

Memory-Efficient Continual Learning for Large-Scale Real-Time Recommendations

Minhui Xie*, Kai Ren*, Youyou Lu, Guangxu Yang, Qingxing Xu, Bihai Wu, Jiazhen Lin, Hongbo Ao, Wanhong Xu, and Jiwu Shu

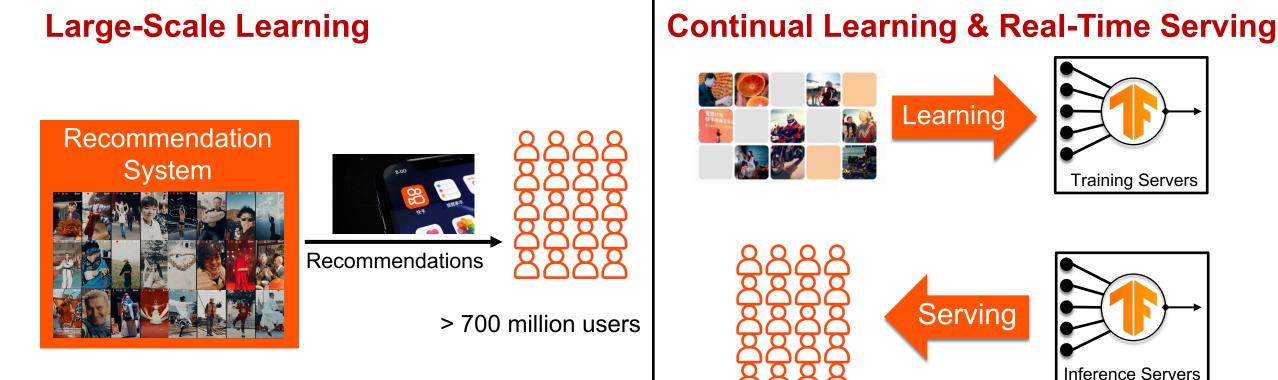
Tsinghua University

Kuaishou Inc.

Recommendation System in Kuaishou

Recommendations

Large-Scale Continual Learning Scenario



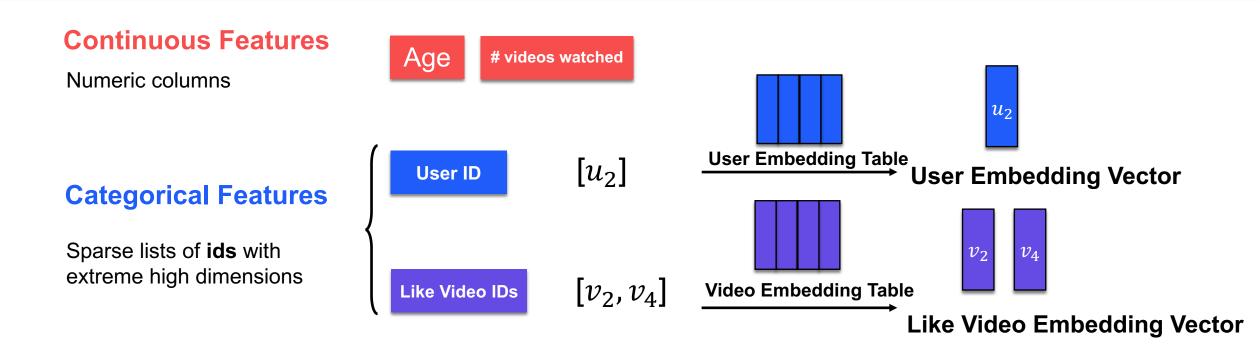
Over 20 billion videos in the warehouse

The backend model contains **tens of billions** of parameters.

10 million fresh UGC per day2 million new training samples per second

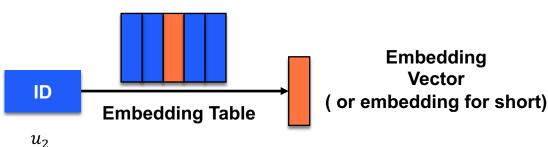
Never end learning.

Typical DNN Model Architecture for Recommendation (I)

