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Memory Disaggregation (1)
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[1] Who Limits the Resource Efficiency of My Datacenter: An Analysis of Alibaba Datacenter Traces  (IWQoS’19)
[2] Borg: the Next Generation (EuroSys’20)
[3] Memtrade: A Disaggregated-Memory Marketplace for Public Clouds (arXiv’21)

Problem: low memory utilization in datacenters
v < 65% in Google, Alibaba, and Snowflake[1,2,3]

Root Cause: imbalanced memory usages across servers
v Some servers are CPU-bound, but some are memory-bound
v Cannot use memory beyond a local server

Used

Server 1 (CPU-bound) Server 2 (memory-bound)

Used
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Memory Disaggregation
v Physically separate CPU and memory into network-attached components

Compute Servers 
(CSs)

Memory Servers 
(MSs)

many CPU cores,
small local DRAM

large DRAM,
1-2 wimpy cores

RDMA network

Benefits:
ü Independently scaling memory and CPU
ü Flexibly assembling resources for apps
ü Efficiently sharing memory between apps

high memory utilization
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Key Enabler: Remote Direct Memory Access (RDMA)
v High bandwidth: 100/200/400Gbps
v Low latency: RTT < 2us
v Directly access remote memory:  read、write、atomic (e.g., cas)                

RDMA network

Compute Servers 
(CSs)

Memory Servers 
(MSs)

read、write、atomic 

RDMA NIC
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In this work, we explore how to design a high-performance 
tree index on disaggregated memory (DM)                                          

RDMA network

Compute Servers 
(CSs)

Memory Servers 
(MSs)

insert/update/delete
lookup/range_query
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Reexamine Existing RDMA-based Tree Indexes

1. Using RPC to handle index write operations (i.e.,  insert/update/delete)
Cell [ATC’16], FaRM-Tree [SIGMOD’19]

Issue: Cannot be deployed on DM — near-zero computation power at memory-side
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Reexamine Existing RDMA-based Tree Indexes

1. Using RPC to handle index write operations (i.e.,  insert/update/delete)
Cell [ATC’16], FaRM-Tree [SIGMOD’19]

Issue: Cannot be deployed on DM — near-zero computation power at memory-side

2. One-sided approach: leveraging RDMA read/write/atomic for all index ops
FG [SIGMOD’19]

Issue: Low write performance 

3. Hardware modification or SmartNICs for offloading index ops
HT-Tree [HotOS’19]

Issue: High TCO (total cost of ownership)

FG (Zipf 0.99) Throughput (Mops) 50th Lat. (us) 99th Lat. (us)
5% Write 31.8 4.9 14.9 

50% Write 0.34 10 19890 
Low throughput & High latency

w/ 8 MSs and 8 CSs
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Our Goal: building a tree index on disaggregated memory 
that can deliver high performance (for both read/write ops)

with commodity RDMA NICs
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Four round trips when modifying a tree node (FG [SIGMOD’19])

CSs

MSs
lock read node write node unlock

R
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M
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R
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M
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w
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R
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w
rite

➀ ➁ ➂ ➃
cas = compare and swap； faa = fetch and add

Excessive round trips harm performance:

1) High latency of single write op
2) Long critical path, blocking conflicting ops
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1. Expensive in-NIC concurrency control
- NICs serialize atomic verbs w/ 2-PCIe-txn critical path

2. Unnecessary retries 
- Lock retries consume limited RDMA throughput

3. Lacking Fairness
- Do not consider fairness, starving some clients and

further inducing high tail latency
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(3) Write Amplification

Lots of indexes use lock-free lookup to eliminate read locks:
- Issue RDMA read to fetch tree node
- Detect inconsistent data due to concurrent writes via checksum or versions
- Retry if data is inconsistent

<K1, V1> … <Kn, Vn>checksum <K1, V1> <Kn, Vn>…

Checksum-based Version-based

Writer:  modify entries, checksum = crc(node)
Reader: if checksum == crc(node) ?

