
Towards Unaligned Writes Optimization in Cloud
Storage With High-Performance SSDs

Jiwu Shu, Fellow, IEEE, Fei Li , Siyang Li , and Youyou Lu

Abstract—NVMe SSDs provide extremely high performance and have been widely deployed in distributed object storage systems in

data centers. However, we observe that there are still severe performance degradation and write amplification under the unaligned

writes scenario with high-performance SSDs. In this article, we identify that the RMW sequence which is used to handle the unaligned

writes incurs severe overhead in the data path. Besides, unaligned writes incur additional metadata management overhead in the block

map table. To address these problems, we propose an object-based device system named NVStore to optimize the unaligned writes in

cloud storage with NVMe SSDs. NVStore provides a Flexible Cache Management to reduce the RMW operations while supporting lazy

page sync and ensuring data consistency. To optimize the metadata management, NVStore proposes a KV Affinity Metadata

Management which co-designs the block map and key-value store to provides a flattened and decoupled metadata management.

Evaluations show that NVStore provides at most 6.11� bandwidth of BlueStore in the cluster. Besides, NVStore can reduce at most

94.7 percent of the write traffic from metadata under unaligned writes compared to BlueStore and achieves smaller data write traffic

which is about 50 percent of BlueStore and 65.7 percent of FileStore.

Index Terms—Distributed system, object storage, unaligned writes, solid state drives

Ç

1 INTRODUCTION

IN RECENT years, large-scale data centers host a large num-
ber of applications that serve several million users. To

meet this requirement, the scale-out storage architecture,
distributed object storage, has been widely used in modern
storage systems and becomes the underlying storage layer.
In the supercomputing center, the well-known cluster file
systems (e.g., GPFS [1] and Lustre [2]) use object storage to
store both data and metadata. In the cloud platform, Ama-
zon Simple Storage Service (S3) and Microsoft Azure [3] use
object storage to support various applications. The hybrid
storage system, Ceph [4], also uses object storage to con-
struct various storage systems. Therefore, improving the
performance of object storage is extremely salient for
improving data center access efficiency.

Because the object storage system is on the underlying
layer and supports various systems, its I/O characteristics
are rich and varied. The object-based storage devices
(OSDs) not only deal with aligned I/Os from specific appli-
cations but also tend to handle more unaligned I/Os from
small file accesses. In OFSS [5], Lu et al. collect the write sta-
tistics of iBench [6] (iPhoto, iPages) and LASR [7] (LASR-1,
LASR-2, LASR-3) and find that nearly 50 to 90 percent of
writes are unaligned.

In the hard disk drive (HDD) ear, unaligned I/Os always
decrease storage system performance because of incurring

extra small and random I/O requests [8] which are
unfriendly to the HDD’s mechanical properties. With the
growing requirements in I/O performance, Non-Volatile
Memory Express (NVMe) based Solid State Drives (SSDs),
which can archive high throughput, low latency, and good
random access performance [9], are involved in the object
storage system. However, the storage system which equips
with the newest SSDs also faces the unaligned write
(UW) [8] problem. Although NVMe SSDs could achieve
high performance in aligned I/O evaluations (e.g., bench-
marks like fio [10], iozone [11], database [9], [12] and tier
[13]), there are still severe performance degradation in the
unaligned I/O tests (e.g., filebench [14], log system, cloud
file system, mail server). Fig. 1 shows that the bandwidths
tested in CephFS [4], Lustre and GlusterFS [15] with aligned
I/Os is about 4� 5� of those with unaligned I/Os. Previous
works focus on optimizing the unaligned I/O performance
for specified applications (e.g., database [12], client
cache [16], and log system [17], [18]). However, in the cloud
scenario, the underlying object storage are serving an
exceedingly broad class of applications. It is considerable to
address the unaligned write problem in the object-based
storage device (OSD) system level.

We propose NVStore, an OSD system which provides
excellent performance in unaligned writes with NVMe-
based SSDs. Our designs are based on the observation
that some self-caching applications (e.g., database) will
send I/O requests directly to the storage system bypass-
ing the page cache layer which will buffer and merge
the I/O requests. In this manner, the unaligned writes
from applications should be handled by the application
cache and the storage system. Based on this, we are able
to make a more flexible cache design according to appli-
cation characteristics.

� The authors are with the Tsinghua University, Beijing 100084, China.
E-mail: {shujw, lisiyang, luyouyou}@tsinghua.edu.cn, lf17@mails.
tsinghua.edu.cn.

Manuscript received 24 Oct. 2019; revised 3 May 2020; accepted 22 June 2020.
Date of publication 2 July 2020; date of current version 20 July 2020.
(Corresponding author: Fei Li.)
Recommended for acceptance by L. Wang.
Digital Object Identifier no. 10.1109/TPDS.2020.3006655

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020 2923

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2020 at 06:59:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3616-7860
https://orcid.org/0000-0002-3616-7860
https://orcid.org/0000-0002-3616-7860
https://orcid.org/0000-0002-3616-7860
https://orcid.org/0000-0002-3616-7860
https://orcid.org/0000-0002-4597-4533
https://orcid.org/0000-0002-4597-4533
https://orcid.org/0000-0002-4597-4533
https://orcid.org/0000-0002-4597-4533
https://orcid.org/0000-0002-4597-4533
https://orcid.org/0000-0002-6214-5390
https://orcid.org/0000-0002-6214-5390
https://orcid.org/0000-0002-6214-5390
https://orcid.org/0000-0002-6214-5390
https://orcid.org/0000-0002-6214-5390
mailto:shujw@tsinghua.edu.cn
mailto:lisiyang@tsinghua.edu.cn
mailto:luyouyou@tsinghua.edu.cn
mailto:lf17@mails.tsinghua.edu.cn
mailto:lf17@mails.tsinghua.edu.cn

Our major contributions are as follows:

� We develop an OSD system, NVStore, to fully
exploit the high-performance SSDs under unaligned
writes while prolonging the lifetime of SSDs.

� In NVStore, we propose a Flexible Cache Management
mechanism to reduce the write amplification and
unnecessary I/O requests from unaligned writes
while ensuring the data consistency. Moreover, we
provide a Key-Value (KV) Affinity Metadata Manage-
ment mechanism to optimize the KV store perfor-
mance and reduce the overhead from metadata.

� Our system can reduce the write amplification from
both metadata and data compared with the filesys-
tem-based OSD system, FileStore [19] and the state-
of-art OSD system, BlueStore [20]. The results show
that NVStore reduces at most 94.7 percent of the
write traffic from metadata under unaligned writes
compared to BlueStore and achieves smaller data
write traffic which is about 50 percent of BlueStore
and 65.7 percent of FileStore.

� Our system could significantly promote the unaligned
write performance in both benchmark tests and real
workload tests. The results show thatNVStore achieves
1.11� 3:00� bandwidth of BlueStore, 1.05� 1:75�
bandwidth of FileStore in benchmark tests and
2.03� 6:11� bandwidth of BlueStore, 1.99� 3:06�
bandwidth of FileStore in realworkload tests.

We organize the rest of this paper as follows. Section 2
introduces the definition and types of unaligned writes, and
then analyses the overhead incurred by unaligned writes
in the data path and block map table. Section 3 describes
the designs and implementation of NVStore, including the
Flexible Cache Management and KV Affinity Metadata Manage-
ment, and then discusses the compatibility and limitations.
Section 4 shows the evaluations of NVStore. Section 5 gives
the related works. Section 6 concludes the paper.

2 MOTIVATION

2.1 Types of Unaligned Writes

As block devices, both traditional HDDs or SSDs and
NVMe-based SSDs defines a minimal I/O unit, called sec-
tor, which is 512 bytes or larger according to the device
model. The devices do not support partial sector read or
write in the block I/O interface. Since there are limits to the
number of device addresses, that an operating system (OS)
can address. Modern OS uses block as the minimal data

unit. A block could be a sector or several sectors. When OS
sends requests to the device, it specifies the block offset,
number of blocks and points to data buffer. However, an
application may make write requests with address or size
not aligned to the block size (bsize) thus engendering the
unaligned write problem.

The OS storage systems (e.g., Ext4 [21], F2FS [22], Blue-
Store, FileStore and so on.) always divide a write buffer
into aligned parts and unaligned parts. Table 1 shows dif-
ferent types of writes. For a user requests, o is the byte-
aligned offset, l is the byte-aligned write length, b is bsize.
When the location of the unaligned part is only in the
header or tail of the write buffer (i.e., either omod b or
ðoþ lÞmod b is not equal to zero), we call it as unaligned
write within block. When the locations of the unaligned
part are on both sides of the buffer (i.e., both omod b or
ðoþ lÞmod b are not equal to zero), we call it as unaligned
write cross blocks. In addition, if the header and tail are in
the same block and the size of a write buffer is less than the
block size (i.e., omod bþ l < b), it is also treated as
unaligned write within block.

2.2 Overhead in Data Path

To deal with the unaligned application write requests, OS
performs the read-modify-write (RMW) sequence. First,
blocks which is written partially are read. Then, the data
read is merged into the write buffer. At last, the partially
written blocks will be updated with the merged data. In this
process, OS transforms the unaligned write into aligned
write at the cost of extra operations. Fig. 2 shows the data
path in unaligned writes. The first case is the unaligned
write within block, a single-block RMW operation is per-
formed. The second case is the unaligned write cross blocks.
In this case, a two-block RMW operation is performed.
What’s more, the RMW sequence should be performed only
step-by-step.

The situation is more complicated in SSDs. The basic unit
of read/write in flash based SSDs is flash page, which is
about 4KB or 8KB according to the flash media architecture.
A flash page should be erased before it is written again. If
the OS storage system adopts a small bsize, such as 512
bytes, an aligned write in the OS may lead to an unaligned
write inside the SSDs. In this case, an unaligned write in the

Fig. 1. Comparison of the performance of different distributed file sys-
tems (3� nodes with 6� Intel 750) in aligned I/Os and unaligned I/Os.
The aligned I/O cases are tested by iozone’s 4KB aligned write. The
unaligned I/O cases are tested by filebench’s fileserver which limited
the page size with 4KB in average.

TABLE 1
Types of User Writes

o mod b 6¼ 0 o mod bþ l < b ðoþ lÞmod b 6¼ 0 Type

0 0 0 aligned
1 0 0 within block
1 0 1 cross blocks
0 0 1 within block
- 1 - within block

Fig. 2. Data path of unaligned writes in RMW sequence.

