy, we can see that HiNFS always scales

well and its performance never decreases as the thread count increases.

Webserver. For read-intensive workloads and workloads containing many eager-persistent

writes, such as the Webserver workloads, HiNFS achieves almost the same scalability with NOVA

and PMFS, both of which are much better than EXT2/EXT4+NVMMBD.

Varmail. HiNFS shows almost the same performance as NOVA and PMFS as they both access

file data and metadata in NVMM directly, and in Varmail workloads, NOVA can achieve the best

performance among the six file systems with 6 threads, as NOVA has many optimizations on

metadata processing. But the throughput drops when the number of worker threads increased to

8 and 10, for our system is equipped with only one CPU (6 physical cores), and cannot fully exploit

the scalability of NOVA.
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Fig. 9. Throughput (operations per second) for 1–10 threads (Quartz emulator).

5.2.3 System Scalability Measured by Quartz. Moreover, we use Quartz to evaluate the system

scalability of these file systems for comparison (as shown in Figure 9). HiNFS can outperform

other file systems in general, which shows the same trend as in Figure 8, and can be explained by

above analysis. However, the throughput between NOVA, PMFS and EXT4+DAX shows different

behavior.

Fileserver. In this workload, NOVA has relatively higher throughput than PMFS and

EXT4+DAX, which is close to that of HiNFS, and this is different from the data in Figure 8

(NOVA has the same throughput as that of PMFS and EXT4+DAX). However, the experiment re-

sult with Quartz shows more similar trend as in NOVA article, where NOVA outperform PMFS and

EXT4+DAX with Fileserver workload, and this indicating that Quartz emulator may work more

accurately.

Webserver and Webproxy. For these two workloads, NOVA, PMFS, and EXT4+DAX exhibit

extremely different performance behavior, as these two workloads are both read-dominated and

Quartz cannot inject accurate latency in each epoch. Quartz can only support symmetrical read-

write latency model and inject latency by calculating PMC; however, these counters cannot be

separated to represent read operations and write operations, respectively. In our experiment as-

sumption, persistent memory provides asymmetrical read-write performance and read lateny is
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Fig. 10. Throughput (operations per second) and NVMM write size with different I/O sizes for fileserver

workload.

close to that of DRAM. So under Quartz emulation, file systems (like PMFS, EXT4+DAX, and

NOVA) that running read-dominated workloads will be interrupted more frequently by Quartz

and show inaccurate throughput.

Varmail. NOVA can outperform HiNFS in Varmail workload, and when threads increase, the

gap between NOVA and other file systems become larger, this is because Varmail contains a large

part of synchronization operations and the buffer cache in HiNFS has little effects, so HiNFS has

no advantages. While evaluating with Quartz, there are 48 CPU cores available, and NOVA is

designed with consideration of NUMA architecture. NOVA also add optimization on metadata

processing, which account for the high performance of NOVA when running Varmail, for Varmail

contains many metadata operations. Besides, Quartz can only emulate symmetrical read-write

latency model and this can also lead to the deviation in this experiment. As a result, experiment

result here shows different characteristics from that on NVMM emulator.

5.2.4 Sensitivity Analysis. As the I/O size of the workload, the DRAM buffer size, and the

NVMM write latency can affect the system performance, we measure their impacts on HiNFS’s

performance in this section.

Sensitivity to the I/O Size. The I/O size of the workload can affect the performance. Fig-

ure 10(a) presents the throughput performance with different I/O sizes for the Fileserver work-

load. For brevity, we omit the other three workloads. Webserver is a read-intensive workload while

Varmail includes a large portion of eager-persistent writes, both of which cannot benefit from the

DRAM buffer, thus HiNFS always yields performance similar to PMFS with different I/O sizes.

We omit the Webproxy workload, because it shows similar results with the Fileserver workload.

To investigate the benefits of the CLFW scheme, we compare the performance and NVMM write

sizes (i.e., total bytes that are written to NVMM) of HiNFS and HiNFS-NCLFW. HiNFS-NCLFW is

a version of HiNFS that does not implement the CLFW scheme.

From Figure 10(a), we observe that HiNFS and HiNFS-NCLFW show a great difference in

throughput when the I/O size is less than the DRAM block size (i.e., 4KB), and HiNFS shows up

to nearly 30% performance improvement over HiNFS-NCLFW. From Figure 10(b), we can see that

HiNFS shows a remarkable drop in NVMM write size compared to HiNFS-NCLFW when the I/O

size is less than the DRAM block size. The reason is that the background NVMM write traffic can

also impact the system performance, because when the DRAM buffer is full, the normal writing
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Fig. 11. Throughput (operations per second) as a function of the DRAM buffer size.

threads may need to wait for the background writeback threads to clean out free buffer blocks.

