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Abstract—The increasing expansion of data scale leads to the widespread deployment of storage systems with larger capacity and

further induces the climbing probability of data loss or damage. TheMaximum Distance Separable (MDS) code in RAID-6, which

tolerates the concurrent failures of any two disks with minimal storage requirement, is one of the best candidates to enhance the data

reliability. However, most of the existing works in this literature are more inclined to be specialized and cannot provide a satisfied

performance under an all-round evaluation. Aiming at this problem, we propose an all-round MDS code named Horizontal-Vertical

Code (HVCode) by taking advantage of horizontal parity and vertical parity. HVCode achieves the perfect I/O balancing and optimizes

the operation of partial stripe writes, while preserving the optimal encoding/decoding/update efficiency. Moreover, it owns a shorter

parity chain which grants it a more efficient recovery for single disk failure. HV Code also behaves well on degraded read

operation and accelerates the reconstruction of double disk failures by executing four recovery chains in parallel. The

performance evaluation demonstrates that HV Code well balances the I/O distribution. HV Code also eliminates up to

32.2 percent I/O operations for partial stripe writes in read-modify-write mode, and reduces up to 28.9 percent I/O operations

for partial stripe writes in reconstruct-write mode. Moreover, HV Code reduces 5.4�39.8 percent I/O operations per element for

the single disk reconstruction, decreases 8.3�39.0 percent I/O operations for degraded read operations, and shortens

47.4�59.7 percent recovery time for double disk recovery.

Index Terms—Erasure codes, RAID-6, degraded read, load balancing, single failure recovery

Ç

1 INTRODUCTION

WITH the rapid development of cloud storage, the size
of created data to be kept is amazingly expanding,

resulting in the strong demand of the storage systems with
larger capacity (e.g., GFS [2] and Windows Azure [3]).
Increasing the storage volume is usually achieved by equip-
ping with more disks, but it also comes with the rising prob-
ability of multiple disk failures [4], [5] with the system
scales up. To provide a reliable and economical storage ser-
vice with high performance, Redundant Arrays of Inexpensive
(or Independent) Disks (RAID) receives tremendous attention
and is widely adopted nowadays. Among the various
branches of RAID, the Maximum Distance Separable (MDS)
code of RAID-6 offering the tolerance for concurrent failures
of any two disks with optimal storage efficiency, becomes
one of the most popular solutions.

In RAID-6 system, the original data will be partitioned
into many pieces with constant size (denoted as “data
elements”) and the redundant pieces with the same size
(denoted as “parity elements”) are calculated over a sub-
group of data elements. Once a disk failure happens (e.g.,
hardware malfunction or software error), the surviving data
elements and parity elements will be selectively retrieved to
reconstruct the elements on the dispirited disk. In the

meantime of disk failure, the storage system may always
receive read operations to the data elements resided on the
corrupted disk (this operation is referred as “degraded read”).
Therefore, to timely response to user’s I/O requests and
improve data reliability, it is extremely critical to efficiently
process data recovery and degraded read.

Meanwhile, in general, “healthy” RAID-6 storage sys-
tems also have to cope with the frequent read/write
accesses to the hosted data. Compared with degraded read,
we refer the read operations issued to intact storage systems
as “normal read”. For the write operation, it can be classified
into full stripe write and partial stripe write according to the
size of operated data. Full stripe write completely writes all
the data elements in the stripe and its optimality can be
promised by MDS Code [6]. In this paper, we focus on
the partial stripe write that operates a subset of data
elements in a stripe. It can be handled by two modes named
read-modify-write (RMW) mode [6], [7] and reconstruct-write
(RW) mode [8], [9], [10], [11], which may cause different
size of I/O operations. Both of these two write modes
require to update the associated parity elements, and thus
amplify the write size. Due to above reasons, in the circum-
stance with intensive write requests, storage systems may
easily suffer from the unbalanced load and are likely to be
exhausted with the absorption of a considerable number of
extra I/O operations. Thus, to accelerate the write operation
and improve the system reliability, a RAID-6 storage system
that can well balance the load and be efficient to cope with
the partial stripe writes is an imperative need.

Based on the above concerns, we extract the following
five metrics to roughly evaluate the performance of RAID-6
storage systems. 1) The capability to balance the I/O distri-
bution; 2) The performance of partial stripe writes; 3) The
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efficiency to reconstruct the failed disk (disks); 4) The effi-
ciency of read operations, including normal read and
degraded read; 5) The encoding/decoding/update com-
plexity. It is extremely important to design this kind of
RAID-6 code that behaves well on all the above five metrics,
so that a storage system equipped with this RAID-6 code
can not only efficiently cope with various I/O operations
existing in real scenario, but also timely reconstruct the lost
data to enhance the data reliability. In this paper, we call
this kind of RAID-6 code the “all-around” RAID-6 code.

Deep investigations (e.g., [6], [12], [13], [14], [15], [16])
have been endeavored to pursue the optimization on one of
these metrics, yet all of them are attending to one goal and losing
another. On the aspect of balancing the I/O operations, both
X-Code [12] and HDP Code [13] can evenly disperse the
load to the whole disk array, but the former has a poor per-
formance on partial stripe writes while the latter suffers
high update computation complexity. On the metric of par-
tial stripe writes and degraded read, H-Code [6] achieves
excellent performance for the writes to two continuous data
in read-modify-write mode, but it has the flaw on balancing
the load and could not provide a satisfied repair efficiency
to recover the corrupted disks. In the case of disk recon-
struction, HDP-Code [13] requires less elements, but its
non-optimal update complexity may introduce more I/O
operations. More details about the weaknesses among exist-
ing MDS codes are discussed in Section 2.3.

In this paper, we propose a novel XOR-based MDS
RAID-6 code called Horizontal-Vertical Code (HV Code) by
taking advantage of horizontal parity and vertical parity. By
evenly dispersing parity elements across the storage sys-
tems, HV Code can well balance the I/O load. It accelerates
the repair process for disk (or disks) reconstruction as well
by reducing the number of data elements involved in the
generation of parity elements, so that less elements should
be retrieved for every lost element. To optimize the efficiency
of the writes to two continuous data elements, HV Code uti-
lizes the advantage of horizontal parity which only renews
the horizontal parity element once for the updated data ele-
ments in the same row, and designs a dedicate construction
for the vertical parity to ensure the last data element in the
ith rowwill share a same vertical parity elementwith the first
data element in the ðiþ 1Þth row. In addition, HV Code also
provides competitive performance on degraded read by uti-
lizing the horizontal parity and still retains the optimal
encoding/decoding/update computation complexity. Our
contributions are summarized as follows:

1) We propose an all-around MDS code named HV
Code, which well balances the load to the disks and
offers an optimized partial stripe write experience.
Meanwhile, HV Code also reduces the average
recovery I/O to repair every failed element, provides
efficient degraded read operations, and still retains
the optimal encode/decode/update efficiency.