2924 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2020 at 06:59:06 UTC from IEEE Xplore. Restrictions apply.

OS may incur RMW operation both in the OS layer and the
SSD device layer. For this reason, some flash-based file sys-
tems prefer to set the bsize to the size of a flash page. How-
ever, the RMW still degrades the SSDs performance and
reduces the flash lifetime. On one hand, a single-block RMW
incurs one block read and one block write. Therefore, the
unalignedwrite incurs extra I/O requests. Besides, themixed
read/write pattern in RWM further decreases the NVMe
device’s write performance. On the other hand, the merge
operations transfer the small size data (several bytes) to a rel-
atively large block (4 or 8 kilobytes), this leads to write ampli-
fication in SSDs thus reducing the flash lifetime.

So, there is still a large headroom to exploit the perfor-
mance of NVMe-based SSD by reducing the RMW opera-
tion in the data path.

2.3 Overhead in Block Map Table

2.3.1 Traditional File System

In a file system, files are divided into data blocks. The inode is
used to store the metadata or directory of a file, and the block
map table is used to index the device blocks. To support the
big size file (i.e., Gigabytes to Terabytes), commonfile systems
use two types ofmap tables to address the file blocks, the indi-
rect block map (IM) [23] and the extent tree (ET) [21] as in
Fig. 3. In IM, the inode points to the first few data blocks, often
call direct blocks. For big files, the inode also points to an indi-
rect block, which points to disk blocks. If it is still not enough
to store the file, the inodewill point to a double indirect block,
which points to some indirect blocks, which point to disk
blocks. In ET, it uses Extent, which contains a block offset
and number of blocks, to describe several consecutive blocks.
For small files, the inode will points to the Extents directly.
For big files, the Extents are organized using Bþ tree [21].
These two methods are widely used in file systems (Ext3 [24],
F2FS and XFS [25] use IM,while Ext4 and Btrfs [26] use ET).

For the IM mechanism, when a file data is updated, its
direct blocks or indirect blocks should be updated. Then,
the index structures such as inode, inode map are also
updated recursively. This is called wandering tree problem
or update-to-root problem. Since the RMW operation will
rewrite the unmodified data in a partially written page,
unaligned writes incur additional metadata updates and
aggravate the wandering tree problem. Although F2FS [22]
solves this problem by introducing NAT (Node Address
Table) mechanism, it also requires an in-place-update oper-
ation which is unfriendly to flash media and requires fur-
ther I/O remapping operations in FTL layer.

For the ET mechanism, an aligned write only add or
change one itemof ET’s leaf node. Anunalignedwrite divides
an I/O into the aligned part and unaligned part, thus inserting
two (within block) or three (cross blocks) items into leaf nodes.
For the ET mechanism, the more fragment items which are
inserted into the leaf node, themore split operationswill occur
in the leaf node. The split operation leads to tow leaf nodes’
reorganization and index table updating, and these involve
additional threemetadata pages rewritten.

The methods mentioned above are lack of optimizations
for the unaligned writes, and thus, increase the write ampli-
fication and decrease the write performance.

2.3.2 Key-Value Based Metadata Management

To migrate the write amplification problem from updating
metadata block in the file system, some file systems (e.g.,
TableFS [27], IndexFS [28] and BatchFS [29]) and object stor-
age device (e.g., BlueStore) use key-value (KV) store to store
the metadata. Most of the KV store in these systems are
organized in log-structured merge (LSM) tree structure, the
data are stored as write-ahead-log (WAL) which sequen-
tially write data into the storage device to fully utilize the
available device bandwidth. However, the write amplifica-
tion problem caused by unaligned writes remains.

Fig. 4 shows the example of the block map in the KV
store of BlueStore. BlueStore uses the block map to store the
extent tree structure. Shard Map is used to store the index
node of extent tree. Each object in BlueStore is stored as a
KV pair, which uses Nid as the key and uses the object
node metadata (onode) and all the index nodes (Shard
Map) as the value. For each sub-index entry, Nid and off-

set in Shard Map is used to retrieve the Extent Map and
Blob Map. Extent Map is used to store the leaf node of the
extent tree. Blob Map stores the mapping of logical address
to physical address. In this manner, the metadata update
only requires KV operations rather than page-level data
syncing as in filesystems. However, a small change to a leaf
node still requires updating a whole KV pair. For an
unaligned write operation, BlueStore will modify one or
two KV pairs. It means each write operation will write addi-
tional 56-8192 bytes data in the KV store.

In this paper, our goal is to reduce the write amplification
and extra I/O requests from unaligned writes. We propose
an object-based storage device (OSD) system, NVStore, to
provide excellent data access performance in unaligned
writes for the distributed object storage system.

Fig. 3. Types of index tables. Fig. 4. BlueStore’s Block Map in key-value store. The gray block is the
key and the white block is value

SHU ET AL.: TOWARDS UNALIGNEDWRITES OPTIMIZATION IN CLOUD STORAGE WITH HIGH-PERFORMANCE SSDS 2925

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2020 at 06:59:06 UTC from IEEE Xplore. Restrictions apply.

3 DESIGN AND IMPLEMENTATION

3.1 Architecture

NVStore is an OSD system, and it could be used in the exist-
ing object storage system, Ceph, to improve the unaligned
write performance for high-performance SSD while extend-
ing the lifetime of flash media. Fig. 5 presents the overall
architecture of NVStore and the differences from the current
OSD systems(e.g., FileStore and BlueStore).

Since NVStore is at the lowest layer of Ceph, it receives
all the data from the the upper system (e.g., the virtual
machine I/O from the virtual block layer, the application I/
O from the distributed file system or the application I/O
from the object store service) through remote direct memory
access (RDMA) or TCP/IP.

NVStore functions based on two types of storage sys-
tems, the KV store and NVMe-based raw device. The meta-
data in NVStore is entirely stored in KV store and the data
is stored both in KV store and raw NVMe SSD device.
NVStore reuses BlueStore’s user-space file system,
BlueFS [20], and the key-value store, RocksDB [30]. Instead
of using Extent tree to store the block map as in Blue-
Store, NVStore provides a KV affinity metadata organiza-
tion mechanism to reduce the write amplification from
unaligned writes. What’s more, unlike BlueStore which
only uses KV store to record the index tables, NVStore uses
a flexible cache mechanism which cooperates with KV store
to accelerate the unaligned write performance while reduc-
ing write amplification and ensuring the data consistency.
Compared with FileStore which delegates the block map
and cache management to the local filesystem (e.g., Ext4,
XFS), both NVStore and BlueStore use user-space metadata
and cache management and directly send the final I/O
requests to kernel’s AIO block driver [31] or Intel’s
SPDK [32].

Besides, NVStore is compatible with existing systems
and provides the same interfaces to Ceph’s Rados [20] layer.

3.2 Flexible Cache Management

Instead of using kernel’s page cache (e.g., FileStore) or user-
space LRU (Least Recently Used) or FIFO (First In First Out)
cache (e.g., BlueStore), NVStore proposes a flexible cacheman-
agement mechanism to optimize the unaligned I/O by intro-
ducing the fragment page. Fig. 6 shows the architecture of the

Flexible Cache Management. NVStore proposes three types of
pages and transforms these pages under different I/O opera-
tions. Besides, to enforce the data consistency, NVStore uses
theKV store to store data fromunalignedwrites.

3.2.1 Fine-Grained Page Types

The three types of pages are the fragment page (FP), the
clean page (CP) and the dirty page (DP). In NVStore, all
types of pages use FIFO or LRU algorithm when cache
replacement is required. The clean page is read-only, and it
will update when aligned write and page read happens.
The dirty page is modified page, and it will be synced to the
disk when page replacing or system reloading happens.
Unlike the above-mentioned pages, the FP is organized as a
list table. Each FP contains an ordered list of items which
each records the page offset, data length and the data of an
unaligned write item. In FP, the latest unaligned write item
is always inserted to the end of the list. Fig. 6 and Table 2
show the page transformation in different operations, Fig. 7
shows the fragment page merge process, we will discuss
these processes in the following sections.

3.2.2 RMW Less I/O Operation

When data writes come, the traditional page cache mecha-
nismwill write data to the memory cache and syncs the cache
using background threads. In this manner, those unsynchro-
nized data pages become dirty pages. In contrast, NVStore

Fig. 5. The architecture of filestore, bluestore, and NVStore.

Fig. 6. The flexible cache management.

2926 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2020 at 06:59:06 UTC from IEEE Xplore. Restrictions apply.

would not directly create dirty pages thus reducing the fre-
quency of page replacement and data sync operations.

In NVStore, if an unaligned write is missed in the cache,
it creates a FP and then adds the unaligned write item to the
FP’s list table. If an unaligned write is in CP, it will merge
the unaligned data with CP and transform CP to DP. If an
unaligned write is in DP, it will merge the unaligned write
item to the existing DP. If an unaligned write is in FP, it will
add an unaligned item to the end of a FP’s list table. By
using these methods, an unaligned write will not perform
the RMW sequence and only need to write data to the cache.
For aligned data, NVStore will write data to the page. Mean-
while, NVStore will directly write data to the NVMe SSD
device by using kernel’s AIO or Intel’s SPDK. If the aligned
write hit in the CP, it will update the CP itself. If the aligned
write hit in the FP or DP, it will transform the FP or DP to
CP. If the aligned write is missed in the cache, it will add a
new page to the CP. Besides, if a read operation hits in a FP,
it will read the page data from the NVMe device and merge
it with the FP data while transferring FP to DP.

3.2.3 Data Consistency

NVStore ensures the data consistency for both aligned
writes and unaligned writes. For aligned writes, it uses AIO
or SPDK and copy-on-write to ensure that all data will be
persisted to the back-end NVMe SSD device. This is similar
to BlueFS, which also adopts copy-on-write for write
requests. For unaligned writes, NVStore uses the KV store
to record the unaligned data before data syncing. As Fig. 8a
shows, NVStore defines the KV format of the unaligned
write item. It uses the object’s uuid, the offset of the
page, the order of the unaligned item as the key and uses
the offset inner a page, called inoff and the data itself as
the value. This is similar to FileStore, which records all write
requests in a journal file before performing the write opera-
tions. When the system crash happens, FileStore will scan
the journal file for data recovery, and NVStore will use the
data from KV store to recover and reorganize the DP and
FP. In this way, NVStore guarantees the data consistency in
the object storage level as BlueStore and FileStore do.