HiNFS significantly reduces the NVMM write traffic when the I/O size is unaligned to the DRAM

block size, thereby improving the system performance. In contrast, the performance gap between

them is bridged when the I/O size is larger than and aligned to the DRAM block size.

We also make another observation from Figure 10(a) that the performance gap between HiNFS

and PMFS grows as the I/O size increases. For example, HiNFS outperforms PMFS by 58% when

the I/O size is 4KB, while improves the performance by 136% over PMFS when the I/O size is 16 KB.

This is mainly due to that the copy overheads gradually become relatively more significant than

other parts as the I/O size increases. When the I/O size is small (e.g., 64B), the overheads from other

parts, such as system call, user-kernel mode switch, and so on, become dominant, thus hiding the

benefits of reducing the copy overheads.

Sensitivity to the DRAM Buffer Size. The DRAM buffer size also has a strong impact on

HiNFS’s performance. Figure 11 shows the throughput performance as we vary the buffer size from

0.1 (10%) to 1.0 (100%) relative to the workload size. In Figure 11, we observe that the performance of

HiNFS exhibits great improvement as the buffer size increases for the Fileserver workload, because

more write operations will hit in the buffer when the buffer size increases. However, HiNFS’s

throughput remains nearly unchanged for the Webproxy workload when the buffer size ratio goes

from 0.1 to 1.0 due to that the Webproxy workload has strong locality. Moreover, we find that the

Webproxy workload exhibits many short-lived files, which would be deleted before the written

data is flushed to NVMM. Therefore, the Webproxy workload is insensitive to the buffer size, and

this is the only case where EXT2/EXT4+NVMMBD and HiNFS show nearly the same performance.

For the Fileserver workload, EXT2/EXT4+NVMMBD have much lower performance than PMFS

even when the buffer size ratio is 1.0, this is due to that the read copy overhead degrades the

overall performance. Before running the benchmark, we clear the contents of the OS page cache,

so the read operations should first fetch the data from the NVMM storage into the DRAM buffer

through the generic block layer. The overheads from the double-copy and the generic block layer

significantly degrade their performance.

Sensitivity to the NVMM Write Latency. Another aspect that can affect the system perfor-

mance is the NVMM write latency. Figure 12 shows the throughput performance when we vary

the NVMM write latency from 50 to 800ns using a single thread. In this figure, we can observe

that the performance benefits of HiNFS become more obvious with longer NVMM write latency.

For instance, HiNFS outperforms PMFS by only 53% when the NVMM write latency is 100ns, but
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Fig. 12. Throughput (operations per second) for different NVMM write latencies.

improves the performance by nearly 6× over PMFS when the NVMM write latency is 800ns for

the Webproxy workload. This is attributed to the fact that the system can get more performance

benefits from the DRAM buffer as the speed gap between DRAM and NVMM increases. Even when

the write latency of NVMM is close to that of DRAM (e.g., 50ns), HiNFS still performs no worse

than PMFS. This is because most of the write operations, in this case, will bypass the DRAM buffer

with the Buffer Benefit Model, thereby eliminating the high double-copy overheads.

5.3 Data-Intensive Traces and Macrobenchmarks

To further investigate the performance of HiNFS and other file systems on real workloads, we

replay a series of traces and run a set of macrobenchmarks on these file systems. In these ex-

periments, the DRAM buffer size is set to 1/10 of the workload size by default. To demonstrate

the benefits of bypassing the buffer for the eager-persistent writes, we also compare HiNFS with

HiNFS-WB. HiNFS-WB refers to a system that simply uses DRAM as a write buffer of NVMM,

which is implemented by closing the function of the Eager-Persistent Write Checker in HiNFS. In

HiNFS-WB, all the writes are buffered in DRAM first before being persisted to NVMM. For the

traces replay, all the traces are system call level I/O traces, and we extract the read, write, unlink,

and fsync operations from the traces, and replay them on the five different file systems. Moreover,

we collect the time spent on these four different types of I/O operations respectively, and report a

breakdown of the execution time in Figure 13. For the macrobenchmarks, we report the normalized

runtime of all the benchmarks and show the results in Figure 14.

