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Memory Disaggregation (1)

Problem: low memory utilization in datacenters
% < 65% in Google,Alibaba, and Snowflakel'-23]

Root Cause: imbalanced memory usages across servers

< Some servers are CPU-bound, but some are memory-bound
< Cannot use memory beyond a local server

m): m): [E) GE)E used m) @) =) :[m=)
(0000 | {0000] {0000] {000 (0000 {0000] {0000] f0000] Used
Server 1 (CPU-bound) Server 2 (memory-bound)

[T Who Limits the Resource Efficiency of My Datacenter: An Analysis of Alibaba Datacenter Traces (IWQoS’19)
[2] Borg: the Next Generation (EuroSys’20)
[3] Memtrade: A Disaggregated-Memory Marketplace for Public Clouds (arXiv’21)
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Memory Disaggregation

< Physically separate CPU and memory into network-attached components
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small local DRAM
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larg. Benefits:
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Men v" Flexibly assembling resources for apps

v Efficiently sharing memory between apps




Memory Disaggregation (2)

Memory Disaggregation

< Physically separate CPU and memory into network-attached components
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smalllocal DRAM | "0 0 DL v e
ompute Servers | e e
(CSs) 000 0000

< RDMA network >

1-21 v Independently scaling memory and CPU

Men v Flexibly assembling resources for apps ‘ high memory utilization
v Efficiently sharing memory between apps



Memory Disaggregation (3)

Key Enabler: Remote Direct Memory Access (RDMA)
< High bandwidth: 100/200/400Gbps
< Low latency: RTT < 2us

< Directly access remote memory: read. write, atomic (e.g., cas)

RDMA NIC

CI I LT
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qooo

Compute Servers
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read. write, atomic
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< RDMA network >
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Tree Indexes on Disaggregated Memory (1)

In this work, we explore how to design a high-performance

tree index on disaggregated memory (DM)

Compute Servers

(CSs)

insert/update/delete
lookup/range_query

< RDMA network >

Memory Servers
(MSs)




Tree Indexes on Disaggregated Memory (2)

Reexamine Existing RDMA-based Tree Indexes

I.  Using RPC to handle index write operations (i.e., insert/update/delete)
EXAWPLE] Cell [ATC’16], FaRM-Tree [SIGMOD’ |9]

Issue: Cannot be deployed on DM — near-zero computation power at memory-side
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Tree Indexes on Disaggregated Memory (2)

Reexamine Existing RDMA-based Tree Indexes

I.  Using RPC to handle index write operations (i.e., insert/update/delete)
EXAWPLE] Cell [ATC’16], FaRM-Tree [SIGMOD’ |9]

Issue: Cannot be deployed on DM — near-zero computation power at memory-side

2. One-sided approach: leveraging RDMA read/write/atomic for all index ops

EXAMPLE] FG [SIGMOD'19]
4.9

Issue: Low write performance 5% Write 31.8 : 14.9
50% Write <—____ 0.34 10 19890 =

3. Hardware modification or SmartNICs for offloading index op$°ew throughput & High latency

w/ 8 MSs and 8 CSs
EXAMPLE] HT-Tree [HotOS’19]
Issue: High TCO (total cost of ownership)




Our Goal

Our Goal: building a tree index on disaggregated memory

that can deliver high performance (for both read/write ops)
with commodity RDMA NICs

11



Why One-sided Approach is Slow ? (1)

(1) Excessive Round Trips

cas = compare and swap ; faa = fetch and add
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Why One-sided Approach is Slow ? (1)

(1) Excessive Round Trips

Four round trips when modifying a tree node (FG [SIGMOD’19])

CSs —
753 753 753 ¢ Excessive round trips harm performance:
4 o > = % = 1) High latency of single write op
i %_ % 2? Long critical path, blocking conflicting ops
MSs
lock read node write node unlock
® @ ® O,

cas = compare and swap ; faa = fetch and add
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(2) Slow Synchronization Primitives — RDMA lock
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(2) Slow Synchronization Primitives — RDMA lock

() no contention 9391

Throughput 99th Lat.
(Mops) (us)

154 threads acquire/release 10240 locks in an MS,
RDMA cas for lock acquisition and faa for release (FG)
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Why One-sided Approach is Slow ? (2)

(2) Slow Synchronization Primitives — RDMA lock

1q*| @ no contention 9391 |. Expensive in-NIC concurrency control

- NICs serialize atomic verbs w/ 2-PCle-txn critical path

A
RDMA Cle €2~
cas oF" v
<:> 247 e | Mem
@PC\e—"
@ ® compare 4//' MSs
2. Unnecessary retries
- i me limited RDMA through
Throughput 99th Lat. Lock retries consume limite throughput
(Mops) (us)
154 threads acquire/release 10240 locks in an MS, 3. LaCkmg Fairness

RDM Performance of lock collapses © (FG) - Do not consider fairness, starving some clients and

when contention appears further inducing high tail latency
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(3) Write Amplification

Lots of indexes use lock-free lookup to eliminate read locks:

- Issue RDMA read to fetch tree node

- Detect inconsistent data due to concurrent writes via checksum or versions

- Retry if data is inconsistent

checksum|<K,, V;>| - [ <K, V>

ver,

<Ky, Vo> | - | <K, V>

ver,

Checksum-based

Writer: modify entries, checksum = crc(node)
Reader: if checksum == crc(node) ?

