
Minhui Xie*, Kai Ren*, Youyou Lu, Guangxu Yang, Qingxing Xu,
Bihai Wu, Jiazhen Lin, Hongbo Ao, Wanhong Xu, and Jiwu Shu

Kraken
Memory-Efficient Continual Learning
for Large-Scale Real-Time Recommendations

Tsinghua University Kuaishou Inc.

Recommendation System in Kuaishou

Recommendations

Recommendation System

2

Inference Servers

Learning

10 million fresh UGC per day
2 million new training samples per second

Large-Scale Continual Learning Scenario

Training Servers

Over 20 billion videos in the warehouse

The backend model contains
tens of billions of parameters.

Recommendations

Recommendation
System

> 700 million users

Large-Scale Learning Continual Learning & Real-Time Serving

Serving

Never end learning.

3

Embedding Table

Typical DNN Model Architecture for Recommendation (I)

Age # videos watched
Continuous Features

Categorical Features
User ID

Like Video IDs

[𝑢!]

Numeric columns

Sparse lists of ids with
extreme high dimensions [𝑣!, 𝑣"]

ID

Embedding
Vector

(or embedding for short)

User Embedding Table

𝑢!

User Embedding Vector

Video Embedding Table

𝑣!

Like Video Embedding Vector

𝑣"

Embedding Lookup

4

𝑢!

Typical DNN Model Architecture for Recommendation (II)

Fully-Connected

Age

Fully-Connected

videos
watched

Continuous Features

Fully-Connected

Label

Fully-Connected

Categorical Features

Embedding
Tables

...

...
Pooling Pooling

Like Video
IDsUser ID

User Embedding Tb Video Embedding Tb

Age # videos watched Continuous
Features

Categorical
Features

User ID

Like Video IDs

[𝑢!]

[𝑣!, 𝑣"][𝑢!]

[𝑣!, 𝑣"]

5

Our Models

Fully-Connected

Age

Fully-Connected

videos
watched

Continuous Features

Fully-Connected

Label

Fully-Connected

Categorical Features

Embedding
Tables

...

...
Pooling Pooling

Like Video
IDsUser ID

User Embedding Tb Video Embedding Tb

[𝑣!, 𝑣"][𝑢!]

Dense Part
< 10!

Sparse Part
> 10!"

6

Hash trick & Hash collision (I)

Video ID1

[𝑣%, 𝑣& … 𝑣'(&]

Video ID2

Hash(VID1) = Hash(VID2) mod 𝑀

Collision

Hash trick
Hash(id) % M

[𝑣!, 𝑣" … 𝑣#$"]

Hash collision

7

ID space >> embedding tb size

Hash trick & Hash collision (II)

ID ID ID ID ID

ID ID ID ID ID

Constant feature ID stream

8

[𝑣%, 𝑣& … 𝑣'(&]

Hash trick & Hash collision (III)

ID ID ID ID ID

ID ID ID ID ID

Constant feature ID stream

A naïve approach: Increase 𝑴

9

[𝑣%, 𝑣& … 𝑣'(&]

Hash trick & Hash collision (IV)

ID

ID ID ID

Constant feature ID stream

Too Large 𝑴

Low memory utilization.

Constant feature ID stream

Too Small 𝑴
ID ID ID ID ID ID ID ID ID

ID ID ID ID ID ID ID ID ID

ID ID ID ID ID ID ID ID ID

Collision hurts model performance.

Facing the Large-Scale Continual-Learning Challenge

• Our server resources are always limited.

• Extremely high memory pressure to both the training systems
and inference systems

• Huge models

• Constant streams of data

• Existing systems (e.g. TensorFlow)

• Low memory utilization under the circumstance of large-scale
continual learning.

• Can’t train and serve real-time with giant rec-models.
11

Problem

How to make large-scale continual learning memory-efficient?

Kraken: Memory Efficient Continual Learning for Large-Scale
Real-Time Recommendations

12

Kraken Overview

• For both training and serving

• Global Shared Embedding Table (GSET).