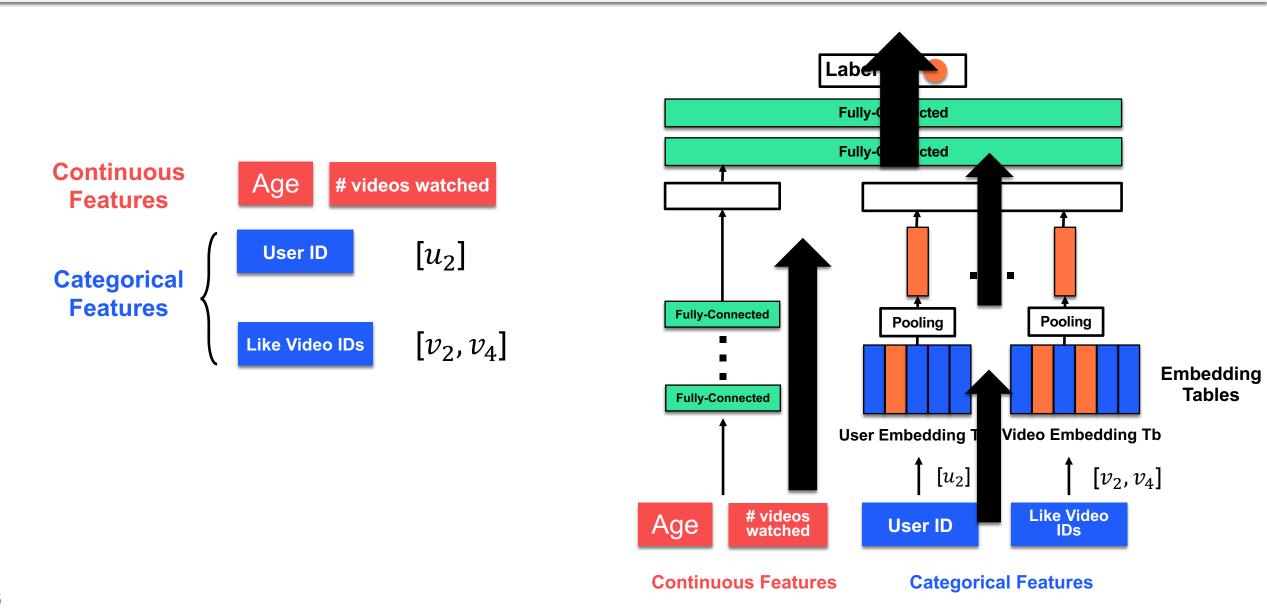


Embedding Lookup

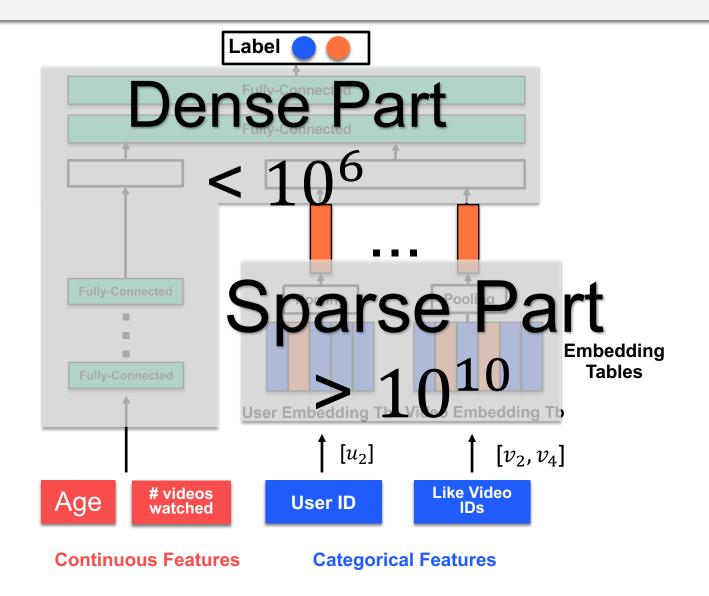
4



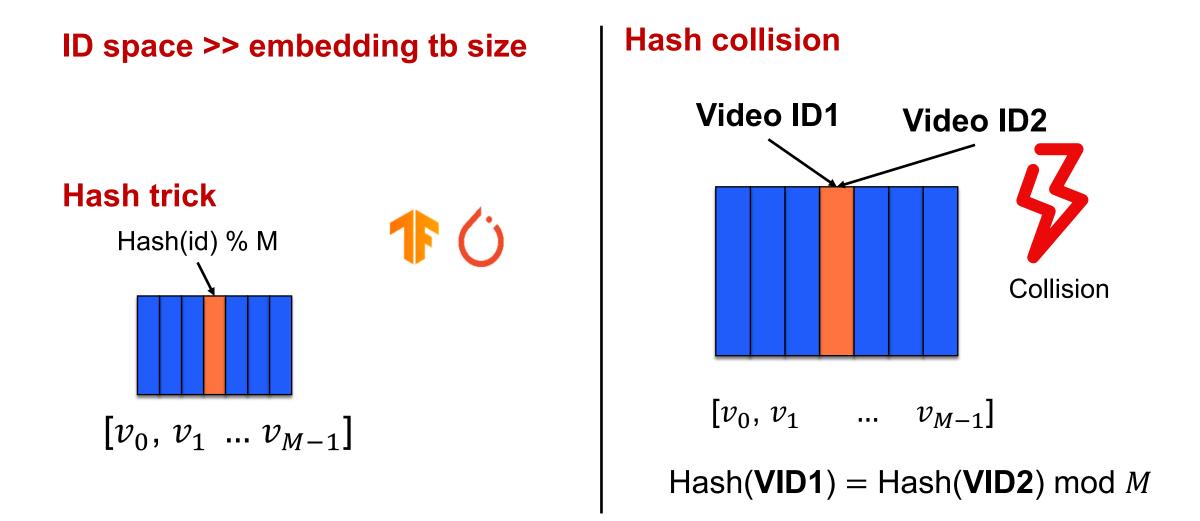
Typical DNN Model Architecture for Recommendation (II)



Our Models

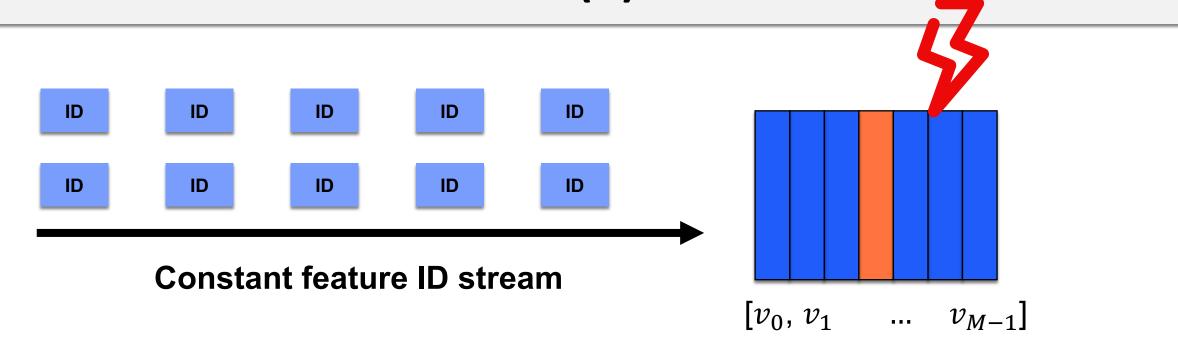


Hash trick & Hash collision (I)



