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PM-aware Systems in the past decade ...
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Before 2019: The Emulation Era



Hardware Emulation Assumptions

Assumptions: Cacheline & XPLine
64 bytes / 256 bytes

Byte-addressability

Slow Write Bandwidth

2.2 GB/s per DIMM
(1/3-1/6 of DRAM)

Comparable Write Latency
~100 ns
High Read Latency
Rnd: 300 ns (3.7x of DRAM)
3

Close-to-DRAM Bandwidth

High Write Latency

Low Read Latency




Hardware Emulation Assumptions

Byte-addressability

grained Journaling
PMFS [Eurosys’16], NOVA [FAST’16], etc. |

o Fine-grained Caching
| HiNFS [Eurosys’| 6], Tinca [SC’I7], etc. |

’O Fine-grained Index Structures
| Level-Hashing [OSDI’ 18], etc. |

8-byte Atomic Operations
*Ofpiree [SIGMOD' 1 6], FAST&FAIR [FAST'18]

g

Generate a large
number of
synchronized &
small-sized |/Os.

= |

XPLine: 256 bytes

|/8 DRAM Bandwidth



Using a log structure: An intuitive approach

Buffer, then commit




Using a log structure: An intuitive approach

The idea of log structure is very successful for SSD/HDD

<+ SSD/HDDs prefer sequential access pattern

< The overhead of multiple storage accesses can be amortized via batching
< Buffer up to tens of MBs of data before persist them

Q: Can a log structure still retain its benefits with Optane DCPMMs?
< Optane shows very close performance for random/sequential accesses

< 256-byte |/O units are enough to saturate the Optane bandwidth

<It’s not beneficial to batch data larger than this 1/O size

< Log cleaning overhead



FlatStore:
An Efficient Log-Structured Key-Value Storage Engine

Simple insight:|Selective batch to maximize the potential performance.

+ Small updates are appended to the per-core log structure

+ Large updates are stored separately via a persistent allocator

Techniques:

+» Compacted Log Format: Improve the batching opportunity
+ Pipelined Horizontal batching:Without increasing the latency

Results:

+ Support both hash- and tree-based index structures
+ Achieves up to 35 Mops/s with a single server node

+ 2.5 = 6.3 times faster than existing systems ;



Outline

% Optane DC Persistent Memory Module
+ FlatStore: An Efficient Log-structured Storage Engine
+ Results

% Summary & Conclusion



Optane DC Persistent Memory Module
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Overhead of Accessing Granularity Mismatch

FAST&FAIR [FAST’ | 8]: State-of-the-art Persistent B*-Tree data structure

Avoids logging and doesn’t block reads by using synchronized 8-B atomic operations

Sort & balance overhead
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When Log Structure Meets Optane DCPMM

Random and sequential accesses achieve the same peak performance

Minimal |O units to saturate bandwidth: 256-byte blocks

It is not beneficial to batch more data than a single I/O unit (i.e., 256 B)

Bandwidth (GB/s)

Batching increases latency inevitably
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+ FlatStore: An Efficient Log-structured Storage Engine
+ Results

% Summary & Conclusion



Overall Architecture of FlatStore

B*-Tree Hash Index Clients
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Compacted Log Format

Log entries are formatted via the operation log technique

Describe each operation, instead of recording the value

Ptr-based Log Entry

‘ Op ‘ Emd ‘ Version ‘ Key ‘ Ptr ‘

Value-based Log Entry

‘ Op ‘ Emd ‘ Version ‘ Key ‘ Size ‘ Value
0 2 4 24 88 96 128 (bits)

16 log entries (256-byte) can be flushed to Optane DC altogether



Pipelined Horizontal Batching

Common wisdom: Batching increases both throughput and latency
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Putting it all together

B*-Tree Hash Index Clients

Volatile Index

» New requests
_________________________________ ¢ Write KV pairs

PM % Prepare log entries

o BN B ¢ Grboelock(core)

Log Structure .
% Collect log entries

Bitmap [T Free Lists |H—E N * Release the lock

Nocwor I T T oo
ocator o e —_—— ¢ Update volatile index




More design details: Check our paper

Lazy-persist allocator are used to store large KV pairs

Bitmaps describing the allocation states don’t need to be persisted synchronously,
since the log entries has already record such information

Grouping the cores to conduct pipelined horizontal batching

+ The size of each group balances the contention level and batching opportunity

Non-blocking parallel log cleaning

+ Obsolete log entries are reclaimed concurrently without blocking the front-end
operations

Recovery of the volatile index

+ Volatile index are kept in DRAM and is vulnerable to system/power failures



Outline

<+ Results

% Summary & Conclusion



Experimental Setup

Hardware Platform

Server Node |4 Optane DCPMMs (1 TB),2 Xeon Gold 6240m CPUs (36 cores), 128 GB DRAM

Client Nodes x11 |2 Xeon E5-2650 v4 CPUs (24 cores), 128 GB DRAM

Switch Mellanox MSB7790-ES2F Switch (100 Gbps)
Compared Systems
CCEH Three level (directory, segments, buckets), 4 slots in a bucket
Hash-based
Level-Hashing | Two-level (top/bottom level), 4 slots in a bucket
FPTree Inner nodes are placed in DRAM.
Tree-based
FAST&FAIR | All nodes are placed in PM.
Workloads

» Facebook ETC Pool: Mixture of small & large KV pairs

+ YCSB (varying r/w ratio, item size, skewness, etc)



Micro-benchmark: YCSB
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FlatStore’s performance is 3.9% higher than FPTree (2" best) for 8-byte values
» Multiple small values can be persisted together

. FlatStore doesn’t introduce structural modification overhead

For large values (e.g., 1024-byte), FlatStore still shows |.7% higher throughput



Macro-benchmark: Facebook ETC Pool

Facebook ETC Pool: mixture of small & large KV pairs.
Tiny (1-13 bytes, 40%), zipfan distribution
Small (14-300 bytes, 55%), zipfan distribution
Large (> 300 bytes, 5%), uniform distribution
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Pipelined Horizontal Batching: Latency Reduction
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+ By introducing pipelined horizontal batching, FlatStore uses less time to collect a batch,
thus achieving lower latency

+ Pipelined HB contributes to improving the performance, since it dynamically collect a

batch, instead of using a predefined threshold (e.g., minimal batch size) .



Summary & Conclusion

< Real PM device — Optane DCPMMs — exhibit much different hardware
properties from what we assumed, which make many existing
optimizations inapplicable

< We propose FlatStore to revitalize the log-structured design on Optane
Memory. Key insight: Selective batch to maximize the potential
performance
< Compacted Log Format
< Pipelined Horizontal Batching

< FlatStore supports hash- and tree-based index structure, which is 2.5 — 6.3
times faster than existing systemes.
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Log Cleaning Overhead

40

= Only 10% reduction
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Workload: YCSB (64B values)

+ background cleaner reclaims the blocks without blocking the normal requests
+ Log-structure only contains small-sized metadata or KV items

+» Multiple GC groups (check our paper for details) 25



Basic Performance of Optane DCPMMs
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Value size distribution in real-world workloads

Value Size CDF by appearance
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Micro-benchmark: YCSB

Throughput (Mops/s)
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Using a log structure: An intuitive approach

Q: Can a log structure still retain its benefits with Optane DCPMMs?

w/o data journaling

Sequential access

Batching