2) To demonstrate the efficiency of HV Code, we con-
duct a series of intensive experiments on the metrics
of load balancing, partial stripe writes, nomal/
degraded read operation, and reconstruction for
the single/double disk failures. The results show
that HV Code achieves the same load balancing rate

as X-code and HDP Code. It significantly decreases
up to 32.2 percent I/O operations for partial stripe
writes in read-modify-write mode, and reduces up to
28.9 percent I/O operations for partial stripe writes in
reconstruct-write mode.Moreover, it eliminates up to
39.0 percent read operations for degraded read opera-
tion. With the aspect of recovery I/O, HV Code
reduces 5.4�39.8 percent I/O operations to repair a
lost element during the single disk reconstruction
compared with its competitors (i.e., RDP Code, HDP
Code, X-Code and H-Code). It achieves nearly the
same time efficiency of X-Code in double disk recov-
ery by decreasing 47.4�59.7 percent recovery time
comparedwith other three typical codes.

The rest of this paper is organized as follows. We first
introduce the background knowledge of MDS codes and
the motivation of this paper in Section 2, and then present
the detailed design of HV Code in Section 3. The property
analysis of HV Code will be given in Section 4 and a series
of intensive evaluations is conducted to evaluate the perfor-
mance of HV Code and other representative codes in
Section 5. Finally, we conclude our work in Section 6.

2 BACKGROUND AND MOTIVATION

2.1 Terms and Notations

To give a better understanding about the research back-
ground of RAID-6 codes, we first summarize the terms and
notations frequently referred in this paper.

� Data element and parity element. Element is the basic
operated unit in RAID-6 systems and can be treated
as an unit of a disk, such as a byte or a sector. The
data element contains the original data information,
while the parity element keeps the redundant infor-
mation. In Fig. 1a, E1;1 is a data element and E1;5 is a
parity element, where Ei;j means the element on the
ith row and the jth column.

� Stripe.Amaximal set of data elements and parity ele-
ments that have the dependent relationship con-
nected by an erasure code. Fig. 1 shows the layout of
a stripe in RDP Code, which can be treated as a
ðp� 1Þ-row-ðpþ 1Þ-column matrix.

� Horizontal parity. The horizontal parity element is cal-
culated by performing the XOR operations among
the data elements in the same row. For instance, in
Fig. 1a, the horizontal parity element E1;5 :¼

P4
i¼1

E1;i :¼ E1;1 � � � � �E1;4.

Fig. 1. The layout of RDP code with pþ 1 disks (p ¼ 5). fE1;1; . . . ; E1;5g is
a horizontal parity chain and fE1;1; E4;3; E3;4; E2;5; E1;6g is a diagonal
parity chain. Their length is 5.

SHEN ETAL.: HV CODE: AN ALL-AROUND MDS CODE FOR RAID-6 STORAGE SYSTEMS 1675



� Diagonal parity and anti-diagonal parity. The diagonal
(resp. anti-diagonal) parity connects the elements
following the diagonal (resp. anti-diagonal) line. In
RDP Code [14], the horizontal parity element will
participate in the calculation of diagonal parity ele-
ment. For example, the diagonal parity element
E1;6 :¼ E1;1 �E4;3 � E3;4 � E2;5 as shown in Fig. 1b.

� Vertical parity. It is usually adopted by vertical codes,
such as P-Code [15] and B-Code [17]. In the vertical
parity calculation, the candidate data elements
should be picked out first and then performed the
XOR operations.

� Parity chain and its length. A parity chain is composed
of a group of data elements and the generated parity
element. For example, E1;1 involves in two parity
chains in Fig. 1, i.e., fE1;1; E1;2; . . . ; E1;5g for horizon-
tal parity and fE1;1; E4;3; E3;4; E2;5; E1;6g for diagonal
parity. The length of a parity chain is denoted by the
number of the included elements.

� Recovery chain. It is constituted by a subgroup of
failed elements that have dependence in double disk
reconstructions. The elements in a recovery chain
will be repaired in an order. For example, there are
four recovery chains in Fig. 6, where E2;3, E1;1, E1;3,
and E2;1 belong to the same recovery chain.

� Continuous data elements. In erasure coding, a data file
will be partitioned into many data elements that will
then be continuously and horizontally placed across
disks to maximize the access parallelism [6], [13],
[18]. The data elements that are logically neighboring
are called “continuous data elements”. For example,
E1;1 and E1;2 in Fig. 1a are two continuous data ele-
ments, and so as E1;4 and E2;1.

2.2 The MDS Codes of RAID-6 Storage Systems

According to the storage efficiency, current erasure codes to
realize RAID-6 function can be divided into Maximum
Distance Separable codes and non-MDS codes. MDS codes
reach optimal storage efficiency while non-MDS codes sacri-
fice storage efficiency to run after the improvement on other
recovery metrics. The representative MDS codes for RAID-6
realization include Reed-Solomon Code [19], Cauchy Reed-
Solomon Code [20], EVENODD Code [16], RDP Code [14],
B-Code [17], X-Code [12], Liberation Code [21], Liber8tion
Code [22], P-Code [15], HDP Code [13], and H-Code [6]. The
typical non-MDS codes are Pyramid Code [23], WEAVER
Code [24], Code-M [25], HoVer Code [26], Local Reconstruc-
tion Codes [3] and its application [27], and Flat XOR-Code
[28]. In this paper, we mainly consider MDS codes in
RAID-6, which can be classified into horizontal codes and
vertical codes according to the placement of parity elements.

The horizontal codes of RAID-6 systems. Horizontal codes
are well known as the first studies of RAID-6 systems. They
are usually constructed over mþ 2 disks and demanded to
reserve two dedicated disks to place parity elements.

As the ancestor of horizontal codes, Reed-Solomon
Code is constructed over Galois field GF ð2wÞ by employ-
ing Vandermonde matrix. Its operations (i.e., multiplica-
tion and division) are usually implemented in Galois field
and this high computation complexity seriously limits its

realization in practice. To mitigate this overhead, Cauchy
Reed-Solomon Code introduces the binary bit matrix to
convert the complex Galois field arithmetic operations
into single XOR operations.

EVENODD Code and RDP Code are the typical parity
array codes. By performing the XOR operations instead of
finite field arithmetic, they outperform Reed-Solomon Code
on the metrics of realization and efficiency. Both of them uti-
lize horizontal parity and diagonal parity to realize their
constructions and RDP makes some differences when build-
ing the diagonal parity to achieve a better performance.

Horizontal codes own an advantage that it can be built
on any number of disks, but they usually cannot approach
optimal update complexity.

The vertical codes of RAID-6 systems. Rather than separat-
ing the storage of data elements and parity elements, verti-
cal codes store them together in the disk.

X-Code [12] (as shown in Fig. 2) is construed over p disks
(p is a prime number) by using both diagonal parity and
anti-diagonal parity. HDP-Code [13] is proposed to balance
the load in a stripe by employing horizontal-diagonal par-
ity, in which the diagonal parity element joins the calcula-
tion of horizontal parity element. H-Code [6] optimizes the
partial stripe writes to continuous data elements in read-
modify-write mode. It gathers the horizontal parity ele-
ments on a dedicated disk and spreads the (p� 1) anti-
diagonal parity elements over other p disks.

2.3 The Remained Problems of Existing MDS Codes

Though continuous efforts have been made to greatly pro-
mote the diversity and maturity of RAID-6 storage systems,
most of the existing works cannot simultaneously address
the following problems. These problems will potentially
threaten the system reliability and degrade the system per-
formance. Table 1 gives a brief summary of existing typical
RAID-6 codes.