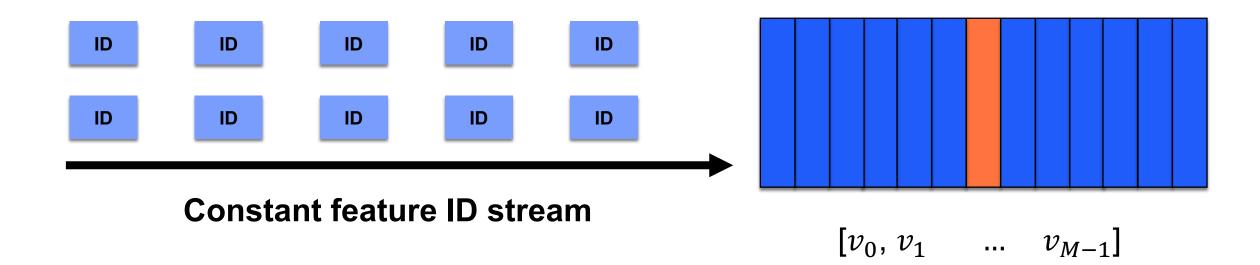
7

Hash trick & Hash collision (II)

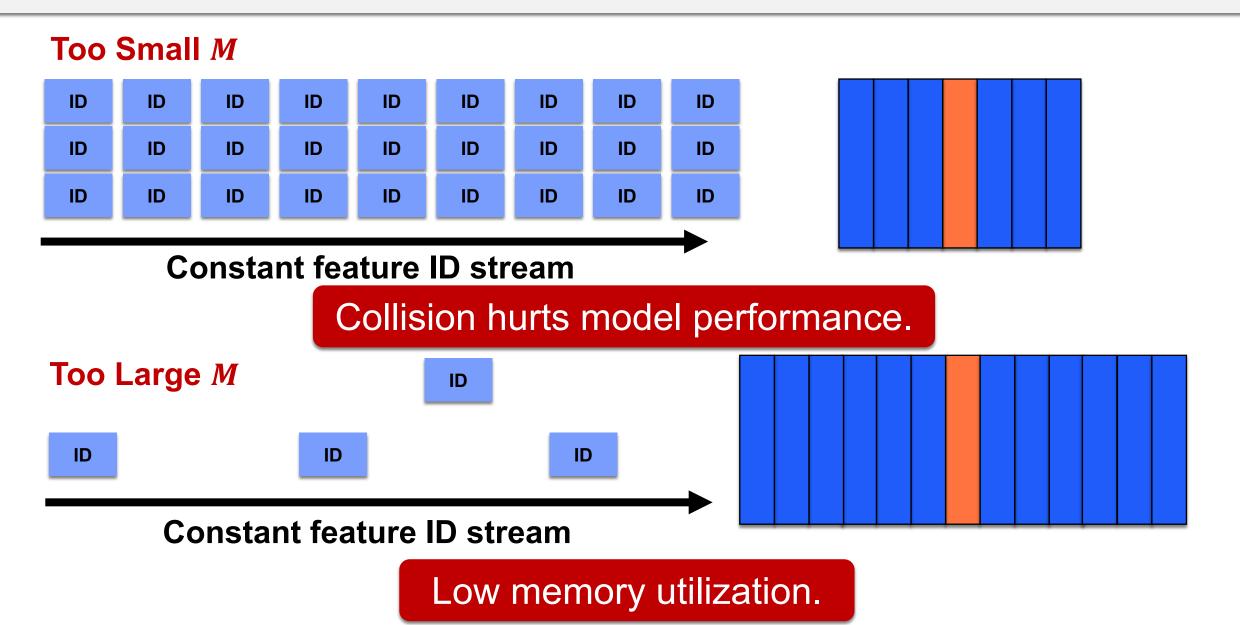


Hash trick & Hash collision (III)

A naïve approach: Increase M



Hash trick & Hash collision (IV)



Facing the Large-Scale Continual-Learning Challenge

- Our server resources are always limited.
- Extremely high memory pressure to both the training systems and inference systems
 - Huge models

11

Constant streams of data

- Existing systems (e.g. TensorFlow)
 - Low memory utilization under the circumstance of large-scale continual learning.
 - Can't train and serve real-time with giant rec-models.

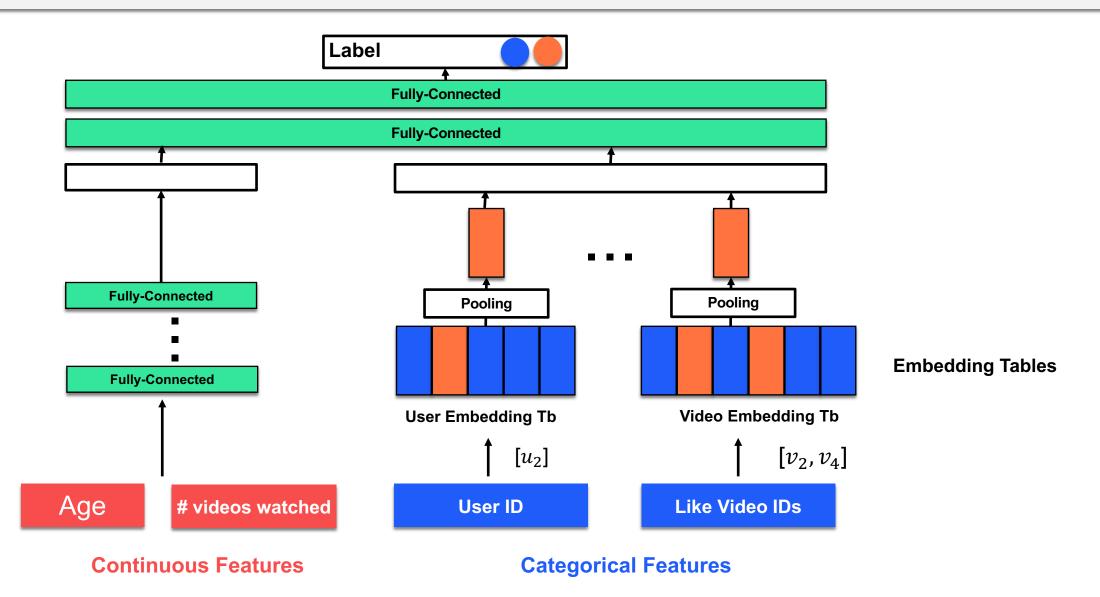
How to make large-scale continual learning memory-efficient?