Writer:  vera++, modify entries, verb++
Reader: if vera == verb ?

vera verb

In these two mechanisms, writers must write back the whole tree node, even 
when modifying an individual KV entry, inducing write amplification 
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Sherman Overview

16

Sherman is a B+Tree index on disaggregated memory

v B-link tree structure (sibling pointer)
v Tree nodes are across many MSs
v One-sided RDMA for all index ops
v Index cache at CSs

v caching internal tree nodes
v reducing remote accesses

v Concurrency control
v write-write conflicts:

- node-grained exclusive locks

v read-write conflicts:
- lock-free search w/ versions

Sherman Tree

lookup/insert/delete…Compute Servers (CSs)

Memory Servers (MSs)

child pointer
sibling pointer

Index Cache

Client Threads

Index Cache

Client Threads
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Combining RDMA hardware features with
RDMA-friendly software techniques

Reducing round trips

Accelerating concurrent accesses

Mitigating write amplification

Command combination

Hierarchical on-chip lock

Two-level version layout
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Observation: RDMA write commands are executed in order at receivers

Command combination:  client threads issue dependent RDMA writes     
simultaneously

CSs

MSs
lock read node write node & unlock

R
D

M
A

cas

R
D

M
A

read

R
D

M
A

w
rite &

 w
rite

➀ ➁ ➂

Combine write-back and lock release

Checkout paper for other cases of combination 
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Observation: RDMA NICs can expose on-chip memory (SRAM) for usages
v Store locks in on-chip mem of MSs’ NICs

- an array called Global Lock Table (GLT) 
- hash [addr of tree node] => position in GLT
- eliminate PCIe txn at MSs

v Hierarchical structure
- Maintain a mirror of GLT at each CS: Local Lock Table
- first get local lock, then global one
- avoid unnecessary across-network retries 
- bind a wait queue to each local lock,  boosting fairness

v Handover mechanism
- Hand over a lock from one thread to another locally 
- reduce one round trip

Hierarchical On-Chip Lock

19

handover

Global Lock Table (On-Chip Mem)

RDMA Links

Local Lock Table (DRAM)

PCIe Links

DRAM

u

vCSs

MSs
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Sherman tailors the B+Tree layout to mitigate write amplification
v Make entries in leaf nodes unsorted

- avoid shift operation on insert/delete
v Two-level version in leaf nodes

v node-level version protects leaf nodes => increment when insert/update/delete KV
v entry-level version protects KV entries => increment when nodes split/merge

12 12<K1, V1>66 66 <Kn, Vn>38 38…leaf node

<K1, V1’>67 67update a KV:

write back entry (not node) via RDMA write
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Sherman tailors the B+Tree layout to mitigate write amplification
v Make entries in leaf nodes unsorted

- avoid shift operation on insert/delete
v Two-level version in leaf nodes

v node-level version protects leaf nodes => increment when insert/update/delete KV
v entry-level version protects KV entries => increment when nodes split/merge

12 12<K1, V1>66 66 <Kn, Vn>38 38…leaf node

13 <K1, V1>66 66 … 13 1<Kn, Vn>38 381 …split a node:

RDMA write
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Sherman tailors the B+Tree layout to mitigate write amplification
v Make entries in leaf nodes unsorted

- avoid shift operation on insert/delete
v Two-level version in leaf nodes

v node-level version protects leaf nodes => increment when insert/update/delete KV
v entry-level version protects KV entries => increment when nodes split/merge

12 12<K1, V1>66 66 <Kn, Vn>38 38…leaf node

12 12<K1, V1>66 66 <Kn, Vn>38 38…read a node:

RDMA read

Whether two node-level vers are equal ? two entry-level vers are equal ?   If no, retry
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v Sherman – A Write-Optimized B+Tree on Disaggregated Memory

v Evaluation

v Summary
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v Goal  
v Building a fast tree index on disaggregated memory with commodity RDMA NICs 

v Key Idea 
v Combining RDMA hardware features with RDMA-friendly software techniques

vTechniques in Sherman
v Command combination  – Reducing round trips
v Hierarchical on-chip lock – Accelerating concurrent accesses
vTwo-level version layout  – Mitigating write amplification

v Results
v Sherman improves throughput and 99th percentile latency by one order of magnitude on 

typical write-intensive workloads 26
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