ACM SIGMOD
PODS 2022
Philadelphia, PA, USA

Sherman: A Write-Optimized Distributed B+Tree
Index on Disaggregated Memory

Qing Wang, Youyou Lu, Jiwu Shu

Tsinghua University

Memory Disaggregation (1)

Problem: low memory utilization in datacenters
% < 65% in Google,Alibaba, and Snowflakel'-23]

Root Cause: imbalanced memory usages across servers

< Some servers are CPU-bound, but some are memory-bound
< Cannot use memory beyond a local server

m): m): [E) GE)E used m) @) =) :[m=)
(0000 | {0000] {0000] {000 (0000 {0000] {0000] f0000] Used
Server 1 (CPU-bound) Server 2 (memory-bound)

[T Who Limits the Resource Efficiency of My Datacenter: An Analysis of Alibaba Datacenter Traces (IWQoS’19)
[2] Borg: the Next Generation (EuroSys’20)
[3] Memtrade: A Disaggregated-Memory Marketplace for Public Clouds (arXiv’21)

Memory Disaggregation (2)

Memory Disaggregation
< Physically separate CPU and memory into network-attached components

Memory Disaggregation (2)

Memory Disaggregation

< Physically separate CPU and memory into network-attached components

Compute Servers
(CSs)

RDMA network

<

Memory Servers
(MSs)

[UUBB] [Uﬂﬂﬂj [UUBB] [UUBB]
[UUBD] [UUBB] [UUBD] [UUBD]

[UUBB] [Uﬂﬂﬂj [UUBB] [Uﬂﬂﬂj
[UUBB] [Uﬂﬂﬂj [UUBB] [Uﬂﬂﬂj

Memory Disaggregation (2)

Memory Disaggregation

< Physically separate CPU and memory into network-attached components

many CPU cores, E E E E E E E E
small local DRAM e e
: B o6 & | | S
ompute Servers
(CSs) o000 T
< RDMA network
large DRAM, L il

1-2 wimpy cores

Memory Servers
(MSs)

[UUBB] [Uﬂﬂﬂj [UUBB] [UUBB]
[UUBD] [UUBB] [UUBD] [UUBD]

[UUBB] [Uﬂﬂﬂj [UUBB] [Uﬂﬂﬂj
[UUBB] [Uﬂﬂﬂj [UUBB] [Uﬂﬂﬂj

Memory Disaggregation (2)

Memory Disaggregation

< Physically separate CPU and memory into network-attached components

many CPU cores,
small local DRAM

Compute Servers
(CSs) oooo gaoo

< RDMA network >

larg. Benefits:
1-21 v’ Independently scaling memory and CPU
Men v" Flexibly assembling resources for apps

v Efficiently sharing memory between apps

Memory Disaggregation (2)

Memory Disaggregation

< Physically separate CPU and memory into network-attached components

many CPU cores, | :[E]: E) [E) [S]: m: [m);) =)
smalllocal DRAM | "0 0 DL v e
ompute Servers | e e
(CSs) 000 0000

< RDMA network >

1-21 v Independently scaling memory and CPU

Men v Flexibly assembling resources for apps ‘ high memory utilization
v Efficiently sharing memory between apps

Memory Disaggregation (3)

Key Enabler: Remote Direct Memory Access (RDMA)
< High bandwidth: 100/200/400Gbps
< Low latency: RTT < 2us

< Directly access remote memory: read. write, atomic (e.g., cas)

RDMA NIC

CI I LT
CIECI T L
qooo

Compute Servers

(CSs)

read. write, atomic

T |'
< RDMA network >

[DHDD] [DBDD] [DHDD] [DBDD]
[DBDD] [DBDD] [DBDD] [DBBD]

Memory Servers
(MSs)

Tree Indexes on Disaggregated Memory (1)

In this work, we explore how to design a high-performance

tree index on disaggregated memory (DM)

Compute Servers

(CSs)

insert/update/delete
lookup/range_query

< RDMA network >

Memory Servers
(MSs)

Tree Indexes on Disaggregated Memory (2)

Reexamine Existing RDMA-based Tree Indexes

I. Using RPC to handle index write operations (i.e., insert/update/delete)
EXAWPLE] Cell [ATC’16], FaRM-Tree [SIGMOD’ |9]

Issue: Cannot be deployed on DM — near-zero computation power at memory-side

Tree Indexes on Disaggregated Memory (2)