Version-based

Writer: ver,++, modify entries, ver,++
Reader: if ver, == very ?




Why One-sided Approach is Slow ? (3)

(3) Write Amplification

Lots of indexes use lock-free lookup to eliminate read locks:

- Issue RDMA read to fetch tree node

- Detect inconsistent data due to concurrent writes via checksum or versions

- Retry if data is inconsistent

checksum| <K, V>

Checksum-based

ver,

<Ky V>

<K, V,>

ver,

Version-based

In these two mechanisms, writers must write back the whole tree node, even
when modifying an individual KV entry, inducing write amplification




Outline

« Sherman — A Write-Optimized B+Tree on Disaggregated Memory



Sherman Overview

Sherman is a B+Tree index on disaggregated memory

< B-link tree structure (sibling pointer)
< Tree nodes are across many MSs
< One-sided RDMA for all index ops

< Index cache at CSs
« caching internal tree nodes
< reducing remote accesses
< Concurrency control

% write-write conflicts:

- node-grained exclusive locks

% read-write conflicts:

- lock-free search w/ versions

4 Client Threads\
B =
Index Cache
\_ J

Compute Servers (CSs)

4 Client Threads\
00 @ 2@2 @ @
Index Cache
- J

Sherman Tree ,

-—

! !Iookup/insert/delete...

= —
— —
—_

Memory Servers (MSs)

— — —> child pointer
------- » sibling pointer
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Key ldea

Combining RDMA hardware features with
RDMA-friendly software techniques
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Key Idea

Combining RDMA hardware features with
RDMA-friendly software techniques

Reducing round trips ‘ Command combination
Accelerating concurrent accesses ‘ Hierarchical on-chip lock

Mitigating write amplification ‘ Two-level version layout
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Command combination

Observation: RDMA write commands are executed in order at receivers
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Observation: RDMA write commands are executed in order at receivers

Command combination: client threads issue dependent RDMA writes
simultaneously
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Command combination

Observation: RDMA write commands are executed in order at receivers

Command combination: client threads issue dependent RDMA writes
simultaneously
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Command combination

Observation: RDMA write commands are executed in order at receivers

Command combination: client threads issue dependent RDMA writes
simultaneously

=)
=
CSs =
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» 2 > . .
9 2 - %\ Combine write-back and lock release
3> G P E % E
(@) -
% S *\G
e < L.
! Checkout paper for other cases of combination
o
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lock read node  write node & unlock
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Hierarchical On-Chip Lock

Observation: RDMA NICs can expose on-chip memory (SRAM) for usages



Hierarchical On-Chip Lock

Observation: RDMA NICs can expose on-chip memory (SRAM) for usages

Local Lock Table (DRAM)

G ala|a a6l
CSs RDMA Links @
o | o | &6 | O | o
Global Lock Table (On-Chip Mem)
PCle Links

DRAM

MSs
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Hierarchical On-Chip Lock

Observation: RDMA NICs can expose on-chip memory (SRAM) for usages

< Store locks in on-chip mem of MSs’ NICs
- an array called Global Lock Table (GLT)
- hash [addr of tree node] => position in GLT
- eliminate PCle txn at MSs

Local Lock Table (DRAM)
LB |86 | & | a6 | d
CSs RDMA Links @

_________
N

PCle Links

A a alala >
\ﬂbal Lock Table (On-Chip Me

DRAM

MSs
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Hierarchical On-Chip Lock

Observation: RDMA NICs can expose on-chip memory (SRAM) for usages

< Store locks in on-chip mem of MSs’ NICs
- an array called Global Lock Table (GLT)
- hash [addr of tree node] => position in GLT
- eliminate PCle txn at MSs

% Hierarchical structure
- Maintain a mirror of GLT at each CS: Local Lock Table

- first get local lock, then global one
- avoid unnecessary across-network retries
- bind a wait queue to each local lock, boosting fairness

___________________________________________________________________
L ~

Global Lock Table (On-Chip Mem)
PCle Links

DRAM

MSs

— Local Lock Table (DRAM) T~
Q o | G | O | o )
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Hierarchical On-Chip Lock

Observation: RDMA NICs can expose on-chip memory (SRAM) for usages

< Store locks in on-chip mem of MSs’ NICs
- an array called Global Lock Table (GLT)
- hash [addr of tree node] => position in GLT
- eliminate PCle txn at MSs

% Hierarchical structure

- Maintain a mirror of GLT at each CS: Local Lock Table
- first get local lock, then global one

- avoid unnecessary across-network retries

- bind a wait queue to each local lock, boosting fairness

< Handover mechanism
- Hand over a lock from one thread to another locally
- reduce one round trip