3.2.4 Lazy Page Sync

In NVStore, all the pages can be discarded without being
synced because of the guarantee of data consistency. But
NVStore still perform additional page replacement mecha-
nism to avoid excessive data fragmentation from unaligned
writes in KV store.

The DP and FP collection procedure will be executed by a
background thread when the system I/O is idle. In the DP
collection procedure, NVStore will sync the DP data to the
disk, and then discard the fragment data of this page in KV
store through the prefix operation in RocksDB thus reduc-
ing the KV space. When a DP is synced to the disk, it will be
transformed to a CP. In the FP collection procedure,
NVStore will read the page data from the NVMe device and
merge it with the FP, and the FP will be transformed to DP.
Then, NVStore performs DP collection as mentioned above.

3.2.5 Benefits

In NVStore, each unaligned write only needs to write one
key-value pair to the KV store. The read, merge operations
in RMW sequence are required only when the page is read
by the client. This mechanism reduces the frequency of per-
forming the RMW sequence for some applications which
make unaligned write requests, and thus, reduces the mixed
read/write operations and write amplifications caused by
the RMW sequence. Moreover, since the KV store is used to
record the unaligned write, NVStore could accelerate the
unaligned write performance by reducing page sync opera-
tions while ensuring the data consistency.

3.3 KV Affinity Metadata Management

Metadata is used to manage and index the data in the stor-
age system, and most storage systems have their accesses
been dominated by metadata operations. In recent years,
many storage systems choose to store metadata in the KV
store. KV stores are more gifted in efficiently managing the
small fragment data than file systems, for they aggregate
small fragment data into aligned blocks with special data
structures (e.g., LSM tree or Bþ tree), which are more
friendly to both HDD and SSD. However, as illustrated in

TABLE 2
Page Transformation

OP Hit DP Hit FP Hit CP Miss

AW CP CP • CP
UW • • DP FP
Read • DP • CP
Sync CP CP • •

• means no transformation happens. AW and UW means aligned write and
unaligned write operation.

Fig. 7. Fragment page merging process.

Fig. 8. Flattened Block Map. The gray block is the key field, the white
block is the value field.

SHU ET AL.: TOWARDS UNALIGNEDWRITES OPTIMIZATION IN CLOUD STORAGE WITH HIGH-PERFORMANCE SSDS 2927

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2020 at 06:59:06 UTC from IEEE Xplore. Restrictions apply.

Sectin 2.3, the key-value based metadata management will
face write amplification problem, and it becomes more inef-
ficiency when dealing with unaligned writes. So, in the OSD
level, it is challenging to organize the metadata and effi-
ciently store it in the KV store. NVStore aims at handling
unaligned write problem and improving the efficiency of
metadata management with two techniques (i.e., Flattened
Block Map and Decoupled Object Metadata).

NVStore provides the same object interfaces as FileStore
and BlueStore. For Ceph’s OSD system, there are two types
of metadata which must be supported, onode and block
map. The onode is similar to the file’s inode and contains
the basic types of metadata (e.g., size, flags, order, . . .).
The block map (i.e., Extent Map) contains the extent infor-
mation. Both FileStore, BlueStore and NVStore use key-
value store to store above-mentioned two types of metadata.
In addition, because BlueStore and NVStore organize the
object in user-space thus extra block map metadata (i.e.,
Blob Map) is required.

Unlike BlueStore which uses traditional Extent map and
KV store to organize and store the block map, NVStore uses
a Flattened Block Map which is affinity to KV store and aims
at promoting the access performance while reducing the
write amplification from metadata. Besides, to support the
Flattened Block Map, NVStore proposes the Decoupled Object
Metadata mechanism to decouple the relationship between
onode and block map, and this further reduces the write
amplification from metadata.

3.3.1 Flattened Block Map

NVStore designs the Flattened Block Map in terms of the fol-
lowing observations:

1) The object size is always small (i.e., MB level) in cur-
rent distributed object storage systems. Data with
big size will be divided into multiple small objects,
and the object size is configurable (i.e., the default
object size in Ceph is set as 4MB). Therefore, the tra-
ditional IM and ET structures, which support large
file (i.e., GB to TB level), are unnecessary in current
object storage architectures.

2) The unaligned writes will lead to small block map
updates. One unaligned write requires extra one or
two blocks (less than 4KB) being updated. Moreover,
the current block map mechanisms (i.e., IM and ET)
need to update 1 to 3 metadata blocks for a block
update operation. The state-of-art systems (e.g.,
TableFS, BlueStore) propose to use KV store tomanage
metadata, and thus, reduce the write amplification
frommetadata updates. However, the modification in
value field which only updates a small part of the
value requires to update the whole KV pair, this also
incurswrite amplification.

NVStore proposes the Flattened Block Map mechanism to
reduce the write amplification from current KV based block
map mechanism. Fig. 8a shows the structure of the Flattened
Block Map. NVStore stores objects in unit of NVMe SSD’s
block size (4KB or 8KB) and indexes each block using the
unique object id (uuid, 8bytes) and the block offset
(offset, 8bytes) as the key. In the value field, NVStore
records three items, the checksum (csum, 4bytes), the

physical address (paddr, 8bytes) and the fragment data
confirmation flag (on, 1byte).

Besides, NVStore also designs a fragment data structure
to store the unaligned data in the KV store. Fig. 8a shows
the KV pair format of the fragment data. The key field con-
tains three items, the uuid, offset and the order of the
fragment write (order, 1 byte). The value field contains
two items, the offset of the data inside a block (inoff,
2bytes) and the fragment data (less than a block size).

Fig. 8b shows an instance of the flattened block map. For
aligned write, it directly writes data to the device. Similar to
the existing file systems, NVStore uses the bitmap to allo-
cate the device space. The paddr directly points to the
physical zone. The on flag is set to zero to indicate it as an
aligned block. For an unaligned write in a block, NVStore
will record its block map in the KV store and sets the on

flag with one when first writing this block. NVStore will
record the fragment data in the KV store as well as its writ-
ing order in this block. When read operation comes, if the
on flag is zero, we could retrieve the data from the raw SSD
device, if the on flag is one, we could retrieve the FP in KV
store and recover the whole data page.

In this way, an unaligned write only requires 1 or 2 meta-
data updates when the unaligned write first happens within
a block or cross two blocks. Moreover, we only need to
update the on flag when updating the metadata, and this
only requires a value updating with 18 bytes in the KV
store. However, in BlueStore, it requires a value updating
with 56-4096 bytes in the KV store. The follow-on unaligned
writes to the same block will not affect the flattened block
map and only insert data to the fragment data zone until an
aligned write comes or NVStore execute the data sync oper-
ation. In the data sync operation, NVStore will modify the
on flag to zero and then discard the fragment data through
the prefix operation in RocksDB.

In conclusion, the Flattened Block Map mechanism co-
designs the metadata structure and the KV store. Compared
with the solution of storing a tree structure (i.e., ET) or a
multi-level index table (i.e., IM) in KV store, NVStore pro-
vides a flattened structure which is more efficient in meta-
data operation for unaligned writes and reduces the write
amplification from metadata.

3.3.2 Decoupled Object Metadata

Decoupling the metadata is a widely used optimization
method in the metadata management (e.g., IndexFS,
LocoFS [33]). We also proposes a Decoupled Object Metadata
mechanism in NVStore.

Similar to the BlueStore which decouples metadata into
different parts (i.e., onode, Shard Map, Extent Map,

Blob Map), NVStore further decouples the relationship
between onode and the block map structures. Fig. 9 shows
the extra three types of metadata in NVStore in addition to
the above-mentioned flattened block map. In BlueStore,
onode and Shard Map are stored in the same KV pair and
onode will record the address of the Shard Map as well as
some basic object metadata (i.e., data size, block size and so
on). So, the metadata structures in BlueStore are highly
dependent on each other, an object update operation may
need to modify all the metadata structures. In terms of this,

2928 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2020 at 06:59:06 UTC from IEEE Xplore. Restrictions apply.

NVStore stores onode and the flattened block map struc-
tures separately, and the onode only stores the basic object
metadata. In this manner, NVStore does not have to make
any changes to the onode when updating the data of an
object. Only those object operations which affect the basic
metadata in onode, like append and truncate operations,
will update the onode. What’s more, the KV pair size of
onode in NVStore is much shorter than BlueStore, this
accelerates the metadata operations while reducing the
write amplification from onode updates. To be compatible
with Ceph, we keep the omap structure.

Since the whole flattened block map can be retrieved via
the prefix search operation and then the object meta-infor-
mation in onode can be recovered, NVStore would not
sync the onode metadata when executing append or trun-
cate operations. This mechanism further reduces the write
amplification from the metadata sync operations.

3.3.3 Metadata Cache

Besides optimizing themetadata layout, we introduce ameta-
data cache to accelerate the metadata accesses. For a touch

operation, the name map and onode will be updated. For a
write operation, the onode and Flattened Block Map

will be updated. Besides, the remove, clone, read opera-
tions will also update or access different metadata items. We
observe thatnamemap is frequently read by all types of opera-
tions, but only updated by touch and remove operations,
which happens occasionally during the lifetime of an object.
Moreover, onode which stores the basic metadata of objects
will be accessed and updated frequently bymost operations.

In terms of these observations, NVStore introduces a
metadata cache as Fig. 10 shows. NVStore only caches the
name map and onode in memory and use a background
thread to synchronize the name map when creating or
removing objects and to synchronize the onode when
receiving a flush operation or a soft time-interruption.
Although the index tables in Flattened Block Map are
also frequently accessed by write and read operations,
NVStore will not cache them in the metadata cache. In
NVStore, the index tables are stored in the Bþ tree based
KV storage. One object contains multiple index table items
with a similar prefix in keys, and they tend to be stored
adjacently in the Bþ tree data structure, thus providing
advantageous locality. Such designs can accelerate the per-
formance of read or write operations because Bþ tree
based KV store will cache the adjacent items into memory
beforehand. Especially, NVStore ensures the atomicity of
multiple updates in one metadata operation with the trans-
actional interface provided by the KV store.