Lazy-persistent Workload. In Figure 13, we observe that HiNFS exhibits a reduction in execu-

tion time when comparing with PMFS by 37%, 35%, and 38% for the Usr0, Usr1, and LASR traces,

respectively, and outperform NOVA by 24%, 26%, and 53%. As we can see in the figure, this is

mainly attributed to the reduction of the write time of HiNFS compared to PMFS and NOVA.

Eager-persistent Workload. HiNFS significantly outperforms PMFS except the Facebook

trace, in which they yield similar performance. When we analyze this trace, we find that it contains

a significant amount of sync operations. Moreover, we observe that HiNFS sets most of the related

data blocks to the Eager-Persistent state with the Buffer Benefit Model in this case. Thus, it by-

passes the DRAM buffer for most writes that are directly performed to NVMM, because the sync
operations in this workload appear too frequent to coalesce enough writes in the DRAM buffer.
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Fig. 13. Breakdown of the time spent on replaying traces. Normalized to PMFS’s execution time.

Fig. 14. The elapsed time of running macrobenchmarks. Normalized to PMFS’s execution time.

Worth noticing, NOVA shows lower execution time than PMFS in Usr0 and Usr1 traces, and

exhibits higher execution time in LASR and Facebook traces, but NOVA shows higher execution

time on all four traces compared to HiNFS.

In Figure 14, HiNFS reduces the execution time of running the Postmark and Kernel-Make

benchmarks by 60% and 64%, respectively, when comparing with PMFS, and 60% and 58%, when

comparing with NOVA. We find that the Postmark workload contains many short-lived files, where

many lazy-persistent writes in this workload can benefit from the DRAM buffer for HiNFS, as

writes to these files that are later deleted do not need to be performed to NVMM. In the remaining

two cases (i.e., TPC-C and Kernel-Grep), we can see that HiNFS and NOVA/(PMFS, EXT4+DAX)

show nearly the same performance, all of which exhibit a remarkable drop in execution time when

comparing with EXT2/EXT4+NVMMBD. We find that Kernel-Grep is a read-intensive workload

while TPC-C contains many sync operations. In these cases, HiNFS bypasses the DRAM buffer for
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most I/O operations. This set of experiments also demonstrate the notable benefits of eliminating

the double-copy overheads. In this figure, we also observe that EXT2+NVMMBD is much faster

than EXT4+NVMMBD due to the absence of the journaling-related overheads.

Comparing HiNFS with HiNFS-WB in the two figures, we can see that HiNFS-WB increases the

execution time over HiNFS by 28%, 32%, 14%, and 22% for the Usr0, Usr1, Facebook, and TPC-C

workloads, respectively. As buffering the eager-persistent writes not only increases the system

copy overheads, but also may evict other valuable buffer blocks, which in turn decreases the ra-

tio of write coalescing and increases the buffer writeback traffic, this performance improvement

with HiNFS is due to that it effectively identifies the eager-persistent write operations, and then

performs them to NVMM directly, demonstrating the benefits of the direct eager-persistent write

policy of HiNFS. In other workloads, these two systems yield similar performance due to the ab-

sence of the synchronization operations in these workloads. However, because of the small mean

I/O size (less than 1KB) exhibited in the Facebook workload, we observe that it shows less differ-

ence between HiNFS and HiNFS-WB than that in the Usr0, Usr1, and TPC-C workloads.

6 RELATED WORK

In this section, we discuss and draw connections to classes of previous works that are closely

related.

6.1 Buffering and Caching in Non-Volatile Memories

In storage systems, buffering and caching are commonly used to improve performance by in-

creasing cache hit ratio. However, with the advent of non-volatile memories, including both flash

memory and persistent memory, buffering and caching are used with different optimization goals.

In flash-based storage systems, buffers are introduced mostly because flash memory has slower

writes than reads and much slower erases. Considering the relatively poor write performance of

the flash memory, some cache studies (Jo et al. 2006; Kim and Ahn 2008; Kang et al. 2009) have

investigated how to increase its write performance using a RAM write buffer. Flash-Aware Buffer

(FAB) management (Jo et al. 2006) groups pages in the same flash block and evicts the group that

has the largest number of pages when the buffer is full. However, FAB only considers the group

size while overlooking the recency. To accommodate both the temporal locality and group size, the

Cold and Largest Cluster (CLC) policy (Kang et al. 2009) combines the FAB and LRU algorithms.