Load balancing. The unbalanced I/O to a storage system
will not only extend the operation time, but also may make
the most loaded disk easily tired out, thus degrading the
data reliability [13], [29]. Aiming at this problem, the study
on balancing I/O to disks has been considered for a period
of time [13], [30].

The traditional method adopts “stripe rotation” (i.e.,
rotationally shift the parity disks among different stripes) to
uniformly distribute I/O operations across all the stripes.
This method only takes effect when the workload is uniform
among the stripes, which actually does not accord with all
the I/O distributions in the real application. In the scenario
that different stripes have different access frequencies, even
when “stripe rotation” is applied, the stripe hosting hotter

Fig. 2. The layout of X-code with p disks (p ¼ 5).
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(resp. colder) data will receive more (resp. less) access
requests, still causing unbalanced I/O distribution. There-
fore, to well balance the load, a better method is to evenly
disseminate the parity elements among the stripe.

For RDP Code [14], EVENODD Code [16], Liberation
Code [21], and H-Code [6], which require dedicated disk to
place parity elements, will easily cause non-uniform I/O
distribution.

Partial stripe writes. The partial stripe writes to continuous
data elements is a frequent operation, such as backup and
virtual machinemigration. As a data element is usually asso-
ciated with the generation of two parity elements in RAID-6
codes, an update to a data element will also renew at least
two related parity elements. This property results in various
behaviors when RAID-6 codesmeet partial stripewrites.

Generally, there are two modes of partial stripe write in
practical applications, i.e., read-modify-write mode [6], [7]
and reconstruct-write mode [9], [10], [11]. In both of these
two modes, we refer the data elements to be written as “old”
data elements and denote the parity elements associated
with the old data elements as “old” parity elements. Simi-
larly, we call the data (resp. parity) elements after being
updated as “new” data (resp. parity) elements.

For read-modify-write mode, it needs to read both the
old data elements and the old parity elements from storage
devices, exclusive-OR the old data elements with old parity
elements and then with the new data elements, and obtain
the new parity elements. Finally, the new data elements and
new parity elements will be written back. Thus the number
of pre-read elements in read-modify-write mode equals the
number of old data elements plus the old parity elements.
Take RDP Code as an example (as shown in Fig. 3a), when
the data elements E1;1 and E1;2 are updated in read-modify-
write mode, the storage system will read these two old data
elements and associated old parity elements (i.e., E1;5, E1;6,
and E2;6), perform the updates, and write back both the new
data elements and new parity elements. Therefore, the total
number of I/O operations will be 10 (i.e., five read opera-
tions and five write operations).

For reconstruct-write mode, it needs to read other data
elements, which have the common associated old parity ele-
ments with the old data elements, recalculate the new parity
elements based on the new data elements and retrieved data
elements, and finally write back both the new data elements
and new parity elements to the storage. Take RDP Code as
an example (as shown in Fig. 3b), when E1;1 and E1;2 are
written in reconstruct-write mode, the storage system will
read the associated data elements (i.e., E1;3, E1;4, E2;1, E2;5,
E3;4, E3;5, E4;3, and E4;4) that share the same old parity

elements with the old elements, and write back the new
data elements (i.e., E1;1 and E1;2) and related new parity ele-
ments (i.e., E1;5, E1;6, and E2;6). The total number of I/O
operations is 13 (i.e., eight read operations and five write
operations).

Derived from above introduction, for a write operation,
both the read-modify-write mode and reconstruct-write mode have
the same number of elements to write. Their difference lies in the
elements to read and the read size. Moreover, reconstruct-write
mode is more suitable for large writes.

As a data element is usually associated with the genera-
tion of two parity elements in RAID-6 codes, an update to a
data element will also renew at least two related parity ele-
ments. This property also awards horizontal parity an
advantage that the update to the data elements in a row
only needs to update the shared horizontal parity once.

For X-Code [12], in which any two continuous data
elements do not share a common parity element, therefore
the partial stripe writes will induce more extra write opera-
tions to the parity elements compared to the codes utilizing
horizontal parity.

For RDP Code [14] and EVENODD Code [16], the par-
tial stripe writes to continuous data elements will put a
heavy update burden to the disk hosting diagonal pari-
ties. For example, when E1;1, E1;2 and E1;3 are updated in
Fig. 1, then disk #5 will only need to update E1;5 while

TABLE 1
A Brief Summary of Existing Typical RAID-6 Codes

Metrics RDP Code [14] HDP Code [13] X-Code [12] H-Code [6] EVENODD Code [16]

Load Balancing unbalanced balanced balanced unbalanced unbalanced
Update Complexity > extra 2 updates 3 extra updates 2 extra updates 2 extra updates > 2 extra updates
Double Disk Reconstruction 2 recovery chains 2 recovery chains 4 recovery chains 2 recovery chains 2 recovery chains
Parity Types1 HP, DP HDP, ADP DP, ADP HP, ADP HP, DP
Parity Chain Length p p� 2, p� 1 p� 1 p pþ 1

1:“HP” denotes horizontal parity, “DP” and “ADP” represent diagonal parity and anti-diagonal parity respectively, and “HDP” is short for
horizontal-diagonal parity.

Fig. 3. An example of partial stripe writes in two different modes. Sup-
pose E1;1 and E1;2 are old data elements. The non-filled shape denotes
the element that is read out. (a) In read-modify-write mode, it needs to
first read out the old data elements (i.e., E1;1, E1;2) and their associated
old parity elements (i.e., E1;5, E1;6, and E2;6). It then performs the exclu-
sive-OR operations to calculates the new parity elements, and writes
back both new data elements and new parity elements. (b) In recon-
struct-write mode, it reads E1;3 and E1;4 to calculate the new parity ele-
ment E1;5 with the new data elements E1;1 and E1;2. It also reads E2;1,
E4;4, and E3;5 to compute E2;6. Moreover, it retrieves E4;3, E3;4, and E2;5

to calculate E1;6. Finally, it writes back the new data elements (i.e., E1;1

and E1;2) and the new parity elements (i.e., E1;5, E1;6, and E2;6).
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disk #6 has to update E1;6, E2;6 and E3;6, respectively. This
unbalanced I/O distribution will easily delay the write
operation and even threaten the system reliability by
making some disks tired out.

For HDP Code [13], its high update complexity will
induce considerable I/O operations. Moreover, it does not
consider the optimization in the case of continuous writes
across rows.

As a delicate design, H-Code [6] is proved that it behaves
well to cope with the partial stripe writes in read-modify-
write mode. However, it still leaves a dedicated disk to
keep horizontal parity elements. This design could cause
unbalanced I/O distribution for partial stripe writes in
reconstruct-write mode.

Recovery cost for disk failure. The recovery of RAID-6
systems can be classified into the single disk failure recov-
ery [31] and the reconstruction of double disk failures [13].