Unlike BlueStore which caches all the metadata struc-
tures indiscriminately, NVStore caches different metadata

based on their access patterns. In this way, NVStore avoids
the overhead of duplicate data caches in KV store cache and
the metadata cache. What’s more, the metadata cache choo-
ses to cache the metadata which is not frequently modified
but accessed frequently, and thus, reduces the frequency of
metadata synchronization and improve the efficiency of
querying the metadata items.

3.4 Compatibility

Although NVStore uses a different metadata structure and
co-designs the metadata management and KV store, it could
also be compatible with the advanced function of Ceph (e.g.,
checksum and clone).

3.4.1 Checksum

BlueStore chooses to calculate the checksum of the whole
object data block and store the whole checksum data into
the extent tree. In contrast, NVStore proposes to calculate
the checksum for each data page and store the checksum in
csum as Fig. 8 shows. For unaligned data, NVStore will not
calculate its checksum until it is synced to the block device.
In this manner, when user makes a small write request to an
object, NVStore only needs to recalculate the checksum of a
small data block and update a small KV pair. However,
BlueStore needs to re-insert the whole extent block thus
degrading the KV performance.

3.4.2 Clone

NVStore also supports the block-level share and clone
operations. The on flag in Fig. 8 can be used to defined a
shared block when the value of on is greater than one. For
other object which share with the block, the csum and
paddr filed will be filled with the uuid and offset of
the shared object. In NVStore, a fragment block could not
be shared until data sync operations. Compared with Blue-
Store, the clone mechanism is simpler and needs no addi-
tional structures.

3.5 Limitation

3.5.1 Large Write

NVStore is designed to improve the performance of
unaligned write and could also promote the small write effi-
ciency. However, these mechanisms incur high metadata
overhead when executing large write. For a large write (i.e.,
64KB-1MB), NVStore will insert 16 to 256 key-value pairs to

Fig. 9. Metadata of NVStore.

Fig. 10. Metadata cache.

SHU ET AL.: TOWARDS UNALIGNEDWRITES OPTIMIZATION IN CLOUD STORAGE WITH HIGH-PERFORMANCE SSDS 2929

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2020 at 06:59:06 UTC from IEEE Xplore. Restrictions apply.

the KV store for the NVMe SSD with 4KB block size thus
involving 200 bytes to 6400 bytes metadata updates. How-
ever, BlueStore only updates 56 to 4096 bytes metadata. For-
tunately, because the inserted items are sequential and the
data size is quite large, the batch operation in RocksDB
can write these data to a continuous block thus compensat-
ing for the performance loss of large write from metadata
updates in NVStore.

3.5.2 Compress

Thedesigns ofNVStore are inefficient to the compress function
because the size of a compressed block is unpredictable. The
I/O path and metadata structure of NVStore is suitable for
the character of NVMe SSDs and tries towrite aligned pages to
the device. The compress process may transform the uncom-
pressed aligned data to unaligned data, and the small data
updates will affect the final compressed output in a great
extent. In NVStore, it will lead to excessive data fragment and
bloat the KV store thus degrade the overall write performance.

3.5.3 Garbage Collection

In NVStore, the KV store records the data of unaligned
writes (i.e. Fragment data in Fig. 8b). If the unaligned writes
to the same page are not synced, the records in the KV store
are responsible for the data consistency of this page. As
mentioned in Section 3.2.4, to avoid excessive data fragmen-
tation in the KV store, NVStore can sync the cache pages in
a lazy style. Meanwhile, NVStore performs garbage collec-
tion, in which the corresponding unaligned write items of
those synced pages in the KV store will be deleted. For
example, When a cache page (DP or FP), which is indexed
by uuid:offset, is synced, NVStore will delete all Frag-
ment Data KV pairs with the prefix uuid:offset in the
key field.

4 EVALUATION

In this section, we compare NVStore with the traditional file
system based OSDs (i.e., Ceph’s FileStore), the state-of-art
OSDs (i.e., Ceph’s BlueStore) and other distributed file sys-
tems (i.e., Lustre, Gluster). Also, we compare NVStore with
the NVStore-cache which only contains the Flexible Cache
Management and the NVStore-meta which only contains the
KV Affinity Metadata Management. First, We evaluate the
write amplification optimization of NVStore (Section 4.2) in
both metadata and data. Second, we evaluate the single
OSD performance of NVStore with variable write I/O sizes
(Section 4.3). We then evaluate the clustering performance
of NVStore (Section 4.4). Finally, we evaluate the influence
of some significant factors, such as I/O depth and aligned
writes, on NVStore (Section 4.5).

4.1 Experimental Setup

4.1.1 Hardware Configuration

Our experiments are deployed respectively on a local envi-
ronment and a cluster environment (shown in Table 3). The
cluster consists of 5 SuperMicro servers with CentOS 7.3
and CentOS 7.3 (Lustre version) installed, each of which has
384GB DDR4 memory and two Intel Xeon 24-cores CPUs.
The server in both local and cluster environments have
2�Intel 750 SSDs. Moreover, all the servers in the cluster are
interconnected with Mellanox SX1012 Switch (56 Gb/s
InfiniBand) to better exploit the SSD’s performance.

4.1.2 Software Configuration

Table 4 lists the configurations of each experiment, includ-
ing the number of machines, the benchmark tools, the com-
pared storage systems, the object size, the write I/O size,
the total write size and running time. Our evaluations use
Ceph luminous [34], the latest version from Github, Lustre
2.11 and GlusterFS 3.14 as the storage system. To demon-
strate our design clearly, we provide three self-modified
micro-benchmark tools, Object Bench (OB, modified from
ObjectBench), Rados Bench(RB, modified from FileBench)
and Cluster Bench (CB, modified from FileBench). OB sup-
ports evaluating Ceph’s Object Store (i.e., BlueStore, File-
Store and NVStore) on write amplification and performance
with different write patterns (i.e., append write, random
write and overwrite), variant object size and write I/O size.
Since FileBench is a useful benchmark to generate the

TABLE 3
The Hardware Configuration

Server Name SuperMicro

of Machines 5
CPU Intel Xeon 24 cores 2.5GHz � 2
Memroy DDR4 384G
Storage Intel 750 � 2
Network Mellanox SX1012 Switch CX353A

ConnectX-3 FDR HCA

TABLE 4
Software Configuration

Experiments Fig. 11 Fig. 12 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18

of machines 1 1 1 1 5 1 5
Benchmarks OB1 OB1 OB1 RB2 CB3 OB1 IOzone
Object Size - - 4 MB 4 MB 4 MB 4 MB 4 MB
Align @ • • • • @ @
Write I/O Size - 2 KB 2 KB - - - -
Total Write Size 16 GB 16 GB 16 GB - - 16 GB -
Running Time - - - 600s 600s - -
Storage Systems Ceph Luminous, GlusterFS 3.14, Lustre 2.11

1An object storage benchmark modified from ObjectBench. This tools can generate different fixed size of workload from indicated offset.
2A modified filebench which could run on Ceph’s Rados Layer. This tools can generate the same workload as filebench.
3A modified filebench which could support multiple clients. This tools can generate the same workload as filebench.

2930 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2020 at 06:59:06 UTC from IEEE Xplore. Restrictions apply.

simulated real workload with unaligned writes, we develop
RB and CB to allow running FileBench’s workload on Rodos
and support multiple clients. Therefore, we could evaluate
the unaligned write performance in both single node and
cluster environments. Besides, to demonstrate the impac-
tion of aligned writes on NVStore, we employ iozone (a
benchmark supports multiple clients and generate aligned
writes) to evaluate the performance of common distributed
file systems (i.e., CephFS, Lustre and GlusterFS).

To exploit the full performance of Ceph with FileStore,
BlueStore and NVStore. We employ two SSDs to avoid the
impact of mixed I/Os. For FileStore, one NVMe SSD is used
as the journal disk formatted with Ext4 or XFS and the other
is used as the data disk. For BlueStore and NVStore, one
NVMe SSD is used to store both KV data and WAL data
and the other is used as the data disk.

4.2 Write Amplification

In this section, we evaluate the write amplification frommeta-
data and data respectively. We use OB to generate workload
and use Ceph’s PerfCounter [35] to collect the results.

4.2.1 Metadata Write Traffic in Aligned Writes

We first evaluate the benefits of the flattened block map in
aligned writes. Since the overhead of extent tree is associ-
ated with the size of the object, and BlueStore uses the KV
based extent tree to map the block, we evaluate NVStore
and BlueStore under variant object size from 4MB (default
size) to 256MB. In each experiment, we use OB to generate
16GB aligned append writes with the average write I/O
size ranging from 4KB to 512KB. We collect the size of meta-
data write traffic from BlueStore (onode and block map)
and NVStore (onode and Flattened Block Map) using
PerfCounter.

Fig. 11 shows the total write size of metadata in each
object store. Because the total write size of metadata in
NVStore is independent of object size, we only show the
result of 4MB object size in this figure. We could make the
following observations:

� NVStore achieves the lowest metadata write traffic
and the most stable metadata overhead in aligned
writes under different write sizes. When the write
size is 4KB, the metadata write traffic of BlueStore is
about 1.5 to 8� compared with NVStore as the object
size increases. When the write size is large (i.e.,

256KB and 512KB), NVStore also achieves smaller
metadata write traffic compared to BlueStore. This is
because the total metadata update size inNVStore has
no relationship with the object size, and it only con-
cerns with the total data write size. In NVStore, the
metadata write traffic of NVStore is about 1.9 percent
of the total data write traffic. In this perspective,
NVStore is suitable for small writes.

� The object size and write I/O size have egregious
impact on the KV based extent tree structure. Since
each append write will add items to the extent

map and modified the index item in onode. As the
object size increases and the write I/O size
decreases, the size of mapping structures will
increase, the leaf nodes of extent tree will also split
and reorganize more frequently. This causes signifi-
cant write amplification.

4.2.2 Metadata Write Traffic in Unaligned Writes

In this section, we evaluate the benefit of flattened block
map in unaligned writes. We compare the metadata write
traffic under unaligned write in NVStore with BlueStore in
cross blocks and within block situations. We use OB to gen-
erate these workloads. The total data write traffic in each
evaluation is also 16GB. For within block, we generate
append write with 2KB write size, and each append write is
with offset ¼ 0. For cross blocks, we generate append
write with 4KB and offset ¼ 2048. We also collect the write
traffic of metadata from BlueStore (onode and block map)
and NVStore (onode and Flattened Block Map) using
PerfCounter.