Kraken: Memory Efficient Continual Learning for Large-Scale Real-Time Recommendations

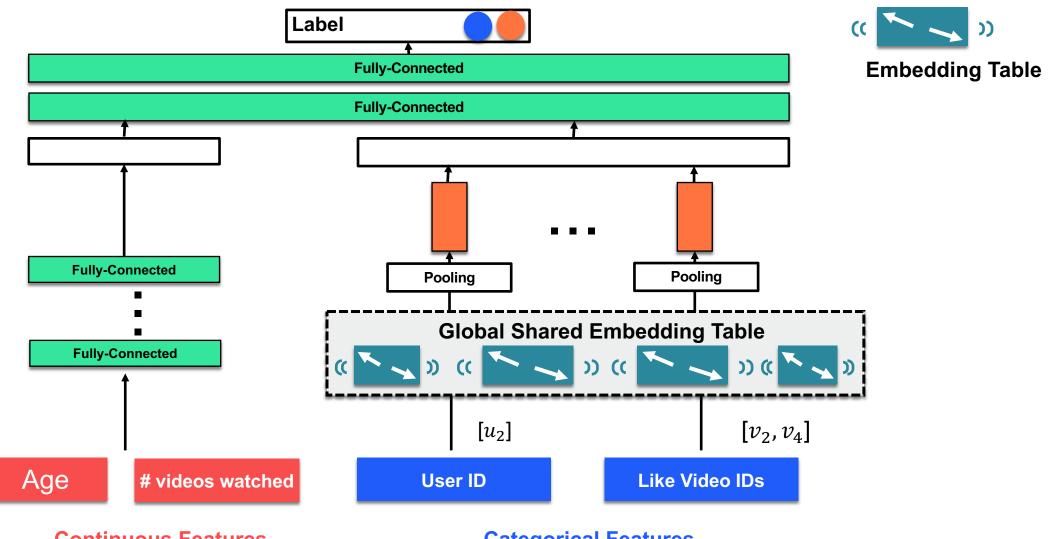
Kraken Overview

- For both training and serving
 - Global Shared Embedding Table (GSET).
- For training
 - Sparsity-aware training framework.
- For serving
 - Efficient continuous deployment and real-time serving.

Global Shared Embedding Table (GSET)



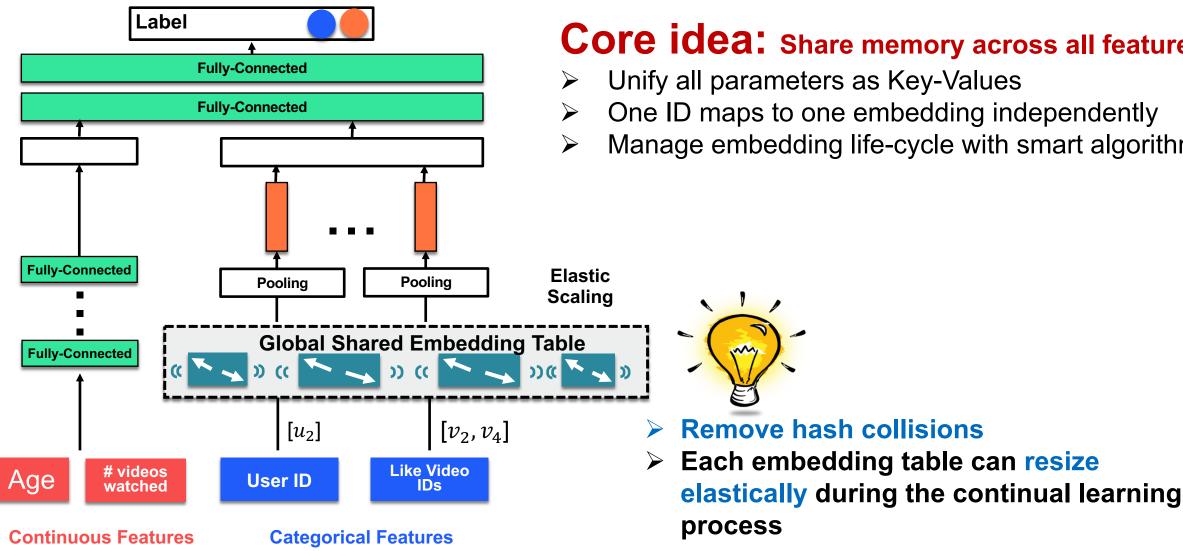
Global Shared Embedding Table (GSET)



Continuous Features

Categorical Features

Global Shared Embedding Table (GSET)