For single disk failure recovery, a general way firstly pro-
posed by Xiang et al. [32] is repair the invalid elements by
mixing two kinds of parity chains subjecting to the maxi-
mum overlapped elements to be retrieved, so as to achieve
the minimum recovery I/O. For example, suppose the disk
#1 is disabled in Fig. 1. To repair E1;1 and E2;1, purely using
either horizontal parity chains or diagonal parity chains
will need to retrieve eight elements in total. However, if we
repair E1;1 by using horizontal parity chain and recover E2;1

by using diagonal parity chain, such reconstruction method
can make E1;2 overlapped and we can complete the recov-
ery by reading just seven elements. The reconstruction I/O
of this method is greatly reduced but still relates to the
length of parity chain. Due to the long parity chain in the
existing codes, there is still room for reconstruction effi-
ciency improvement.

Different from the selective retrieval in single disk recov-
ery, double disk recoveries demand to fetch all the elements
in the survived disks. Though different codes have various
layouts, the time to read all the remained elements into the
main memory is the same if the parallel read is applied.
Moreover, by utilizing the parallel technology, the failed
elements locating at different recovery chains can be simul-
taneously reconstructed. For example, in Fig. 6, the element
E6;3 and E5;3 that are not in the same recovery chain can be
rebuilt at the same time. Therefore, the parallelism of recov-
ery chains is critical in double disk reconstructions. Among
the existing MDS array codes, all of RDP Code [14], HDP
Code [13], H-Code [6] and P-Code [15] can construct two
recovery chains to repair the double failed disks in parallel.

Read efficiency. The read efficiency is usually seriously
considered for the storage systems with intensive read
requests. We concern normal read and degraded read in
this paper. Normal read retrieves data elements from
intact storage systems, while degraded read occurs when
retrieving data elements from the storage systems with
corrupted disks. Their difference is that the degraded
read may retrieve additional elements for data recovery
when the requested data elements happen to reside on
the corrupted disks. On the contrary, the normal read
only retrieves the requested data elements and will not
cause extra I/O operations.

For example, suppose the disk #1 fails in Fig. 1, and the
elements E1;1, E1;2, and E1;3 are requested at that time, then

extra elements E1;4 and E1;5 will be also attached to re-calcu-
late the failed element E1;1 by the horizontal parity chain.
This example also reveals that the horizontal parity owns an
advantage to improve the degraded read efficiency, because
some of the requested elements (e.g., E1;2 and E1;3) may
involve in the re-calculation of the corrupted element (e.g.,
E1;1) with great probability.

For X-Code [12] and P-Code [15], based on diagonal/
anti-diagonal parity and vertical parity respectively, behave
a bit inefficient on degraded read compared to the codes
constructed on horizontal parity.

Another influence factor to the degraded read perfor-
mance is the length of parity chain. Longer parity chain
probably incurs more unplanned read elements. Derived
from this excuse, EVENODD Code [16], RDP Code [14],
H-Code [6], and HDP Code [13] could introduce a consider-
able number of additional I/O operations.

3 THE DESIGN OF HV CODE

To simultaneously address the above remaining limitations,
an all-around RAID-6 MDS array code should satisfy the
following conditions: 1) be expert in balancing the load;
2) optimize the performance of partial stripe writes in both
read-modify-write mode and reconstruct-write mode; 3) be
efficient to deal with single (resp. double) disk failure (resp.
failures); 4) have a good performance on both normal read
and degraded read; 5) retain the optimal properties, such as
encoding/decoding/update efficiency.

To this end, we propose an MDS code named HV Code,
which makes use of horizontal parity and vertical parity
and can be constructed over (p� 1) disks (p is a prime num-
ber). Before presenting the construction of HV Code, we
first list the frequently used symbols in Table 2.

3.1 Data/Parity Layout and Encoding of HV Code

A stripe of HV Code can be represented by a ðp� 1Þ-row-
ðp� 1Þ-csolumn matrix with a total number of ðp� 1Þ�
ðp� 1Þ elements. There are three kinds of elements in the
matrix: data elements, horizontal parity elements, and vertical
parity elements. Suppose Ei;jð1 � i; j � p� 1Þ denotes the
element at the ith row and jth column. In HV Code,
the horizontal parity elements and the vertical parity
elements are calculated by the following equations.

Horizontal parity element encoding:

Ei;h2iip :¼
Xp�1

j¼1

Ei;j ðj 6¼ h2iip; j 6¼ h4iipÞ: (1)

TABLE 2
The Frequently Used Symbols

Symbols Descriptions

p a prime number to configure the stripe
hi, hiip modular arithmetic, imod p

Ei;j element at the i-th row and j-th columnP
Ei;j

� �
sum of XOR operation among the elements Ei;j

� �
L length of continuous data elements to write
hijip if k :¼ hijip, then hk � jip ¼ hiip
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Vertical parity element encoding:

Ei;h4iip :¼
Xp�1

j¼1

Ek;j ðj 6¼ h8iip; j 6¼ h4iipÞ: (2)

k, j, i should satisfy the condition: h2kþ h4iipip ¼ j. This
expression can also be simplified as h2kþ 4iip ¼ j. Then

we can obtain k according to the following equations:

k :¼
Dj� 4i

2

E
p
:¼

1
2 hj� 4iip ðhj� 4iip ¼ 2tÞ;
1
2 ðhj� 4iip þ pÞ ðhj� 4iip ¼ 2tþ 1Þ:

�

Notice that if u satisfies the condition hu � jip ¼ hiip, then
we express u as u :¼ hijip. Fig. 4 shows the layout of HV

Code for a six-disk system (p ¼ 7). A horizontal parity ele-
ment (represented in horizontal shadow) and a vertical par-
ity element (represented in vertical shadow) are labeled in
every row and every column.

Fig. 4a illustrates the process of encoding the horizontal
parity elements. By following Equation (1), the horizontal
parity elements can be calculated by simply performing
modular arithmetic and XOR operations on the data ele-
ments with the same shape. For example, the horizontal
parity element E1;2 (the row id i ¼ 1) can be calculated by
E1;1 � E1;3 � E1;5 �E1;6. The vertical parity element E1;4

(i ¼ 1) should not be involved in the encoding of E1;2,
because E1;4 is at the h4iipth column.

Fig. 4b shows the process of encoding a vertical parity
element. Every vertical parity element is calculated by
the data elements with the same shape according to
Equation (2). For example, to calculate the vertical parity
element E1;4 (the row id i ¼ 1), we should first pick out
the involved data elements fEk;jg based on Eq. (2).
When j ¼ 1, then j ¼ h8iip, which violates the require-

ments in Eq. (2). When j ¼ 2, then k :¼ hj�4i
2 ip :¼ h�1ip :¼

6 and E6;2 is positioned. By tracking this path, the fol-
lowing data elements (i.e., E3;3, E4;5, and E1;6) are then
fetched. Second, by performing XOR operations among
these data elements, the vertical parity element E1;4 will
be computed as E1;4 :¼ E6;2 � E3;3 � E4;5 �E1;6.

3.2 Construction Process

Based on the layout and encoding principle, we take the fol-
lowing steps to construct HV Code.

1) partition the disk according to the layout of HV Code
and label the data elements in each disk;

2) encode the horizontal parity elements and the
vertical parity elements respectively according to
Equation (1) and Equation (2).

