
Reconsidering Single Disk Failure Recovery
for Erasure Coded Storage Systems: Optimizing

Load Balancing in Stack-Level
Yingxun Fu, Jiwu Shu,Member, IEEE, Zhirong Shen, and Guangyan Zhang

Abstract—The fast growing of data scale encourages the wide employment of data disks with large storage capacity. However, a mass

of data disks’ equipment will in turn increase the probability of data loss or damage, because of the appearance of various kinds of disk

failures. To ensure the intactness of the hosted data, modern storage systems usually adopt erasure codes, which can recover the lost

data by pre-storing a small amount of redundant information. As the most common case among all the recovery mechanisms, the

single disk failure recovery has been receiving intensive attentions for the past few years. However, most of existing works still take the

stripe-level recovery as their only consideration, and a considerable performance improvement on single failure disk reconstruction in

the stack-level (i.e., a group of rotated stripes) is missed. To seize this potential improvement, in this paper we systematically study the

problem of single failure recovery in the stack-level. We first propose two recovery mechanism based on greedy algorithm to seek for

the near-optimal solution (BP-Scheme and STP-Scheme) for any erasure array code in stack level, and further design a rotated

recovery algorithm (RR-Algorithm) to eliminate the size of required memory. Through a rigorous statistic analysis and intensive

evaluation on a real system, the results show that BP-Scheme gains 3.4 to 38.9 percent (the average is 21.2 percent) higher recovery

speed than Khan’s Scheme and 3.4 to 34.8 percent (the average is 19.1 percent) higher recovery speed than Luo’s U-Scheme, while

STP-Scheme owns 3.4 to 46.9 percent (the average is 25.15 percent) and 3.4 to 41.1 percent (the average is 22.3 percent) higher

recovery speed than Khan’s Scheme and Luo’s U-Scheme, respectively.

Index Terms—Single failure recovery, erasure code, stack, storage system

Ç

1 INTRODUCTION

WITH the amazing expansion of data scale, hundreds of
thousands of disks are introduced in modern storage

systems, such as GFS [1], Windows Azure [2], and Ocean-
Store [3]. However, the employment of large number of
disks not only leads to the high complexity of storage sys-
tems, but also increases the probability of data lost or dam-
aged caused by various kinds of disk errors. To enhance
data reliability, erasure codes, which can tolerate several
disk failures by pre-storing a reasonable size of redundant
information, is widely adopted in nowadays.

For erasure coded storage systems, a small amount of
redundant information (called parity) is calculated based on
the kept data elements and once a disk failure happens, the
storage system will retrieve a subset of available data ele-
ments and the pre-stored parity elements from the surviv-
ing disks, so that the lost data will be successfully
recovered. Among the diverse failure patterns in storage
systems, previous study [4] has revealed that most of the
recovery processes (about 99.75 percent) are triggered by
single disk failures. This finding makes the single disk fail-
ure recovery as one of the hottest issues in the literature of
erasure codes in the past few years.

For a long time, it was thought that the single disk failure
recovery is an expensive task, as it usually requires to read
all the remained data elements and a considerable amount
of parity elements. However, things change when Xiang
et al. [5] first propose a hybrid recovery method for RDP
code [6], in which the horizontal parity and diagonal parity
are alternative chosen to achieve the maximum number of
overlapped data elements, so that at most 25 percent ele-
ments to be retrieved will be reduced. A more general
scheme for single disk failure recovery is then provided by
Khan et al. [7], which seeks for the solutions with the mini-
mal retrieved elements for any erasure array code. Inspired
by the fact that the reconstruction time is determined by the
disk loaded with the heaviest requests, Luo and Shu [8]
accordingly proposes two search-based schemes to balance
the load among disks and accelerate the single disk failure
recovery for any erasure array codes.

However, most of previous works still restrict their atten-
tion on the stripe-level recovery for single failures, but miss a
fact that the real storage systems usually rotationally map the
logical disks to physical disks [7],[9],[10], in order to alleviate
the parity disks from being the hot point when suffering from
a huge number of writes (more details will be referred in Sec-
tion 2.1). Though Luo’s schemes well speed up the process of
single disk failure recovery in the stripe-level, it is still
unknown which method is the best choice once moving to
the scenario where logical disks aremapped rotationally.

In this paper, we systematically study this problem and
propose two search-based algorithms called balance prior-
ity scheme (BP-Scheme) and search time priority scheme
(STP-Scheme). BP-Scheme first collects the feasible recovery

� The authors are with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China. E-mail: mooncape1986@126.
com, {shujw, gyzh}@tsinghua.edu.cn, zhirong.shen2601@gmail.com.

Manuscript received 25 Feb. 2015; revised 2 June 2015; accepted 2 June 2015.
Date of publication 8 June 2015; date of current version 13 Apr. 2016.
Recommended for acceptance by R. Brightwell.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2015.2442979

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 5, MAY 2016 1457

1045-9219� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

solutions for each stripe by enumerating all feasible solu-
tions like in Khan’s Scheme, and then starts with a primary
set constituted with a group of feasible solutions picked
from each stripe. BP-Scheme then incrementally replaces
the current solution in each stripe with another one by using
simulated annealing (SA) algorithm [11], once the refined
set achieves the lighter load on the busiest disk, until a near-
optimal solution with the minimal data accesses on the
heaviest disk could be found in the stack-level. Different
from BP-Scheme, STP-Scheme directly generate a feasible
stack-based solution by recovery equations as the initial
solution and utilize the simulated annealing algorithm to
refine this solution, until a solution with satisfied data
accesses on the heaviest disk has been returned.

On the other hand, recovery based on stack-level will
cause huge memory overheads. In order to eliminate the
memory requirement for BP-Scheme and STP-Scheme
realization, we then develop a rotated recovery algorithm
(RR-Algorithm), which iteratively reads a constant number
of elements during each parallel I/O process and invokes
the reconstruction of the lost elements of a stripe once the
needed elements in that stripe are all retrieved. Further-
more, though BP-Scheme and STP-Scheme are both stack-
based algorithms and have similar recovery speed, they
provide quite different I/O cost and search time (compared
to BP-Scheme, STP-Scheme achieves lower search time but
suffers from higher I/O cost). The system designers could
simultaneously consider recovery speed, recovery cost and
search time to select one of them as recovery method, or
implement both of them in order to choose the one with
higher theoretical recovery speed. Our contributions can be
summarized as follows:

� We consider the single disk failure recovery in the
stack-level and propose two search-based schemes
(BP-Scheme and STP-Scheme) to seek for the near-
optimal solution with the minimal retrieved elements
on the heaviest loaded disk. To reduce the memory
overhead, we subsequently provide a RR-Algorithm.

� We make a series of quantity analysis on various
kinds of erasure array codes. The results demonstrate
that the theoretical recovery speed of our proposed
BP-Scheme and STP-Scheme is not only much higher
that of other competitors, but also very close to the
theoretical optimal recovery speed in the stack-level.

� We finally implement our algorithms in a real stor-
age system based on Jerasure-1.2 [12] library, and
evaluate their performance with different configu-
rations. The results show that our proposed
schemes perform much faster than other existing
recovery schemes. Specifically, BP-Scheme gains
3.4 to 38.9 percent (the average is 21.2 percent)
higher recovery speed than Khan’s Scheme and 3.4
to 34.8 percent (the average is 19.1 percent) higher
recovery speed than Luo’s U-Scheme, while STP-
Scheme owns 3.4 to 46.9 percent (the average is
25.15 percent) and 3.4 to 41.1 percent (the average
is 22.3 percent) higher recovery speed than Khan’s
Scheme and Luo’s U-Scheme, respectively.

The rest of this paper continuous as follows: The next
section provides the research background and related

works. Section 3 discusses the problems in existing recovery
schemes, and then gives our motivations. We present the
detailed designs of our proposed algorithms in Section 4,
and discusses their time complexity in Section 5. Section 6
gives a mathematical analysis on the recovery speed. An
intensive evaluations are carried out and the comparison
results are shown in Section 7. Finally, we conclude our
work in the last section.