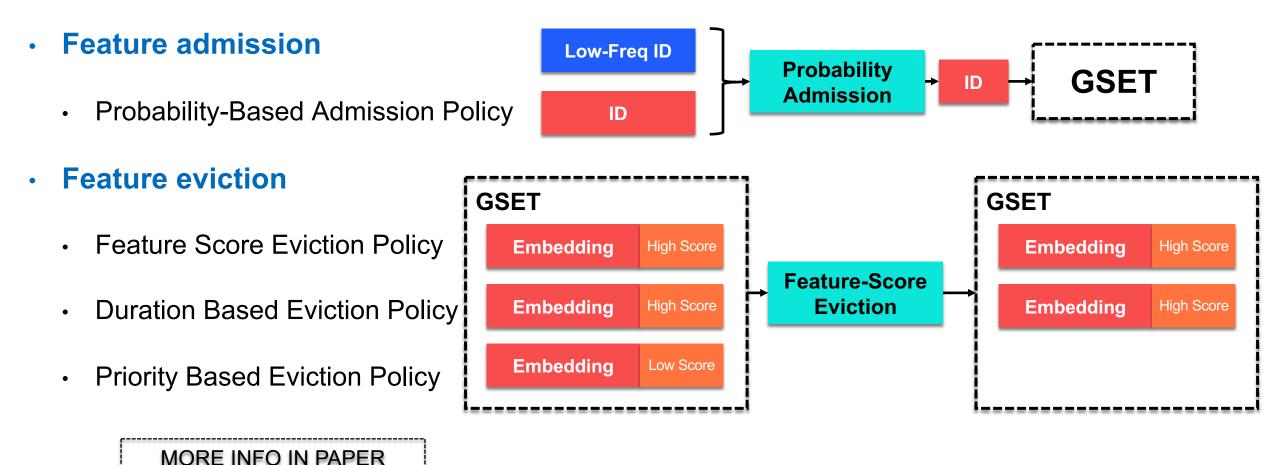
16

Core idea: Share memory across all features

- Unify all parameters as Key-Values
- One ID maps to one embedding independently
- Manage embedding life-cycle with smart algorithms

GSET: Smart Entry Replacement Algorithms

 Based on our observations of production, Kraken supports different policies for ML engineers to customize with their domain knowledge:



Kraken Overview

For both training and serving

- Global Shared Embedding Table (GSET).

• For training

- Sparsity-aware training framework.
- For serving
 - Efficient continuous deployment and real-time serving.

Sparsity-Aware Training Framework

- Embedding compress techniques like hash trick save memory at the cost of accuracy. Kraken sets its sights on the <u>optimizer state</u> parameters (OSPs).
- Different optimizers require different amount of OSPs.

Optimizers	Memory Requirement (OSPs)	Adaptive?		
SGD	0x	×		
AdaGrad	1x			
Adam	2x			

Motivation for Sparsity-Aware Training Framework (I)

Adam 2x

Sparse Parameters > 10TB

Dense

Sparse OSP 1x

Sparse OSP 1x

Motivation for Sparsity-Aware Training Framework (II)

AdaGrad 1x

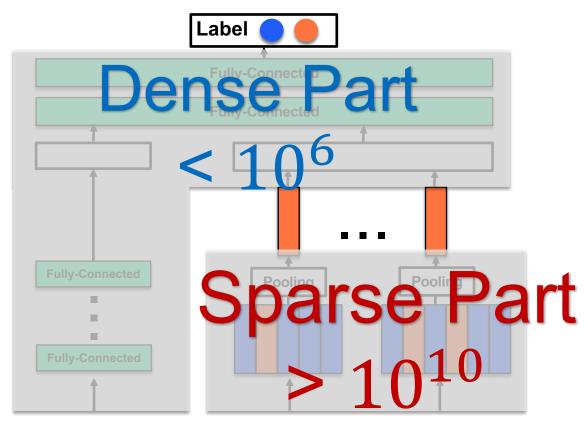
Dense

Sparsity-Aware Training Framework

- For the sparse part [>10TB]
 - Adaptive optimizers with fewer OSPs
 - The closer you get to zero,

the more memory you save

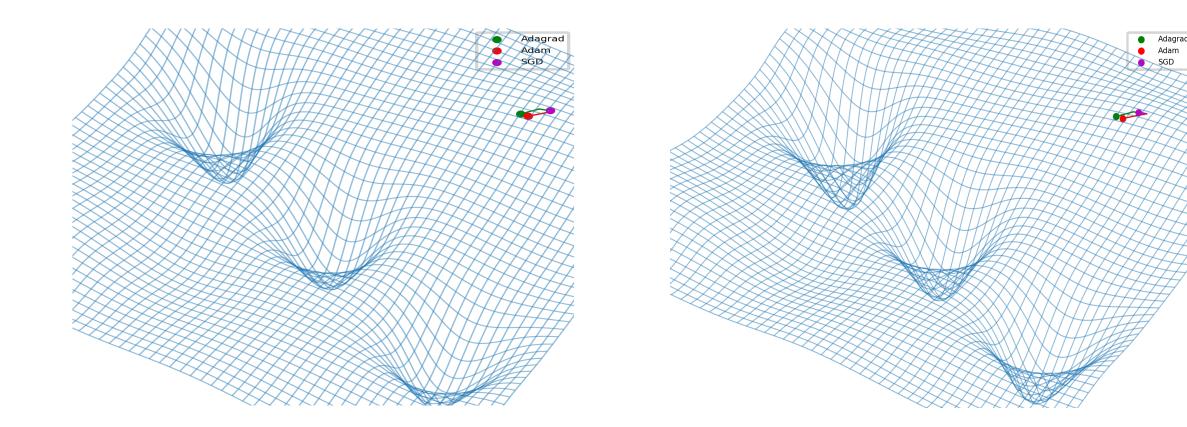
- For the dense part [<100MB]
 - Adam for better performance
 - It is tolerable in spite of 2x OSPs



Motivation for Sparsity-Aware Training Framework (III)

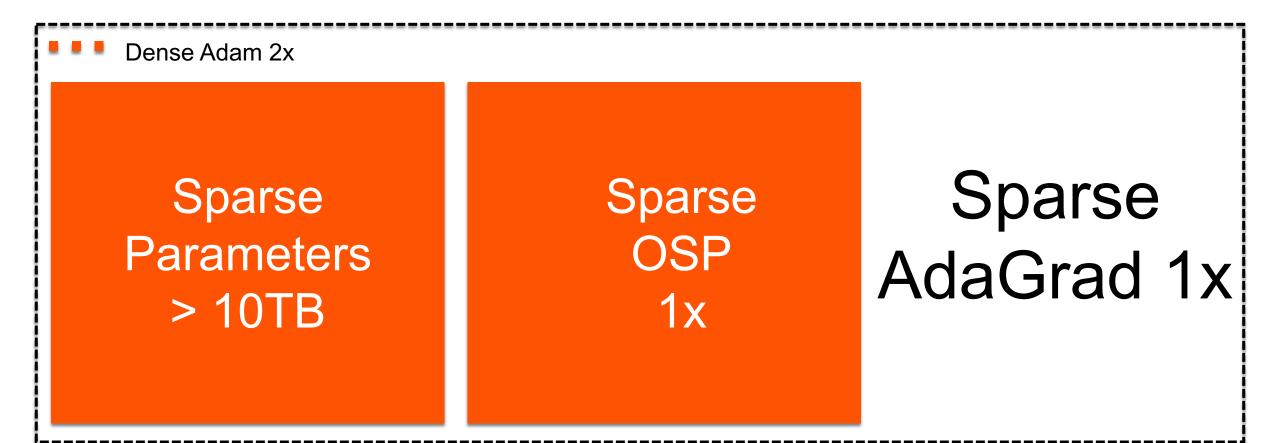
SGD 0x

Adaptive Optimizers Make Better



Small learning rate.

