
Sherman: A Write-Optimized Distributed B+Tree
Index on Disaggregated Memory

Qing Wang, Youyou Lu, Jiwu Shu

Tsinghua University

Memory Disaggregation (1)

2

[1] Who Limits the Resource Efficiency of My Datacenter: An Analysis of Alibaba Datacenter Traces (IWQoS’19)
[2] Borg: the Next Generation (EuroSys’20)
[3] Memtrade: A Disaggregated-Memory Marketplace for Public Clouds (arXiv’21)

Problem: low memory utilization in datacenters
v < 65% in Google, Alibaba, and Snowflake[1,2,3]

Root Cause: imbalanced memory usages across servers
v Some servers are CPU-bound, but some are memory-bound
v Cannot use memory beyond a local server

Used

Server 1 (CPU-bound) Server 2 (memory-bound)

Used

Memory Disaggregation (2)

3

Memory Disaggregation
v Physically separate CPU and memory into network-attached components

Memory Disaggregation (2)

3

Memory Disaggregation
v Physically separate CPU and memory into network-attached components

Compute Servers
(CSs)

Memory Servers
(MSs)

RDMA network

Memory Disaggregation (2)

3

Memory Disaggregation
v Physically separate CPU and memory into network-attached components

Compute Servers
(CSs)

Memory Servers
(MSs)

many CPU cores,
small local DRAM

large DRAM,
1-2 wimpy cores

RDMA network

Memory Disaggregation (2)

3

Memory Disaggregation
v Physically separate CPU and memory into network-attached components

Compute Servers
(CSs)

Memory Servers
(MSs)

many CPU cores,
small local DRAM

large DRAM,
1-2 wimpy cores

RDMA network

Benefits:
ü Independently scaling memory and CPU
ü Flexibly assembling resources for apps
ü Efficiently sharing memory between apps

Memory Disaggregation (2)

3

Memory Disaggregation
v Physically separate CPU and memory into network-attached components

Compute Servers
(CSs)

Memory Servers
(MSs)

many CPU cores,
small local DRAM

large DRAM,
1-2 wimpy cores

RDMA network

Benefits:
ü Independently scaling memory and CPU
ü Flexibly assembling resources for apps
ü Efficiently sharing memory between apps

high memory utilization

Memory Disaggregation (3)

4

Key Enabler: Remote Direct Memory Access (RDMA)
v High bandwidth: 100/200/400Gbps
v Low latency: RTT < 2us
v Directly access remote memory: read、write、atomic (e.g., cas)

RDMA network

Compute Servers
(CSs)

Memory Servers
(MSs)

read、write、atomic

RDMA NIC

Tree Indexes on Disaggregated Memory (1)

5

In this work, we explore how to design a high-performance
tree index on disaggregated memory (DM)

RDMA network

Compute Servers
(CSs)

Memory Servers
(MSs)

insert/update/delete
lookup/range_query

Tree Indexes on Disaggregated Memory (2)

6

Reexamine Existing RDMA-based Tree Indexes

1. Using RPC to handle index write operations (i.e., insert/update/delete)
Cell [ATC’16], FaRM-Tree [SIGMOD’19]

Issue: Cannot be deployed on DM — near-zero computation power at memory-side

Tree Indexes on Disaggregated Memory (2)

6

Reexamine Existing RDMA-based Tree Indexes

1. Using RPC to handle index write operations (i.e., insert/update/delete)
Cell [ATC’16], FaRM-Tree [SIGMOD’19]

Issue: Cannot be deployed on DM — near-zero computation power at memory-side

2. One-sided approach: leveraging RDMA read/write/atomic for all index ops
FG [SIGMOD’19]

Issue: Low write performance

Tree Indexes on Disaggregated Memory (2)

6

Reexamine Existing RDMA-based Tree Indexes

1. Using RPC to handle index write operations (i.e., insert/update/delete)
Cell [ATC’16], FaRM-Tree [SIGMOD’19]

Issue: Cannot be deployed on DM — near-zero computation power at memory-side

2. One-sided approach: leveraging RDMA read/write/atomic for all index ops
FG [SIGMOD’19]

Issue: Low write performance
FG (Zipf 0.99) Throughput (Mops) 50th Lat. (us) 99th Lat. (us)

5% Write 31.8 4.9 14.9
50% Write 0.34 10 19890

Tree Indexes on Disaggregated Memory (2)