2 BACKGROUND AND RELATED WORK

In this section, we introduce the background and the related
works. Firstly, we summarize the frequently used symbols
across this paper in Table 1.

2.1 Background: Erasure Coded Storage Systems

Terms and notations. We first define the frequently used terms
based on [10]: Ann-disks erasure coded storage system is par-
titioned into k logic disks (denoted as D0, D1, . . ., Dk�1) that
keep original data, andm ¼ n� k logic disks (denoted as P0,
P1, . . ., Pm�1) that store the parity information.

An erasure coded storage system is also partitioned into
stripes, which are maximal sets of disk blocks that are inde-
pendent on each other in terms of redundancy relations.
Each block is partitioned into a fixed number of elements,
which are fixed-size units of data or parity information and
the number is denoted as w. We label the w elements on the
ith data disk as di;0, di;1, . . ., di;w�1, and on the ith parity disk
as pi;0, pi;1, . . ., pi;w�1. For example, Fig. 1 shows a stripe of
erasure code with n ¼ 8, k ¼ 6,m ¼ 2, and w ¼ 6.

Generator bitmatrix for erasure array codes. All erasure
array codes can be represented by the generator matrix
product. We show an example of Cauchy Reed-Solomon
code with n ¼ 6, k ¼ 4, m ¼ 2, and w ¼ 3 in Fig. 2. As the
figure shows, the kr data elements are organized as a
kr-element bit vector, while the generator matrix is a
wn� wk bit matrix. Based on the generator bitmatrix, we
can easily compute all the parities, i.e., computing the par-
ity information in P0 to Pm�1.

Erasure coded storage systems. Though Fig. 1 shows that
some disks (they are logic disks) only contains parities,
when it comes to the real systems, each physical disk may
contain both data and parities, because the mappings from
the logic disks (i.e., each Di and Pi) to physical disks are
usually rotated. If a disk only contains parities, the storage

TABLE 1
The Frequently Used Symbols

Symbols Description

n The number of total logical disks
k The number of logical data disks
m The number of logical parity disks
w The amount of elements in each column
l The amount of stripes in a stack
Di Logical data disks
Pi Logical parity disks
Si The ith stripe
di;j & pi;j The ith element of the jth column
ei Recovery equation
Edi;j & Edpi;j

All recovery equation of di;j or pi;j
Eall The full set of recovery equations

1458 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 5, MAY 2016

system usually encounters a bottleneck on this disk under
intensive write operations, because the update of parities is
more frequent. Some researches on RAID architectures and
algorithms define these rotated stripes as a stack [13]. We
follow this definition in this work.

Fig. 3 illustrates a widely used case of a stack with the
mappings from logic disks to physical disks [7],[9],[10]. As it
shows, in the first stripe, the first k disks hold data, while the
last m disks store parities. When it comes to the nth stripe,
the first disk and the lastm� 1 disks hold parities, while the
other disks hold data. By rotated the mappings, each physi-
cal disk has the same probability to mapwith each logic disk,
which is effective to alleviate the bottleneck on parity disks.

2.2 Related Work

The conventional method to recover from single failures is
to select k surviving disks and create a kw-element decoding
bitmatrix from the corresponding rows of generator matrix.
The product of the wk elements (in the k surviving disks)
and the converted decoding bitmatrix will generate the orig-
inal wk data elements. In recent years, some researches have
been proposed for improving the recovery speed. In this
section, we introduce these works.

Recovery equations. A recovery equation is composed by a
series of data elements and parity elements, whose XOR
sum equal to zero. If one element of the recovery equation is
lost, we can reconstruct it by other survived elements. For
example, in Fig. 2, d0;0, d1;0, d2;0, d3;0, and p0;0 form a specific
recovery equation.

When some subset F of the elements are failed, each
failed element may belong to a group of recovery equations.

We denote Edi;j and Epi;j as the maximum set of recovery

equations that can be used to reconstruct di;j and pi;j, respec-
tively. Suppose that the maximum set of all equations is Eall.
For each equation ei 2 Eall, if ei \ F ¼ di;j, then ei 2 Edi;j .

Similarly, if ei \ F ¼ pi;j, then ei 2 Epi;j . Recovery equations

will facilitate our discussion and can be used in finding the
hybrid recovery solutions.

Hybrid recovery principle. Xiang et al. [5] first proposed a
hybrid recovery method for RDP code. Thanks to the over-
lapping elements, this method reduces up to 25 percent I/O
cost than the conventional method. We now explain the
hybrid recovery principle based on the example of Fig. 2.

Suppose that D0 is failed, we can recovery all the failed
elements under conventional recovery method as follow:

� d1;0, d2;0, d3;0 and p0;0 to recover d0;0.
� d1;1, d2;1, d3;1 and p0;1 to recover d0;1.
� d1;2, d2;2, d3;2 and p0;2 to recover d0;2.
This method needs to read 12 elements in total. However,

if we use some parity elements in P1, the failed elements can
be reconstructed as follow:

� d1;0, d2;0, d3;0 and p0;0 to recover d0;0.
� d1;1, d2;1, d3;1 and p0;1 to recover d0;1.
� d1;1, d2;0, d3;0, d3;2 and p1;2 to recover d0;2.
Obviously, this method only needs to read 10 elements,

because d1;1, d2;0, and d3;0 are used in recovering two failed
elements. Therefore, based on hybrid recovery principle, we
can reduce the I/O cost on single failure recoveries.

Hybrid recovery methods. Besides [5], Wang et al. [15] pro-
posed a similar method to minimize recovery I/O cost in
EVENODD code [16]. Xu et al. [17] proposed another opti-
mal method for X-Code [18] and have some extend investi-
gate in stack-based recovery. However, this work require the
disks to rotate by following the fixed method they proposed
and actually this rotated method is rarely used in real sys-
tems.Moreover, this method is only applicable for X-Code.

Different from above methods, Khan et al. [7] proposed a
general search-based hybrid recovery method for any era-
sure array code. This method can be simply considered in
3 steps: 1) calculate the set of failed elements F ; 2) calculate
each Edi;j or Epi;j for each element of F ; 3) enumerate all the

feasible solutions based on Edi;j and Epi;j , and search the

optimal solution with the minimal I/O cost. Zhu et al. [19]
proposed another general method to find out the approxi-
mate solution with polynomial complexity.

On the other hand, Luo and Shu [8] pointed out that
the recovery speed is due to the amount of read accesses

Fig. 2. An example of generator bitmatrix of Cauchy Reed-Solomon code
with n ¼ 6n ¼ 6, k ¼ 4k ¼ 4,m ¼ 2m ¼ 2, and w ¼ 3w ¼ 3.

Fig. 3. A widely used case of one stack in practical erasure coded
storage systems.

Fig. 1. An example of one stripe in erasure coded storage systems,
where n ¼ 8n ¼ 8, k ¼ 6k ¼ 6,m ¼ 2m ¼ 2, and w ¼ 6w ¼ 6.

FU ETAL.: RECONSIDERING SINGLE DISK FAILURE RECOVERY FOR ERASURE CODED STORAGE SYSTEMS: OPTIMIZING LOAD... 1459

on the heaviest loaded disk, and proposed two other
general search-based algorithms to generate recovery
schemes(C-Scheme and U-Scheme). Similar to Khan’s
Scheme, C-Scheme searches the solution with the minimal
I/O cost, but it has an extra condition that the read
accesses on the heaviest loaded disk is the minimal. For
example, as Fig. 4 shows, when D0 failed, the solutions in
(a) and (b) satisfy the condition of the minimal I/O cost,
but the I/O cost on the heaviest loaded disk (D1 and D7)
of (b) is also the minimal. Therefore, Khan’s Scheme looks
up the solution either in (a) or in (b), but C-Scheme finds
the solution only in (b).