3.3 Proof of Correctness

The detailed proof can be referred in Appendix, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2015.2464800.

3.4 Reconstruction

In this section, we will discuss how to perform the
reconstruction when a failure happens. As a RAID-6
code, HV Code can tolerate up to any two disk failures.
Here, we mainly consider three basic kinds of failures:
the failure of an element, the failure of a single disk, and con-
current failures of double disk. Other possible failure cases
tolerated by RAID-6 systems (e.g., multiple element fail-
ures in a disk) can be covered by the combination of
these three basic failures.

The recovery of an element. There are two possibilities
when an element fails, resulting in different reconstruction
methods. If the failed element is a parity element, the recov-
ery can follow either Equation (1) or Equation (2) by using
the related ðp� 3Þ data elements. In the case when a data
element (suppose Ei;j) is broken, it can be recovered by
using either horizontal parity chain or vertical parity chain.
When repairing Ei;j by horizontal parity chain, the horizon-
tal parity element Ei;h2iip and other related ðp� 4Þ data ele-

ments should be first retrieved, then Ei;j can be repaired as:

Ei;j :¼
Xp�1

k¼1

Ei;k k 6¼ j; k 6¼ h4iip: (3)

Similarly, when reconstructing Ei;j by the vertical parity
chain, the vertical parity element Es;h4sip can be obtained

first, where h4sip :¼ hj� 2iip. Then

Fig. 4. The layout of HV code with ðp� 1Þ disks (p ¼ 7).
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Ei;j :¼
Xp�1

l¼1

Ek;l � Es;h4sip ; (4)

where l 6¼ j, l 6¼ h4sip, l 6¼ h8sip, and h2kþ 4sip ¼ l.
The recovery of a single disk failure. There are two meth-

ods to recover a single failed disk. First, we can sepa-
rately repair the failure elements, either data elements
and parity elements, by directly using Equations (1), (2),
(3), (4) without considering their dependence. However,
this method may cause considerable number of elements
to be retrieved.

Before introducing the second method, we first define the
concept of “recovery equation”. A recovery equation is a col-
lection of elements in a stripe that whose XOR sums equal
zero. We take the three recovery equations that E1;1 joins as
an example.

� fE1;1; E1;2; E1;3; E1;5; E1;6g (i.e., horizontal parity
chain),

� fE1;1; E5;2; E2;3; E6;4; E5;6g (i.e., vertical parity chain),
� fE1;1; E1;2; E1;5; E1;6; E2;1; E5;4; E2;5; E6;6g:
Intuitively, if an element joins r recovery equations, then

it can be repaired in r different ways just by reading other
elements that in the same recovery equation and performing
XOR sums among them. For example, we can repair E1;1 by
reading elements in the first recovery equation and obtain
E1;1 ¼ E1;2 �E1;3 � E1;5 � E1;6 Therefore, to produce the
minimal number of elements to be retrieved during single
disk failure recovery, one commonly adopted method is to
repair each lost element by selecting an appropriate recov-
ery equation, so that the combination of p� 1 chosen recov-
ery equations produces the most elements that are
overlapped. Several existing studies [18], [33] have been
made to optimize the single disk failure reconstruction by
reducing the number of elements to read. These methods
also have effect on HV Code. Fig. 5 illustrates two recovery
schemes when disk 1 fails. The non-optimized scheme in
Fig. 5 requires to read 21 elements, while the optimized
scheme only needs 18 elements.

The recovery of double disk failures. If double disk failures
occur (suppose the corrupted disks are f1 and f2, where
1 � f1 < f2 � p� 1), the recovery process can follow
the procedures in Theorem 1 (as shown in Appendix, avail-
able in the online supplemental material). We present the
detailed steps to repair double failed disks in Algorithm 1.

To trigger the recovery of double failed disks, we should
first find four start elements by using horizontal parity
chains and vertical parity chains, respectively. After that,
for each start element, we can build a recovery chain by
alternatively switching the parity chains. We present an
example of double disk failure recovery of HV Code (p ¼ 7)
in Fig. 6. In this example, E2;3, E3;3, E5;1, and E6;1 are the
four start elements, and fE5;1; E5;3g is the recovery chain led
by the start element E5;1.

Algorithm 1. The Procedures to Recover Two Concur-
rent Failed Disks in HV Code

1. locate the failed disks f1 and f2 (1 � f1 < f2 � p� 1);

2. recover the four start elements first: ðhf2�
f1
2

2 ip; f2Þ, ðh
f1�f2

2
2 ip; f1Þ,

ðhf14 ip; f2Þ, and ðhf24 ip; f1Þ.
3. reconstruct other missing elements by alternately shifting
between f1 and f2.
Case 1: start with the tuple ðhf24 ip; f1Þ in disk f1, do
re-build elements in disk f2 utilizing vertical parity chain
and repair elements in disk f1 using horizontal parity chain;
until reach a parity element.

Case 2: start with the tuple ðhf14 ip; f2Þ in disk f2, do
re-build elements in disk f1 utilizing vertical parity chain
and repair elements in disk f2 by horizontal parity chain;
until reach a parity element.

Case 3: start with the tuple ðhf1�
f2
2

2 ip; f1Þ in disk f1, do

re-build elements in disk f2 utilizing horizontal parity chain
and repair elements in disk f1 using vertical parity chain;
until reach a parity element.

Case 4: start with the tuple ðhf2�
f1
2

2 ip; f2Þ in disk f2, do

re-build elements in disk f1 utilizing horizontal parity chain
and repair elements in disk f2 using vertical parity chain;
until reach a parity element.

4 PROPERTY ANALYSIS

4.1 Optimal Storage Efficiency

As proved above, HV Code is an MDS code and has optimal
storage efficiency [14], [19].

Fig. 5. Two recovery schemes to repair disk #1 in HV Code (p ¼ 7). The
filled pattern elements participate in horizontal parity chain while the
stripy elements involve in the vertical parity chain. (a) A non-optimized
scheme needs to read 21 elements from surviving disks. (b) The
optimized scheme just needs to read 18 elements for recovery.

Fig. 6. An example to recover disk #1 and disk #3. The elements labeling
“SH” and “SV” indicate Start elements recovered by Horizontal parity
chains, and the Start elements reconstructed by Vertical parity chains,
respectively. The element labeling “H” (resp, “V”) indicates it is recovered
through Horizontal (resp. Vertical) parity chain. The arrow line assigned
with number denotes the recovery direction and its recovery order. There
are four recovery chains, such as fE5;1; E5;3g and fE3;3; E3;1; E4;3; E4;1g.
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4.2 Optimal Construction/Reconstruction/Update
Computational Complexity

For a code with m-row-by-n-column and x data elements,
P-Code [15] has deduced the optimal XOR operations to each

data element in construction is 3x�m�n
x and the minimal XOR

operations to each lost element in reconstruction is 3x�m�n
m�n�x [15].

Therefore, for a stripe of a code with ðp� 1Þ-row-by-
ðp� 1Þ-column and ðp� 3Þðp� 1Þ data elements, the opti-

mal complexity of construction should be 2ðp�4Þ
ðp�3Þ XOR opera-

tions per data element and the optimal complexity of
reconstruction should be ðp� 4Þ XOR operations per lost
element in theorem.