Adam for the Dense Part AdaGrad for the Sparse Part



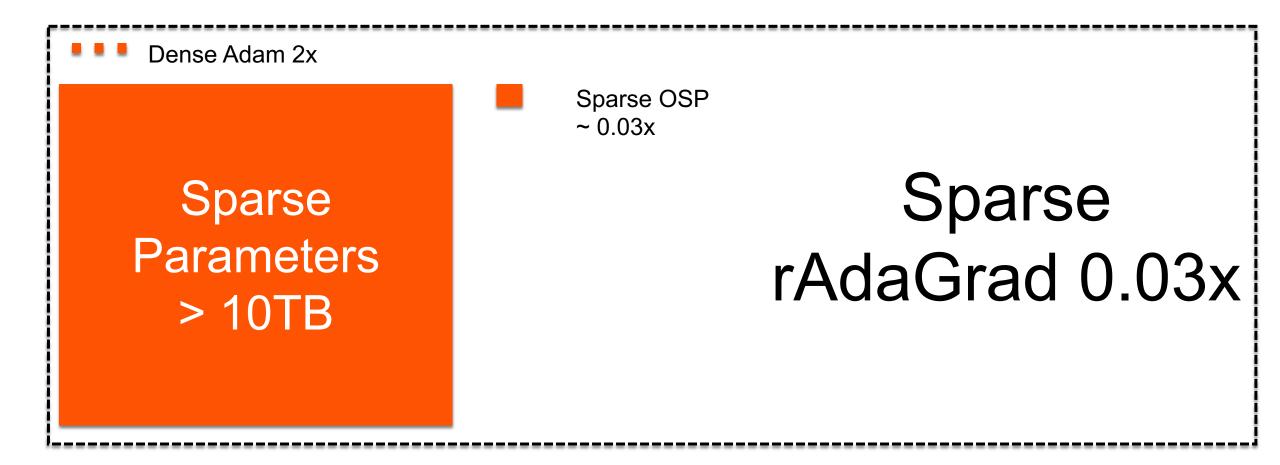
Is that the limit? Can we save more memory resources?

Sparsity-Aware Training Framework

- rAdaGrad
 - An adaptive optimizer extremely suitable for sparse parameters.
 - Storing only one float for each embedding (usually 32-64 floats).

$$w_{t+1} = w_t - \alpha \frac{g_t}{\sum_{\tau=1}^t ||g_t||_2^2} * \mathbf{1}$$

Adam for the Dense Part rAdaGrad for the Sparse Part



SGD-like memory resources, but great performance

Kraken Overview

For both training and serving

- Global Shared Embedding Table (GSET).

For training

- Sparsity-aware training framework.

• For serving

· Efficient continuous deployment and real-time serving.

A Naïve Method: Co-Located Deployment

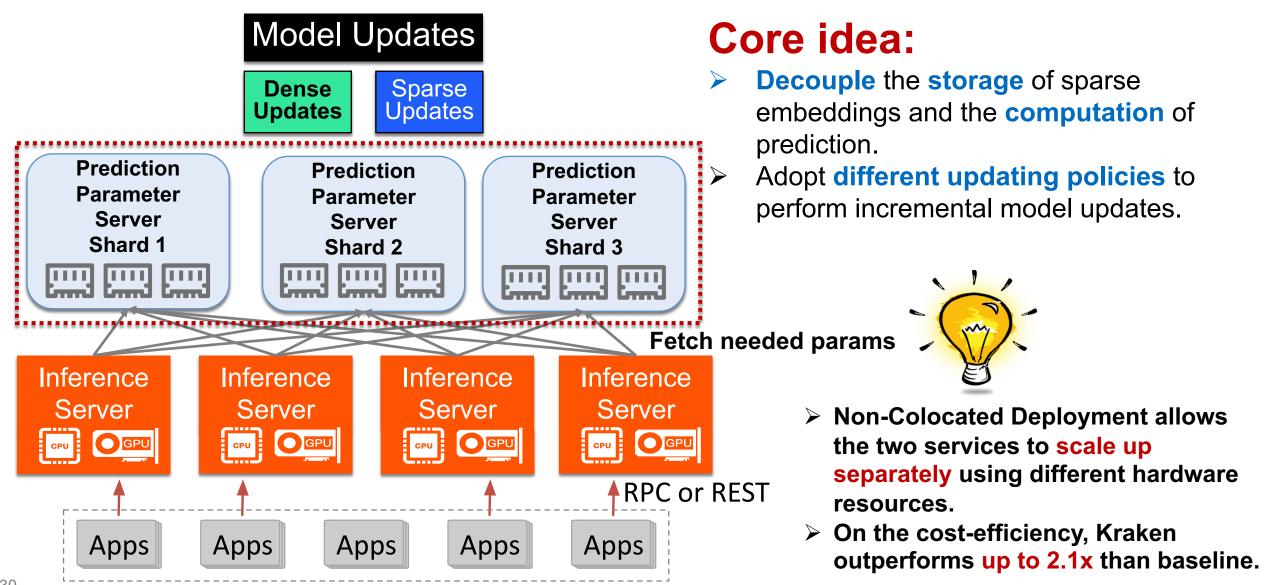


Drawbacks:

 Introduce High CapEx because every inference server requires high capability DRAM to store a part of sparse parameters

Waste NIC bandwidth & CPU for constant model updates

Non-Colocated Deployment: Efficient for Real-Time Serving



Evaluation

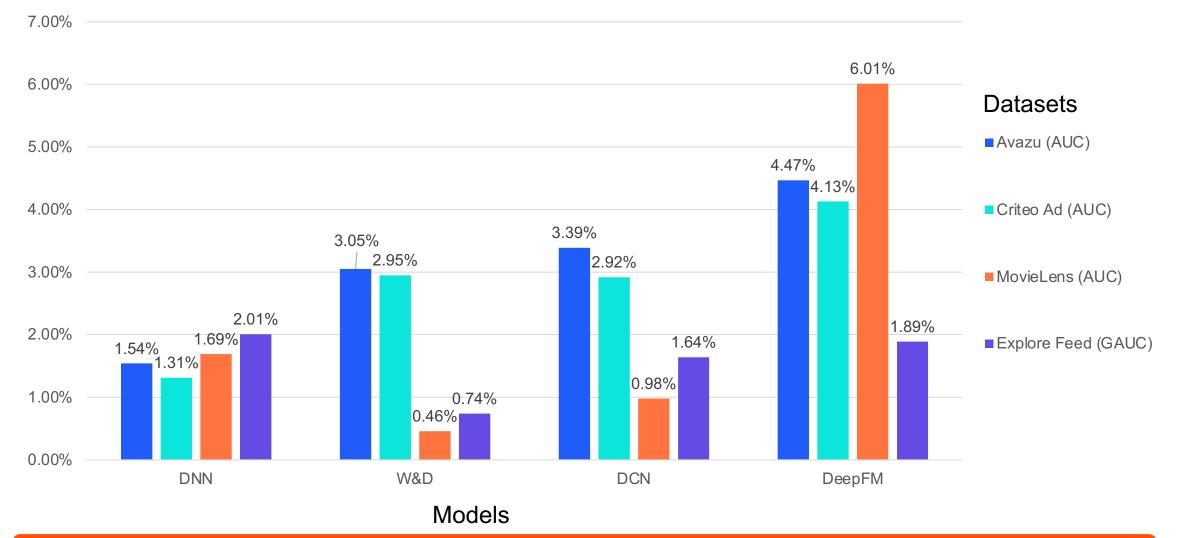
Dataset

- 3 public & 2 production datasets
- Learn in an online learning manner
- Four industrial models
 - DNN、Wide and Deep、DeepFM、 Deep Cross Network
- Metric: AUC & Group AUC (GAUC)*
- **Baseline:** TensorFlow with default embedding tables and Adam optimizer
- Kraken: with GSET and sparsity-aware training optimizer

* H. Zhu, J. Jin, C. Tan, F. Pan, Y. Zeng, H. Li, and K. Gai, "Optimized cost per click in taobao display advertising," in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser.
KDD '17. New York, NY, USA: Association for Computing Machinery, 2017, p. 2191–2200. [Online]. Available: https://doi.org/10.1145/3097983.3098134

D	atasets	# Sparse IDs	# Samples	# Parameters		
PublicCriteo AdDatasetsMovieLensAvazu CTH		33M	45M	0.5B		
		0.3M	25M	2M		
		49M	40M	0.8B		
Production	Explore Feed	45M	50M	0.5B		
Datasets	Follow Feed	1.3B	10B	50B		

Overall Performance Improvement with the same memory (enough to hold 60% of all IDs' embeddings)



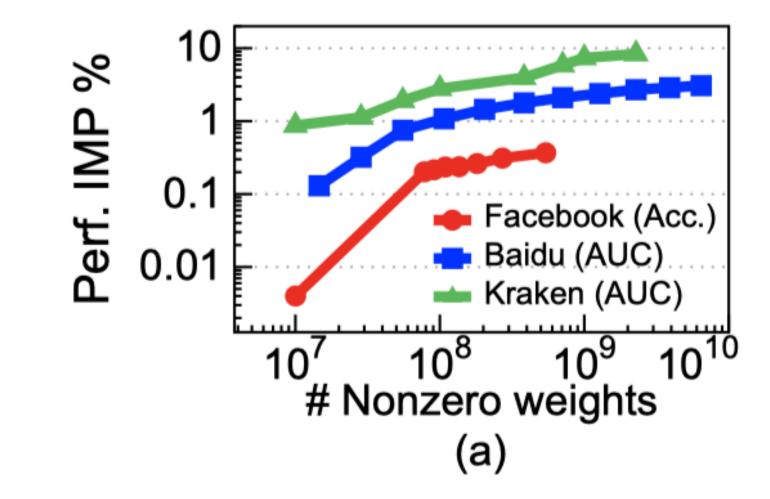
Kraken benefits performance consistently on different datasets and models

Conclusion

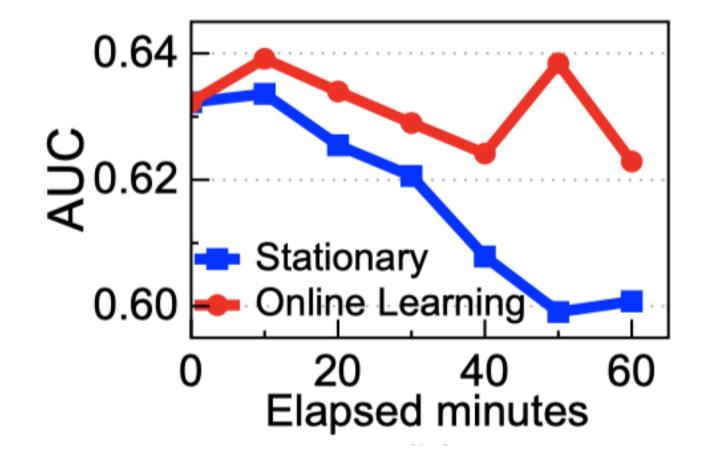
- An in-production continual learning system for large-scale recommendation with
 - A Memory-Efficient Design
 - Share memory among traditional embedding tables
 - **Distinguish** the dense part and sparse part in continual training
 - Enabling Real-Time Recommendation
 - Decouple the storage and computation of models for real-time serving

Thank you!