Reexamine Existing RDMA-based Tree Indexes

I. Using RPC to handle index write operations (i.e., insert/update/delete)
EXAWPLE] Cell [ATC’16], FaRM-Tree [SIGMOD’ |9]

Issue: Cannot be deployed on DM — near-zero computation power at memory-side

2. One-sided approach: leveraging RDMA read/write/atomic for all index ops

EXAMPLE] FG [SIGMOD’19]
Issue: Low write performance

Tree Indexes on Disaggregated Memory (2)

Reexamine Existing RDMA-based Tree Indexes

I. Using RPC to handle index write operations (i.e., insert/update/delete)
EXAWPLE] Cell [ATC’16], FaRM-Tree [SIGMOD’ |9]

Issue: Cannot be deployed on DM — near-zero computation power at memory-side

2. One-sided approach: leveraging RDMA read/write/atomic for all index ops

EXAMPLE] FG [SIGMOD"19]

Issue: Low write performance 5% Write 31.8 14.9
50% Write 0.34 10 19890

Tree Indexes on Disaggregated Memory (2)

Reexamine Existing RDMA-based Tree Indexes

I. Using RPC to handle index write operations (i.e., insert/update/delete)
EXAWPLE] Cell [ATC’16], FaRM-Tree [SIGMOD’ |9]

Issue: Cannot be deployed on DM — near-zero computation power at memory-side

2. One-sided approach: leveraging RDMA read/write/atomic for all index ops

EXAMPLE] FG [SIGMOD"19]

Issue: Low write performance 5% Write 31.8 14.9
50% Write <—____ 0.34 10 19890 =

Low throughput & High latency
w/ 8 MSs and 8 CSs

Tree Indexes on Disaggregated Memory (2)

Reexamine Existing RDMA-based Tree Indexes

I. Using RPC to handle index write operations (i.e., insert/update/delete)
EXAWPLE] Cell [ATC’16], FaRM-Tree [SIGMOD’ |9]

Issue: Cannot be deployed on DM — near-zero computation power at memory-side

2. One-sided approach: leveraging RDMA read/write/atomic for all index ops

EXAMPLE] FG [SIGMOD'19]
4.9

Issue: Low write performance 5% Write 31.8 : 14.9
50% Write <—____ 0.34 10 19890 =

3. Hardware modification or SmartNICs for offloading index op$°ew throughput & High latency

w/ 8 MSs and 8 CSs
EXAMPLE] HT-Tree [HotOS’19]
Issue: High TCO (total cost of ownership)

Our Goal

Our Goal: building a tree index on disaggregated memory

that can deliver high performance (for both read/write ops)
with commodity RDMA NICs

11

Why One-sided Approach is Slow ? (1)

(1) Excessive Round Trips

cas = compare and swap ; faa = fetch and add

Why One-sided Approach is Slow ? (1)

(1) Excessive Round Trips

Four round trips when modifying a tree node (FG [SIGMOD’19])

=)o
24
CSs
3 3) !
e 3 g3g 3a
o = < <
S ® 3, =t
o ® ®
MSs
lock read node write node unlock

@ @ ® @

cas = compare and swap ; faa = fetch and add

Why One-sided Approach is Slow ? (1)

(1) Excessive Round Trips

Four round trips when modifying a tree node (FG [SIGMOD’19])

CSs —
753 753 753 ¢ Excessive round trips harm performance:
4 o > = % = 1) High latency of single write op
i %_ % 2? Long critical path, blocking conflicting ops
MSs
lock read node write node unlock
® @ ® O,

cas = compare and swap ; faa = fetch and add

Why One-sided Approach is Slow ? (2)

(2) Slow Synchronization Primitives — RDMA lock

Why One-sided Approach is Slow ? (2)

(2) Slow Synchronization Primitives — RDMA lock

() no contention 9391

Throughput 99th Lat.
(Mops) (us)

154 threads acquire/release 10240 locks in an MS,
RDMA cas for lock acquisition and faa for release (FG)

13

Why One-sided Approach is Slow ? (2)

(2) Slow Synchronization Primitives — RDMA lock

() no contention 9391

10*
10°
10°
10"

Throughput 99th Lat.
(Mops) (us)
154 threads acquire/release 10240 locks in an MS,

"OM Performance of lock collapses € (7
when contention appears

13

Why One-sided Approach is Slow ? (2)