U-Scheme first searches the solutions with the minimal
read accesses on the heaviest loaded disk, and then chooses
the solution with the minimal total I/O cost. In Fig. 4, U-
Scheme finds out the solution in (c), because the I/O cost on
the heaviest loaded disk is the minimal. The experiment
results in [8] shows that C-Scheme is faster than Khan’s
Scheme, while U-Scheme is even faster than C-Scheme.

3 MOTIVATIONS

As referred above, most recovery methods are only applica-
ble for a specific erasure code and consider the I/O cost in
stripe level. Though Khan’s Scheme and Luo’s schemes are
fit for any erasure array code, both of them pay all of their
attention to the recovery only in the stripe level and things
will be different when we re-consider this recovery problem
in the stack level. In the following, we give ourmotivations.

Recovery in the stack level. Luo’s schemes well balance the
load in each stripe. However, if the failed elements in a
stack can be reconstructed simultaneously, there is still
room for the improvement of recovery speed. For example,
let’s consider the code in Fig. 2 with the mappings from
logic disks to physical disks shown in Fig. 3, and compare
the recovery efficiency in the stripe level and in the stack
level, respectively.

Fig. 5a shows the recovery schemes derived from either
Khan’s Scheme or Luo’s schemes for all six stripes (they find
the same solutions for each stripe). Notice that for the second
stripe (S1), the heaviest loaded disk needs to afford two ele-
ments’ accesses, while in each of other five stripes the heavi-
est loaded disk needs to fetch three elements. If we recover
every stripe independently, it needs to read two elements in
the second stripe and retrieve three elements in each of other
five stripes in the heaviest loaded disk. Suppose it needs t

seconds to read one element on average, the total time of
above read process is 2tþ 3t� 5 ¼ 17t, because each disk
will read elements in parallel. Instead, if we simultaneously
recover these six stripes, the heaviest loaded disk just needs
to read 15 elements, thus we only need 15t seconds to read
the needed elements of all 6 rotated stripes in the stack level.

Load balancing among the stack. When comes to stack level,
it is usually hard for existing recovery schemes to provide
the well balanced I/O distribution, and this weakness will
easily degrade the system’s reliability and performance. For
example, Fig. 5b gives another stack-based recovery
scheme, which needs to access the same amount of elements
(63 elements) as the scheme shown in Fig. 5a, but owns a
lighter load on the busiest disk (only 14 elements’ retrieval).
This observation motivates us the necessity to design the
recovery scheme with balanced I/O distribution.

Search time optimization. Although existing search-based
recovery algorithms adapt for most of erasure coded storage
systems, they cannot apply in some special storage systems
cases such as the system erasure coded by Canghy Reed-
Solomon code with large value of k,m and w [19]. Therefore,
This observation motivate us not only provide one search-
based algorithm for finding out the stack-based recovery

Fig. 4. An recovery example of 14-disks Blaum-Roth code under different recovery schemes when the first disk failed (The blue squares mean the
data elements that require to be accessed, while orange squares indicate the parity elements that need to be read).

Fig. 5. A recovery example in stack-level when the first physical disk
failed (Si means the ith stripe, 04i45).

1460 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 5, MAY 2016

schemes with optimal or near-optimal load balancing, but
also give another polynomial algorithm to find out the
approximate optimal recovery solutions.

Memory optimization. Another important issue is the
memory usage when designing stack-based recovery algo-
rithms, because directly reading all the needed elements of
a whole stack into the memory seems inapplicable in real
systems. For example, suppose a storage system consisting
of 16 disks encoded by RDP code, in which the size of each
element is 16MB (this setting is commonly used in many
community [7],[20]) and the rotated mappings follow Fig. 3.
Under this configuration, a stripe contains 4GB information
(when w ¼ 16) and the stripe-based method needs the mem-
ory with the size of 3:75GB. When it comes to stack-level, if
we directly access all required elements like stripe-based
method, the needed memory will expand to nearly 45GB,
which is unacceptable for most of modern storage servers.

Fortunately, each stripe is independently encoded. As
long as all the needed elements of a stripe are read, we can
recover the lost elements of this stripe, thus don’t have to
wait until all elements of the stack are read. This observation
inspires us that the design of stack-based recovery algorithm
should utilize the independence of each stripe, in order to
achieve a reasonable memory usage while provide the simi-
lar recovery speed as directly accessing all required elements.

4 STACK-BASED RECOVERY ALGORITHMS

In this section, we present the detailed design of our pro-
posed algorithms.

4.1 Balance Priority Scheme

Motivated by the above section which indicates
that there actually exists a recovery solution in the stack
level to provide balanced I/O, we propose the following
BP-Scheme to generate the stack-based recovery scheme
based on simulated annealing algorithm, which is a
generic probabilistic metaheuristic algorithm inspired by
the process of metallurgy annealing to use temperature
and energy, in order to find the approximately optimal
solution in polynomial time. Compared to other greedy-
based algorithms, simulated annealing algorithm is more
configurable and has high probability to converge to the
optimal solution [11],[26].

The key idea of our BP-Scheme is as follows (we assume
a stack contains l stripes and let Si (04i4l� 1) be the ith
stripe of the stack): 1) for each Si, we enumerate all feasible
recovery solutions and find out the alternative solutions
with proper I/O cost (like in Khan’s Scheme), and store
them in a structure RSi; 2) For each RSi, we select one solu-
tion si;j as solutioni, to compose the initial stack-based solu-
tion Solution of simulated annealing algorithm. It can be
easily shown that Solution can recover all the lost elements
of a stack due to the fact that each Si can be recovered by
solutioni. 3) generate Solutionnew by sequently replacing
one solutioni (in Solution) with another si;j of RSi, and
choose whether replace Solution with Solutionnew based on
simulated annealing algorithm. 4) repeat the third step,
until the simulated annealing algorithm return a approxi-
mate optimal stack-based solution Solution. The main steps
of the BP-Scheme is shown in Algorithm 1.

Algorithm 1. Balancing Priority Scheme (BP-Scheme)

1: Initial parameter a
2: for each Si (i 2 ½0; l� 1�) do
3: Eall Calculate all recovery equations
4: minimali ¼ int max
5: for each si;j Eall do
6: if jsi;jj4minimali þ a then
7: RSi si;j
8: if jsi;jj < minimali then
9: minimali ¼ jsi;jj
10: end if
11: end if
12: end for
13: for each si;j 2 RSi do
14: if jsi;jj > minimali þ a then
15: Remove si;j from RSi

16: end if
17: end for
18: end for
19:
20: Initial parameterK,T , andM
21: Solution RSall

22: de ¼ cal energyðSolutionÞ
23: remain times ¼M
24: for i ¼ 0 to l� 1 do
25: for each si;j 2 RSi do
26: Solutionnew ¼ replace stateðSolution; si;j; iÞ
27: denew ¼ cal energyðSolutionnewÞ
28: Dt ¼ denew � de
29: if Dt > 0 or expðDt=T Þ > randðÞ=rand max then
30: Solution ¼ Solutionnew

31: de ¼ denew
32: remain times ¼M
33: if Dt < 0 then
34: T ¼ K � T
35: end if
36: else
37: remain times��
38: end if
39: end for
40: end for
41: Repeat Steps 24-40 until remain times ¼¼ 0
42: Return Solution

In Algorithm 1, we first calculate the recovery equations
of the failed elements in each stripe based on a similar
method as in [14] (see Step 3), and then enumerate all feasi-
ble recovery schemes based on Eall for each stripe by apply-
ing the similar method in [7] (Step 5). After that, we then
define a as the threshold value and store all the schemes
that need to read ½minimali;minimali þ a� elements in RSi

(Step 6-11). Notice that the value of minimali will be itera-
tively updated when the algorithm goes on. When the initia-
tion completes, we re-consider each solution in RSi, exclude
the solution from RSi if it needs to read more than
minimali þ a elements (Step 13-17), and keep all feasible
recovery solution of each stripe that requires
½minimali;minimali þ a� in each RSi.