Both the FAB and CLC schemes aim to reduce the number of write and erase operations of the

flash memory. In contrast, the Block Padding Least Recently Used (BPLRU) strategy (Kim and Ahn

2008) focuses on optimizing the random write performance of the flash memory by establishing a

desirable write pattern with RAM buffering.

However, these flash-aware write buffer policies are not suitable for the NVMM storage due to

the following reasons: First, they manage the buffer space at the page granularity rather than the

cacheline level, which will generate a large amount of wasteful fetching and flushing data. Sec-

ond, their designs are based on the unique characteristics of the flash storage, such as reducing the

random write or erase operations, most of which are not applicable to the NVMM storage, as the

random and sequential access of existing NVMM technologies are nearly identical and they have

no erase operations. In contrast, the relatively high performance of existing NVMM technologies

indicates that the system designers should carefully deal with the copy overheads among the user

buffer, the file system buffer, and the NVMM storage (DAX 2014; Dulloor et al. 2014). Therefore,

HiNFS’s write buffer policy is highly optimized for the NVMM storage, which focuses on reduc-

ing unnecessary data-fetch and data-flush by leveraging the unique characteristics of NVMM’s

byte addressability, and eliminating the double-copy overheads resulted from conventional buffer

management from the critical path, thereby improving the NVMM system performance.
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With high-speed storage medias, like PCM, have emerged recently, the performance gap be-

tween the main memory and the storage device drops dramatically. To figure out whether the

buffer cache is still effective for them, Lee and Bahn (2014) propose a new buffer cache manage-

ment scheme appropriately designed for the system where the speed gap between cache and stor-

age is narrow. To our knowledge, this is the only work that analyzes the effectiveness of the buffer

cache under the fast NVM storage. Our work differs from them in the following aspects: First, their

work is based on the assumption that NVM sits behind the I/O bus, while our work assumes that

NVM is attached directly to the memory bus. Second, they aim to optimize the OS page cache and

focus on improving the hit ratio of the buffer cache. HiNFS, in contrast, completely replaces the

OS page cache with a new DRAM write buffer using a novel NVMM-aware buffer policy, which is

cacheline-oriented and eliminates the software stack overhead of the block device layer altogether.

Finally, their algorithm copies data to the buffer cache first for all file operations, which will incur

the double-copy overheads. Based on our observation, these overheads are non-trivial for NVM

storage system. HiNFS, therefore, buffers only the lazy-persistent writes, while uses direct access

for reads and eager-persistent writes to eliminate the double-copy overheads from the critical path.

6.2 File Systems on Non-Volatile Memories

Flash File Systems. File systems need to be redesigned for non-volatile memories, which differ

a lot from hard disk drives in many aspects. Direct File System (DFS) (Josephson et al. 2010) is

designed on top of FusionIO’s ioDrive to leverage the Flash Translation Layer (FTL) for data allo-

cation, in order to avoid duplicated data allocations in both file system and FTL layers. Objected

Flash Storage System (OFSS) (Lu et al. 2013) proposes to re-architect the storage stack for flash-

based storage systems. OFSS directly managed raw-flash devices (a.k.a., open-channel SSDs) via

software in an object-based way. With the co-design of both software and hardware, OFSS intro-

duces endurance-aware design to file systems to significantly reduce the write amplification inside

file systems. ReconFS (Lu et al. 2014) then reorganizes the namespace management of file systems

by trading low metadata write cost off recovery performance, which is acceptable due to fast read

performance. F2FS (Lee et al. 2015) takes a less aggressive approach. It keeps the same read/write

interface to flash SSDs, but optimize data layout to flash memory characteristics. ParaFS (Zhang

et al. 2016) further studies the collaborations between software and hardware in open-channel

SSDs, and proposes to simplify the FTL and export the internal physical layout to file systems for

parallelism exploration in the system software. The above-mentioned designs successfully demon-

strate the benefits of removing or reorganizing duplicated layers in storage systems based non-

volatile memories. These design concepts are partially absorbed in persistent memory file system

designs.

