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Explosive Growth of Model Size

3640 petaflop/s-day = A100 x 30 years
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[1] Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.
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Pre-training and Then Fine Tuning

Much less computing power
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Commodity GPU Servers
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Training on Commodity GPU Servers
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70% of training time is spent on communication
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Mobius Overall
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Mobius Pipeline
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Mobius Pipeline
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Mobius Pipeline
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Mobius Pipeline

Stage;’s execution on jt" microbatch
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Mobius Pipeline

Stage;’s execution on jt" microbatch Communication without contention
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Two Partition Questions

* How many stages are in each GPU?
* How many layers are in each stage?
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Mobius Partition

* Profile each layer’s memory footprint and computation overhead
* Profile hardware performance, i.e. bandwidth
* Use mixed integer program (MIP) to fine the optimal partition scheme

(A e e e e )
MIP

ASPLOS’23: Mobius: Fine Tuning Large-Scale Models on Commodity GPU Servers orage Research Lab. Tsinghua University | 9




Mobius Partition

minimize Training time of one step

subject to Memory constraints
* Memory required by computation
* Memory required by prefetching
Pipeline order constraints
» Stage execution order
* Microbatch execution order
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Table 2: Variables used in MIP pa
tion variables By ; are the searching spa8

can be computed if we know values of By
ables, e € {f, b}, f means forward function, and 9
function.

Constant variables:

Number of the model’s layers
Number of GPUs

Number of microbatches
Per-GPU memory capacity
Average GPU communication bandwidth

Optimization variables:
Boolean variables. If By  is true, it means iy
model layer is in ji, stage.

w0z

Bij

Intermediate variables:

mj iy, microbatch

si iy stage

Activation size of s;

Activation gradient size of s;

tf;  Start time of s;’s function e on m;

Tf  Duration of s;’s function e on a microbatch
D¢ Duration of s; finishes e on M microbatches
$¢ GPU memory required by s;’s function e
Rf  Reserved GPU memory in s;’s function e
PS¢ Prefetch data size of s; in function e
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Third, Mobius executes the microbatches on the same st:

Each GPU can only execute one stage’s forward or

During model’s training, two types of constraints need to be sat-
isfied, namely memory constraints and pipeline order constraints.
Memory constraints: the data stored in the GPU should not exceed
the GPU’s memory. First, the GPU memory should hold current

stage’s and the i data during
training, This constraint is formulated as follows:
556G, jelLLlee {f,b} @

Second, except for the first stage in the forward and the last stage
in the backward, the data of the next stage need to be prefetched.
The amount of data prefetched for the next stage cannot exceed the
reserved GPU memory. The constraints are formulated as follows:
_sf i
Pl<c S je (NI .
Pl <G-Sly JelLL-N]

Third, prefetch should finish before the current computing stage
finishes forward or backward on all microbatches, and the size of
the prefetched data should not exceed the size of the next stage
(Constraint 6).

Pl <BxD/ je (NI
ijsExD]ﬁN‘ jel[LL-N] ©)
s jelLLlee{f.b)

Dy is the total time that s; finishes e function on all M micro-
batches. It can be presented by the start time of the first and last

backward function on a microbatch at a time (Constraint 10).
G =t 1+ T}
where j € [1,L],me (1, M, e € {f,b}
Forth, the backward of a step begins after the forward finishes
(Constraint 11).
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Profiling. MIP partition algorithm requires the pre-knowledge of
the memory footprint and computing time of each layer. A basic
way to get this information is to profile the whole model and collect
each layer’s statistics, which is slow since prefetching is disabled for
more accurate statistics. Mobius leverages the model layer similarity
to reduce the profiling time. There are a large number of identical
layers in large-scale models (e.g., Transformer blocks in GPT-3).
These layers share similar GPU memory footprint and computing
time. Mobius merges a group of equal layers into one based on the
model layer similarity. This compresses a model to a smaller one,
enabling profiling to be completed in less time.

Solving MIP. We solve this MIP by using Gurobi Optimizer [10]
to obtain a balanced partition. The solving time only costs up to
several seconds in our evaluation, which is negligible compared to
the overall fine-tuning duration (hours to days).

3.3 Cross Mapping

After the model partition, Mobius needs to map each stage to a
GPU. The stage mapping needs to consider communication con-
tention. We observe that when mapping adjacent stages to the
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Communication Contention
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Cross Mapping
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Cross Mapping

Number of GPUs under the same CPU root complex

shared(i,j)
i —Jl

contention(stagei, Stagej) =

Time difference to upload the two stages’ data
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Experimental Setup
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Overall Results

 Mobius and DeepSpeed with heterogeneous memory mode are able to train larger
models

 Mobius decreases per-step training time

* Mobius brings more significant performance improvement when the GPU topology
has more severe communication contention
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Communication Analysis

* DeepSpeed with heterogeneous memory mode requires frequent GPU all-to-all
collective communications, while Mobius pipeline only transfers small activations
and activation gradients

* More than half of the data is transferred at a bandwidth of more than 12 GB/s in
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Conclusion

* Commodity GPU server is an affordable option for fine-tuning large-scale models
However, communication resources on commodity GPU servers are scarce
* We propose Mobius to reduce communication traffic and mitigate communication
contention problem
* Mobius pipeline: heterogeneous memory-based pipeline training scheme
* Mobius partition: find the optimal partition scheme
* Cross mapping: mitigate communication contention
* Mobius significantly reduces the training time by 3.8-5.1 times compared with the
prior art

ASPLOS’23: Mobius: Fine Tuning Large-Scale Models on Commodity GPU Servers torage Research Lab. Tsinghua University | 16



ASPLOS 2023

'singhua University

Vancouver, Canada

Thanks

Mobius: Fine Tuning Large-Scale Models on Commodity GPU Servers

Yangyang Feng, Minhui Xie, Zijie Tian, Shuo Wang, Youyou Lu, and Jiwu Shu

Tsinghua University

http://storage.cs.tsinghua.edu.cn
Email: fyy21@mails.tsinghua.edu.cn



mailto:fyy21@mails.tsinghua.edu.cn