In the next stage (Step 20-41), we employ the simulated
annealing algorithm to obtain the balanced stack-based
recovery solution. Specifically, we first initiate three

FU ETAL.: RECONSIDERING SINGLE DISK FAILURE RECOVERY FOR ERASURE CODED STORAGE SYSTEMS: OPTIMIZING LOAD... 1461

parameter (K,T,M) that will be used in simulated annealing
algorithm (Step 20), where M is the end-condition. We then
define the stack-based solution as Solution, which is com-
posed of {Solution0, Solution1, � � �, Solutionl�1} selected
from RSall. That is to say, a feasible stripe-based solution si;j
is chosen from RSi to act as the Solutioni. After constructing
the primary Solution, we calculate its energy and set the
end-condition (Step 21-23). Energy is an essential parameter
for simulated annealing algorithm. Here, the higher energy
means the better load balancing.

The following steps will iteratively optimize the Solution
by using the standard simulated annealing algorithm. First,
another feasible solution (Solutionnew) will be generated by
replacing current solutioni with another si;j (Step 26), and
both its energy and the energy gap will be subsequently cal-
culated (Step 27-28). Based on Dt and T , we determine
whether replace Solutionwith Solutionnew. If the replacement
is adopted and the condition Dt < 0 establishes, we then
change T toK � T according to the simulated annealing algo-
rithm (Step 33-34). This chosen process will be repeated until
the remain times ¼ 0 (Step 24-40), i.e., the algorithm can not
find another solution after trying M times. Finally, the BP-
Scheme returns the near optimal solution Solution, which is
the balanced stack-based recovery schemewe are pursuing.

4.2 Search Time Priority Scheme

As referred in Section 3, when n, m, and w become large,
existing stripe-based recovery method should spend a lot of
time for finding the proper recovery scheme, which maybe
unacceptable in some cases. Though BP-Scheme utilize the
simulated annealing algorithm with polynomial time com-
plexity to optimize the stack-based scheme, it also searches
the whole stripe-based solution space and thus cannot run
faster than existing recovery methods. Inspired by this
observation, we propose the following STP-Scheme for find-
ing the approximately optimal stack-based solution in poly-
nomial time.

The key idea of STP-Scheme is as follows: 1) for each
failed element, we calculate all recovery equations for
recovering each of them and store these equations in
Efailed elements; 2) we generate the initial stack-based solution
Solution by randomly select one equation for recovering
each failed element; 3) we randomly replace some equations
in Solution by other proper equation of Efailed elements to gen-
erate another stack-based solution Solutionnew, and calculate
the energy of both Solution and Solutionnew; 4) we use the
simulated annealing algorithm to optimize the Solution,
until the algorithm return the Solution that we pursue. The
main steps of the STP-Scheme is given in Algorithm 2.

In Algorithm 2, we first initiate three parameters (K,T,
M) for standard simulated annealing algorithm, and initi-
ate one parameter R for controlling the difference
between Solutionnew and Solution (Step 1). The setting
and usage of parameters (K,T,M) are the same as those in
the second stage of Algorithm 1, while R is a integer
number that indicates the number of recovery equations
that need to be changed. Afterward, we generate Eall and
Efalied element that compose of all recovery equations for
each failed element by the similar method as Algorithm
1, and choose one recovery equation for each failed ele-
ments to constitute an initial stack-based solution

Solution (Step 2-4). Obviously, we can recover all failed
elements based on Solution, because each failed elements
can be recovered by its relative recovery equation.

Algorithm 2. Search Time Priority Scheme

1: Initial parameterK,T , R andM
2: Eall Calculate all recovery equations
3: Efailed elements Eall

4: Solution Efailed elements

5: de ¼ cal energyðSolutionÞ
6: remain times ¼M
7: while remain times > 0 do
8: Eneed replace Randomly select R equations in Solution
9: Enew select equationsðEneed replace; Efailed elementsÞ
10: Solutionnew ¼ generate solutionsðSolution; EnewÞ
11: denew ¼ cal energyðSolutionnewÞ
12: Dt ¼ denew � de
13: if Dt > 0 or expðDt=T Þ > randðÞ=rand max then
14: Solution ¼ Solutionnew

15: de ¼ denew
16: remain times ¼M
17: if Dt < 0 then
18: T ¼ K � T
19: end if
20: else
21: remain times��
22: end if
23: end while
24: Return Solution

The following steps are used to optimize the Solution.
First, we randomly select R failed elements and denote their
relative recovery equations in Solution as Eneed replace, and
generate a replacement equation set Enew by choosing
another recovery equation for each selected failed elements,
and then replace each equation of Eneed replace by its relative
equation in Enew, in order to generate another stack-based
solution Solutionnew (Step 8-10). Then, we calculate the
energy gap between Solutionnew and Solution, and utilize
the simulated annealing algorithm to determine whether
replace Solution with Solutionnew. The afterward steps
(step 13-22) are standard simulated annealing algorithm
and are the same as Step 29-37 in Algorithm 1, thus we don’t
explain it again. Finally, the STP-Scheme returns the near
optimal solution Solution, which is the balanced stack-
based recovery scheme that found in polynomial time.

4.3 Rotated Recovery Algorithm

Based on BP-Algorithm and STP-Algorithm, we can find out
the near-optimal solution Solution for recovering the lost ele-
ments in stack-level. However, as referred in Section 3,
directly applying the stack-based schemes (BP-Scheme and
STP-Scheme) and simultaneously reading all needed ele-
ments in each stack will take up a considerable size of mem-
ory, which is usually l times larger than the used memory in
the stripe-based recovery algorithm. To address this weak-
ness, we design and implement RR-Algorithm, in order to
save memory space while providing the similar recovery
speed as simultaneously reading all needed elements.

The key idea of RR-Algorithm is to set a parameter b

for denoting the amount of elements that will be read in

1462 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 5, MAY 2016

each I/O process, and to run two threads (read thread and
recovery thread) simultaneously. The read thread retrieve
the needed elements all the way, until the rest memory is
not enough for each disk read b elements. The recovery
thread will recalculate the information of the lost elements
of each stripe when all needed elements of this stripe are
read, because the encoding of each stripe is independent.
The detailed procedures of our algorithm is presented in
Algorithm 3.

Algorithm 3. Rotated Recovery Algorithm

1: Initial parameter read sche, reco sche, and b

2: read str ¼ 0
3: reco str ¼ 0
4: Two threads run synchronously.
5: Read_Thread:
6: while read str < stack:num do
7: Read Elementsðdata; read sche;bÞ
8: read stripe the last stripe that all needed elements of it

have been fetched.
9: end while
10: Recovery_Thread:
11: while recovery stripe < stack:num do
12: if reco str < read str then
13: Recoveryðdata; recovery stripeÞ
14: FreeMemoryðdata; recovery stripeÞ
15: recovery stripeþþ
16: end if
17: end while

In Algorithm 3, we initiate three essential parameters:
read sche, reco sche records the needed elements and the
XOR relationship to recover each lost element respectively,
which are generated by BP-Scheme; b is the number of ele-
ments that will be read in each parallel I/O process.

Afterwards, two variants read str and reco str are
defined. read str represents the stripe, in which all the
needed elements for the recovery has been currently
retrieved, while reco str records the number of stripes that
has finished the recovery. These two variants are set to be
zero at the beginning. During the recovery, two threads
are simultaneously executed, where the read threadwill take
the constant number of b elements from the disks into the
memory (Step 6-9) and the other thread will repair the lost
elements based on the elements in the memory (Step 11-17).
The read thread will repeat until all the requested elements
are all read (when the memory is not enough, it will wait for
recovery thread free memory). The recovery thread will
recover lost elements in the stripe reco str (Step 13), free the
useless memory (Step 14), and increase the value of reco str
by 1. These two processes will go on until all the lost
elements in the stack have been recovered.