Persistent Memory File Systems. For byte-addressable NVMM, a number of file systems have

been proposed. BPFS (Condit et al. 2009) uses shadow paging techniques and 8byte atomic updates

to provide fast and consistent updates. However, BPFS doesn’t support mmap and relies on a hard-

ware approach (epochs) to support data persistence and ordering. While HiNFS is not optimized

for mmap I/O, it still supports direct mmap access. PMFS (Dulloor et al. 2014) is a light-weight file

system that is optimized for persistent memory, it avoids the block layer and eliminates the copy

overheads by enabling applications to access persistent memory directly. Similar to PMFS’s direct

access policy, DAX (DAX 2014; EXT 2014) is a kernel patch that can support traditional ext4 file

system for bypassing the OS page cache and direct access to memory-like storage. However, all

three file systems discussed above do not take into account NVMM’s slow write operations, and

direct access to NVMM for all file operations leads to suboptimal system performance. In contrast,

HiNFS buffers the lazy-persistent writes in the DRAM buffer, which can hide the long NVMM

write latency, thereby improving the performance.

ACM Transactions on Storage, Vol. 14, No. 1, Article 4. Publication date: March 2018.



HiNFS: A Persistent Memory File System with Both Buffering and Direct-Access 4:27

SCMFS (Wu and Reddy 2011) leverages the OS VMM to reduce the complexity of the file sys-

tem. Aerie (Volos et al. 2014) provides flexible file system interfaces to reduce the hierarchical file

system abstraction. Both SCMFS and Aerie focus on reducing the software overheads. However,

based on our analysis, only in cases of metadata-intensive workloads or workloads with a small

mean I/O size can the software overheads become relatively more significant than the storage ac-

cess overheads. HiNFS, in contrast, focuses on reducing the storage access overheads (i.e., copy

overheads) for data-intensive workloads.

NOVA (Xu and Swanson 2016) is a recently proposed log-structured file system for persistent

memory and is optimized with per-core log for currency exploration. NOVA also optimizes the

indexing in DRAM while keeping data persistent in NVMM for better performance. Different from

the index buffering in NOVA, HiNFS performs buffering for file system operations and keeps the

lazy-persistent writes in the DRAM for lazy persistence.

In addition to above-mentioned local file systems, Octopus (Lu et al. 2017) is a distributed per-

sistent memory file system that is built from scratch based on NVMM and RDMA. Octopus further

reduces memory copies in remote I/Os leveraging features of both NVMM and RDMA. It also re-

designs a number of data or metadata mechanisms in distributed file systems. While Octopus is

designed for distributed storage, the combination usage of buffering and direct access in HiNFS

can be integrated into Octopus.

6.3 Persistent Memory Techniques

Hybrid NVMM/DRAM Architecture. To take advantage of both DRAM and NVMM, hybrid

PCM/DRAM memory systems have been discussed (Qureshi et al. 2009; Ramos et al. 2011). Qureshi

et al. (2009) use a DRAM device as a cache of PCM in the hierarchy, while Ramos et al. (2011)

present a page placement policy on memory controller to implement PCM-DRAM hybrid memory

systems. Different from these architectural level designs, our proposed HiNFS uses buffering in the

system level, which can take advantages of file system semantics and is more effective in exploring

the buffering benefits.

Consistency and Reliability in Persistent Memory. Consistency and reliability are also im-

portant design issues in persistent memory. Consistency and reliability techniques are proposed

in the NVMM-based programming models (Coburn et al. 2011; Volos et al. 2011; Hwang et al.

2015; Lu et al. 2015, 2016), using persistent data structures (Venkataraman et al. 2011; Yang et al.

2015), or with hardware support (Moraru et al. 2013; Zhao et al. 2013; Sun et al. 2015; Lu et al. 2014,

2017), and in distributed systems (Zhang et al. 2015). However, it requires significant modifications

or hardware support for legacy applications to use the above-mentioned consistency or reliability

mechanisms. Rather than using these techniques, HiNFS provides consistency in the file system by

ordering the writes and reusing PMFS’s journaling mechanism. We also propose a combined redo

and undo logging for the journaling optimization in FCFS (Ou and Shu 2016), which journaling

technique can also be incorporated into HiNFS for consistency.

7 CONCLUSION

Direct Access, which is now an overwhelming approach in persistent memory file system designs,

is not a panacea. This is the major reason that existing persistent memory file systems suffer

from slow writes. However, buffering can hide long write latency for lazy-persistent writes due

to higher I/O performance in DRAM against NVMM. Our proposed HiNFS combines buffering

and direct access for fine-grained file system operations. It buffers the lazy-persistent writes in

DRAM temporarily to hide the long write latency of NVMM, while eliminating the double-copy

overheads resulted from conventional buffer management by using direct access for reads and
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eager-persistent writes. Extensive evaluations demonstrate that HiNFS significantly outperforms

both traditional block-based file systems and state-of-the-art NVMM-aware file systems.
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