6

Reexamine Existing RDMA-based Tree Indexes

1. Using RPC to handle index write operations (i.e., insert/update/delete)
Cell [ATC’16], FaRM-Tree [SIGMOD’19]

Issue: Cannot be deployed on DM — near-zero computation power at memory-side

2. One-sided approach: leveraging RDMA read/write/atomic for all index ops
FG [SIGMOD’19]

Issue: Low write performance
FG (Zipf 0.99) Throughput (Mops) 50th Lat. (us) 99th Lat. (us)

5% Write 31.8 4.9 14.9
50% Write 0.34 10 19890

Low throughput & High latency
w/ 8 MSs and 8 CSs

Tree Indexes on Disaggregated Memory (2)

6

Reexamine Existing RDMA-based Tree Indexes

1. Using RPC to handle index write operations (i.e., insert/update/delete)
Cell [ATC’16], FaRM-Tree [SIGMOD’19]

Issue: Cannot be deployed on DM — near-zero computation power at memory-side

2. One-sided approach: leveraging RDMA read/write/atomic for all index ops
FG [SIGMOD’19]

Issue: Low write performance

3. Hardware modification or SmartNICs for offloading index ops
HT-Tree [HotOS’19]

Issue: High TCO (total cost of ownership)

FG (Zipf 0.99) Throughput (Mops) 50th Lat. (us) 99th Lat. (us)
5% Write 31.8 4.9 14.9

50% Write 0.34 10 19890
Low throughput & High latency

w/ 8 MSs and 8 CSs

Our Goal

11

Our Goal: building a tree index on disaggregated memory
that can deliver high performance (for both read/write ops)

with commodity RDMA NICs

Why One-sided Approach is Slow ? (1)

12

(1) Excessive Round Trips

cas = compare and swap； faa = fetch and add

Why One-sided Approach is Slow ? (1)

12

(1) Excessive Round Trips

Four round trips when modifying a tree node (FG [SIGMOD’19])

CSs

MSs
lock read node write node unlock

R
D

M
A

cas

R
D

M
A

read

R
D

M
A

w
rite

R
D

M
A

w
rite

➀ ➁ ➂ ➃
cas = compare and swap； faa = fetch and add

Why One-sided Approach is Slow ? (1)

12

(1) Excessive Round Trips

Four round trips when modifying a tree node (FG [SIGMOD’19])

CSs

MSs
lock read node write node unlock

R
D

M
A

cas

R
D

M
A

read

R
D

M
A

w
rite

R
D

M
A

w
rite

➀ ➁ ➂ ➃
cas = compare and swap； faa = fetch and add

Excessive round trips harm performance:

1) High latency of single write op
2) Long critical path, blocking conflicting ops

Why One-sided Approach is Slow ? (2)

13

(2) Slow Synchronization Primitives — RDMA lock

Why One-sided Approach is Slow ? (2)

13

(2) Slow Synchronization Primitives — RDMA lock

no contention
Zipf 0.99

1

101

102

103

104

Throughput
(Mops)

99th Lat.
(us)

23.2

0.5

46X
12.5

9391

751X

154 threads acquire/release 10240 locks in an MS,
RDMA cas for lock acquisition and faa for release (FG)

Why One-sided Approach is Slow ? (2)

13

(2) Slow Synchronization Primitives — RDMA lock

no contention
Zipf 0.99

1

101

102

103

104

Throughput
(Mops)

99th Lat.
(us)

23.2

0.5

46X
12.5

9391

751X

154 threads acquire/release 10240 locks in an MS,
RDMA cas for lock acquisition and faa for release (FG)Performance of lock collapses

when contention appears

1. Expensive in-NIC concurrency control
- NICs serialize atomic verbs w/ 2-PCIe-txn critical path

Why One-sided Approach is Slow ? (2)

13

(2) Slow Synchronization Primitives — RDMA lock

no contention
Zipf 0.99

1

101

102

103

104

Throughput
(Mops)

99th Lat.
(us)

23.2

0.5

46X
12.5

9391

751X

154 threads acquire/release 10240 locks in an MS,
RDMA cas for lock acquisition and faa for release (FG)Performance of lock collapses

when contention appears

CSs MSs

RDMA
cas

Mem
➀ PCIe read

➂ PCIe write

➁ compare

1. Expensive in-NIC concurrency control
- NICs serialize atomic verbs w/ 2-PCIe-txn critical path

2. Unnecessary retries
- Lock retries consume limited RDMA throughput

Why One-sided Approach is Slow ? (2)