Fig. 12 shows the total write size of metadata in BlueStore
and NVStore under different object size. Fig. 13 shows the
extra write traffic to the KV store. The extra data write size
is computed by the total metadata table file sizes in the KV
store subtracted from the total metadata write size in
Fig. 12. We could make the following observations:

� NVStore achieves the lowest write traffic of metadata
and the most stable metadata overhead in unaligned
writes under different write sizes. For within block,
the metadata write traffic in BlueStore is about 2.5 to
10� of NVStore as the object size increases. For cross
blocks, the metadata write traffic in BlueStore is about
4 to 19� of NVStore. This proves that NVStore can sig-
nificantly reduce the write traffic of metadata in
unalignedwrites, especiallywhen objects are large.

Fig. 11. Metadata write traffic under aligned writes. The write traffic of
each workload is 16 GB. BlueStore-256M means the object size is
256MB in the test with BlueStore. Others are in a similar way. The object
size in NVStore is 4MB.

Fig. 12. Metadata write traffic under unaligned writes. The write traffic of
each workload is 16 GB. Within Block-NVStore means the test of within
block unaligned writes in NVStore. Others are in a similar way.

SHU ET AL.: TOWARDS UNALIGNEDWRITES OPTIMIZATION IN CLOUD STORAGE WITH HIGH-PERFORMANCE SSDS 2931

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2020 at 06:59:06 UTC from IEEE Xplore. Restrictions apply.

� The write amplification from the KV based extent
tree structure becomes more severe under unaligned
writes. Unaligned writes will lead to more leaf nodes
compared with aligned writes thus incurring more
node split and merging operations. Therefore, it
leads to severe write amplification and significantly
degrades the write performance.

� NVStore also achieves the lowest write traffic to the
KV store. First, NVStore writes less metadata than
BlueStore with the design of the Flattened Block
Map. Besides, the value size of the metadata KV pair
in NVStore is smaller than BlueStore, so the write
amplification from the compaction of RocksDB in
NVStore is quite smaller than BlueStore. Both
NVStore and BlueStore use write-ahead-log (WAL)
in the KV store. Since NVStore writes less metadata
to the KV store, the WAL write traffic in NVStore is
smaller than BlueStore. To simplify the write traffic
collecting process, the WAL write traffic is not
included in Fig. 13.

4.2.3 Data Write Traffic in Unaligned Writes

In this section, we evaluate the write traffic of data under
unaligned writes with different write patterns (append
write and overwrite) in NVStore, FileStore and BlueStore.
We use OB to generate these workloads. The total data write
traffic in each evaluation is 16GB. The unaligned writes are
with 2KB write size and offset ¼ 0. We evaluate NVStore-
Sync mode and NVStore-Unsync mode of NVStore respec-
tively. In the NVStore-Sync mode, the unaligned writes will
be synced to. In the NVStore-Unsync mode, the lazy page
sync mechanism is applied. We collect the write traffic of
data (including the metadata) from BlueStore and NVStore
using PerfCounter, from FileStore using blktrace [36].

Fig. 14 shows the total write size in FileStore, BlueStore
and NVStore. In this section, we calculate BlueStore and
NVStore’s WAL write traffic as the workload traffic (16GB).
We could make the following observations:

� NVStore-Unsync achieves the smallest write traffic,
and it is about 50 percent of BlueStore and 65.7 per-
cent of FileStore. In NVStore, we write the unaligned
data to the KV store and use the KV store to guaran-
tee the data consistency rather than performing
RMW operations. In the KV store, the unaligned
data is first appended to the write-ahead-log and
then persisted to the back-end devices as aligned

data. The KV store overhead is quite smaller than
the RMW operations. Because the WAL syncing is
off the critical path of writes, and the KV store writes
data to disk in big batches.

� BlueStore achieves the largest write traffic in this
evaluation. For BlueStore, small data (less than
64 KB) is also written to the KV store first, and then
the data will be written back to data disk using
RMW operations. In this way, a 2 KB write is proc-
essed as a 2 KB KV pair write, a 2 KB WAL record
write, and a 4 KB final write in RMW. So the write
traffic is almost 4� of the data size. In the NVStore-
Sync mode, NVStore merges the unaligned data in
the KV store and write the merged data back to the
data disk. This reduces the overhead of RMW opera-
tions in BlueStore.

� FileStore achieves smaller datawrite traffic than Blue-
Store. FileStore uses a logging mechanism, a 2 KB
data write is processed as a 2 KB batched journal
append-write and a 4 KB final write in RMW. So the
write traffic is almost 3� of the data size. Since
blktrace can only record all I/O operations, the meta-
data write traffic is included in the results.

In summary, NVStore can effectively reduce the write
amplification from unaligned writes, and writes less than
the existing system when no real-time unaligned data syn-
chronization is performed. When the synchronization is
introduced, its write traffic is about the same as the Blue-
Store. However, NVStore does not require real-time data
synchronization, this gives NVStore the advantages over
BlueStore in write performance. Besides, NVStore achieves
the lightest write traffic in aligned small writes.

4.3 Local Performance

In this section, we evaluate the single-node performance of
NVStore, FileStore (based on Ext4) and BlueStore under
unaligned writes. To demonstrate the performance improve-
ment brought by different optimizations, we evaluate three
versions (i.e., NVStore-Cache, NVStore-Meta, NVStore-All)
of NVStore. NVStore-Cache only adopts the Flexible Cache
Management mechanism to optimize the cache management.
NVStore-Meta only adopts the KV Affinity Metadata Manage-
ment mechanism to optimize the metadata management.
NVStore-All is the fully-functioned version with all the opti-
mizations. The modified Filebench (RB) which could run on
Ceph’s Rados layer is used for our evaluations. We deploy
Ceph on a single node, and runs RB on it to collect the per-
formance evaluation under different block sizes.

Fig. 14. Data write traffic under unaligned writes. For BlueStore and
NVStore-Sync, the results are collected from the KV stores and the data
disk. For NVStore-Unsync, it is only from the KV Store. For FileStore, it
is collected from the data disk and the journal disk. The write traffic of
each workload is 16 GB. The object size is 4 MB.

Fig. 13. Extra Write traffic in RocksDB under unaligned writes. The write
traffic of each workload is 16 GB. Within Block-NVStore means the test
of within block unaligned writes in NVStore. Others are in a similar way.

2932 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2020 at 06:59:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 15 shows the single node write throughput (MB/s)
of BlueStore, FileStore and NVStore as the write I/O size
increases from 4KB to 512KB. NVStore-All achieves the
highest write performance in all evaluations. The write
throughput of NVStore-All is about 1.11 to 3.00� of Blue-
Store and 1.05 to 1.75� of FileStore under different write I/
O sizes. NVStore-Cache outperforms all the other systems
except NVStore-All. In most cases, the write performance of
all the systems increases as the block size increases, and the
write performance of NVStore-Meta is between FileStore
and BlueStore. When the write size reaches 512KB, the write
performance of FileStore decreases and is lower than both
NVStore-Meta and BlueStore. From this evaluation, we
could conclude that NVStore could effectively improve the
performance of unaligned writes, and the cache optimiza-
tions play a key role in it. This is because NVStore reduces
the extra I/O overhead from unaligned writes and reduces
the write traffic without data sync operations. Moreover,
the metadata optimizations further promote the write per-
formance of NVStore. In this evaluation, we use 4 MB
objects, the write amplification in BlueStore and NVStore is
similar. Compared with BlueStore, NVStore-Meta still
achieves at most 20 percent performance improvement in
4KB write size. Since FileStore adopts the asynchronous
write method and returns when data is written to the log, so
the write performance is better than BlueStore in most cases.

4.4 Cluster Performance

In this section, we evaluate the cluster performance of
NVStore, FileStore and BlueStore under unaligned writes.
Since the CephFS and Rados Block Devices (RBD) in Ceph
adopt a page based data management, the unaligned writes
could not be perceived by the underlying OSDs. To this
end, we use the modified Filebench (CB) which could run
on Ceph’s Rados interfaces to evaluate the unaligned writes
performance under a 5-node cluster. We use CB to generate
unaligned write patterns based on real workloads (i.e.,
appendfile, logfile, mail server, cloud server), and then eval-
uate the cluster bandwidth in FileStore, BlueStore and
NVStore (NVStore-Cache, NVStore-Meta and NVStore-All).

As in Fig. 16, we could observe that NVStore-All achieves
the highest bandwidth under all the scenarios, it is about
2.03 to 6.11� of BlueStore and 1.99 to 3.06� of FileStore.
This is because of the small and random writes in these
workloads. Appendfile, logfile, and mail server workloads
tend to generate more small writes, this has a great impact
on the performance of BlueStore. FileStore has better perfor-
mance than BlueStore due to its logging mechanism which
shields the effects of unaligned writes. NVStore can greatly

improve the unaligned writes performance because it uses
an optimized cache mechanism.

In summary, NVStore can greatly improve the unaligned
writes performance in real distributed applications. It
should be noted that since the client of the distributed file
system currently adopts a page-based client cache manage-
ment mechanism, NVStore cannot be directly used for the
existing distributed file system.

4.5 Overhead Evaluation

4.5.1 Sensitive to I/O Depth

I/O depth is the number of the on-the-fly I/O requests. It
greatly affects the performance of storage systems, espe-
cially for direct I/O. To understand NVStore’s sensitivity to
the I/O depth, we evaluate Ceph with NVStore, BlueStore
and FileStore using two I/O depth settings, 100 and 1000.

Fig. 17 shows Ceph’s bandwidth when using NVStore,
BlueStore and FileStore with different I/O depth settings.
We could make the following observations:

� I/O depth has a higher impact on direct I/O (like in
NVStore and BlueStore) than buffered I/O (like in
FileStore), because buffering mitigates the impact
from I/O depths. With different I/O depths, Ceph-
FileStore maintains similar performance, with a max-
imum difference of 21 percent. In contrast, NVStore
has a maximum difference of 60 percent, and Blue-
Store has a maximum difference of 200 percent.

� NVStore is less sensitive to the I/O depth than Blue-
Store. When the write size is less than a block size,
BlueStore has greater bandwidth difference between
different I/O depths. One possible reason is that
when the number of on-the-fly requests is limited,
the SSD bandwidth can not be saturated. Since
NVStore use the KV store to store the unaligned

Fig. 16. Real workload performance in cloud.