Large models make better



Online Model V.S. Stationary Model



GSET under different memory budgets

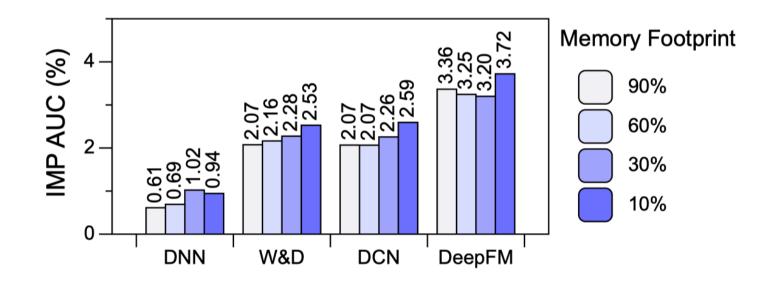


Fig. 8: The AUC improvement of four models in TensorFlow and Kraken under several memory footprints on the Criteo dataset. The percentage represents the corresponding proportion of all original features that memory can hold at most.

Feature admission probabilities

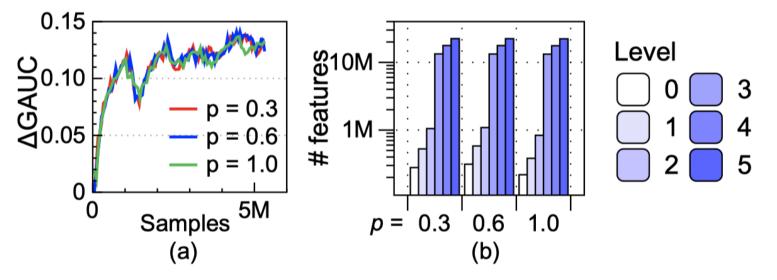


Fig. 9: With different probabilities of feature admission p, (a) shows the relative GAUC of Kraken and (b) shows the number of different frequency-levels of features in the last training-hour. Level i counts the number of features whose frequency is between 2^i to 2^{i+1} .

Different Eviction Policy

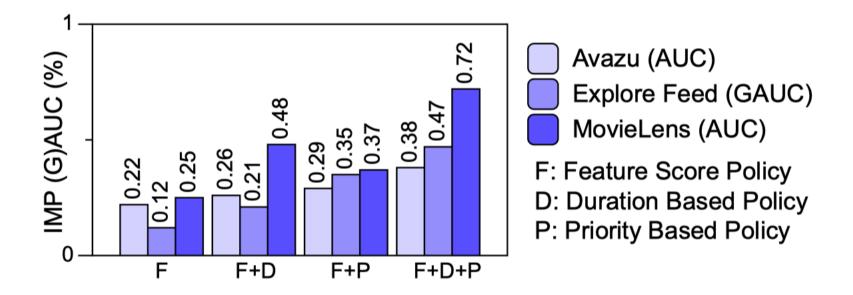


Fig. 10: Contribution of different eviction policies to the model performance. The improved AUC over the raw LFU are shown.

Evaluation of Hybird Optimizer

			Memory Usage	Criteo				MovieLens			Avazu				
	Dense Opt Sparse Opt	DNN		W&D	DeepFM	DCN	DNN	W&D	DeepFM	DCN	DNN	W&D	DeepFM	DCN	
Vanilla Optimizer	Ada	GD IGrad Iam	1x 2x 3x	0.7979 0.8001 0.8066	0.7896 0.7899 0.7893	0.7986 0.8016 0.7956	0.7908 0.7992 0.7955	0.7760 0.8062 0.8102	0.7760 0.8062 0.8112	0.7979 0.8061 0.8153	0.8019 0.8062 0.8147	0.7434 0.7727 0.7559	0.7436 0.7795 0.7623	0.7502 0.7815 0.7638	0.7573 0.7799 0.7631
Hybrid Optimizer	Adam	AdaGrad	2x	0.8048	0.8005	0.8057	0.8044	0.8177	0.8184	0.8198	0.8191	0.7734	0.7786	0.7803	0.7807
	Adam Adam	SGD rAdaGrad	Ĩx Ĩx	0.7974 0.8010	0.7988 0.7907	0.8038 0.8048	0.8026 0.8048	0.7974 0.8132	0.8018 0.8132	0.8045 0.8178	0.8140 0.8153	0.7487 0.7653	0.7646 0.7779	0.7665 0.7800	0.7638 0.7772
	P % with the s.r.t vanilla opti		1x 2x	0.38 0.59	1.17 1.34	0.78 0.51	1.77 0.65	4.79 1.43	4.79 1.51	2.49 1.70	1.67 1.60	2.95 0.09	4.61 -0.12	3.97 -0.15	2.63 0.10

TABLE IV: Comparisons of Vanilla and Hybrid Optimizer performances on different datasets and models. The last two rows listed here are to clarify the improved AUC of Hybrid Optimizer respect to Vanilla Optimizer with the same memory usage.

	<pre># of servers with / without</pre>	Throughput (OPS)	Total (\$ per 1		Ratio		
	large memory		AWS	Alibaba	AWS	Alibaba	
Baseline Kraken	400 / 0 16 / 384	30,325 35,726	1,041,408 802,529	666,750 372,512	29.12 37.79	45.48 95.91	

TABLE V: Kraken (Non-Colocated Deployment) shows better costeffectiveness (around $1.3 \times$ to $2.1 \times$) than baseline (Co-Located Deployment). Ratio=1000*Throughput/Total Rent.