13

(2) Slow Synchronization Primitives — RDMA lock

no contention
Zipf 0.99

1

101

102

103

104

Throughput
(Mops)

99th Lat.
(us)

23.2

0.5

46X
12.5

9391

751X

154 threads acquire/release 10240 locks in an MS,
RDMA cas for lock acquisition and faa for release (FG)Performance of lock collapses

when contention appears

CSs MSs

RDMA
cas

Mem
➀ PCIe read

➂ PCIe write

➁ compare

1. Expensive in-NIC concurrency control
- NICs serialize atomic verbs w/ 2-PCIe-txn critical path

2. Unnecessary retries
- Lock retries consume limited RDMA throughput

3. Lacking Fairness
- Do not consider fairness, starving some clients and

further inducing high tail latency

Why One-sided Approach is Slow ? (2)

13

(2) Slow Synchronization Primitives — RDMA lock

no contention
Zipf 0.99

1

101

102

103

104

Throughput
(Mops)

99th Lat.
(us)

23.2

0.5

46X
12.5

9391

751X

154 threads acquire/release 10240 locks in an MS,
RDMA cas for lock acquisition and faa for release (FG)Performance of lock collapses

when contention appears

CSs MSs

RDMA
cas

Mem
➀ PCIe read

➂ PCIe write

➁ compare

Why One-sided Approach is Slow ? (3)

14

(3) Write Amplification

Why One-sided Approach is Slow ? (3)

14

(3) Write Amplification

Lots of indexes use lock-free lookup to eliminate read locks:
- Issue RDMA read to fetch tree node
- Detect inconsistent data due to concurrent writes via checksum or versions
- Retry if data is inconsistent

Why One-sided Approach is Slow ? (3)

14

(3) Write Amplification

Lots of indexes use lock-free lookup to eliminate read locks:
- Issue RDMA read to fetch tree node
- Detect inconsistent data due to concurrent writes via checksum or versions
- Retry if data is inconsistent

<K1, V1> … <Kn, Vn>checksum

Checksum-based

Writer: modify entries, checksum = crc(node)
Reader: if checksum == crc(node) ?

Why One-sided Approach is Slow ? (3)

14

(3) Write Amplification

Lots of indexes use lock-free lookup to eliminate read locks:
- Issue RDMA read to fetch tree node
- Detect inconsistent data due to concurrent writes via checksum or versions
- Retry if data is inconsistent

<K1, V1> … <Kn, Vn>checksum <K1, V1> <Kn, Vn>…

Checksum-based Version-based

Writer: modify entries, checksum = crc(node)
Reader: if checksum == crc(node) ?

Writer: vera++, modify entries, verb++
Reader: if vera == verb ?

vera verb

Why One-sided Approach is Slow ? (3)

14

(3) Write Amplification

Lots of indexes use lock-free lookup to eliminate read locks:
- Issue RDMA read to fetch tree node
- Detect inconsistent data due to concurrent writes via checksum or versions
- Retry if data is inconsistent

<K1, V1> … <Kn, Vn>checksum <K1, V1> <Kn, Vn>…

Checksum-based Version-based

Writer: modify entries, checksum = crc(node)
Reader: if checksum == crc(node) ?

Writer: vera++, modify entries, verb++
Reader: if vera == verb ?

vera verb

In these two mechanisms, writers must write back the whole tree node, even
when modifying an individual KV entry, inducing write amplification

v Background & Motivation

v Sherman – A Write-Optimized B+Tree on Disaggregated Memory

v Evaluation

v Summary

Outline

15

Sherman Overview

16

Sherman is a B+Tree index on disaggregated memory

v B-link tree structure (sibling pointer)
v Tree nodes are across many MSs
v One-sided RDMA for all index ops
v Index cache at CSs

v caching internal tree nodes
v reducing remote accesses

v Concurrency control
v write-write conflicts:

- node-grained exclusive locks

v read-write conflicts:
- lock-free search w/ versions

Sherman Tree

lookup/insert/delete…Compute Servers (CSs)