(2) Slow Synchronization Primitives — RDMA lock

o () no contention

9391

|. Expensive in-NIC concurrency control

- NICs serialize atomic verbs w/ 2-PCle-txn critical path

RDMA

A
Cle ¥~
cas oF" v
<:> 2 4" e | Mem
\e W
@ P —V
CSs | @ compare / MSs
Throughput 99th Lat.
(Mops) (us)

154 threads acquire/release 10240 locks in an MS,
"OM Performance of lock collapses € (7
when contention appears

13

Why One-sided Approach is Slow ? (2)

(2) Slow Synchronization Primitives — RDMA lock

o () no contention

9391

|. Expensive in-NIC concurrency control

- NICs serialize atomic verbs w/ 2-PCle-txn critical path

RDMA

A
Cle 7&%
cas oF" v
<:> 247 e | Mem
S
CSs ® compare 4//' MSs
2. Unnecessary retries
- ' imi hrough
Throughput 99th Lat. Lock retries consume limited RDMA throughput
(Mops) (us)

154 threads acquire/release 10240 locks in an MS,
"OM Performance of lock collapses € (7
when contention appears

13

Why One-sided Approach is Slow ? (2)

(2) Slow Synchronization Primitives — RDMA lock

1q*| @ no contention 9391 |. Expensive in-NIC concurrency control

- NICs serialize atomic verbs w/ 2-PCle-txn critical path

A
RDMA Cle €2~
cas oF" v
<:> 247 e | Mem
@PC\e—"
@ ® compare 4//' MSs
2. Unnecessary retries
- i me limited RDMA through
Throughput 99th Lat. Lock retries consume limite throughput
(Mops) (us)
154 threads acquire/release 10240 locks in an MS, 3. LaCkmg Fairness

RDM Performance of lock collapses © (FG) - Do not consider fairness, starving some clients and

when contention appears further inducing high tail latency

13

Why One-sided Approach is Slow ? (3)

(3) Write Amplification

Why One-sided Approach is Slow ? (3)

(3) Write Amplification

Lots of indexes use lock-free lookup to eliminate read locks:

- Issue RDMA read to fetch tree node

- Detect inconsistent data due to concurrent writes via checksum or versions
- Retry if data is inconsistent

Why One-sided Approach is Slow ? (3)

(3) Write Amplification

Lots of indexes use lock-free lookup to eliminate read locks:

- Issue RDMA read to fetch tree node
- Detect inconsistent data due to concurrent writes via checksum or versions

- Retry if data is inconsistent

checksum|<K,, V;>| - [<K, V>

Checksum-based

Writer: modify entries, checksum = crc(node)
Reader: if checksum == crc(node) ?

Why One-sided Approach is Slow ? (3)

(3) Write Amplification

Lots of indexes use lock-free lookup to eliminate read locks:

- Issue RDMA read to fetch tree node

- Detect inconsistent data due to concurrent writes via checksum or versions

- Retry if data is inconsistent

checksum|<K,, V;>| - [<K, V>

ver,

<Ky, Vo> | - | <K, V>

ver,

Checksum-based

Writer: modify entries, checksum = crc(node)
Reader: if checksum == crc(node) ?

Version-based

Writer: ver,++, modify entries, ver,++
Reader: if ver, == very ?

Why One-sided Approach is Slow ? (3)

(3) Write Amplification

Lots of indexes use lock-free lookup to eliminate read locks:

- Issue RDMA read to fetch tree node

- Detect inconsistent data due to concurrent writes via checksum or versions

- Retry if data is inconsistent

checksum| <K, V>

Checksum-based

ver,

<Ky V>

<K, V,>

ver,

Version-based

In these two mechanisms, writers must write back the whole tree node, even
when modifying an individual KV entry, inducing write amplification

Outline

« Sherman — A Write-Optimized B+Tree on Disaggregated Memory

Sherman Overview

Sherman is a B+Tree index on disaggregated memory

< B-link tree structure (sibling pointer)
< Tree nodes are across many MSs
< One-sided RDMA for all index ops

< Index cache at CSs
« caching internal tree nodes
< reducing remote accesses
< Concurrency control

% write-write conflicts:

- node-grained exclusive locks

% read-write conflicts:

- lock-free search w/ versions

4 Client Threads\
B =
Index Cache
_ J

Compute Servers (CSs)

4 Client Threads\
00 @ 2@2 @ @
Index Cache
- J

Sherman Tree ,

-—

! !Iookup/insert/delete...