For HV Code, there are 2ðp� 1Þ parity elements needed
to build in the construction. Each of them is calculated by
performing ðp� 4Þ XOR operations among the participated
ðp� 3Þ data elements. Therefore, the total XOR operations
to generate the parity elements in a stripe is 2ðp� 4Þðp� 1Þ,
and the averaged XOR operations per data element is 2ðp�4Þ

ðp�3Þ ,
being consistent with the above deduced result. Moreover,
to reconstruct the two corrupted disks, every invalid ele-
ment is recovered by a chain consisting of ðp� 3Þ elements,
among which ðp� 4Þ XOR operations are performed. The
complexity equals the optimal reconstruction complexity
deduced above.

For update efficiency, every data element in HV Code
joins the computation of only two parity elements, indicat-
ing the update of any data element will only renew related
two parity elements. Thus, like X-Code [17] and H-Code [6],
HV Code also reaches the optimal update complexity.

4.3 Achievement of Effective Load Balancing

Rather than concentrating parity elements on dedicated
disks [6], [14], HV Code distributes the parity elements
evenly among all the disks, which is effective to disperse
the load to disks.

4.4 Fast Recovery for Disk Failure

The length of each parity chain in HV Code is p� 2, which
is shorter than those of many typical MDS codes [6], [12],
[13], [14], [16] in RAID-6. The shortened parity chain
decreases the number of needed elements when repairing a
lost element. In addition, every disk holds two parity ele-
ments in HV Code, enabling the execution of four recovery
chains in parallel in double disk repairs.

4.5 Optimized Partial Stripe Write Performance

We first dissect the performance for the writes to two con-
tinuous data elements in read-modify-write mode. The first
case is when the two data elements reside in the same row,
then updating them will incur only one write operation to
the horizontal parity element and two separate renewals to
their vertical parity elements. The second is when the
renewed two data elements are in different rows, i.e., the
last data element in the ith row and the first data element in
the ðiþ 1Þth row. As described above, Ei;j will participate in
the generation of the vertical parity element residing on the
hj� 2iipth disk. This rule makes Ei;p�1 and Eiþ1;1, if both of

them are data elements, belong to the same vertical parity
chain. Therefore, the second case only needs to update a

shared vertical parity element and the two corresponding
horizontal parity elements. Since the HV Code’s layout
defines that a column will include two parity elements,
there will be at least ðp� 6Þ pairs1 of two continuous data
elements which locate in different rows but share the same
vertical parity elements.

The proof in [6] has shown that any two data element
updates should renew at least three parity elements in a
stripe of a lowest density MDS code. Thus, HV Code
achieves near optimal performance of partial stripe writes to
two continuous data elements in read-modify-write mode.

For reconstruct-write mode, as discussed before, it writes
back the same number of elements as in read-modify-write
mode. Therefore, HV Code also optimizes the writes in
reconstruct-write mode. Meanwhile, HV Code owns hori-
zontal parity chains, which will be effective to reduce the
number of read operations in reconstruct-write mode, when
compared with the code that does not have horizontal par-
ity chain, such as X-Code. This is because the updated data
elements in the same row share a common horizontal parity
element, and thus the elements to read for parity generation
will be decreased. Moveover, the shorter parity chain in HV
Code is also helpful to reduce the read operations in recon-
struct-write mode, as the number of data elements that
share the same parity elements with the new data elements
will decrease if the parity chain is shorter.

4.6 Efficient Degraded Read

For degraded read, since HV Code has horizontal parity
chains, the number of extra derived read operations will be
remarkably decreased. This is because the continuous
requested data elements in degraded read may share a
same horizontal parity element. Therefore, some retrieved
elements will be reused to join the recovery of corrupted
data elements.

Let us consider the codes, which own the horizontal par-
ity chain with the length of H, then the number of data ele-
ments in a row is H � 1. Suppose there is a request reading
n data elements in a row (n � H � 1), and there happens to
be a loss data element. If this corrupted data element is
planned to recover by using the horizontal parity chain it
joins, then the total number of elements to read isH � 2 and
the number of extra elements caused by this degraded read
operation is H � 2� n. This analysis also indicates that the
code with shorter parity chain will cause less extra element
retrievals for degraded read. Since the parity chain length of
HV code is p� 2, which is shorter than many well-known
RAID-6 codes, such as RDP Code and X-Code, it has advan-
tage to handle the degraded read operation.

5 PERFORMANCE EVALUATION

In this section, we will evaluate the performance of HV
Code in terms of recovery, partial stripe writes, normal
read, degraded read, and load balancing. As we mainly con-
sider the RAID-6 setting that can tolerate any two disk fail-
ures with optimal storage efficiency, therefore we dismiss

1. There are altogether ðp� 2Þ pairs of continuous two data elements

that are in the different rows. So the rate is p�6
p�2, which approaches to 1

when p grows.
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non-MDS codes and choose several state-of-the-art RAID-
6 codes in the comparison. Specifically, we select RDP
Code (over pþ 1 disks), HDP Code (over p� 1 disks), H-
Code (over pþ 1 disks), and X-Code (over p disks) to
serve as the references.

Evaluation environment. The performance evaluation is
run on a Linux server with a X5472 processor and 12 GB
memory. The operating system is SUSE Linux Enterprise
Server and the filesystem is EXT3. The deployed disk array
consists of 16 Seagate/Savvio 10K.3 SAS disks, each of which
owns 300 GB capability and 10,000 rmp. The machine and
disk array are connected with a Fiber cable with the band-
width of 800 MB. The five RAID-6 codes are realized based
on Jerasure 1.2[34] that is widely used for erasure coding.

Evaluation preparation. We first create a file, partition it
into many data elements, and encode them by using every
evaluated code. Like previous works [1], [18], [35], the ele-
ment size is set as 16 MB. The data elements and the
encoded parity elements will then be dispersed over the
disk arrays by following the layout of each code (like Fig. 1
for RDP Code and Fig. 2 for X-Code). The encoded files will
be used in the next tests, such as the efficiency evaluation
for partial stripe write and degraded read.

5.1 Partial Stripe Writes Efficiency

In this test, we mainly evaluate the efficiency when per-
forming partial stripe writes in read-modify-write mode
and reconstruct-write mode, respectively. In these two
modes, for a write operation with the length L, both the L
continuous data elements whose size is (16� L) MB and the
associated parity elements will be totally written.

To evaluate the patterns of partial stripe writes, the fol-
lowing three traces are mainly considered.

� Uniform write trace: Every access pattern simulates
the operation to write a pre-defined number of con-
tinuous data elements starting from a uniformly cho-
sen data element.

� Random write trace: Every access pattern ðS; L; F Þ
contains three random values, i.e., the start element
S for the writes, the random length L, and the ran-
dom write frequency F . For the pattern ðS; L; F Þ, it
means the write operation that starts from the Sth
data element and terminates at the ðS þ L� 1Þth
data element will be executed for F times.

� Zipf write trace: This trace issues the write requests,
where both the start element to write and the write
length follow the Zipf distribution with an a ¼ 0:9
(like in [36]). Each Zipf trace includes 200 write
patterns.