Fig. 17. Sensitivity to I/O Depth. The write traffic of each workload is
16GB. The object size is 4MB. NVStore-100 means testing NVStore
with the I/O depth 100. Others are in a similar way.

Fig. 15. Local performance. Each test runs 600s. The object size is 4 MB.

SHU ET AL.: TOWARDS UNALIGNEDWRITES OPTIMIZATION IN CLOUD STORAGE WITH HIGH-PERFORMANCE SSDS 2933

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2020 at 06:59:06 UTC from IEEE Xplore. Restrictions apply.

writes, the unaligned write performance is not
affected by the I/O depth, but by the performance of
the KV store.

As such, we conclude that I/O depth has an impact on
storage systems which use direct I/Os. With better data lay-
out, this impact can be reduced as in NVStore.

4.5.2 Aligned Write Performance

In this section, we use iozone to evaluate the overall system
performance of NVStore under aligned writes. The compared
systems are Lustre and CephFS, which are configured with
1�metadata servers (mdt in Lustre and mds in Ceph), 5�OSD
servers (ost in Lustre and osd in Ceph) and 5�clients.

Fig. 18 shows the write bandwidth of the two evaluated
file systems with different write I/O sizes and different
backend storage systems. With 4KB write I/O size, NVStore
shows the highest write bandwidth, and is 1.6� of CephFS-
XFS, 1.5� of Lustre and 2.64� of CephFS-BlueStore. This is
because NVStore directly write aligned data to the disk and
update the metadata with finer granularity. Moreover,
NVStore performs better than any other system except
Ceph-XFS when the write I/O size is below 64 KB. Since
Ceph-XFS is based on FileStore and returns when data is
written to the log, and these log writes is aligned sequen-
tial writes which have a large advantage when the write
granularity is small. Due to the poor performance of the Flat-
tened Block Map for large writes, the performance of large
writes in NVStore is not as good as the existing distributed
file system, but the performance gap is not obvious, which is
5 percent worse than BlueStore and 10 percent worse than
Lustre.

5 RELATED WORK

Handling Unaligned Accesses. The unaligned I/O patterns of
computational science has long been considered as one of
the challenges at leadership scale [37]. Campello et al. [38]
reveal the causes of unaligned access: the mismatch in data
access granularities (bytes accessed by the application, and
pages accessed from storage by the operating system). Cli-
ent-based Caching can reduce the throughput loss caused
by frequent small and unaligned I/Os [39], [40], [41]. Set-
tlemyer B. [39] conducts a study of client-based caching for
parallel I/O and proposes progressive page caching that
represents cache data using dynamic data structures rather
than fixed-size pages of file data. With emerging high-speed
storage devices (e.g., SSD, NVRAM, PCM), the burst buffer
is considered as a promising solution for the I/O intensive

workloads on the HPC systems [42], [43], [44], [45], [46].
BurstFS [47] is an SSD-based distributed file system to be
used as burst buffer for scientific applications. NVFS [42]
adopts a NVM-based burst buffer for running Spark jobs on
top of parallel file systems. To optimize the process blocking
during page fetch when writing to non-cached file data,
Campello et al. [38] decouple the writing of data to a page
from its presence in memory by buffering page updates
elsewhere in OS memory. iBridge [8] proposes to utilize
SSDs to compromise the weakness of hard-disk-based serv-
ers in serving small fragment requests. TokuFS [48] uses
Fractal Tree indexes for microdata write workloads which
features creating and destroying many small files, perform-
ing small unaligned writes within large files and updating
metadata. Unlike these works, NVStore focuses on the
unaligned write problems both from the OS and NVMe SSD
device perspectives.

Flash based File Systems. Flash based SSDs are adopted
widely in the last decade. The unique characteristics in
SSDs compared to hard disk drives calls for disruptive
changes in file systems to exploit its potentials. Direct File
System (DFS) [49] simplifies the data allocation in file sys-
tems by leveraging the data allocation functions in flash
translation layer (FTL). The removed redundancy leads to
better performance. Object-based Flash Storage System
(OFSS) [50] proposes to manage flash memory directly via
software (this architecture is later called open-channel SSD),
and re-designs an object-based file system in a software
(SW)-hardware(HW) co-designed way. Due to the tight
SW/HW co-design, write amplification in the file system is
significantly reduced, thereby improving flash endurance.
Cheng Ji et al. [51] propose an empirical study of filesystem
fragmentation problems and provide two pilot solutions to
enhance file defragmentation. ReconFS [52] redesigns the
directory tree in a reconstructable way to reduce the meta-
data write overhead by leveraging the asymmetric read/
write features of flash. ParaFS [53] further exploits the inter-
nal parallelism of flash based SSDs by co-designing func-
tions that corresponding to both FTL and file system layers.
Comparatively, F2FS [54] is more conservative and has
gone into the Linux kernel. F2FS also optimizes the layout
for the flash features. While a myriad of efforts have been
made to local file systems, which could improve storage
nodes’ performance of distributed file systems, optimiza-
tions to distributed file systems have not well studied for
high-performance SSDs. NVStore is towards this direction.

Kernel Bypassing. Since recent network and storage hard-
ware provides extremely high performance, software over-
head is no longer a negligible part [55], [56]. For high speed
networking, user-level networking stack is intensively
researched to reduce data copies along the TCP/IP stack [57].
Similarly, RDMA (Remote Direct Memory Access) bypasses
the operating systems and supports zero-copynetworking [58].
For high performance non-volatile memory, storage system
software takes similar ways. Moneta-D [55] designs a user-
space storage system by transparently bypassing the operating
system. Recent persistent memory file systems, including
BPFS [59], SCMFS [60], PMFS [61], HiNFS [62], and Nova [63],
read or write files in a direct access (DAX) way. The DAX is
also supported in the Linux community to support persistent
memory [64]. Even flash memory is slower than non-volatile

Fig. 18. Performance evaluation with varied write I/O sizes under aligned
writes.

2934 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2020 at 06:59:06 UTC from IEEE Xplore. Restrictions apply.

mainmemories, the high-end SSDs support hundreds of thou-
sands of IOPS (i.e., input/output operations per second). To
exploit the hardware benefits, Intel proposes the SPDK (stor-
age performance develop kit) which is designed in user-space
and uses polling to reduce the latency of accessing NVMe
devices. SSDFA [65] is a user-space file system that manages a
number of low-cost commodity SSDs to achieve a million
IOPS for data accesses. BlueStore [66] direct performance I/O
operations to SSDs by bypassing the Linux kernel to explore
the SSD performance. Differently, our proposed NVStore is
designed for high-end SSDs. NVStore uses direct and buffered
I/O in a combinativeway to take both advantages.

Key-Value Based Metadata Management. Key-value store
shows high performance for small data writes, and thus is
regarded as a promising way to store metadata. TableFS [67]
and Ceph’s BlueStore respectively use LevelDB and
RocksDB to store both metadata and the small files.
IndexFS [68] and BatchFS [29] use LevelDB [69] to store the
metadata of distributed file system, and achieves linear
metadata scalability of batch file accesses. In addition to
metadata management using key-value stores, some
research works also try to manage data in a key-value access
way. KVFS [70] is one of the file systems which manages
files in a key-value way using VT-tree. GlobleFS [71] and
Ceph’s Kstore use LevelDB to store both data and metadata.
Our proposed NVStore manages metadata and store the
unaligned writes in the key-value store. For the key-value
inefficiency problem, WiscKey [72] has pointed out that co-
locating values with keys leads to inefficient organization of
keys, which results in slow reads. HashKV [73] uses hash-
based data grouping, which deterministically maps values
to storage space so as to make both updates and GC effi-
cient. Chen et al. [74] identify that the existing fixed-sized
management strategies of flash-based devices would poten-
tially result in low storage space utilization and propose a
KV flash translation layer design to improve storage space
utilization as well as the performance of the KV SSDs. These
optimizations could also be adopted by NVStore.

6 CONCLUSION

To optimize the unaligned writes in cloud storage with
high-performance SSDs, we propose an OSD systems called
NVStore. For the overhead incurred by unaligned writes in
data path, we designs a Flexible Cache Management mecha-
nism. By introducing the fragment page and redesigning
the cache management, we reduce the RMW operations,
and accelerate the unaligned write performance by reduc-
ing page sync operations while ensuring the data consis-
tency. For the overhead incurred by unaligned write in the
block map table, we propose a KV Affinity Metadata Manage-
ment mechanism. We co-designs the block map and key-
value store to provide a flattened block map and a
decoupled object metadata management. In this manner,
NVStore promotes the access performance while reducing
the write amplification from metadata. Evaluations demon-
strates the effectiveness of NVStore in improving the perfor-
mance of unaligned writes and reducing the write
amplification both frommetadata and data under unaligned
writes. Besides, NVStore is compatible with the advanced
function of Ceph.

ACKNOWLEDGMENTS

This work was supported in part by National Key Research &
Development Program of China (Grant No. 2018YFB1003301),
in part by the National Natural Science Foundation of China
(Grant No. 61772300 and 61832011), in part by Research and
Development Plan inKey Field ofGuangdongProvince (Grant
No. 2018B010109002) , and in part by SenseTime Research
Fund for Young Scholars.

REFERENCES

[1] F. B. Schmuck and R. L. Haskin, “GPFS: A shared-disk file system
for large computing clusters,” in Proc. 1st USENIX Conf. File Stor-
age Technol., 2002.

[2] P. J. Braam and others, “The Lustre storage architecture,” 2004.
[3] B. Calder et al., “Windows azure storage: A highly available

cloud storage service with strong consistency,” in Proc. 23rd ACM
Symp. Operating Syste. Princ., 2011, pp. 143–157. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=2043571

[4] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, “Dynamic
metadata management for petabyte-scale file systems,” in Proc.
ACM/IEEE Conf. Supercomputing, 2004, Art. no. 4. [Online]. Avail-
able: https://pdfs.semanticscholar.org/bd2d/e7db1009211e56e1aa
1ff91c53782c1e468a.pdf

[5] Y. Lu, J. Shu, andW. Zheng, “Extending the lifetime of flash-based
storage through reducing write amplification from file systems,”
in Proc. 11th USENIX Conf. File Storage Technol., 2013, pp. 257–270.

[6] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “A file is not a file: Understanding the I/O
behavior of apple desktop applications,” ACM Trans. Comput.
Syst., vol. 30, no. 3, 2012, Art. no. 10.