5 ANALYSIS OF SEARCH COMPLEXITY

We now analyze the time complexity of our proposed
schemes by comparing with Khan’s Scheme and Luo’s
U-Scheme. The goal of the analysis is to illustrate that
the search complexities of BP-Scheme and STP-Scheme
are nearly or better than existing stripe-based schemes.

We first suppose that a stack contains l different logic
disk failed cases, so that the stripe-based methods (Khan’s

Scheme and Luo’s U-Scheme) need to search l different disk
failure patterns. For the ith stripe Si (04i4l� 1), we
assume each of the w failed data elements have jEdi;j j
(04j4w� 1) different recovery equations, then the time
complexity of both Khan’s Scheme and Luo’s U-Scheme are

OðPl
i¼0

Qw
j¼0 jEdi;j jÞ.

As referred in Algorithm 1, the time complexity of the first
stage of BP-Scheme is also OðPl

i¼0
Qw

j¼0 jEdi;j jÞ, because both
the first stage of BP-Scheme and Khan’s Scheme need to enu-
merating all feasible stripe-based solutions, and calculating
each feasible solution’s I/O cost. Though Luo’s U-Scheme
has the same time complexity with Khan’s Scheme and the
first stage of BP-Scheme, it usually needs more running time
due to the fact that calculating the I/O cost on each disk is
much slower than calculating the total I/O cost.

On the other hand, since simulated annealing algorithm
is polynomial time, the second stage of BP-Scheme and
STP-Scheme are polynomial time as well, because they are
just different applications of simulation annealing algo-
rithm. According to Algorithm 1 and Algorithm 2, the time
complexity of both STP-Scheme and the second stage of BP-
Scheme should be polynomial with l, w, and m. Compared
to the first stage of BP-Scheme, the complexity of the second
stage of BP-Scheme is negligible. Therefore, the time com-

plexity of BP-Scheme is OðPl
i¼0

Qw
j¼0 jEdi;j jÞ, which is the

same as Khan’s Scheme and Luo’s U-Scheme. STP-Scheme
can be completed in polynomial time.

In addition, we evaluate the real search time of above
schemes in Section 7.4, in order to verify our analysis and
examine our proposed schemes’ efficiency.

6 ANALYSIS OF RECOVERY SPEED

In this section, we analyze the recovery speed of different
schemes theoretically. The goal of our analysis is to illus-
trate that our proposed BP-Scheme and STP-Scheme not
only provide much higher recovery speed than Khan’s
Scheme and Luo’s schemes, but also achieve the approxi-
mately optimal recovery speed in the stack-level. We select
the scenario that a stack contains n different stripes shown
in Fig. 3 for comparison, because this scenario is commonly
used in erasure code community [7],[9],[10].

6.1 The Analysis Metrics

We analyze the recovery speed of different schemes by
defining recovery factor and its lower bound.

Recovery Factor. We define recovery factor as the total
amount of parallel read accesses divided by the total num-
ber of elements of each disk in a stack (i.e., n� w), where
one parallel read access means each disk parallel reads one
element. For example, we consider the example in Fig. 5a: if
we read one stripe into memory in one round, it needs two
parallel read accesses in the second stripe and three parallel
read accesses in other stripes, thus the recovery factor is
ð3þ 2þ 3þ 3þ 3þ 3Þ=18 ¼ 0:944; if we simultaneous read
all n stripes into memory in one round, the recovery factor
is 15=18 ¼ 0:833.

We use max readba to represent the number of elements
that need to be read on the heaviest disk among Sa to Sb,
and use u to denote the smaller number between irþ r� 1

FU ETAL.: RECONSIDERING SINGLE DISK FAILURE RECOVERY FOR ERASURE CODED STORAGE SYSTEMS: OPTIMIZING LOAD... 1463

and n� 1. For a certain recovery scheme, if we simulta-
neously read r stripes into memory in one round, the recov-
ery factor will be calculated by the following equation.

recovery factor ¼
Pn

r�1
i¼0 max readuir

nw
(1)

Specifically, we usemax readi to represent the amount of
elements that need to be read on the heaviest disk of stripe
Si (04i4n� 1), and use max readall to denote the number
of required elements on the heaviest disk of a whole stack.
Under these definitions, if we read one stripe into memory
in one round (i.e., r ¼ 1), the recovery factor can be calcu-
lated by the following equation.

recovery factor ¼
Pn�1

i¼0 max readi
nw

: (2)

However, if we simultaneously read all n stripes into
memory (i.e., r ¼ n) in one round, the recovery factor
should be computed as follows.

recovery factor ¼ max readall
nw

: (3)

It is easy to deduce that recovering one failed element
needs recovery factor parallel read accesses on average.
Therefore, the recovery speed should be linear with

1
recovery factor, because both recalculating broken elements and

rewriting to the new disk can be processed in parallel with
the reading process [19].

Lower Bound. We deduce the lower bound of recovery
factor by the following equation.

Lower Bound ¼ d
Pn�1

i¼0 minimali=ðn� 1Þe
nw

: (4)

In Equation (4),
Pn�1

i¼0 minimali is the minimal number of
elements that requires in a stack, while n� 1 presents the
survived n� 1 physical disks. According to pigeonhole
principle, at least one physical disk needs to read

dPn�1
i¼0 minimali=ðn� 1Þe elements, thus both the

Pn�1
i¼0 max readi and max readall must no less than

dPn�1
i¼0 minimali=ðn� 1Þe. Therefore, the recovery factor

over any erasure codes must no less than

d
Pn�1

i¼0 minimali=ðn�1Þe
nw . For example, in the case of Fig. 5a, the

lower bound is dð10þ9þ10þ10þ12þ12Þ=5e6�3 ¼ 0:7.

6.2 The Analysis Methodology

We select Khan’s scheme [7] and Luo’s U-Scheme [8] as
comparison, because these schemes can adapt for any era-
sure array codes and other schemes like in [5] can be found
by either of these schemes. The analyzed erasure codes and
parameters are shown in Table 2.

For Khan’s Scheme and Luo’s U-Scheme, we follow the
original paper’s recovery process and calculate the recovery
factor by Equation (2) (i.e., r ¼ 1). For BP-Scheme and
STP-Scheme, we select parameter T ¼ 1, K ¼ 0:999, a ¼
dminimali=100e, R ¼ 2, and compute the recovery factor
based on Equation (3) (i.e., r ¼ n), because they are imple-
mented by RR-Algorithm which assures the memory space

is enough across the stack-based recovery process. In order
to clarify the gap between these schemes, all our results nor-
malize the value of lower bound as one.

6.3 The Analysis Results

We now analyze the recovery speed of different recovery
schemes by the methodology referred above, and show the
normalized recovery factor over different erasure codes in
Fig. 6. As the figure shows, BP-Scheme and STP-Scheme
provides much lower recovery factor than Khan’s Scheme
and Luo’s U-Scheme, and very close to the lower bound.
Specifically, for RAID-6 codes (Bluam-Roth code RDP
code, EVENODD code, Liberation Code), the recovery fac-
tor of BP-Scheme and STP-Scheme is 3.4 to 22.8 percent
lower than Khan’s Scheme, 3.4 to 17.1 percent lower than
Luo’s U-Scheme, and just 0 to 4.1 percent or 0 to 5.0 percent
higher than the lower bound. Since the recovery speed
should be linear with 1

recovery factor, the recovery speed of
both BP-Scheme and STP-Scheme will be 3.5 to 29.5 percent
higher than Khan’s Scheme, 3.5 to 20.6 percent higher than
Luo’s U-Scheme, and only 0 to 3.5 percent or 0 to 5.3 percent
lower than the optimal recovery speed, respectively.