Memory Servers (MSs)

child pointer
sibling pointer

Index Cache

Client Threads

Index Cache

Client Threads

Key Idea

17

Combining RDMA hardware features with
RDMA-friendly software techniques

Key Idea

17

Combining RDMA hardware features with
RDMA-friendly software techniques

Reducing round trips Command combination

Key Idea

17

Combining RDMA hardware features with
RDMA-friendly software techniques

Reducing round trips

Accelerating concurrent accesses

Command combination

Hierarchical on-chip lock

Key Idea

17

Combining RDMA hardware features with
RDMA-friendly software techniques

Reducing round trips

Accelerating concurrent accesses

Mitigating write amplification

Command combination

Hierarchical on-chip lock

Two-level version layout

Command combination

18

Observation: RDMA write commands are executed in order at receivers

Command combination

18

Observation: RDMA write commands are executed in order at receivers

Command combination: client threads issue dependent RDMA writes
simultaneously

Command combination

18

Observation: RDMA write commands are executed in order at receivers

Command combination: client threads issue dependent RDMA writes
simultaneously

CSs

MSs
lock read node write node & unlock

R
D

M
A

cas

R
D

M
A

read

R
D

M
A

w
rite &

 w
rite

➀ ➁ ➂

Combine write-back and lock release

Command combination

18

Observation: RDMA write commands are executed in order at receivers

Command combination: client threads issue dependent RDMA writes
simultaneously

CSs

MSs
lock read node write node & unlock

R
D

M
A

cas

R
D

M
A

read

R
D

M
A

w
rite &

 w
rite

➀ ➁ ➂

Combine write-back and lock release

Checkout paper for other cases of combination

Observation: RDMA NICs can expose on-chip memory (SRAM) for usages

Hierarchical On-Chip Lock

19

Observation: RDMA NICs can expose on-chip memory (SRAM) for usages

Hierarchical On-Chip Lock

19

Global Lock Table (On-Chip Mem)

RDMA Links

Local Lock Table (DRAM)

PCIe Links

DRAM

u

vCSs

MSs

Observation: RDMA NICs can expose on-chip memory (SRAM) for usages
v Store locks in on-chip mem of MSs’ NICs

- an array called Global Lock Table (GLT)
- hash [addr of tree node] => position in GLT
- eliminate PCIe txn at MSs

Hierarchical On-Chip Lock

19

Global Lock Table (On-Chip Mem)

RDMA Links

Local Lock Table (DRAM)

PCIe Links

DRAM

u

vCSs

MSs

Observation: RDMA NICs can expose on-chip memory (SRAM) for usages
v Store locks in on-chip mem of MSs’ NICs

- an array called Global Lock Table (GLT)
- hash [addr of tree node] => position in GLT
- eliminate PCIe txn at MSs

v Hierarchical structure
- Maintain a mirror of GLT at each CS: Local Lock Table
- first get local lock, then global one
- avoid unnecessary across-network retries
- bind a wait queue to each local lock, boosting fairness

Hierarchical On-Chip Lock

19

Global Lock Table (On-Chip Mem)

RDMA Links

Local Lock Table (DRAM)

PCIe Links

DRAM

u

vCSs

MSs

Observation: RDMA NICs can expose on-chip memory (SRAM) for usages
v Store locks in on-chip mem of MSs’ NICs

- an array called Global Lock Table (GLT)
- hash [addr of tree node] => position in GLT
- eliminate PCIe txn at MSs

v Hierarchical structure
- Maintain a mirror of GLT at each CS: Local Lock Table
- first get local lock, then global one
- avoid unnecessary across-network retries
- bind a wait queue to each local lock, boosting fairness

v Handover mechanism
- Hand over a lock from one thread to another locally
- reduce one round trip

Hierarchical On-Chip Lock

19

handover

Global Lock Table (On-Chip Mem)

RDMA Links

Local Lock Table (DRAM)

PCIe Links

DRAM

u

vCSs

MSs

Two-level version layout

20

Sherman tailors the B+Tree layout to mitigate write amplification

Two-level version layout

20

Sherman tailors the B+Tree layout to mitigate write amplification
v Make entries in leaf nodes unsorted

- avoid shift operation on insert/delete

Two-level version layout

20

Sherman tailors the B+Tree layout to mitigate write amplification
v Make entries in leaf nodes unsorted

- avoid shift operation on insert/delete
v Two-level version in leaf nodes

v node-level version protects leaf nodes => increment when insert/update/delete KV
v entry-level version protects KV entries => increment when nodes split/merge