= —
— —
—_

Memory Servers (MSs)

— — —> child pointer
------- » sibling pointer

16

Key ldea

Combining RDMA hardware features with
RDMA-friendly software techniques

17

Key Idea

Combining RDMA hardware features with
RDMA-friendly software techniques

Reducing round trips ‘ Command combination

17

Key Idea

Combining RDMA hardware features with

RDMA-friendly software techniques

Reducing round trips

Accelerating concurrent accesses

=)
=)

Command combination

Hierarchical on-chip lock

17

Key Idea

Combining RDMA hardware features with
RDMA-friendly software techniques

Reducing round trips ‘ Command combination
Accelerating concurrent accesses ‘ Hierarchical on-chip lock

Mitigating write amplification ‘ Two-level version layout

17

Command combination

Observation: RDMA write commands are executed in order at receivers

Command combination

Observation: RDMA write commands are executed in order at receivers

Command combination: client threads issue dependent RDMA writes
simultaneously

18

Command combination

Observation: RDMA write commands are executed in order at receivers

Command combination: client threads issue dependent RDMA writes
simultaneously

=
4
CSs =
<
» » > : :
9 9 < Combine write-back and lock release
= ﬂ = — = —
> > = 7 \=
(@) -
b ‘& ® a
o- <
=
®
MSs
lock read node write node & unlock

® @ ©)

Command combination

Observation: RDMA write commands are executed in order at receivers

Command combination: client threads issue dependent RDMA writes
simultaneously

=)
=
CSs =
@)
ES
» 2 > . .
9 2 - %\ Combine write-back and lock release
3> G P E % E
(@) -
% S *\G
e < L.
! Checkout paper for other cases of combination
o
MSs
lock read node write node & unlock

® @ ©)

Hierarchical On-Chip Lock

Observation: RDMA NICs can expose on-chip memory (SRAM) for usages

Hierarchical On-Chip Lock

Observation: RDMA NICs can expose on-chip memory (SRAM) for usages

Local Lock Table (DRAM)

G ala|a a6l
CSs RDMA Links @
o | o | &6 | O | o
Global Lock Table (On-Chip Mem)
PCle Links

DRAM

MSs

19

Hierarchical On-Chip Lock

Observation: RDMA NICs can expose on-chip memory (SRAM) for usages

< Store locks in on-chip mem of MSs’ NICs
- an array called Global Lock Table (GLT)
- hash [addr of tree node] => position in GLT
- eliminate PCle txn at MSs

Local Lock Table (DRAM)
LB |86 | & | a6 | d
CSs RDMA Links @

N

PCle Links

A a alala >
\ﬂbal Lock Table (On-Chip Me

DRAM

MSs

19

Hierarchical On-Chip Lock

Observation: RDMA NICs can expose on-chip memory (SRAM) for usages

< Store locks in on-chip mem of MSs’ NICs
- an array called Global Lock Table (GLT)
- hash [addr of tree node] => position in GLT
- eliminate PCle txn at MSs

% Hierarchical structure
- Maintain a mirror of GLT at each CS: Local Lock Table

- first get local lock, then global one
- avoid unnecessary across-network retries
- bind a wait queue to each local lock, boosting fairness

L ~

Global Lock Table (On-Chip Mem)
PCle Links

DRAM

MSs

— Local Lock Table (DRAM) T~
Q o | G | O | o)

19

Hierarchical On-Chip Lock

Observation: RDMA NICs can expose on-chip memory (SRAM) for usages

< Store locks in on-chip mem of MSs’ NICs
- an array called Global Lock Table (GLT)
- hash [addr of tree node] => position in GLT
- eliminate PCle txn at MSs

% Hierarchical structure

- Maintain a mirror of GLT at each CS: Local Lock Table
- first get local lock, then global one

- avoid unnecessary across-network retries

- bind a wait queue to each local lock, boosting fairness

< Handover mechanism
- Hand over a lock from one thread to another locally
- reduce one round trip

MSs

o | 6 | o

51

51

CSs RDMA Links

L ~

4
"4
-

Global Lock Table (On-Chip Mem)