In this test, we select three uniform write traces named
“uniform_w_3”, “uniform_w_10”, and “uniform_w_30”.
For uniform write trace named “uniform_w_L” (L:=3, 10,
30), we specify 1,000 write requests with the constant length
L and the uniformly selected beginning. These three traces
ensure the same number of data elements in a stripe is writ-
ten for each code and the write frequency of each data ele-
ment will be almost the same with large probability. With
respect to the random write trace, we generate the patterns
of ðS; L; F Þ by employing the random integer generator [37]
and the generated trace is shown in Table 3. For example,

(28,34,66) means the write operation will start from the 28th
data element and the 34 continuous data elements will be
written for 66 times. Meanwhile, in real storage systems, the
number of disks in a stripe is usually not very large. For
example, a stripe in HDFS-RAID [38] includes 14 disks and
a stripe in Google ColossusFS [39] has 9 disks. In the evalua-
tions of partial stripe writes and read operations, we select
p ¼ 13 for each tested code, which we believe conforms to
the setting of real storage systems.

Evaluation method. For the file encoded by each code, we
replay the five write traces, including “uniform_w_3”,
“uniform_w_10”, “uniform_w_30”, the generated random
trace, and the write trace that follows Zipf distribution
respectively. During the evaluation, the following three
metrics are measured.

1) The total number of produced I/O operations for
each write pattern. We run the five traces and record
the total number of derived I/O operations (includ-
ing read operations and write operations) when
replaying the write trace.

2) The I/O balancing capability of each code. For the file
encoded by each code, we run every trace and collect
the incurred I/O operations loaded on each disk.
Suppose the number of write requests arriving at the
ith disk is Ri and the number of disks in a stripe isN ,
we can calculate the load balancing rate � as the ratio of
the maximum I/O loaded on a disk and the average
number of I/O operations served per disk

� :¼ MaxfRij1 � i � NgPN
i¼1 Ri=N

: (5)

The smaller of � usually indicates the better behavior
of balancing the load to a stripe. We finally calculate
the load balancing rate of every trace for each code.

3) The averaged time of a write pattern. For the file
encoded by each code, we measure the averaged
time to execute a write pattern in every trace, i.e.,
from the time to start the write pattern to the time
when the data elements in the pattern and corre-
sponding parity elements are completely written.

5.1.1 Read-Modify-Write Mode

Fig. 7 presents the evaluation results when running these
five traces in read-modify-write mode. Fig. 7a indicates
the total write operations of each code scale up with the
increase of L for the uniform write traces “uniform_w_3”,
“uniform_w_10” and “uniform_w_30”. Though X-Code
retains the optimal update complexity, its construction based
on diagonal parity and anti-diagonal parity engenders more
write operations to the associated parity elements. Because

TABLE 3
The Random Read/Write Pattern of ðS;L; F Þ

(28,34,66) (34,22,69) (4,45,3) (30,18,64) (24,32,70)
(29,26,48) (6,3,51) (34,42,50) (37,9,1) (34,38,93)
(6,44,75) (10,44,2) (34,15,43) (2,6,49) (28,17,57)
(20,33,39) (48,28,27) (48,13,30) (40,2,32) (16,24,7)
(19,4,77) (22,14,31) (49,31,82) (35,26,1) (31,1,48)
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of the non-optimal update complexity, HDP Code triggers
more write operations when compared to both of HV Code
and H-Code, both of which reach optimal update complex-
ity. Since both HV Code and H-Code optimize the write
operation to two continuous data elements, both of them out-
perform other contrastive codes when conducting the con-
tinuous writes. For uniform write trace ”uniform_w_10”,
HV Code reduces up to 27.6 and 32.2 percent I/O operations
when compared to X-Code and HDP Code, respectively.
When conducting the random write trace, HV Code also
eliminates about 19.1 and 15.1 percent I/O operations when
compared with X-Code and HDP Code, respectively. Even
compared with H-Code, which has optimized partial stripe
writes in read-modify-write mode, HV Code only increases
marginal extra overhead, about 1.0 percent under the ran-
dom write trace. Under the Zipf trace, HV Code eliminates
about 24.6 and 27.0 percent I/O operations when compared
with X-Code andHDPCode respectively.

Fig. 7b illustrates the load balancing rate of various
codes under different traces. Being evaluated by the three
kinds of traces, RDP Code easily concentrates the writes
to the parity disks and thus holds the largest load balanc-
ing rate. The load balance rates of RDP under the valua-
tions of “uniform_w_10” and “random write trace” are
6.7 and 3.7, respectively. Though H-Code disperses the
diagonal parity to the data disks, its uneven distribution
of diagonal parity elements and the dedicated disk for
horizontal parity storage still make it hard to achieve per-
fect load balancing especially when the write length is
small. Its load balancing rates are 2.3 and 1.4 under the
evaluations of “uniform_w_3” and “Zipf write trace”,

respectively. Owing to the even distribution of parity ele-
ments, HV Code, HDP Code and X-Code approach the
perfect load balancing rate (i.e., 1).

The averaged time to complete a write pattern in
every trace is recoded in Fig. 7c. In the figure, RDP Code
needs the most time to complete the absorption of the
write operations to the diagonal parity elements. The
incompatible layout of X-Code and the non-optimal
update complexity of HDP Code also easily extend the
completion time. When performing the uniform trace
“uniform_w_10”, the operation time in HV Code decreases
about 12.8�54.2 percent when compared to those of RDP
Code, HDP Code, and X-Code. Being evaluated by the
Zipf write trace, the averaged time to complete a write pat-
tern in HV Code is about 10.8�45.9 percent less than those
of RDP Code, X-Code, and HDP Code. However, H-Code
outperforms HV Code by reducing 3.8 percent write time
on this metric. This is because the number of participating
disks in H-Code is larger than that of HV Code, making H-
Code better at shunting the write I/O operations. This
comparison also reveals the ”tradeoff” brought by the
shorter parity chain, which keeps down the recovery I/O
for a single disk repair but is weaker at reducing the
amount of the average requests on each disk.

5.1.2 Reconstruct-Write Mode

Fig. 8 shows the evaluation results when performing the
five write traces in reconstruct-write mode.

Fig. 8a first illustrates the average number of I/O opera-
tions derived by a write pattern. We can find that X-Code

Fig. 7. Partial stripe write efficiency in read-modify-write (RMW) mode (p ¼ 13).

Fig. 8. Partial stripe write efficiency in reconstruct-writemode (p ¼ 13).
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usually needs the most number of I/O operations to com-
plete a write pattern. For other four RAID-6 codes except
HDP Code, the horizontal parity chain grants them less
number of I/O operations. Moreover, we can observe that
HV Code needs the least number of I/O operations for a
write pattern. For example, for the trace “uniform_w_10”,
HV Code will reduce I/O operations by 8.7 percent
(compared with RDP Code), 28.9 percent (compared with
X-Code), 16.6 percent (compared with HDP Code), and
15.0 percent (compared with H-Code), respectively.