[7] “Lasr system call IO trace,” [Online]. Available: http://iotta.snia.
org/tracetypes/1

[8] X. Zhang, K. Liu, K. Davis, and S. Jiang, “iBridge: Improving
unaligned parallel file access with solid-state drives,” in Proc.
IEEE 27th Int. Symp. Parallel Distrib. Process., 2013, pp. 381–392.

[9] Q. Xu et al., “Performance analysis of NVMe SSDs and their impli-
cation on real world databases,” in Proc. 8th ACM Int. Syst. Storage
Conf., 2015, pp. 1–11. [Online]. Available: http://dl.acm.org/
citation.cfm?doid=2757667.2757684

[10] AXBOE, “fio-flexible I/O tester,” 2014. [Online]. Available:
http://freecode.com/projects/fio

[11] W. D. Norcott and D. Capps, “Iozone filesystem benchmark,”
2003.

[12] J. Bhimani et al., “Understanding performance of I/O intensive
containerized applications for NVMe SSDs,” in Proc. IEEE 35th
Int. Perform. Comput. Commun. Conf., 2016, pp. 1–8.

[13] Z. Yang et al., “AutoTiering: Automatic data placement manager
in multi-tier all-flash datacenter,” in Proc. 36th IEEE Int. Perform.
Comput. Commun. Conf., 2017, pp. 1–8.

[14] R. McDougall and J. Mauro, “FileBench,” 2005. [Online]. Available:
http://www.nfsv4bat.org/Documents/nasconf/2004/filebench.pdf

[15] A. Davies and A. Orsaria, “Scale out with glusterfs,” Linux J., vol.
2013, no. 235, Nov. 2013. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2555789.2555790

[16] D. Kim, H. Kim, and J. Huh, “vCache: Providing a transparent
view of the LLC in virtualized environments,” IEEE Comput.
Architecture Lett., vol. 13, no. 2, pp. 109–112, Jul.–Dec. 2014.

[17] M. Balakrishnan, D. Malkhi, J. D. Davis, V. Prabhakaran, M. Wei,
and T. Wobber, “CORFU: A distributed shared log,” ACM Trans.
Comput. Syst., vol. 31, no. 4, pp. 1–24, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2542150.2535930http://dl.
acm.org/citation.cfm?id=2535930%5Cnhttp://dl.acm.org/citati
on.cfm?doid=2542150.2535930

[18] M. Balakrishnan et al., “Tango: Distributed data structures over a
shared log,” in Proc. 24th ACM Symp. Operating Syst. Princ., 2013,
pp. 325–340. [Online]. Available: http://www.cs.cornell.edu/
taozou/sosp13/tangososp.pdf

[19] “FILESTORE config reference,” 2016. [Online]. Available: https://
docs.ceph.com/docs/master/rados/configuration/filestore-
config-ref/

[20] A. Samuels, “Ceph high performance without high costs,” [Online].
Available: https://www.flashmemorysummit.com/English/Collate
rals/Proceedings/2016/20160810_K21_Samuels.pdf

SHU ET AL.: TOWARDS UNALIGNEDWRITES OPTIMIZATION IN CLOUD STORAGE WITH HIGH-PERFORMANCE SSDS 2935

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2020 at 06:59:06 UTC from IEEE Xplore. Restrictions apply.

http://dl.acm.org/citation.cfm?id=2043571
https://pdfs.semanticscholar.org/bd2d/e7db1009211e56e1aa1ff91c53782c1e468a.pdf
https://pdfs.semanticscholar.org/bd2d/e7db1009211e56e1aa1ff91c53782c1e468a.pdf
http://iotta.snia.org/tracetypes/1
http://iotta.snia.org/tracetypes/1
http://dl.acm.org/citation.cfm?doid=2757667.2757684
http://dl.acm.org/citation.cfm?doid=2757667.2757684
http://freecode.com/projects/fio
http://www.nfsv4bat.org/Documents/nasconf/2004/filebench.pdf
http://dl.acm.org/citation.cfm?id=2555789.2555790
http://dl.acm.org/citation.cfm?id=2555789.2555790
http://dl.acm.org/citation.cfm?doid=2542150.2535930
http://dl.acm.org/citation.cfm?id=2535930%5Cnhttp://dl.acm.org/citation.cfm?doid=2542150.2535930
http://dl.acm.org/citation.cfm?id=2535930%5Cnhttp://dl.acm.org/citation.cfm?doid=2542150.2535930
http://dl.acm.org/citation.cfm?id=2535930%5Cnhttp://dl.acm.org/citation.cfm?doid=2542150.2535930
http://dl.acm.org/citation.cfm?id=2535930%5Cnhttp://dl.acm.org/citation.cfm?doid=2542150.2535930
http://www.cs.cornell.edu/ taozou/sosp13/tangososp.pdf
http://www.cs.cornell.edu/ taozou/sosp13/tangososp.pdf
https://docs.ceph.com/docs/master/rados/configuration/filestore-config-ref/
https://docs.ceph.com/docs/master/rados/configuration/filestore-config-ref/
https://docs.ceph.com/docs/master/rados/configuration/filestore-config-ref/
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2016/20160810_K21_Samuels.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2016/20160810_K21_Samuels.pdf

[21] M. Cao, S. Bhattacharya, and T. Ts’o, “Ext4: The next generation of
Ext2/3 filesystem,” inProc. Linux Storage FilesystemWorkshop, 2007.

[22] L. Changman, S. Dongho, H. JooYoung, and C. Sangyeun, “F2FS:
A new file system designed for flash storage in mobile,” in Proc.
13th USENIX Conf. File Storage Technol., 2015, pp. 273–286.

[23] A. Kumar, M. Cao, J. R. Santos, and A. Dilger, “Ext4 block and
inode allocator improvements,” in Proc. Linux Symp., 2008,
pp. 263–273.

[24] S. Tweedie, “Ext3, journaling filesystem,” pp. 24–29, 2000.
[25] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and

G. Peck, “Scalability in the XFS file system,” in Proc. Annu. Conf.
USENIX Annu. Tech. Conf., 1996, pp. 1–1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1268299.1268300

[26] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The linux B-tree fil-
esystem,” ACM Trans. Storage, vol. 9, 2013, Art. no. 9.

[27] K. Ren and G. Gibson, “TABLEFS: Embedding a NoSQL database
inside the local file system,” in Proc. Digest APMRC, 2012, pp. 1–6.
[Online]. Available: http://www.mendeley.com/research/
tablefs-embedding-nosql-database-inside-local-file-system

[28] L. Xiao, K.Ren, Q. Zheng, andG.A.Gibson, ShardFS vs. IndexFS: Rep-
lication vs. Caching Strategies for Distributed Metadata Management in
Cloud Storage Systems. New York, NY, USA: ACM, 2015. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2806777.2806844

[29] Q. Zheng, K. Ren, and G. Gibson, BatchFS: Scaling the File System
Control Plane With Client-Funded Metadata Servers. New York, NY,
USA: IEEE Press, 2014.

[30] “Facebook RocksDB,” [Online]. Available: http://rocksdb.org/
[31] A. Hutton et al., “Asynchronous I / O support in Linux 2.5,” 2003.
[32] “SPDK: Storage performance development kit,” [Online]. Avail-

able: http://www.spdk.io
[33] S. Li, Y. Lu, J. Shu, Y. Hu, and T. Li, “LocoFS: A loosely-coupled

metadata service for distributed file systems,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2017, pp. 4:1–4:12.
[Online]. Available: http://doi.acm.org/10.1145/3126908.3126928

[34] “Ceph—A scalable distributed storage system,” [Online]. Avail-
able: https://github.com/ceph/ceph

[35] “PERF COUNTERS,” 2016. [Online]. Available: https://docs.
ceph.com/docs/master/dev/perf_counters/

[36] A. D. B. Jens Axboe and N. Scott, “blktrace(8) - Linux man page,”
2006. [Online]. Available: https://linux.die.net/man/8/blktrace

[37] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock,
“I/O performance challenges at leadership scale,” in Proc. Conf.
High Perform. Comput. Network. Storage Anal., 2009, pp. 1–12.

[38] D. Campello, H. Lopez, R. Koller, R. Rangaswami, and L. Useche,
“Non-blocking writes to files,” in Proc. 13th USENIX Conf. File
Storage Technol., 2015, pp. 151–165.

[39] B. Settlemyer, “A study of client-based caching for parallel I/O,”
2009.

[40] W.-k. Liao, K. Coloma, A. Choudhary, L. Ward, E. Russell, and
S. Tideman, “Collective caching: Application-aware client-side
file caching,” in Proc. 14th IEEE Int. Symp. High Perform. Distrib.
Comput., 2005, pp. 81–90.

[41] X. Ma, J. Lee, and M. Winslett, “High-level buffering for hiding
periodic output cost in scientific simulations,” IEEE Trans. Parallel
Distrib. Syst., vol. 17, no. 3, pp. 193–204, Mar. 2006.

[42] N. S. Islam, M. Wasi-Ur-Rahman, X. Lu, and D. K. Panda, “High
performance design for HDFS with byte-addressability of NVM
and RDMA,” in Proc. Int. Conf. Supercomputing, 2016, pp. 1–14.

[43] T. Wang, S. Oral, M. Pritchard, B. Wang, and W. Yu, “TRIO: Burst
buffer based I/O orchestration,” in Proc. IEEE Int. Conf. Cluster
Comput., 2015, pp. 194–203. [Online]. Available: http://www.
mendeley.com/research/trio-burst-buffer-based-io-orchestration

[44] T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and W. Yu,
“BurstMem: A high-performance burst buffer system for scientific
applications,” in Proc. IEEE Int. Conf. Big Data, 2015, pp. 71–79.

[45] J. Bent et al., “PLFS: A checkpoint filesystem for parallel
applications,” in Proc. Conf. High Perform. Comput. Netw. Storage
Anal., 2009, pp. 1–12.

[46] N. Liu et al., “On the role of burst buffers in leadership-class stor-
age systems,” in Proc. IEEE Symp. Mass Storage Syst. Technol., 2012,
pp. 1–11.

[47] T. Wang, K. Mohror, A. Moody, W. Yu, and K. Sato, “BurstFS: A
distributed burst buffer file system for scientific applications,” in
Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2015.