12 12<K1, V1>66 66 <Kn, Vn>38 38…leaf node

node-level ver

entry-level ver

Two-level version layout

20

Sherman tailors the B+Tree layout to mitigate write amplification
v Make entries in leaf nodes unsorted

- avoid shift operation on insert/delete
v Two-level version in leaf nodes

v node-level version protects leaf nodes => increment when insert/update/delete KV
v entry-level version protects KV entries => increment when nodes split/merge

12 12<K1, V1>66 66 <Kn, Vn>38 38…leaf node

<K1, V1’>67 67update a KV:

write back entry (not node) via RDMA write

Two-level version layout

20

Sherman tailors the B+Tree layout to mitigate write amplification
v Make entries in leaf nodes unsorted

- avoid shift operation on insert/delete
v Two-level version in leaf nodes

v node-level version protects leaf nodes => increment when insert/update/delete KV
v entry-level version protects KV entries => increment when nodes split/merge

12 12<K1, V1>66 66 <Kn, Vn>38 38…leaf node

13 <K1, V1>66 66 … 13 1<Kn, Vn>38 381 …split a node:

RDMA write

Two-level version layout

20

Sherman tailors the B+Tree layout to mitigate write amplification
v Make entries in leaf nodes unsorted

- avoid shift operation on insert/delete
v Two-level version in leaf nodes

v node-level version protects leaf nodes => increment when insert/update/delete KV
v entry-level version protects KV entries => increment when nodes split/merge

12 12<K1, V1>66 66 <Kn, Vn>38 38…leaf node

12 12<K1, V1>66 66 <Kn, Vn>38 38…read a node:

RDMA read

Whether two node-level vers are equal ? two entry-level vers are equal ? If no, retry

Outline

21

v Background & Motivation

v Sherman – A Write-Optimized B+Tree on Disaggregated Memory

v Evaluation

v Summary

Experimental Setup

22

Hardware Platform

CPU 2 Intel Xeon E5-2650 (12 core)

Mem 128GB DRAM

NIC
100Gbps Mellanox ConnectX-5
w/ 256KB on-chip memory

OS CentOS 7.7 , Linux kernel 3.10.0

Machine * 8

Experimental Setup

22

Hardware Platform

CPU 2 Intel Xeon E5-2650 (12 core)

Mem 128GB DRAM

NIC
100Gbps Mellanox ConnectX-5
w/ 256KB on-chip memory

OS CentOS 7.7 , Linux kernel 3.10.0

Machine * 8

We emulate each machine as one MS and one CS

- MS: 64GB DRAM and 2 CPU cores

- CS: 1GB DRAM and 22 CPU cores

Experimental Setup

22

Hardware Platform

CPU 2 Intel Xeon E5-2650 (12 core)

Mem 128GB DRAM

NIC
100Gbps Mellanox ConnectX-5
w/ 256KB on-chip memory

OS CentOS 7.7 , Linux kernel 3.10.0

Compared System: FG [SIGMOD’19]
- One-sided RDMA for all index ops, so it can be deployed on DM
- RDMA locks for write-write conflicts; checksum for read-write conflicts
- We add CS-side index cache for FG, for fair comparison

Machine * 8

We emulate each machine as one MS and one CS

- MS: 64GB DRAM and 2 CPU cores

- CS: 1GB DRAM and 22 CPU cores

Experimental Setup

Benchmark: YCSB, Zipfian 0.99; 8B key & 8B value, 1 billion KV; 1KB node; 500MB index cache
22

Hardware Platform

CPU 2 Intel Xeon E5-2650 (12 core)

Mem 128GB DRAM

NIC
100Gbps Mellanox ConnectX-5
w/ 256KB on-chip memory

OS CentOS 7.7 , Linux kernel 3.10.0

Compared System: FG [SIGMOD’19]
- One-sided RDMA for all index ops, so it can be deployed on DM
- RDMA locks for write-write conflicts; checksum for read-write conflicts
- We add CS-side index cache for FG, for fair comparison

Machine * 8

We emulate each machine as one MS and one CS

- MS: 64GB DRAM and 2 CPU cores

- CS: 1GB DRAM and 22 CPU cores

23

T
hr

ou
gh

pu
t

(M
op

s/
s)

Throughput (176 client threads)

Write-intensive(50% lookup, 50% update/insert)