MSs

o | 6 | o

51

51

CSs RDMA Links

___________________________________________________________________
L ~

4
"4
-

Global Lock Table (On-Chip Mem)

PCle Links

DRAM
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Two-level version layout

Sherman tailors the B+Tree layout to mitigate write amplification
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Sherman tailors the B+Tree layout to mitigate write amplification

< Make entries in leaf nodes unsorted
- avoid shift operation on insert/delete

< Two-level version in leaf nodes
< node-level version protects leaf nodes => increment when insert/update/delete KV
< entry-level version protects KV entries => increment when nodes split/merge

node-level ver
¥ )

leaf node 12 | 66 |<K1,V1>[ 66 | ... | 38 |<Kn,Vn>| 38 | 12
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Two-level version layout

Sherman tailors the B+Tree layout to mitigate write amplification

< Make entries in leaf nodes unsorted
- avoid shift operation on insert/delete

< Two-level version in leaf nodes
< node-level version protects leaf nodes => increment when insert/update/delete KV
< entry-level version protects KV entries => increment when nodes split/merge

leaf node 12 | 66 |<K1,V1>[ 66 | ... | 38 |<Kn,Vn>| 38 | 12

t write back entry (not node) via RDMA write

update a KV: 67 |<K1, V1'>| 67




Two-level version layout

Sherman tailors the B+Tree layout to mitigate write amplification

< Make entries in leaf nodes unsorted
- avoid shift operation on insert/delete

< Two-level version in leaf nodes
< node-level version protects leaf nodes => increment when insert/update/delete KV

< entry-level version protects KV entries => increment when nodes split/merge

leaf node

split a node:

12 66 |<K1,V1>]| 66 38 |<Kn, Vn>| 38 12
t RDMA write
13 66 |<K1, V1>| 66 13 |- 11 38| <Kn, Vn>|38




Two-level version layout

Sherman tailors the B+Tree layout to mitigate write amplification

< Make entries in leaf nodes unsorted
- avoid shift operation on insert/delete

< Two-level version in leaf nodes
< node-level version protects leaf nodes => increment when insert/update/delete KV

< entry-level version protects KV entries => increment when nodes split/merge

leaf node

read a node:

Whether two node-level vers are equal ? two entry-level vers are equal ? If no, retry

12 66 |<K1,V1>]| 66 38 |<Kn, Vn>| 38 12
‘ RDMA read
12 66 |<K1, V1>| 66 38 |<Kn, Vn>| 38 12
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Outline

« Sherman — A Write-Optimized B+Tree on Disaggregated Memory



Experimental Setup

Hardware Platform
Machine * 8

CPU |2 Intel Xeon E5-2650 (12 core)

Mem | 128GB DRAM

|00Gbps Mellanox ConnectX-5

NI w/ 256KB on-chip memory

OS | CentOS 7.7 ,Linux kernel 3.10.0
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Experimental Setup

Hardware Platform

Machine * 8
CPU |2 Intel Xeon E5-2650 (12 core)
Mem | 128GB DRAM We emulate each machine as one MS and one CS
NI | 100Gbps Mellanox ConnectX-5 > - MS: 64GB DRAM and 2 CPU cores
w/ 256KB on-chip memory - CS: |GB DRAM and 22 CPU cores
OS |[CentOS 7.7, Linux kernel 3.10.0

Compared System: FG [SIGMOD’ | 9]

- One-sided RDMA for all index ops, so it can be deployed on DM
- RDMA locks for write-write conflicts; checksum for read-write conflicts
- We add CS-side index cache for FG, for fair comparison

Benchmark: YCSB, Zipfian 0.99; 8B key & 8B value, | billion KV; IKB node; 500MB index cache
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Throughput (176 client threads)

Write-intensive(50% lookup, 50% update/insert)
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Throughput (176 client threads)
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Throughput (176 client threads)

Write-intensive(50% lookup, 50% update/insert) Read-intensive (95% lookup, 5% update/insert)
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99th Percentile Latency (176 client threads)
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99th Percentile Latency (176 client threads)

Write-intensive(50% lookup, 50% update/insert)
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Sherman
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Read-intensive (95% lookup, 5% update/insert)
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lowers tail latency by reducing round trips and boosting concurrency efficiency
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Outline

« Sherman — A Write-Optimized B+Tree on Disaggregated Memory



Summary

< Goal

< Building a fast tree index on disaggregated memory with commodity RDMA NICs
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Summary

<+ Goal
< Building a fast tree index on disaggregated memory with commodity RDMA NICs

< Key Ildea
< Combining RDMA hardware features with RDMA-friendly software techniques

< Techniques in Sherman
< Command combination — Reducing round trips
< Hierarchical on-chip lock — Accelerating concurrent accesses
< Two-level version layout — Mitigating write amplification

< Results

< Sherman improves throughput and 99th percentile latency by one order of magnitude on
typical write-intensive workloads
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