For m ¼ 3 codes (Generalized RDP code and STAR
code), BP-Scheme and STP-Scheme achieves 0.9 to
14.3 percent and 2.6 to 10.7 percent higher recovery factor
than the lower bound respectively, because the recoveries
from parity disk failures cause intensive I/O in the adja-
cent physical disks of the failed physical disk, which is
hard to balance when m equals to 3. Compared with
Khan’s Scheme, BP-Scheme and STP-Scheme gains 11.3 to
28.0 percent and 10.5 to 32.0 percent lower recovery fac-
tor; compared with Luo’s U-Scheme, BP-Scheme and STP-
Scheme achieves 6.0 to 25.9 percent and 7.1 to 29.2 percent
lower recovery factor, respectively. All these results indi-
cate that both BP-Scheme and STP-Scheme will provide
much higher recovery speed than other recovery schemes.

We now compare the proposed STP-Scheme with BP-
Scheme: STP-Scheme provides �3.3 to 5.0 percent higher
recovery factor than BP-Scheme when m ¼ 2, while gains
�5.6 to 5.0 percent higher recovery factor when m ¼ 3,
because 1) both BP-Scheme and STP-Scheme utilize the
polynomial algorithm and don’t search the whole solution
space, thus cannot certainly reach the optimal solution; 2)
STP-Scheme speeds a little more time to find out an approx-
imately optimal solution than BP-Scheme when n is small,
but spends much less time than BP-Scheme when n is large;
3) compared to STP-Scheme, BP-Scheme has one limited

TABLE 2
The Erasure Codes and Paraments we Tested

(For each k, We Select the Smallest w if They are Matched)

Code k w Restrictions

Cauchy-RS (m ¼ 2) 5-14 8 None
Blaum-Roth (m ¼ 2) 5-14 6-16 wþ 1 prime > k
RDP (m ¼ 2) 5-14 6-16 wþ 1 prime > k
EVENODD (m ¼ 2) 5-14 4-16 wþ 1 prime5k
Liberation (m ¼ 2) 5-14 7-17 w prime5k
Cauchy-RS (m ¼ 3) 4-13 8 None
Generalized RDP (m ¼ 3) 4-13 4-16 wþ 1 prime > k
STAR (m ¼ 3) 4-13 4-12 wþ 1 prime5k

1464 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 5, MAY 2016

condition that a equals to dminimali=100ewhich assures the
low I/O cost but limits its balancing in some level. Combine
with these factors, the recovery factor of BP-Scheme and
STP-Scheme should be close. The analysis results also con-
firm this concern.

In addition, since the lower bound is calculate by pigeon-
hole principle, it is probably that the optimal solution also
can not achieve the lower bound. Therefore, combined with
above analysis, BP-Scheme will achieve very good speed for
single disk failure recovery.

7 EXPERIMENT EVALUATIONS

We build a number of experiments to evaluate the efficiency
of single disk failure recovery with different recovery
schemes. We implement Khan’s Scheme, Luo’s U-Scheme,
BP-Scheme and STP-Scheme by C++ language, and imple-
ment all erasure codes of Table 2in real storage nodes based
on Jerasure-1.2 library [12], which is an open source library
and commonly used in erasure code community [10]. The
mappings from logic disks to physical disks in our storage
system follow Fig. 3, which is a commonly used choice in
erasure code community [7], [9], [10]. To eliminate the influ-
ence of parallelism, we implement Khan’s Scheme and
Luo’s U-scheme by a parallel recovery method like in [19],
i.e., the read process and the recovery process are running
concurrently.

7.1 Experimental Setup

Our experiments are run on a machine and a disk array. The
hardware environment of the machine is an Intel Xeon
X5472 processor and 12 GB memory. The disk array con-
tains 16 Seagate/Savvio 10K.3 SAS disks, where the model
number is ST 9300603SS. Each disk has 300 GB capability
and 10,000 rpm. The machine and disk array are connected
by a fiber cable with 800 MB bandwidth. The operation sys-
tem of the machine is SUSE with Linux fs91 3.2.16. Our
experiments set each element with a size of 16 MB, which is

a typical choice in storage systems [7],[20]. All tests mirror
the configurations in Table 2, evaluating a series of erasure
codes with k ¼ 7 to 16 and m ¼ 2; 3. For each k, we choose
the smallest w of the table if they are permitted. In addition,
we select the parameter b ¼ w for RR-Algorithm.

7.2 Evaluation of Recovery Speed

We evaluate the recovery speed of our proposed schemes
by comparing with Khan’s Scheme and Luo’s U-Scheme.
The goal of these experiments is to verify our theoretical
analysis and to demonstrate that BP-Scheme and STP-
Scheme gains higher recovery speed than these existing
schemes. For each erasure code, we consider 20 stacks and
each stack contains n stripes, thus we have to recover up to
87.04GB data from the failed physical disk.

The recovery speed over different erasure codes with m ¼ 2m ¼ 2.
Fig. 7 shows the recovery speed for various m ¼ 2 erasure
codes with different schemes and illustrates that BP-Scheme
and STP-Scheme provide much higher recovery speed than
Khan’s Scheme and Luo’s U-Scheme. In statistics, for
Cauchy Reed-Solomon code, BP-Scheme gains 14.6 to
26.5 percent higher recovery speed than Khan’s Scheme and
10.6 to 18.7 percent higher speed than Luo’s U-Scheme, and
STP-Scheme achieves 14.6 percent to 26.5 percent higher
speed than Khan’s Scheme and 10.6 to 18.7 percent higher
speed than Luo’s U-Scheme; for Blaum-Roth code, BP-
Scheme gains 16.4 to 23.7 percent higher recovery speed
than Khan’s Scheme and 7.4 to 20.3 percent higher speed
than Luo’s U-Scheme, while STP-Scheme gains 14.9 to
23.8 percent higher recovery speed than Khan’s Scheme and
owns 7.4 to 20.3 percent higher speed than Luo’s U-Scheme.
In addition, STP-Scheme achieves polynomial time com-
plexity provides a little higher recovery speed than BP-
Scheme, it suffers from a little higher recovery cost, because
BP-Scheme uses parameter a to ensure the low I/O cost
while STP-Scheme has no restriction on I/O cost.

The improvement in different codes are quite different
due to the fact that each code has its own properties. For

Fig. 6. The normalized recovery factor over different erasure codes.

FU ETAL.: RECONSIDERING SINGLE DISK FAILURE RECOVERY FOR ERASURE CODED STORAGE SYSTEMS: OPTIMIZING LOAD... 1465

RDP code, Xiang et al. in [5] has proved that it can achieve
well balancing in each stripe under the standard forms (i.e.,
n ¼ 8; 12; 14), while other forms also have well balanced
stripe-based solutions that can be found by Luo’s U-
Scheme. On the other hand, the generating of Cauchy Reed-
Solomon code is not well facilitated for load balancing in
each stripe, thus the stripe-based method can not provide
well recovery speed.

In summary, BP-Scheme provides 3.4 to 28.6 percent
higher recovery speed than Khan’s Scheme and achieves 3.4
to 20.3 percent higher speed than Luo’s U-Scheme, while
STP-Scheme gains 3.4 to 29.7 percent higher speed than
Khan’s Scheme and owns 3.4 to 20.3 percent higher speed
than Luo’s U-Scheme. Notice that our analysis results indi-
cate that BP-Scheme will provide 3.5 to 29.5 percent higher
speed than Khan’s Scheme in m ¼ 2 codes, but the actual
improvement is 3.4 to 28.6 percent. This is because our anal-
ysis assumes that the XOR computation operations and
read operations are completely running in parallel. But in
real systems, in order to save memory usage, the parallelism
of RR-Algorithm may be a little worse than that of parallelly
stripe-based recovery method. Overall, the experiment
results match the theoretical analysis closely and indicate
that the recovery speed of BP-Scheme and STP-Scheme is
much higher than other schemes overm ¼ 2 codes.