PCle Links

DRAM

19

Two-level version layout

Sherman tailors the B+Tree layout to mitigate write amplification

Two-level version layout

Sherman tailors the B+Tree layout to mitigate write amplification

< Make entries in leaf nodes unsorted
- avoid shift operation on insert/delete

Two-level version layout

Sherman tailors the B+Tree layout to mitigate write amplification

< Make entries in leaf nodes unsorted
- avoid shift operation on insert/delete

< Two-level version in leaf nodes
< node-level version protects leaf nodes => increment when insert/update/delete KV
< entry-level version protects KV entries => increment when nodes split/merge

node-level ver
¥)

leaf node 12 | 66 |<K1,V1>[66 | ... | 38 |<Kn,Vn>| 38 | 12
T A

entry-level ver

Two-level version layout

Sherman tailors the B+Tree layout to mitigate write amplification

< Make entries in leaf nodes unsorted
- avoid shift operation on insert/delete

< Two-level version in leaf nodes
< node-level version protects leaf nodes => increment when insert/update/delete KV
< entry-level version protects KV entries => increment when nodes split/merge

leaf node 12 | 66 |<K1,V1>[66 | ... | 38 |<Kn,Vn>| 38 | 12

t write back entry (not node) via RDMA write

update a KV: 67 |<K1, V1'>| 67

Two-level version layout

Sherman tailors the B+Tree layout to mitigate write amplification

< Make entries in leaf nodes unsorted
- avoid shift operation on insert/delete

< Two-level version in leaf nodes
< node-level version protects leaf nodes => increment when insert/update/delete KV

< entry-level version protects KV entries => increment when nodes split/merge

leaf node

split a node:

12 66 |<K1,V1>]| 66 38 |<Kn, Vn>| 38 12
t RDMA write
13 66 |<K1, V1>| 66 13 |- 11 38| <Kn, Vn>|38

Two-level version layout

Sherman tailors the B+Tree layout to mitigate write amplification

< Make entries in leaf nodes unsorted
- avoid shift operation on insert/delete

< Two-level version in leaf nodes
< node-level version protects leaf nodes => increment when insert/update/delete KV

< entry-level version protects KV entries => increment when nodes split/merge

leaf node

read a node:

Whether two node-level vers are equal ? two entry-level vers are equal ? If no, retry

12 66 |<K1,V1>]| 66 38 |<Kn, Vn>| 38 12
‘ RDMA read
12 66 |<K1, V1>| 66 38 |<Kn, Vn>| 38 12

20

Outline

« Sherman — A Write-Optimized B+Tree on Disaggregated Memory

Experimental Setup

Hardware Platform
Machine * 8

CPU |2 Intel Xeon E5-2650 (12 core)

Mem | 128GB DRAM

|00Gbps Mellanox ConnectX-5

NI w/ 256KB on-chip memory

OS | CentOS 7.7 ,Linux kernel 3.10.0

Experimental Setup

Hardware Platform

We emulate each machine as one MS and one CS

Machine * 8
CPU |2 Intel Xeon E5-2650 (12 core)
Mem | 128GB DRAM
NIC |00Gbps Mellanox ConnectX-5

w/ 256KB on-chip memory

OS

CentOS 7.7 , Linux kernel 3.10.0

> - MS: 64GB DRAM and 2 CPU cores
- CS: 1GB DRAM and 22 CPU cores

Experimental Setup

Hardware Platform

We emulate each machine as one MS and one CS

Machine * 8
CPU |2 Intel Xeon E5-2650 (12 core)
Mem | 128GB DRAM
NIC |00Gbps Mellanox ConnectX-5

w/ 256KB on-chip memory

OS

CentOS 7.7 , Linux kernel 3.10.0

Compared System: FG [SIGMOD’ | 9]

> - MS: 64GB DRAM and 2 CPU cores
- CS: 1GB DRAM and 22 CPU cores

- One-sided RDMA for all index ops, so it can be deployed on DM

- RDMA locks for write-write conflicts; checksum for read-write conflicts

- We add CS-side index cache for FG, for fair comparison

Experimental Setup

Hardware Platform

Machine * 8
CPU |2 Intel Xeon E5-2650 (12 core)
Mem | 128GB DRAM We emulate each machine as one MS and one CS
NI | 100Gbps Mellanox ConnectX-5 > - MS: 64GB DRAM and 2 CPU cores
w/ 256KB on-chip memory - CS: |GB DRAM and 22 CPU cores
OS |[CentOS 7.7, Linux kernel 3.10.0

Compared System: FG [SIGMOD’ | 9]

