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Background: crash consistency

Atomicity (“all” or “nothing”) of a single operation that 
updates multiple blocks despite a sudden system crash
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Background: storage order

Persistence order of multiple individual operations 
(transactions) despite a sudden system crash
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Transaction and journaling
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Most existing storage systems use journaling (or write-
ahead log) to achieve crash consistency and storage order.
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Transaction and journaling
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Most existing storage systems use journaling (or write-
ahead log) to achieve crash consistency and storage order.
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Motivation: issues of journaling
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Motivation: issues of journaling
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D JM JCJH Time

submission Block I/O DMA completion Barrier (e.g., FLUSH)

…

the same procedure

• Issue 1: extra storage/PCIe traffic
• extra MMIOs of submission and completion due to per-request doorbells

• irrelevant blocks incurred by the device-wide FLUSH

• extra commit record (JC) generated by journaling to ensure atomicity

…



Motivation: issues of journaling
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D JM JCJH Time

submission Block I/O DMA completion Barrier (e.g., FLUSH)

…

the same procedure

• Issue 1: extra storage/PCIe traffic
• extra MMIOs of submission and completion due to per-request doorbells

• irrelevant blocks incurred by the device-wide FLUSH

• extra commit record (JC) generated by journaling to ensure atomicity

• Issue 2: serialization of ordered transactions
• pose long latency to each transaction, worsening issue 1

• conflate atomicity and storage order with durability

…



Our solution: ccNVMe
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D JMJH Time

Generic storage protocol that provides crash consistency, 
per-hardware-queue storage order and high performance.

• Advantage 1: reduce unnecessary storage/PCIe traffic
• remove commit record (JC) 

• remove one expensive device-wide FLUSH

• reduce MMIOs via transaction-aware MMIOs and doorbells

• Advantage 2: parallelize atomic and ordered transactions
• separate atomicity from durability

TX1:

TX2:

JC

fatomic: crash consistency and ordering with only two MMIOs over PCIe! 
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ccNVMe design overview
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ccNVMe is designed as an extension of NVMe (Non-Volatile Memory 
Express) atop PMR (persistent memory reigon)-enabled SSDs. 
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ccNVMe key insights from NVMe
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Key observation: the SQ and doorbells naturally track the life 
cycle (e.g., submitted or completed) of each request!
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ccNVMe work flow
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Key idea: let crash consistency and storage order take the free 
rides of data dissemination mechanism of the original NVMe. 
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TX-aware MMIO
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Persistent MMIO write to PMR
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TX-aware MMIO
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Persistent MMIO write to PMR
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TX-aware MMIO: batching MMIOs of each transaction
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step 2. flush (D, length  of (D+JH+JM)); PCIe read

larger persistent MMIO
higher access efficiency

(details in paper)



TX-aware doorbell
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One SQ doorbell and CQ doorbell for each transaction; let the 
requests of each transaction reach the same state.

SQ
SQ 

doorbell

PMR region
JM

JH

D

✓All requests (D, JH, JM) are about 

to be processed! (“nothing”)

✓Reduce the SQ doorbell MMIO

✓Remove the commit record; SQ 

doorbell as a commit point

CQ 
doorbell

SQ-head

CQ

JM

JH

D

✓All requests (D, JH, JM) are 

completed! (“all”)

✓Record the SQ head value

✓Reduce the CQ doorbell MMIO



Crash recovery
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ccNVMe provides non-atomic and out-of-order transactions to 
upper layer systems; upper layer systems handle these 
unfinished transactions, e.g., discard all for data journaling.

JM1JH1D1 JM2JH2D2

SQ from PMR

SQ-head SQ-tail 
i.e., SQ 

doorbell 

D1 JH1 JM1 D2 JH2 JM2

journal area

Discard D2, JH2 and JM2

◆crash consistency: tx-aware 
doorbell, transactions are 
submitted and completed atomically.

◆storage order: in-order doorbells, 
doorbells of each hardware queue 
are set in order.



Multi-Queue File System
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• Details of ccNVMe commands, compatible with the original 
NVMe commands using reserved fields

• Metadata shadow paging to persist shard blocks in parallel

• Selective revocation to handle block reuse across multi-queue

• Implementation details

Other details in paper
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Evaluation
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CPU 2 Intel E5-2680 V3 CPUs, each with 12 cores, totally 
24 physical CPU cores

SSD Intel 905P Optane, Intel P5800X Optane

Compared 
system

Linux vanilla kernel 4.18.20; classic journaling, 
HORAE[OSDI’20]; Ext4, HORAEFS[OSDI’20], Ext4-
NJ (no-journal setup of Ext4)

Workloads

• Transaction performance;
• File system performance; (see paper)
• Application performance;
• Understanding the performance; (see paper)
• Crash consistency; (see paper)



Transaction performance
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Workload: each thread persists independent transactions 

ccNVMe-Atomic = 2 x ccNVMe

= 2.2 x HORAE = 3 x Classic

ccNVMe-Atomic = 1.6 x ccNVMe

= 2.2 x HORAE = 2.6 x Classic

reduction of 
PCIe traffic 

(e.g., JC)

separation of 
atomicity from 

durability



Application performance
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MQFS: no-journal file system atop ccNVMe, this work, provide crash consistency 
and storage order.

MQFS ≈ Ext4-NJ = 1.2/1.1 x HORAEFS 
=2.4/2.6 x Ext4

MQFS = 1.4/1.3 x Ext4-NJ = 1.4/1.4 
x HORAEFS = 1.9/1.7 x Ext4

Higher CPU and I/O efficiency 
of MQFS/ccNVMe



Conclusion
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⚫ ccNVMe: Crash Consistent Non-Volatile Memory Express

➢ Provide generic transaction abstraction, crash consistency and storage 

order inside the standard storage protocol

➢ Separate atomicity from durability to fully exploit the high concurrency 

(e.g., multiple deep queues) of modern high-performance NVMe SSDs

⚫MQFS: Multi-Queue File System

➢ Upper layer storage software should reduce the CPU overhead to 

embrace the fast crash consistency and storage order of ccNVMe

Source code: https://github.com/thustorage/ccnvme

https://github.com/thustorage/ccnvme
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