The Recovery Speed over Different Erasure Codes with m ¼ 3.
We now consider the erasure codes withm ¼ 3, and show the
experiments result in Fig. 8. As the figure shows, for Cauchy
Reed-Solomon code, BP-Scheme gains 23.5 to 32.5 percent
higher speed than Khan’s Scheme and 18.5 to 29.8 percent
higher speed than Luo’s scheme, and STP-Scheme provides
21.2 to 36.0 percent higher speed than Khan’s Scheme and
16.4 to 33.2 percent higher speed than Luo’s U-Scheme; for
STAR code, BP-Scheme achieves 24.7 to 38.9 percent higher
speed than Khan’s Scheme and 17.5 to 34.8 percent higher
speed than Luo’s Scheme, while STP-Scheme owns 21.8 to
46.9 percent and 14.7 to 41.1 percent higher speed thanKhan’s
Scheme and Luo’s U-Scheme respectively, which illustrate
that BP-Scheme runs much faster than Khan’s Scheme and
Luo’s U-Scheme and STP-Scheme runs a little faster than BP-
Schemewith a trade-off on I/O cost.

The amount of disks is another important factor in m ¼ 3
codes, because each code with distinct amount of disks will
provide different balancing. For example, in 12-disks Gener-
alized RDP code, the improvement between BP-Scheme and
Luo’s Scheme is only 6.4 percent, because this code provides
an well balanced stripe-based solution that can be found by
Luo’s U-Scheme when n ¼ 12. In other cases of n, it does not
have well balanced stripe-based solution and thus we can
improve the recovery speed by balancing the I/O among the

Fig. 7. The recovery speed over different erasure codes withm ¼ 2m ¼ 2 (Unit: MB/s).

Fig. 8. The recovery speed over different erasure codes withm ¼ 3m ¼ 3 (Unit: MB/s).

1466 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 5, MAY 2016

stripes of each stack. On the other hand, the improvement in
m ¼ 3 codes is much higher than that in m ¼ 2 codes,
becausem ¼ 3 codes have two parity disk failed cases.When
suffering from parity disk failures, the number of elements
that requires on heaviest loaded disk in Khan’s Scheme and
Luo’s U-Scheme is w, which is not well balanced. However,
BP-Scheme and STP-Scheme can balance them in other corre-
sponding stripes, thus providemuch higher speed.

In summary, for m ¼ 3 codes, BP-Scheme provides 12.6
to 38.9 percent higher recovery speed than Khan’s Scheme
and 6.4 to 34.8 percent higher recovery speed than Luo’s U-
Scheme, while STP-Scheme gains 11.6 to 46.9 percent and
7.7 to 41.1 percent higher speed than Khan’s Scheme and
Luo’s U-Scheme, respectively. The results match the analy-
sis closely, and illustrate that our proposed schemes pro-
vide much better performance than other schemes.

7.3 Evaluation of Memory Overhead

We now evaluate the memory overhead of BP-Scheme and
STP-Scheme in different erasure codes. The goal of these
experiments is to illustrate that the memory overhead of
our proposed schemes is acceptable. We evaluate the
memory overhead of Khan’s Scheme, Luo’s U-Scheme, BP-
Scheme with RR-Algorithm, STP-Scheme with RR-Algo-
rithm in real system, and calculate the memory overhead
of non-optimized STP-Scheme by simulations.

Fig. 9 illustrates the real memory overhead of these
schemes. As the figure shows, the memory overheads of
BP-Scheme and STP-Scheme after optimized are close,
because these schemes are both stack-based. On the other
hand, BP-Scheme and STP-Scheme (after optimized) need
to utilize 1-2 times more memory space than Khan’s Scheme
and Luo’s U-Scheme, because the stack-based recovery
methods need to simultaneously consider multiple stripes
rather than only one stripe, thus need more memory space.
Fortunately, even when n ¼ 16, the maximum memory
overhead of both BP-Scheme and STP-Scheme (with RR-

Algorithm) in our experiments is no more than 10G, which
is acceptable in state-of-the-art servers.

7.4 Evaluation of Search Time

We evaluate our proposed schemes over Blaum-Roth code,
RDP code, EVENODD code, Liberation code, Generalized
RDP code and STAR code with 16 disks and Cauchy-RS
code with 20 disks, and record the real search time of these
schemes. The evaluation machine has four cores and 12 GB
RAM, where each core has 3.0 GHz dominant frequency
and 12 MB L2-Cache.

Table 3 gives themain configurations of the tested erasure
codes and the search time of different recovery schemes.
As the table shows, the time overhead of BP-Scheme is just
0-9 seconds higher than Khan’s Scheme, which indicates
that the time complexity of BP-Scheme and Khan’s Scheme
are close. STP-Scheme only executes 4-15 seconds over all
tested configurations, because it has polynomial complexity.
Luo’s U-Scheme runs slower than other schemes, because
calculating the I/O cost on the heaviest loaded disk is more
complex than calculating the total I/O cost. Furthermore,
though all tested schemes can find out the optimal or satis-
fied solution over most configurations when n ¼ 16, when
comes to Cauchy-RS code with 20-disks, Khan’s Scheme,
Luo’s U-Scheme and our proposed BP-Scheme cannot find
out a satisfied solution in 24 hours. In summary, the search
time of BP-Scheme is very close to Khan’s scheme and is
acceptable for a majority of erasure codes with reasonable
configurations, while STP-Scheme’s search time is just sev-
eral seconds over all tested cases.

8 CONCLUSIONS

In this paper, we have proposed two recovery generation
schemes: BP-Scheme and STP-Scheme, in order to improve
the speed on single disk failure recovery in the stack-level.
BP-Scheme is a search-based algorithm, which first enumer-
ates all the feasible solutions of each stripe to seek for a set
of alternative stripe-based solutions, and then finds out a

Fig. 9. The memory overhead of different recovery schemes (Unit: GB).

FU ETAL.: RECONSIDERING SINGLE DISK FAILURE RECOVERY FOR ERASURE CODED STORAGE SYSTEMS: OPTIMIZING LOAD... 1467

near-optimal stack-based recovery scheme based on simu-
lated annealing algorithm. STP-Scheme utilizes simulated
annealing algorithm directly, in order to find out the near-
optimal stack-based recovery scheme in polynomial time.
Furthermore, we also proposed a RR-Algorithm for the real-
ization of BP-Scheme and STP-Scheme to reduce the mem-
ory overhead.

We conduct a series of rigorous statistic analysis and
intensive evaluations on a real system, in order to evaluate
the recovery speed of our proposed schemes on both theory
and practice. The analysis and experiment results show that,
BP-Scheme and STP-Scheme not only gain much higher
recovery speed than other existing schemes, but also provide
an acceptable memory overhead. Specifically, BP-Scheme
provides 3.4 to 38.9 percent (the average is 21.2 percent)
higher recovery speed than Khan’s Scheme and 3.4 to
34.8 percent (the average is 19.1 percent) higher speed than
Luo’s U-Scheme, while STP-Scheme gains 3.4 to 46.9 percent
(the average is 25.15 percent) higher recovery speed than
Khan’s Scheme and 3.4 to 41.1 percent (the average is
22.3 percent) higher speed than Luo’s U-Scheme over the
tested erasure codes.

ACKNOWLEDGMENTS

The authors would like to greatly appreciate the anony-
mous reviewers for their insightful comments. This work
was supported by the National Natural Science Foundation
of China (Grant No. 61232003, 61327902), the National High
Technology Research and Development Program of China
(Grant No. 2013AA013201), and the State Key Laboratory of
High-end Server and Storage Technology (Grant No.
2014HSSA02). A 10-page conference version of this paper
appeared in Proceedings of the 33th IEEE Symposium on
Reliable Distributed Systems (SRDS), October 2014 [27]. In
this journal version, we include another stack-based recov-
ery algorithm with polynomial complexity on CORE. The
corresponding author is J. Shu.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S. Leung, “The google file system,”
in Proc. 19th ACM Symp. Operating Syst. Principles, 2003, pp. 29–43.