[48] J. Esmet, M. A. Bender, M. Farach-Colton, and B. C. Kuszmaul,
“The tokuFS streaming file system,” in Proc. 4th USENIX Conf. Hot
Topics Storage File Syst., 2012.

[49] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn, “DFS: A file
system for virtualized flash storage,” ACM Trans. Storage, vol. 6,
2010, Art. no. 14.

[50] Y. LuJ. Shu, and W. Zheng, “Extending the lifetime of flash-based
storage through reducing write amplification from file systems,”
in Proc. 12th USENIX Conf. File Storage Technol., 2013, pp. 257–270.

[51] C. Ji, L.-P. Chang, L. Shi, C. Wu, Q. Li, and C. J. Xue, “An empiri-
cal study of file-system fragmentation in mobile storage systems,”
in Proc. 8th USENIX Workshop Hot Topics Storage File Syst., Jun.
2016, pp. 76–80. [Online]. Available: https://www.usenix.org/
conference/hotstorage16/workshop-program/presentation/ji

[52] Y. Lu, J. Shu, and W. Wang, “ReconFS: A reconstructable file sys-
tem on flash storage,” in Proc. 12th USENIX Conf. File Storage Tech-
nol., 2014, pp. 75–88.

[53] J. Zhang, J. Shu, Y. Lu, J. Shu, and Y. Lu, “ParaFS: A log-structured
file system to exploit the internal parallelism of flash devices,” in
Proc. USENIX Annu. Tech. Conf., 2016, pp. 87–100.

[54] C. Lee, D. Sim, J. Y. Hwang, and S. Cho, “F2FS - A new file system
for flash storage,” in Proc. USENIX Conf. File Storage Technol.,
2015. [Online]. Available: http://dblp.org/rec/conf/fast/
LeeSHC15

[55] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and S.
Swanson, “Providing safe, user space access to fast, solid state dis-
ks,” in Proc. 17th Int. Conf. Architect. Support Program. Languages
Operating Syst., 2012, Art. no. 387. [Online]. Available: http://dl.
acm.org/citation.cfm?doid=2150976.2151017

[56] Y. Lu, J. Shu, Y. Chen, and T. Li, “Octopus: An RDMA-enabled
distributed persistent memory file system,” in Proc. USENIX
Annu. Techn. Conf., 2017, pp. 773–785.

[57] E. Jeong et al., “mTCP: A highly scalable user-level TCP stack for
multicore systems,” in Proc. USENIX Symp. Networked Syst. Des.
Implementation, 2014.

[58] R. Recio, P. Culley, D. Garcia, J. Hilland, and B. Metzler, “An
RDMA protocol specification,” IETF Internet-draft draft-ietf-
rddp-rdmap-03. txt (work in progress), 2005.

[59] J. Condit et al., “Better I/O through byte-addressable, persistent
memory,” in Proc. ACM SIGOPS 22nd Symp. Operating Syst. Princi-
ples, 2009, pp. 133–146.

[60] X. Wu and A. L. Reddy, “SCMFS: A file system for storage class
memory,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2011, Art. no. 39.

[61] S. R. Dulloor et al., “System software for persistent memory,” in
Proc. 9th Eur. Conf. Comput. Syst., 2014, pp. 1–15.

[62] J. Ou, J. Shu, and Y. Lu, “A high performance file system for non-
volatile main memory,” in Proc. 11th Eur. Conf. Comput. Syst.,
2016, pp. 1–16. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2901318.2901324

[63] J. Xu and S. Swanson, “NOVA: A log-structured file system for
hybrid volatile/non-volatile main memories,” in Proc. 14th Usenix
Conf. File Storage Technol., 2016, pp. 323–338.

[64] M. Wilcox, “DAX: Page cache bypass for filesystems on memory
storage,”Oct, vol. 24, 2014, Art. no. 4.

[65] D. Zheng, R. Burns, and A. S. Szalay, “Toward millions of file sys-
tem IOPS on low-cost, commodity hardware,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2013, Art. no. 69. [Online].
Available: http://dl.acm.org/citation.cfm?id=2503210.2503225

[66] S. Weil, “Bluestore: A new storage backend for ceph one year in,”
[Online]. Available: http://events.linuxfoundation.org/sites/
events/files/slides/20170323%20bluestore.pdf

[67] K. Ren and G. Gibson, “TABLEFS: Enhancing metadata efficiency
in the local file system,” in Proc. USENIX Annu. Tech. Conf., 2013,
pp. 145–156. [Online]. Available: https://www.usenix.org/
conference/atc13/technical-sessions/presentation/ren

[68] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “IndexFS: Scaling file
system metadata performance with stateless caching and bulk
insertion,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2014, pp. 237–248. [Online]. Available: http://ieeexplore.
ieee.org/document/7013007/

[69] “LevelDB, A fast and lightweight key/value database library by
Google,” [Online]. Available: https://code.google.com/p/leveldb/

[70] P. Shetty, R. Spillane, and R. Malpani, “Building workload-indepen-
dent storage with VT-Trees,” in Proc. 11th USENIX Conf. File Storage
Technol., 2013, pp. 17–30. [Online]. Available: https://www.usenix.
org/system/files/conference/fast13/fast13-final165_0.pdf

[71] L. Pacheco, R. Halalai, V. Schiavoni, F. Pedone, E. Rivi�ere, and
P. Felber, “GlobalFS: A strongly consistent multi-site file system,”
in Proc. IEEE Symp. Reliable Distrib. Syst., 2016, pp. 147–156.

2936 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2020 at 06:59:06 UTC from IEEE Xplore. Restrictions apply.

http://dl.acm.org/citation.cfm?id=1268299.1268300
http://www.mendeley.com/research/tablefs-embedding-nosql-database-inside-local-file-system
http://www.mendeley.com/research/tablefs-embedding-nosql-database-inside-local-file-system
http://dl.acm.org/citation.cfm?doid=2806777.2806844
http://rocksdb.org/
http://www.spdk.io
http://doi.acm.org/10.1145/3126908.3126928
https://github.com/ceph/ceph
https://docs.ceph.com/docs/master/dev/perf_counters/
https://docs.ceph.com/docs/master/dev/perf_counters/
https://linux.die.net/man/8/blktrace
http://www.mendeley.com/research/trio-burst-buffer-based-io-orchestration
http://www.mendeley.com/research/trio-burst-buffer-based-io-orchestration
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/ji
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/ji
http://dblp.org/rec/conf/fast/LeeSHC15
http://dblp.org/rec/conf/fast/LeeSHC15
http://dl.acm.org/citation.cfm?doid=2150976.2151017
http://dl.acm.org/citation.cfm?doid=2150976.2151017
http://dl.acm.org/citation.cfm?doid=2901318.2901324
http://dl.acm.org/citation.cfm?doid=2901318.2901324
http://dl.acm.org/citation.cfm?id=2503210.2503225
http://events.linuxfoundation.org/sites/events/files/slides/20170323%20bluestore.pdf
http://events.linuxfoundation.org/sites/events/files/slides/20170323%20bluestore.pdf
http://events.linuxfoundation.org/sites/events/files/slides/20170323%20bluestore.pdf
https://www.usenix.org/conference/atc13/technical-sessions/presentation/ren
https://www.usenix.org/conference/atc13/technical-sessions/presentation/ren
http://ieeexplore.ieee.org/document/7013007/
http://ieeexplore.ieee.org/document/7013007/
https://code.google.com/p/leveldb/
https://www.usenix.org/system/files/conference/fast13/fast13-final165_0.pdf
https://www.usenix.org/system/files/conference/fast13/fast13-final165_0.pdf

[72] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“WiscKey: Separating keys from values in SSD-conscious storage,”
in Proc. 14th USENIX Conf. File Storage Technol., 2016, pp. 133–148.

[73] Y. Li, H. H. Chan, P. Lee, and Y. Xu, “Enabling efficient updates in
kv storage via hashing: Design and performance evaluation,”
ACM Trans. Storage, vol. 15, pp. 1–29, 2019.

[74] Y. Chen, M. Yang, Y. Chang, T. Chen, H. Wei, and W. Shih,
“Co-optimizing storage space utilization and performance for
key-value solid state drives,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 38, no. 1, pp. 29–42, Jan. 2019.

Jiwu Shu (Fellow, IEEE) received the PhD
degree in computer science from Nanjing Univer-
sity, in 1998, and finished the postdoctoral posi-
tion research at Tsinghua University, in 2000.
Since then, he has been teaching at Tsinghua
University, and is currently a professor with the
Department of Computer Science and Technol-
ogy, Tsinghua University. His current research
interests include network storage systems, non-
volatile memory-based storage systems, storage
security and reliability, and parallel and distrib-
uted computing.

Fei Li received the BS degree in computer
science and technology from Tsinghua Univer-
sity, in 2015. He is currently working toward the
master’s degree with the Department of Com-
puter Science and Technology, Tsinghua Univer-
sity. His research interest includes flash-based
storage system. One of his research work is pub-
lished at the top-tier conference DAC, in 2019.

Siyang Li received the BS and MS degrees from
the National University of Defence and Technol-
ogy, in 2012 and 2015, respectively. He is cur-
rently working toward the PhD degree with the
State Key Laboratory of Mathematical Engineer-
ing and Advanced Computing and visiting PhD
student of Tsinghua University. His research
interest includes distributed storage system. His
research works have been published at a number
of top-tier conferences and Journal including SC
and TPDS etc.

Youyou Lu received the BS degree in computer
science from Nanjing University, in 2009, and the
PhD degree in computer science from Tsinghua
University, in 2015. He is an assistant professor
with the Department of Computer Science and
Technology, Tsinghua University. His current
research interests include file and storage sys-
tems spanning from architectural to system lev-
els. His research works have been published at a
number of top-tier conferences including FAST,
USENIX ATC, EuroSys, SC, MSST, ICCD etc.

His research won the Best Paper Award at NVMSA 2014 and was
selected into the Best Papers at MSST 2015. He was elected in the
Young Elite Scientists Sponsorship Program by CAST (China Associa-
tion for Science and Technology), in 2015, and received the CCF Out-
standing Doctoral Dissertation Award, in 2016.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

SHU ET AL.: TOWARDS UNALIGNEDWRITES OPTIMIZATION IN CLOUD STORAGE WITH HIGH-PERFORMANCE SSDS 2937

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2020 at 06:59:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