Fig. 8b shows the capability of the evaluated codes to bal-
ance the I/O distribution when conducting various write
traces in reconstruct-write mode. We can find that both
RDP Code and H-Code suffer from unbalanced I/O distri-
bution. This is because both of them require dedicated disks
to keep parity elements, which will not be read during the
generation of new parity elements in reconstruct-write
mode. On the contrary, other disks will be busy serving
extra intensive read operations to calculate the new parity
elements. For these five write traces, the load balancing rate
of HV Code in reconstruct-write mode is 1.04, 1.02, 1.02,
1.05, and 1.03, respectively, which approach to the perfect
load balancing rate (i.e., 1).

Fig. 8c presents the average time to serve a write pattern
in reconstruct-write mode. We can observe that X-Code
requires the longest time to complete a write pattern since it
derives the maximum number of I/O operations to serve a
write pattern. Meanwhile, we have an interesting finding
that in reconstruct-write mode of partial stripe writes, H-
Code could not preserve its optimization as in read-modify-
write mode. Compared with H-Code, HV Code achieves
better performance in reconstruct-write mode. For example,
HV Code needs 14.3 percent less time to finish a write pat-
tern when compared with H-Code in the write trace
“uniform_w_10”. Compared with X-Code, the saving will
increase to 28.3 percent for the same trace.

5.2 Read Efficiency

5.2.1 Degraded Read Comparison

Evaluation method. Given a encoded file (encoded by RDP
Code, X-Code, HDP Code, H-Code, and HV Code respec-
tively), we let the elements hosted on a disk corrupted (by
either injecting faults or erasing the data on that disk). We
then launch five read traces including four uniform read
traces “uniform_r_L” with the length of L (L :¼ 3; 5; 10; 15,
respectively) and one Zipf read trace. Two metrics are

concerned in this failure case, i.e., the averaged time and the
I/O efficiency for a degraded read pattern.

Specifically, in the running of each read pattern, suppose
L0 denotes the number of elements returned for a degraded
read pattern. When the L requested data elements happen
on the surviving disks, then L0 ¼ L. Otherwise, if the L
requested elements include the lost elements, then the recov-
ery of the lost elements will be triggered by fetching the asso-
ciated elements and finally L0 >¼ L. The needed time for a
degraded read pattern is recorded from the time of issuing
the degraded read pattern to the time when the L0 elements
are retrieved from the disk array to the main memory. We
then evaluate these two metrics under the data corruption
on every disk, and calculate the expectation results in Fig. 9.

With respect to the I/O efficiency (shown in Fig. 9a), HV
Code offers competitive performance by significantly reduc-
ing the number of read elements. When L ¼ 15, HV Code
eliminates about 16.7, 39.0, 8.3, and 12.4 percent degraded
read operations compared with RDP Code, X-Code, HDP
Code, and H-Code, respectively.

For the averaged time of a degraded read pattern (as
shown in Fig. 9b), X-Code requires the maximum time. This
observation also proves the advantage of horizontal parity
when handling degraded read operations. Meanwhile, this
figure also reals that it usually needs more time when the
number of elements to read increases. HV Code signifi-
cantly outperforms X-Code and is a bit more efficient when
compared with RDP Code, HDP Code, and H-Code.

5.2.2 Normal Read Efficiency

Evaluation method. We encode a file by using RDP Code,
X-Code, HDP Code, H-Code, and HV Code, respectively.
After that, we first issue traces with uniform read patterns
that retrieve a constant number of continuous data
elements at a uniformly selected starting point. We
consider three uniform read traces, i.e., “uniform_r_L”,
where L :¼ 3; 10; 15 and L indicates the number of continu-
ous data elements to retrieve in a read pattern. We test 100
such kind of read patterns with different lengths. Besides,
we also launch Zipf trace with 200 read patterns. As the nor-
mal read will not incur extra I/O operation, we only record
the average time to finish a read pattern as shown in Fig. 9c.

We have two observations from Fig. 9c. First, a read pat-
tern with more requested data elements will usually take
more time. For example, for RDP Code, the read pattern
with the length of 3 will take 0.24 s on average. The needed

Fig. 9. Read efficiency (p ¼ 13).
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time will increase to 0.44 s when the number of requested
data elements is 15. Second, all the five codes have simi-
lar performance on normal read. For example, when
L ¼ 10, HV Code takes 2.4 percent more time than
H-Code to serve a read pattern. When L ¼ 15, HV Code
needs 4.0 percent less time compared with H-Code in
reverse. This is because the normal read will not cause
extra I/O operations except the requested data elements,
and finally all the five codes will serve the same number
of requested data elements for a trace.

5.3 The Recovery I/O for Single Disk Failure

In this test, we mainly compare the required I/O to recon-
struct a failed element. An example of single disk repair in
HV Code is shown in Fig. 5b when p ¼ 7, in which at least
18 elements have to retrieve for the recovery of lost elements
and thus it needs three elements on average to repair each
lost element on the failed disk.

Evaluation method. Given an encoded file, for each case of
data corruption, we let the elements on that disk corrupted,
evaluate the minimal averaged elements that are retrieved
from the surviving disks to recover a lost element, and cal-
culate the expectation result.

As shown in Fig. 10a, HV Code requires the minimal
number of the needed elements to repair an invalid element
among the five candidates. The I/O reduction ranges from
2.7 percent (compare with HDP Code) to 13.8 percent (com-
pare with H-Code) when p ¼ 23. The saving will expand to
the range from 5.4 percent (compare with HDP Code) to
39.8 percent (compare with H-Code) when p ¼ 7. This supe-
riority should own to the shorter parity chain in HV Code
compared to those in other codes.

5.4 The Recovery for Double Disk Failures

Evaluation method. Suppose the average time to recover an
element, either data element or parity element, is Re and the
longest length among all the recovery chains is Lc, then the
time needed to finish the recovery can be evaluated by
Lc �Re.

The comparison results are shown in Fig. 10b, which
shows a big difference among the compared codes. When
p ¼ 7, both of X-Code and HV Code respectively reduce
nearly 47.4, 47.4, and 43.2 percent of the reconstruction time
when compared with RDP Code, HDP Code, and H-Code.
This saving will increase to 59.7, 50.0, and 47.4 percent
when p ¼ 23. This huge retrenchment should owe to the
placement of parity elements in X-Code and HV Code, both

of which distribute two parity elements over every single
disk. Every parity element will lead a recovery chain, which
begins at a start point (the start point can be obtained by the
chain intersecting either one of the two failed disks only)
and ends at a parity element. Therefore, four recovery
chains can be parallel executed without disturbing each
other. Both of H-Code and HDP Code though place two
parity elements over every disk, the dependent relationship
between the two kinds of parities in HDP Code could
extend the reconstruction time.

6 CONCLUSION

In this paper, we propose HV Code, which can be deployed
over p� 1 disks (p is a prime number). HV Code evenly
places parities over the disks to achieve the optimization of
I/O balancing. HV Code significantly decreases the I/O
operations induced by the partial stripe write in both read-
modify-write mode and reconstruct-write mode. Mean-
while, the shortened length of parity chain also grants HV
Code a more efficient recovery for single disk failure and
good performance on degraded read operation. HV Code
also accelerates the repair of two disabled disks by deriving
four independent recovery chains. The performance evalua-
tion demonstrates the efficiency brought by HV Code.
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