[2] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S.
Mckelvie, Y. Xu, S, Srivastav, J. Wu, H. Simitci, J. Haridas, C.
Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R.
Abbasi, A. Agarwal, M. Fahim-ul-Haq, M. Ikram-ul-Haq, D.
Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran,
K. Manivannan, and L. Rigas, “Windows azure system: A highly
available cloud storage service with strong consistency,” in Proc.
23rd ACM Symp. Operating Syst. Principles, 2011, pp. 143–157.

[3] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D.
Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells, W.
Weimer, and B. Zhao, “Oceanstore: An architecture for global-
scale persistent storage,” in Proc. ACM 9th Int. Conf. Archit. Support
Programm. Lang. Oper. Syst., 2000, pp. 190–201.

[4] E. Pinheiro, W. Weber, and L. Barroso, “Failure trends in a large
disk drive population,” in Proc. 5th USENIX Conf. File Storage
Technol., 2007, p. 5.

[5] L. Xiang, Y. Xu, J. Lui, and Q. Chang, “Optimal recovery of single
disk failures in RDP code storage systems,” in Proc. 12th ACM
SIGMETRICS/PERFORMANCE Joint Int. Conf. Meas. Model. Com-
put. Syst., 2010, pp. 119–130.

[6] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,
and S. Sankar, “Row-diagonal parity for double disk failure
correction,” in Proc. 3rd USENIX Conf. File Storage Technol., San
Francisco, CA, USA, Mar. 2004, p. 1.

[7] O. Khan, R. Burns, J. Plank, and W. Pierce, “Rethinking erasure
codes for cloud file systems: Minimizing I/O for recovery and
degraded reads,” in Proc. 10th USENIX Conf. File Storage Technol.,
2012, p. 20.

[8] X. Luo, and J. Shu, “Load-balanced recovery schemes for single-
disk failure in storage systems with any erasure code,” in Proc.
42nd IEEE Int. Conf. Parallel Process., Oct. 2013, pp. 552–561.

[9] J. Plank, “The RAID-6 liberation codes,” in Proc. USENIX Conf. File
Storage Technol., Feb. 2008, p. 7.

[10] J. Plank, J. Luo, C. Schuman, L. Xu, and Z. W. O’Hearn, “A perfor-
mance evaluation and examination of open-source erasure coding
libraries for storage,” in Proc. 7th USENIX Conf. File Storage Tech-
nol., Feb. 2009, pp. 253–265.

[11] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[12] J. Plank, S. Simmerman, and C. Schuman, “Jerasure: A library
in C/C++ facilitating erasure coding for storage applications-
Version 1.2,” Dept. Comput. Sci., Univ. Tennessee, Knoxville,
TN, USA, Tech. Rep. CS-08-627, 2008.

[13] J. Hafner, V. Deenadhayalan, T. Kanungo, and K. Rao,
“Performance metrics for erasure codes in storage systems,” IBM
Res., Yorktown Heights, NY, USA, Tech. Rep. RJ 10321, 2004.

[14] K. Greenan, X. Li, and J. Wylie, “Flat XOR-based erasure codes in
storage systems: Constructions, efficient recovery, and tradeoffs,”
in Proc. 26th Symp. IEEE Mass Storage Syst. Technol., 2010, pp. 1–14.

[15] Z. Wang, A. Dimakis, and J. Bruck, “Rebuilding for array codes in
distributed storage systems,” in Proc. IEEE GLOBECOM Work-
shops, 2010, pp. 1905–1909.

[16] M. Blaum, J. Bruck, and J. Nebib, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,”
IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 46–59, Jun. 1999.

[17] S. Xu, R. Li, P. Lee, Y. Zhu, L. Xiang, Y. Xu, and J. Lui, “Single disk
failure recovery for X-code-based parallel storage systems,” IEEE
Trans. Comput., vol. 63, no. 4, pp. 995–1007, Jan. 2013.

[18] L. Xu, and J. Bruck, “X-Code: MDS array codes with optimal
encoding,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 272–276,
Jan. 1999.

[19] Y.Zhu, P. Lee, Y. Hu, L. Xiang, and Y. Xu, “On the speedup of Sin-
gle-disk failure recovery in XOR-coded storage systems: Theory
and practice,” in Proc. 28th IEEE Mass Storage Syst. Technol., 2012,
pp. 1–12.

[20] J. Schindler, S. W. Schlosser, M. Shao, A. Ailamaki, and G. R.
Ganger, “Atropos: A disk array volume manager for orchestrated
use of disks,” in Proc. USENIX Conf. File Storage Technol., Mar.
2004, pp. 159–172.

TABLE 3
The Time Overhead of Different Recovery Schemes over Different Erasure Codes

Erasure Code k w Khan’s Scheme Luo’s U-Scheme BP-Scheme STP-Scheme

Blaum-Roth (m ¼ 2) 14 16 9s 11s 12s 4s
RDP (m ¼ 2) 14 16 42s 66s 44s 4s
EVENODD (m ¼ 2) 14 16 682s 653s 682s 5s
Liberation (m ¼ 2) 14 17 16s 31s 19s 3s
STAR (m ¼ 3) 13 16 257s 379s 260s 5s
Generalized RDP (m ¼ 3) 13 12 3060s 6230s 3069s 5s
Caughy-RS (m ¼ 4) 16 10 >24h >24h >24h 15s
Cauchy-RS (m ¼ 5) 15 10 >24h >24h >24h 15s

1468 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 5, MAY 2016

[21] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. NewYork, NY, USA:North-Holland, 1977.

[22] M. Blaum, and R. Roth, “On lowest density MDS codes,” IEEE
Trans. Inf. Theory, vol. 45, no. 1, pp. 46–59, Jan. 1999.

[23] M. Blaum, “A family of MDS array codes with minimal number of
encoding operations,” in Proc. IEEE Int. Symp. Inf. Theory, Sep.
2006, pp. 2784–2788.

[24] C. Huang and L. Xu, “STAR: An efficient coding scheme for cor-
recting triple storage node failures,” in Proc. USENIX Conf. File
Storage Technol., 2005, p. 15.

[25] J. Blomer, M. Kalfane, R. Krap, M. Karpinski, M. Luby, and D.
Zuckerman, “An XOR-based Erasure-resilient coding scheme,”
Int. Comput. Sci. Inst., Berkeley, CA, USA, Tech. Rep. TR-95-048,
Aug. 1995.

[26] Simulated Annealing [Online]. Available: http://en.wikipedia.
org/wiki/Simulated_annealing, May 2015.

[27] Y. Fu, J. Shu, and X. Luo, “A stack-based single disk failure recov-
ery scheme for erasure coded storage systems,” in Proc. IEEE 33rd
Int. Symp. Rel. Distrib. Syst., Oct. 2014, pp. 136–145.

Yingxun Fu received the bachelor’s degree from
North China Electric Power University in 2007,
the master’s degree from the Beijing University of
Posts and Telecommunications in 2010, and the
doctor’s degree from Tsinghua University in
2015. His current research interests include stor-
age reliability and distributed systems.

Jiwu Shu received the PhD degree in computer
science from Nanjing University in 1998, and
finished the postdoctoral position research at
Tsinghua University in 2000. Since then, he has
been teaching at Tsinghua University. His current
research interests include storage security and
reliability, non-volatile memory based storage
systems, and parallel and distributed computing.
He is a member of the IEEE.

Zhirong Shen receives the bachelor’s degree
from the University of Electronic Science and
Technology, China. He is currently working
toward the PhD degree with the Department of
Computer Science and Technology, Tsinghua
University. His current research interests include
storage reliability and storage security.

Guangyan Zhang received the bachelor’s and
master’s degrees in computer science from Jilin
University, in 2000 and 2003, the doctor’s degree in
computer science and technology from Tsinghua
University in 2008. He is currently an associate pro-
fessor in the Department of Computer Science and
Technology, Tsinghua University. His current
research interests include big data computing, net-
work storage, and distributed systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FU ETAL.: RECONSIDERING SINGLE DISK FAILURE RECOVERY FOR ERASURE CODED STORAGE SYSTEMS: OPTIMIZING LOAD... 1469

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