• For training

• Sparsity-aware training framework.

• For serving

• Efficient continuous deployment and real-time serving.

13

Global Shared Embedding Table (GSET)

Fully-Connected

Age

Fully-Connected

videos watched

Continuous Features

Fully-Connected

Label

Fully-Connected

Categorical Features

Embedding Tables

...

...
Pooling Pooling

Like Video IDsUser ID

User Embedding Tb Video Embedding Tb

[𝑣!, 𝑣"][𝑢!]

14

Global Shared Embedding Table (GSET)

Fully-Connected

Age

Fully-Connected

videos watched

Continuous Features

Fully-Connected

Label

Fully-Connected

Categorical Features

...

...
Pooling Pooling

Like Video IDsUser ID

[𝑣!, 𝑣"][𝑢!]

15

Global Shared Embedding Table

Embedding Table

Global Shared Embedding Table (GSET)

Fully-Connected

Age

Fully-Connected

videos
watched

Continuous Features

Fully-Connected

Fully-Connected

Categorical Features

Elastic
Scaling

...

...

Like Video
IDsUser ID

[𝑣!, 𝑣"][𝑢!]

Core idea: Share memory across all features
Ø Unify all parameters as Key-Values
Ø One ID maps to one embedding independently
Ø Manage embedding life-cycle with smart algorithms

Ø Remove hash collisions
Ø Each embedding table can resize

elastically during the continual learning
process

Pooling Pooling

Label

16

Global Shared Embedding Table

• Based on our observations of production, Kraken supports different
policies for ML engineers to customize with their domain knowledge:

• Feature admission

• Probability-Based Admission Policy

• Feature eviction

• Feature Score Eviction Policy

• Duration Based Eviction Policy

• Priority Based Eviction Policy

GSET: Smart Entry Replacement Algorithms

17

Probability
Admission

ID

Low-Freq ID
ID

Embedding High Score

Embedding High Score

Embedding Low Score

GSET

GSET

Feature-Score
Eviction

GSET

Embedding High Score

Embedding High Score

MORE INFO IN PAPER

Kraken Overview

• For both training and serving

• Global Shared Embedding Table (GSET).

• For training

• Sparsity-aware training framework.

• For serving

• Efficient continuous deployment and real-time serving.

18

Sparsity-Aware Training Framework

• Embedding compress techniques like hash trick save memory at the
cost of accuracy. Kraken sets its sights on the optimizer state
parameters (OSPs).

• Different optimizers require different amount of OSPs.

Optimizers
Memory

Requirement
(OSPs)

Adaptive?

SGD 0x ×
AdaGrad 1x √

Adam 2x √

19

Motivation for Sparsity-Aware Training Framework (I)

Sparse
Parameters
> 10TB

Sparse
OSP
1x

Sparse
OSP
1x

Adam 2x
Dense

20

Motivation for Sparsity-Aware Training Framework (II)

Sparse
Parameters
> 10TB

Sparse
OSP
1x

AdaGrad 1x

Yes we can store
more parameters

Dense

21

Sparsity-Aware Training Framework

• For the sparse part [>10TB]

• Adaptive optimizers with fewer OSPs

• The closer you get to zero,

the more memory you save

• For the dense part [<100MB]

• Adam for better performance

• It is tolerable in spite of 2x OSPs

Fully-Connected

Fully-Connected

Fully-Connected

Label

Fully-Connected

...
...

Pooling Pooling

Dense Part
< 10!

Sparse Part
> 10!"

22

Motivation for Sparsity-Aware Training Framework (III)

Sparse
Parameters
> 10TB

SGD 0x
Dense

Adaptive Optimizers Make Better

Code from https://github.com/Jaewan-Yun/optimizer-visualization

Big learning rate.Small learning rate.