0

2

4

6

8

FG +Command Combine

+On-Chip Lock

+Hierarchical Structure

+2-Level Ver

0.34

8.02

23

T
hr

ou
gh

pu
t

(M
op

s/
s)

1. Sherman improves throughput significantly under write-intensive workloads
2. All techniques contribute to the high write efficiency

Throughput (176 client threads)

Write-intensive(50% lookup, 50% update/insert)

0

2

4

6

8

FG +Command Combine

+On-Chip Lock

+Hierarchical Structure

+2-Level Ver

23.6×

0.34

8.02

0

10

20

30

FG +Command Combine

+On-Chip Lock

+Hierarchical Structure

+2-Level Ver

23

T
hr

ou
gh

pu
t

(M
op

s/
s)

1. Sherman improves throughput significantly under write-intensive workloads
2. All techniques contribute to the high write efficiency

Throughput (176 client threads)

Write-intensive(50% lookup, 50% update/insert) Read-intensive (95% lookup, 5% update/insert)

0

2

4

6

8

FG +Command Combine

+On-Chip Lock

+Hierarchical Structure

+2-Level Ver

23.6×

0.34

8.02 32.9 33.8

0

10

20

30

FG +Command Combine

+On-Chip Lock

+Hierarchical Structure

+2-Level Ver

23

T
hr

ou
gh

pu
t

(M
op

s/
s)

1. Sherman improves throughput significantly under write-intensive workloads
2. All techniques contribute to the high write efficiency

Throughput (176 client threads)

Write-intensive(50% lookup, 50% update/insert) Read-intensive (95% lookup, 5% update/insert)

0

2

4

6

8

FG +Command Combine

+On-Chip Lock

+Hierarchical Structure

+2-Level Ver

23.6×

0.34

8.02

Sherman does not sacrifice read performance

32.9 33.8

0

5

10

15

FG +Command Combine

+On-Chip Lock

+Hierarchical Structure

+2-Level Ver

0

5,000

10,000

15,000

20,000

FG +Command Combine

+On-Chip Lock

+Hierarchical Structure

+2-Level Ver

24

La
te

nc
y

(u
s)

99th Percentile Latency (176 client threads)

Write-intensive(50% lookup, 50% update/insert) Read-intensive (95% lookup, 5% update/insert)

19890 15.3
12.3

659

30.2×

1.24×

0

5

10

15

FG +Command Combine

+On-Chip Lock

+Hierarchical Structure

+2-Level Ver

0

5,000

10,000

15,000

20,000

FG +Command Combine

+On-Chip Lock

+Hierarchical Structure

+2-Level Ver

24

La
te

nc
y

(u
s)

Sherman lowers tail latency by reducing round trips and boosting concurrency efficiency

99th Percentile Latency (176 client threads)

Write-intensive(50% lookup, 50% update/insert) Read-intensive (95% lookup, 5% update/insert)

19890 15.3
12.3

659

30.2×

1.24×

Outline

25

v Background & Motivation

v Sherman – A Write-Optimized B+Tree on Disaggregated Memory

v Evaluation

v Summary

v Goal
v Building a fast tree index on disaggregated memory with commodity RDMA NICs

26

Summary

v Goal
v Building a fast tree index on disaggregated memory with commodity RDMA NICs

v Key Idea
v Combining RDMA hardware features with RDMA-friendly software techniques

26

Summary

v Goal
v Building a fast tree index on disaggregated memory with commodity RDMA NICs

v Key Idea
v Combining RDMA hardware features with RDMA-friendly software techniques

vTechniques in Sherman
v Command combination – Reducing round trips
v Hierarchical on-chip lock – Accelerating concurrent accesses
vTwo-level version layout – Mitigating write amplification

26

Summary

v Goal
v Building a fast tree index on disaggregated memory with commodity RDMA NICs

v Key Idea
v Combining RDMA hardware features with RDMA-friendly software techniques

vTechniques in Sherman
v Command combination – Reducing round trips
v Hierarchical on-chip lock – Accelerating concurrent accesses
vTwo-level version layout – Mitigating write amplification

v Results
v Sherman improves throughput and 99th percentile latency by one order of magnitude on

typical write-intensive workloads 26

Summary

Thanks & QA

Contact Information: q-wang18@mails.tsinghua.edu.cn

Sherman: A Write-Optimized Distributed B+Tree Index
on Disaggregated Memory

27