- One-sided RDMA for all index ops, so it can be deployed on DM
- RDMA locks for write-write conflicts; checksum for read-write conflicts
- We add CS-side index cache for FG, for fair comparison

Benchmark: YCSB, Zipfian 0.99; 8B key & 8B value, | billion KV; IKB node; 500MB index cache

Throughput (176 client threads)

Write-intensive(50% lookup, 50% update/insert)

5 < - 802
(ol))))))
(@)
)
>
a4
-
oo
=
= 034
— 0
G

23

Throughput (176 client threads)

Write-intensive(50% lookup, 50% update/insert)

Q) 8.02
wn 8+ : = .
0O 4 .
0)
')
)
a4
=
=
o 2r
|
k=
0
)(,s,. 7(<‘)
/9/-6/_ < L.
6/8/. r
Q

|. Sherman improves throughput significantly under write-intensive workloads
2. All techniques contribute to the high write efficiency

23

Throughput (176 client threads)

Write-intensive(50% lookup, 50% update/insert) Read-intensive (95% lookup, 5% update/insert)
W
& sl 2802 329 ; | 338
D_ 4 .
0) 30 -
z s |
g ob | |
o 4 |
c |
0 |
3 ol 10+ -
1 9 ﬁ
c
G ’(0007/)7)(OO‘O/) . *'S?@ /.Q/-
Q /,
OO'O Log
0/77) %
b,

|. Sherman improves throughput significantly under write-intensive workloads
2. All techniques contribute to the high write efficiency

23

Throughput (176 client threads)

Write-intensive(50% lookup, 50% update/insert) Read-intensive (95% lookup, 5% update/insert)
W
E s. 802 329 | | 338
0 30
> 6
5 20
o 4
50
= Sherman does not sacrifice read performance
= \
=0 0 =
%,%.@/a *9*4 y G
Sy ,
09/8 Sr
/7
Uy,
e

|. Sherman improves throughput significantly under write-intensive workloads
2. All techniques contribute to the high write efficiency

23

99th Percentile Latency (176 client threads)

Write-intensive(50% lookup, 50% update/insert) Read-intensive (95% lookup, 5% update/insert)
20,000 - 12890 5L 1.24%X
= | | > 123
3 15000}
g | 10F
@ |
c 10,000
3
(¢] 5
—l 5,000 -
0 | 0 ~ :
G %OO %O/)\)(6?@ K (
/70' (o “ (S8
o g
/776/' [(/2/0/
e Yre

24

99th Percentile Latency (176 client threads)

Write-intensive(50% lookup, 50% update/insert)

20,000

10,000

Latency (us)

Sherman

15,000 -

5,000 -

119890

ol

10

Read-intensive (95% lookup, 5% update/insert)

15

1.24x
' 12.3

Ch, Q@ S
07'9/7 b{O { /-O/)/ 27
K2 ey
(S Yre

lowers tail latency by reducing round trips and boosting concurrency efficiency

24

Outline

« Sherman — A Write-Optimized B+Tree on Disaggregated Memory

Summary

< Goal

< Building a fast tree index on disaggregated memory with commodity RDMA NICs

26

Summary

< Goal

< Building a fast tree index on disaggregated memory with commodity RDMA NICs

< Key Ildea
< Combining RDMA hardware features with RDMA-friendly software techniques

26

Summary

<+ Goal
< Building a fast tree index on disaggregated memory with commodity RDMA NICs

< Key Ildea
< Combining RDMA hardware features with RDMA-friendly software techniques

< Techniques in Sherman
< Command combination — Reducing round trips
< Hierarchical on-chip lock — Accelerating concurrent accesses
< Two-level version layout — Mitigating write amplification

Summary

<+ Goal
< Building a fast tree index on disaggregated memory with commodity RDMA NICs

< Key Ildea
< Combining RDMA hardware features with RDMA-friendly software techniques

< Techniques in Sherman
< Command combination — Reducing round trips
< Hierarchical on-chip lock — Accelerating concurrent accesses
< Two-level version layout — Mitigating write amplification

< Results

< Sherman improves throughput and 99th percentile latency by one order of magnitude on
typical write-intensive workloads

ACM SIGMOD
PODS 2022

Philadelphia, PA, USA

Thanks & QA

Sherman: A Write-Optimized Distributed B+Tree Index
on Disaggregated Memory

Contact Information: g-wangl8@mails.tsinghua.edu.cn

27