24

Adam for the Dense Part
AdaGrad for the Sparse Part

Sparse
Parameters
> 10TB

Sparse
OSP
1x

Sparse
AdaGrad 1x

Dense Adam 2x

Is that the limit?
Can we save more memory resources?

25

Sparsity-Aware Training Framework

• rAdaGrad

• An adaptive optimizer extremely suitable for sparse parameters.

• Storing only one float for each embedding (usually 32-64 floats).

𝑤"#$ = 𝑤" − 𝛼
𝑔"

∑%&$" 𝑔" '
'
∗ 𝟏

26

MORE INFO IN PAPER

Adam for the Dense Part
rAdaGrad for the Sparse Part

Sparse
Parameters
> 10TB

Sparse
rAdaGrad 0.03x

Dense Adam 2x

SGD-like memory resources, but great performance

Sparse OSP
~ 0.03x

27

Kraken Overview

• For both training and serving

• Global Shared Embedding Table (GSET).

• For training

• Sparsity-aware training framework.

• For serving

• Efficient continuous deployment and real-time serving.

28

A Naïve Method: Co-Located Deployment

Sparse
Updates

Dense
Updates

Model Updates

Drawbacks:

Ø Introduce High CapEx because every
inference server requires high capability
DRAM to store a part of sparse parameters

Ø Waste NIC bandwidth & CPU for constant
model updates

29

Inference Server
Shard 1

Inference Server
Shard 2

Inference Server
Shard 3

Non-Colocated Deployment: Efficient for Real-Time Serving

Sparse
Updates

Dense
Updates

Model Updates

Inference
Server

Inference
Server

Prediction
Parameter

Server
Shard 1

Prediction
Parameter

Server
Shard 2

Prediction
Parameter

Server
Shard 3

Core idea:
Ø Decouple the storage of sparse

embeddings and the computation of
prediction.

Ø Adopt different updating policies to
perform incremental model updates.

Inference
Server

Inference
Server

Fetch needed params

Apps Apps Apps Apps Apps

RPC	or	REST

Ø Non-Colocated Deployment allows
the two services to scale up
separately using different hardware
resources.

Ø On the cost-efficiency, Kraken
outperforms up to 2.1x than baseline.

30

Evaluation

• Dataset

• 3 public & 2 production datasets

• Learn in an online learning manner

• Four industrial models

• DNN、Wide and Deep、DeepFM、 Deep Cross Network

• Metric: AUC & Group AUC (GAUC)*

• Baseline: TensorFlow with default embedding tables and Adam optimizer

• Kraken: with GSET and sparsity-aware training optimizer

* H. Zhu, J. Jin, C. Tan, F. Pan, Y. Zeng, H. Li, and K. Gai, “Optimized cost per click in taobao display advertising,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser.
KDD ’17. New York, NY, USA: Association for Computing Machinery, 2017, p. 2191–2200. [Online]. Available: https://doi.org/10.1145/3097983.3098134

31

Overall Performance Improvement with the same memory
(enough to hold 60% of all IDs’ embeddings)

Kraken benefits performance consistently on different datasets and models
32

1.54%

3.05% 3.39%

4.47%

1.31%

2.95% 2.92%

4.13%

1.69%

0.46%

0.98%

6.01%

2.01%

0.74%

1.64%
1.89%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

DNN W&D DCN DeepFM

Avazu (AUC)

Criteo Ad (AUC)

MovieLens (AUC)

Explore Feed (GAUC)

Models

Datasets

Conclusion

• An in-production continual learning system for large-scale
recommendation with

• A Memory-Efficient Design

• Share memory among traditional embedding tables

• Distinguish the dense part and sparse part in continual training

• Enabling Real-Time Recommendation

• Decouple the storage and computation of models for real-time
serving

34

35

Thank you!

Large models make better

36

Online Model V.S. Stationary Model

37

GSET under different memory budgets

38

Feature admission probabilities

39

Different Eviction Policy

40

Evaluation of Hybird Optimizer

41

Non-Colocated Deployment

42

